1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6#include "xfs.h"
7#include "xfs_fs.h"
8#include "xfs_shared.h"
9#include "xfs_format.h"
10#include "xfs_log_format.h"
11#include "xfs_trans_resv.h"
12#include "xfs_mount.h"
13#include "xfs_inode.h"
14#include "xfs_trans.h"
15#include "xfs_inode_item.h"
16#include "xfs_trace.h"
17#include "xfs_trans_priv.h"
18#include "xfs_buf_item.h"
19#include "xfs_log.h"
20#include "xfs_log_priv.h"
21#include "xfs_error.h"
22#include "xfs_rtbitmap.h"
23
24#include <linux/iversion.h>
25
26struct kmem_cache *xfs_ili_cache; /* inode log item */
27
28static inline struct xfs_inode_log_item *INODE_ITEM(struct xfs_log_item *lip)
29{
30 return container_of(lip, struct xfs_inode_log_item, ili_item);
31}
32
33static uint64_t
34xfs_inode_item_sort(
35 struct xfs_log_item *lip)
36{
37 return INODE_ITEM(lip)->ili_inode->i_ino;
38}
39
40/*
41 * Prior to finally logging the inode, we have to ensure that all the
42 * per-modification inode state changes are applied. This includes VFS inode
43 * state updates, format conversions, verifier state synchronisation and
44 * ensuring the inode buffer remains in memory whilst the inode is dirty.
45 *
46 * We have to be careful when we grab the inode cluster buffer due to lock
47 * ordering constraints. The unlinked inode modifications (xfs_iunlink_item)
48 * require AGI -> inode cluster buffer lock order. The inode cluster buffer is
49 * not locked until ->precommit, so it happens after everything else has been
50 * modified.
51 *
52 * Further, we have AGI -> AGF lock ordering, and with O_TMPFILE handling we
53 * have AGI -> AGF -> iunlink item -> inode cluster buffer lock order. Hence we
54 * cannot safely lock the inode cluster buffer in xfs_trans_log_inode() because
55 * it can be called on a inode (e.g. via bumplink/droplink) before we take the
56 * AGF lock modifying directory blocks.
57 *
58 * Rather than force a complete rework of all the transactions to call
59 * xfs_trans_log_inode() once and once only at the end of every transaction, we
60 * move the pinning of the inode cluster buffer to a ->precommit operation. This
61 * matches how the xfs_iunlink_item locks the inode cluster buffer, and it
62 * ensures that the inode cluster buffer locking is always done last in a
63 * transaction. i.e. we ensure the lock order is always AGI -> AGF -> inode
64 * cluster buffer.
65 *
66 * If we return the inode number as the precommit sort key then we'll also
67 * guarantee that the order all inode cluster buffer locking is the same all the
68 * inodes and unlink items in the transaction.
69 */
70static int
71xfs_inode_item_precommit(
72 struct xfs_trans *tp,
73 struct xfs_log_item *lip)
74{
75 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
76 struct xfs_inode *ip = iip->ili_inode;
77 struct inode *inode = VFS_I(ip);
78 unsigned int flags = iip->ili_dirty_flags;
79
80 /*
81 * Don't bother with i_lock for the I_DIRTY_TIME check here, as races
82 * don't matter - we either will need an extra transaction in 24 hours
83 * to log the timestamps, or will clear already cleared fields in the
84 * worst case.
85 */
86 if (inode->i_state & I_DIRTY_TIME) {
87 spin_lock(lock: &inode->i_lock);
88 inode->i_state &= ~I_DIRTY_TIME;
89 spin_unlock(lock: &inode->i_lock);
90 }
91
92 /*
93 * If we're updating the inode core or the timestamps and it's possible
94 * to upgrade this inode to bigtime format, do so now.
95 */
96 if ((flags & (XFS_ILOG_CORE | XFS_ILOG_TIMESTAMP)) &&
97 xfs_has_bigtime(ip->i_mount) &&
98 !xfs_inode_has_bigtime(ip)) {
99 ip->i_diflags2 |= XFS_DIFLAG2_BIGTIME;
100 flags |= XFS_ILOG_CORE;
101 }
102
103 /*
104 * Inode verifiers do not check that the extent size hint is an integer
105 * multiple of the rt extent size on a directory with both rtinherit
106 * and extszinherit flags set. If we're logging a directory that is
107 * misconfigured in this way, clear the hint.
108 */
109 if ((ip->i_diflags & XFS_DIFLAG_RTINHERIT) &&
110 (ip->i_diflags & XFS_DIFLAG_EXTSZINHERIT) &&
111 xfs_extlen_to_rtxmod(ip->i_mount, ip->i_extsize) > 0) {
112 ip->i_diflags &= ~(XFS_DIFLAG_EXTSIZE |
113 XFS_DIFLAG_EXTSZINHERIT);
114 ip->i_extsize = 0;
115 flags |= XFS_ILOG_CORE;
116 }
117
118 /*
119 * Record the specific change for fdatasync optimisation. This allows
120 * fdatasync to skip log forces for inodes that are only timestamp
121 * dirty. Once we've processed the XFS_ILOG_IVERSION flag, convert it
122 * to XFS_ILOG_CORE so that the actual on-disk dirty tracking
123 * (ili_fields) correctly tracks that the version has changed.
124 */
125 spin_lock(lock: &iip->ili_lock);
126 iip->ili_fsync_fields |= (flags & ~XFS_ILOG_IVERSION);
127 if (flags & XFS_ILOG_IVERSION)
128 flags = ((flags & ~XFS_ILOG_IVERSION) | XFS_ILOG_CORE);
129
130 if (!iip->ili_item.li_buf) {
131 struct xfs_buf *bp;
132 int error;
133
134 /*
135 * We hold the ILOCK here, so this inode is not going to be
136 * flushed while we are here. Further, because there is no
137 * buffer attached to the item, we know that there is no IO in
138 * progress, so nothing will clear the ili_fields while we read
139 * in the buffer. Hence we can safely drop the spin lock and
140 * read the buffer knowing that the state will not change from
141 * here.
142 */
143 spin_unlock(lock: &iip->ili_lock);
144 error = xfs_imap_to_bp(ip->i_mount, tp, &ip->i_imap, &bp);
145 if (error)
146 return error;
147
148 /*
149 * We need an explicit buffer reference for the log item but
150 * don't want the buffer to remain attached to the transaction.
151 * Hold the buffer but release the transaction reference once
152 * we've attached the inode log item to the buffer log item
153 * list.
154 */
155 xfs_buf_hold(bp);
156 spin_lock(lock: &iip->ili_lock);
157 iip->ili_item.li_buf = bp;
158 bp->b_flags |= _XBF_INODES;
159 list_add_tail(new: &iip->ili_item.li_bio_list, head: &bp->b_li_list);
160 xfs_trans_brelse(tp, bp);
161 }
162
163 /*
164 * Always OR in the bits from the ili_last_fields field. This is to
165 * coordinate with the xfs_iflush() and xfs_buf_inode_iodone() routines
166 * in the eventual clearing of the ili_fields bits. See the big comment
167 * in xfs_iflush() for an explanation of this coordination mechanism.
168 */
169 iip->ili_fields |= (flags | iip->ili_last_fields);
170 spin_unlock(lock: &iip->ili_lock);
171
172 /*
173 * We are done with the log item transaction dirty state, so clear it so
174 * that it doesn't pollute future transactions.
175 */
176 iip->ili_dirty_flags = 0;
177 return 0;
178}
179
180/*
181 * The logged size of an inode fork is always the current size of the inode
182 * fork. This means that when an inode fork is relogged, the size of the logged
183 * region is determined by the current state, not the combination of the
184 * previously logged state + the current state. This is different relogging
185 * behaviour to most other log items which will retain the size of the
186 * previously logged changes when smaller regions are relogged.
187 *
188 * Hence operations that remove data from the inode fork (e.g. shortform
189 * dir/attr remove, extent form extent removal, etc), the size of the relogged
190 * inode gets -smaller- rather than stays the same size as the previously logged
191 * size and this can result in the committing transaction reducing the amount of
192 * space being consumed by the CIL.
193 */
194STATIC void
195xfs_inode_item_data_fork_size(
196 struct xfs_inode_log_item *iip,
197 int *nvecs,
198 int *nbytes)
199{
200 struct xfs_inode *ip = iip->ili_inode;
201
202 switch (ip->i_df.if_format) {
203 case XFS_DINODE_FMT_EXTENTS:
204 if ((iip->ili_fields & XFS_ILOG_DEXT) &&
205 ip->i_df.if_nextents > 0 &&
206 ip->i_df.if_bytes > 0) {
207 /* worst case, doesn't subtract delalloc extents */
208 *nbytes += xfs_inode_data_fork_size(ip);
209 *nvecs += 1;
210 }
211 break;
212 case XFS_DINODE_FMT_BTREE:
213 if ((iip->ili_fields & XFS_ILOG_DBROOT) &&
214 ip->i_df.if_broot_bytes > 0) {
215 *nbytes += ip->i_df.if_broot_bytes;
216 *nvecs += 1;
217 }
218 break;
219 case XFS_DINODE_FMT_LOCAL:
220 if ((iip->ili_fields & XFS_ILOG_DDATA) &&
221 ip->i_df.if_bytes > 0) {
222 *nbytes += xlog_calc_iovec_len(len: ip->i_df.if_bytes);
223 *nvecs += 1;
224 }
225 break;
226
227 case XFS_DINODE_FMT_DEV:
228 break;
229 default:
230 ASSERT(0);
231 break;
232 }
233}
234
235STATIC void
236xfs_inode_item_attr_fork_size(
237 struct xfs_inode_log_item *iip,
238 int *nvecs,
239 int *nbytes)
240{
241 struct xfs_inode *ip = iip->ili_inode;
242
243 switch (ip->i_af.if_format) {
244 case XFS_DINODE_FMT_EXTENTS:
245 if ((iip->ili_fields & XFS_ILOG_AEXT) &&
246 ip->i_af.if_nextents > 0 &&
247 ip->i_af.if_bytes > 0) {
248 /* worst case, doesn't subtract unused space */
249 *nbytes += xfs_inode_attr_fork_size(ip);
250 *nvecs += 1;
251 }
252 break;
253 case XFS_DINODE_FMT_BTREE:
254 if ((iip->ili_fields & XFS_ILOG_ABROOT) &&
255 ip->i_af.if_broot_bytes > 0) {
256 *nbytes += ip->i_af.if_broot_bytes;
257 *nvecs += 1;
258 }
259 break;
260 case XFS_DINODE_FMT_LOCAL:
261 if ((iip->ili_fields & XFS_ILOG_ADATA) &&
262 ip->i_af.if_bytes > 0) {
263 *nbytes += xlog_calc_iovec_len(len: ip->i_af.if_bytes);
264 *nvecs += 1;
265 }
266 break;
267 default:
268 ASSERT(0);
269 break;
270 }
271}
272
273/*
274 * This returns the number of iovecs needed to log the given inode item.
275 *
276 * We need one iovec for the inode log format structure, one for the
277 * inode core, and possibly one for the inode data/extents/b-tree root
278 * and one for the inode attribute data/extents/b-tree root.
279 */
280STATIC void
281xfs_inode_item_size(
282 struct xfs_log_item *lip,
283 int *nvecs,
284 int *nbytes)
285{
286 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
287 struct xfs_inode *ip = iip->ili_inode;
288
289 *nvecs += 2;
290 *nbytes += sizeof(struct xfs_inode_log_format) +
291 xfs_log_dinode_size(ip->i_mount);
292
293 xfs_inode_item_data_fork_size(iip, nvecs, nbytes);
294 if (xfs_inode_has_attr_fork(ip))
295 xfs_inode_item_attr_fork_size(iip, nvecs, nbytes);
296}
297
298STATIC void
299xfs_inode_item_format_data_fork(
300 struct xfs_inode_log_item *iip,
301 struct xfs_inode_log_format *ilf,
302 struct xfs_log_vec *lv,
303 struct xfs_log_iovec **vecp)
304{
305 struct xfs_inode *ip = iip->ili_inode;
306 size_t data_bytes;
307
308 switch (ip->i_df.if_format) {
309 case XFS_DINODE_FMT_EXTENTS:
310 iip->ili_fields &=
311 ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | XFS_ILOG_DEV);
312
313 if ((iip->ili_fields & XFS_ILOG_DEXT) &&
314 ip->i_df.if_nextents > 0 &&
315 ip->i_df.if_bytes > 0) {
316 struct xfs_bmbt_rec *p;
317
318 ASSERT(xfs_iext_count(&ip->i_df) > 0);
319
320 p = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_IEXT);
321 data_bytes = xfs_iextents_copy(ip, p, XFS_DATA_FORK);
322 xlog_finish_iovec(lv, vec: *vecp, data_len: data_bytes);
323
324 ASSERT(data_bytes <= ip->i_df.if_bytes);
325
326 ilf->ilf_dsize = data_bytes;
327 ilf->ilf_size++;
328 } else {
329 iip->ili_fields &= ~XFS_ILOG_DEXT;
330 }
331 break;
332 case XFS_DINODE_FMT_BTREE:
333 iip->ili_fields &=
334 ~(XFS_ILOG_DDATA | XFS_ILOG_DEXT | XFS_ILOG_DEV);
335
336 if ((iip->ili_fields & XFS_ILOG_DBROOT) &&
337 ip->i_df.if_broot_bytes > 0) {
338 ASSERT(ip->i_df.if_broot != NULL);
339 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IBROOT,
340 ip->i_df.if_broot,
341 ip->i_df.if_broot_bytes);
342 ilf->ilf_dsize = ip->i_df.if_broot_bytes;
343 ilf->ilf_size++;
344 } else {
345 ASSERT(!(iip->ili_fields &
346 XFS_ILOG_DBROOT));
347 iip->ili_fields &= ~XFS_ILOG_DBROOT;
348 }
349 break;
350 case XFS_DINODE_FMT_LOCAL:
351 iip->ili_fields &=
352 ~(XFS_ILOG_DEXT | XFS_ILOG_DBROOT | XFS_ILOG_DEV);
353 if ((iip->ili_fields & XFS_ILOG_DDATA) &&
354 ip->i_df.if_bytes > 0) {
355 ASSERT(ip->i_df.if_u1.if_data != NULL);
356 ASSERT(ip->i_disk_size > 0);
357 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_ILOCAL,
358 ip->i_df.if_u1.if_data,
359 ip->i_df.if_bytes);
360 ilf->ilf_dsize = (unsigned)ip->i_df.if_bytes;
361 ilf->ilf_size++;
362 } else {
363 iip->ili_fields &= ~XFS_ILOG_DDATA;
364 }
365 break;
366 case XFS_DINODE_FMT_DEV:
367 iip->ili_fields &=
368 ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | XFS_ILOG_DEXT);
369 if (iip->ili_fields & XFS_ILOG_DEV)
370 ilf->ilf_u.ilfu_rdev = sysv_encode_dev(dev: VFS_I(ip)->i_rdev);
371 break;
372 default:
373 ASSERT(0);
374 break;
375 }
376}
377
378STATIC void
379xfs_inode_item_format_attr_fork(
380 struct xfs_inode_log_item *iip,
381 struct xfs_inode_log_format *ilf,
382 struct xfs_log_vec *lv,
383 struct xfs_log_iovec **vecp)
384{
385 struct xfs_inode *ip = iip->ili_inode;
386 size_t data_bytes;
387
388 switch (ip->i_af.if_format) {
389 case XFS_DINODE_FMT_EXTENTS:
390 iip->ili_fields &=
391 ~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT);
392
393 if ((iip->ili_fields & XFS_ILOG_AEXT) &&
394 ip->i_af.if_nextents > 0 &&
395 ip->i_af.if_bytes > 0) {
396 struct xfs_bmbt_rec *p;
397
398 ASSERT(xfs_iext_count(&ip->i_af) ==
399 ip->i_af.if_nextents);
400
401 p = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_EXT);
402 data_bytes = xfs_iextents_copy(ip, p, XFS_ATTR_FORK);
403 xlog_finish_iovec(lv, vec: *vecp, data_len: data_bytes);
404
405 ilf->ilf_asize = data_bytes;
406 ilf->ilf_size++;
407 } else {
408 iip->ili_fields &= ~XFS_ILOG_AEXT;
409 }
410 break;
411 case XFS_DINODE_FMT_BTREE:
412 iip->ili_fields &=
413 ~(XFS_ILOG_ADATA | XFS_ILOG_AEXT);
414
415 if ((iip->ili_fields & XFS_ILOG_ABROOT) &&
416 ip->i_af.if_broot_bytes > 0) {
417 ASSERT(ip->i_af.if_broot != NULL);
418
419 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_BROOT,
420 ip->i_af.if_broot,
421 ip->i_af.if_broot_bytes);
422 ilf->ilf_asize = ip->i_af.if_broot_bytes;
423 ilf->ilf_size++;
424 } else {
425 iip->ili_fields &= ~XFS_ILOG_ABROOT;
426 }
427 break;
428 case XFS_DINODE_FMT_LOCAL:
429 iip->ili_fields &=
430 ~(XFS_ILOG_AEXT | XFS_ILOG_ABROOT);
431
432 if ((iip->ili_fields & XFS_ILOG_ADATA) &&
433 ip->i_af.if_bytes > 0) {
434 ASSERT(ip->i_af.if_u1.if_data != NULL);
435 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_LOCAL,
436 ip->i_af.if_u1.if_data,
437 ip->i_af.if_bytes);
438 ilf->ilf_asize = (unsigned)ip->i_af.if_bytes;
439 ilf->ilf_size++;
440 } else {
441 iip->ili_fields &= ~XFS_ILOG_ADATA;
442 }
443 break;
444 default:
445 ASSERT(0);
446 break;
447 }
448}
449
450/*
451 * Convert an incore timestamp to a log timestamp. Note that the log format
452 * specifies host endian format!
453 */
454static inline xfs_log_timestamp_t
455xfs_inode_to_log_dinode_ts(
456 struct xfs_inode *ip,
457 const struct timespec64 tv)
458{
459 struct xfs_log_legacy_timestamp *lits;
460 xfs_log_timestamp_t its;
461
462 if (xfs_inode_has_bigtime(ip))
463 return xfs_inode_encode_bigtime(tv);
464
465 lits = (struct xfs_log_legacy_timestamp *)&its;
466 lits->t_sec = tv.tv_sec;
467 lits->t_nsec = tv.tv_nsec;
468
469 return its;
470}
471
472/*
473 * The legacy DMAPI fields are only present in the on-disk and in-log inodes,
474 * but not in the in-memory one. But we are guaranteed to have an inode buffer
475 * in memory when logging an inode, so we can just copy it from the on-disk
476 * inode to the in-log inode here so that recovery of file system with these
477 * fields set to non-zero values doesn't lose them. For all other cases we zero
478 * the fields.
479 */
480static void
481xfs_copy_dm_fields_to_log_dinode(
482 struct xfs_inode *ip,
483 struct xfs_log_dinode *to)
484{
485 struct xfs_dinode *dip;
486
487 dip = xfs_buf_offset(ip->i_itemp->ili_item.li_buf,
488 ip->i_imap.im_boffset);
489
490 if (xfs_iflags_test(ip, XFS_IPRESERVE_DM_FIELDS)) {
491 to->di_dmevmask = be32_to_cpu(dip->di_dmevmask);
492 to->di_dmstate = be16_to_cpu(dip->di_dmstate);
493 } else {
494 to->di_dmevmask = 0;
495 to->di_dmstate = 0;
496 }
497}
498
499static inline void
500xfs_inode_to_log_dinode_iext_counters(
501 struct xfs_inode *ip,
502 struct xfs_log_dinode *to)
503{
504 if (xfs_inode_has_large_extent_counts(ip)) {
505 to->di_big_nextents = xfs_ifork_nextents(&ip->i_df);
506 to->di_big_anextents = xfs_ifork_nextents(&ip->i_af);
507 to->di_nrext64_pad = 0;
508 } else {
509 to->di_nextents = xfs_ifork_nextents(&ip->i_df);
510 to->di_anextents = xfs_ifork_nextents(&ip->i_af);
511 }
512}
513
514static void
515xfs_inode_to_log_dinode(
516 struct xfs_inode *ip,
517 struct xfs_log_dinode *to,
518 xfs_lsn_t lsn)
519{
520 struct inode *inode = VFS_I(ip);
521
522 to->di_magic = XFS_DINODE_MAGIC;
523 to->di_format = xfs_ifork_format(&ip->i_df);
524 to->di_uid = i_uid_read(inode);
525 to->di_gid = i_gid_read(inode);
526 to->di_projid_lo = ip->i_projid & 0xffff;
527 to->di_projid_hi = ip->i_projid >> 16;
528
529 memset(to->di_pad3, 0, sizeof(to->di_pad3));
530 to->di_atime = xfs_inode_to_log_dinode_ts(ip, inode_get_atime(inode));
531 to->di_mtime = xfs_inode_to_log_dinode_ts(ip, inode_get_mtime(inode));
532 to->di_ctime = xfs_inode_to_log_dinode_ts(ip, inode_get_ctime(inode));
533 to->di_nlink = inode->i_nlink;
534 to->di_gen = inode->i_generation;
535 to->di_mode = inode->i_mode;
536
537 to->di_size = ip->i_disk_size;
538 to->di_nblocks = ip->i_nblocks;
539 to->di_extsize = ip->i_extsize;
540 to->di_forkoff = ip->i_forkoff;
541 to->di_aformat = xfs_ifork_format(&ip->i_af);
542 to->di_flags = ip->i_diflags;
543
544 xfs_copy_dm_fields_to_log_dinode(ip, to);
545
546 /* log a dummy value to ensure log structure is fully initialised */
547 to->di_next_unlinked = NULLAGINO;
548
549 if (xfs_has_v3inodes(mp: ip->i_mount)) {
550 to->di_version = 3;
551 to->di_changecount = inode_peek_iversion(inode);
552 to->di_crtime = xfs_inode_to_log_dinode_ts(ip, ip->i_crtime);
553 to->di_flags2 = ip->i_diflags2;
554 to->di_cowextsize = ip->i_cowextsize;
555 to->di_ino = ip->i_ino;
556 to->di_lsn = lsn;
557 memset(to->di_pad2, 0, sizeof(to->di_pad2));
558 uuid_copy(dst: &to->di_uuid, src: &ip->i_mount->m_sb.sb_meta_uuid);
559 to->di_v3_pad = 0;
560 } else {
561 to->di_version = 2;
562 to->di_flushiter = ip->i_flushiter;
563 memset(to->di_v2_pad, 0, sizeof(to->di_v2_pad));
564 }
565
566 xfs_inode_to_log_dinode_iext_counters(ip, to);
567}
568
569/*
570 * Format the inode core. Current timestamp data is only in the VFS inode
571 * fields, so we need to grab them from there. Hence rather than just copying
572 * the XFS inode core structure, format the fields directly into the iovec.
573 */
574static void
575xfs_inode_item_format_core(
576 struct xfs_inode *ip,
577 struct xfs_log_vec *lv,
578 struct xfs_log_iovec **vecp)
579{
580 struct xfs_log_dinode *dic;
581
582 dic = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_ICORE);
583 xfs_inode_to_log_dinode(ip, dic, ip->i_itemp->ili_item.li_lsn);
584 xlog_finish_iovec(lv, vec: *vecp, data_len: xfs_log_dinode_size(ip->i_mount));
585}
586
587/*
588 * This is called to fill in the vector of log iovecs for the given inode
589 * log item. It fills the first item with an inode log format structure,
590 * the second with the on-disk inode structure, and a possible third and/or
591 * fourth with the inode data/extents/b-tree root and inode attributes
592 * data/extents/b-tree root.
593 *
594 * Note: Always use the 64 bit inode log format structure so we don't
595 * leave an uninitialised hole in the format item on 64 bit systems. Log
596 * recovery on 32 bit systems handles this just fine, so there's no reason
597 * for not using an initialising the properly padded structure all the time.
598 */
599STATIC void
600xfs_inode_item_format(
601 struct xfs_log_item *lip,
602 struct xfs_log_vec *lv)
603{
604 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
605 struct xfs_inode *ip = iip->ili_inode;
606 struct xfs_log_iovec *vecp = NULL;
607 struct xfs_inode_log_format *ilf;
608
609 ilf = xlog_prepare_iovec(lv, &vecp, XLOG_REG_TYPE_IFORMAT);
610 ilf->ilf_type = XFS_LI_INODE;
611 ilf->ilf_ino = ip->i_ino;
612 ilf->ilf_blkno = ip->i_imap.im_blkno;
613 ilf->ilf_len = ip->i_imap.im_len;
614 ilf->ilf_boffset = ip->i_imap.im_boffset;
615 ilf->ilf_fields = XFS_ILOG_CORE;
616 ilf->ilf_size = 2; /* format + core */
617
618 /*
619 * make sure we don't leak uninitialised data into the log in the case
620 * when we don't log every field in the inode.
621 */
622 ilf->ilf_dsize = 0;
623 ilf->ilf_asize = 0;
624 ilf->ilf_pad = 0;
625 memset(&ilf->ilf_u, 0, sizeof(ilf->ilf_u));
626
627 xlog_finish_iovec(lv, vecp, sizeof(*ilf));
628
629 xfs_inode_item_format_core(ip, lv, vecp: &vecp);
630 xfs_inode_item_format_data_fork(iip, ilf, lv, vecp: &vecp);
631 if (xfs_inode_has_attr_fork(ip)) {
632 xfs_inode_item_format_attr_fork(iip, ilf, lv, vecp: &vecp);
633 } else {
634 iip->ili_fields &=
635 ~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT | XFS_ILOG_AEXT);
636 }
637
638 /* update the format with the exact fields we actually logged */
639 ilf->ilf_fields |= (iip->ili_fields & ~XFS_ILOG_TIMESTAMP);
640}
641
642/*
643 * This is called to pin the inode associated with the inode log
644 * item in memory so it cannot be written out.
645 */
646STATIC void
647xfs_inode_item_pin(
648 struct xfs_log_item *lip)
649{
650 struct xfs_inode *ip = INODE_ITEM(lip)->ili_inode;
651
652 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
653 ASSERT(lip->li_buf);
654
655 trace_xfs_inode_pin(ip, _RET_IP_);
656 atomic_inc(v: &ip->i_pincount);
657}
658
659
660/*
661 * This is called to unpin the inode associated with the inode log
662 * item which was previously pinned with a call to xfs_inode_item_pin().
663 *
664 * Also wake up anyone in xfs_iunpin_wait() if the count goes to 0.
665 *
666 * Note that unpin can race with inode cluster buffer freeing marking the buffer
667 * stale. In that case, flush completions are run from the buffer unpin call,
668 * which may happen before the inode is unpinned. If we lose the race, there
669 * will be no buffer attached to the log item, but the inode will be marked
670 * XFS_ISTALE.
671 */
672STATIC void
673xfs_inode_item_unpin(
674 struct xfs_log_item *lip,
675 int remove)
676{
677 struct xfs_inode *ip = INODE_ITEM(lip)->ili_inode;
678
679 trace_xfs_inode_unpin(ip, _RET_IP_);
680 ASSERT(lip->li_buf || xfs_iflags_test(ip, XFS_ISTALE));
681 ASSERT(atomic_read(&ip->i_pincount) > 0);
682 if (atomic_dec_and_test(v: &ip->i_pincount))
683 wake_up_bit(word: &ip->i_flags, __XFS_IPINNED_BIT);
684}
685
686STATIC uint
687xfs_inode_item_push(
688 struct xfs_log_item *lip,
689 struct list_head *buffer_list)
690 __releases(&lip->li_ailp->ail_lock)
691 __acquires(&lip->li_ailp->ail_lock)
692{
693 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
694 struct xfs_inode *ip = iip->ili_inode;
695 struct xfs_buf *bp = lip->li_buf;
696 uint rval = XFS_ITEM_SUCCESS;
697 int error;
698
699 if (!bp || (ip->i_flags & XFS_ISTALE)) {
700 /*
701 * Inode item/buffer is being aborted due to cluster
702 * buffer deletion. Trigger a log force to have that operation
703 * completed and items removed from the AIL before the next push
704 * attempt.
705 */
706 return XFS_ITEM_PINNED;
707 }
708
709 if (xfs_ipincount(ip) > 0 || xfs_buf_ispinned(bp))
710 return XFS_ITEM_PINNED;
711
712 if (xfs_iflags_test(ip, XFS_IFLUSHING))
713 return XFS_ITEM_FLUSHING;
714
715 if (!xfs_buf_trylock(bp))
716 return XFS_ITEM_LOCKED;
717
718 spin_unlock(lock: &lip->li_ailp->ail_lock);
719
720 /*
721 * We need to hold a reference for flushing the cluster buffer as it may
722 * fail the buffer without IO submission. In which case, we better get a
723 * reference for that completion because otherwise we don't get a
724 * reference for IO until we queue the buffer for delwri submission.
725 */
726 xfs_buf_hold(bp);
727 error = xfs_iflush_cluster(bp);
728 if (!error) {
729 if (!xfs_buf_delwri_queue(bp, buffer_list))
730 rval = XFS_ITEM_FLUSHING;
731 xfs_buf_relse(bp);
732 } else {
733 /*
734 * Release the buffer if we were unable to flush anything. On
735 * any other error, the buffer has already been released.
736 */
737 if (error == -EAGAIN)
738 xfs_buf_relse(bp);
739 rval = XFS_ITEM_LOCKED;
740 }
741
742 spin_lock(lock: &lip->li_ailp->ail_lock);
743 return rval;
744}
745
746/*
747 * Unlock the inode associated with the inode log item.
748 */
749STATIC void
750xfs_inode_item_release(
751 struct xfs_log_item *lip)
752{
753 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
754 struct xfs_inode *ip = iip->ili_inode;
755 unsigned short lock_flags;
756
757 ASSERT(ip->i_itemp != NULL);
758 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
759
760 lock_flags = iip->ili_lock_flags;
761 iip->ili_lock_flags = 0;
762 if (lock_flags)
763 xfs_iunlock(ip, lock_flags);
764}
765
766/*
767 * This is called to find out where the oldest active copy of the inode log
768 * item in the on disk log resides now that the last log write of it completed
769 * at the given lsn. Since we always re-log all dirty data in an inode, the
770 * latest copy in the on disk log is the only one that matters. Therefore,
771 * simply return the given lsn.
772 *
773 * If the inode has been marked stale because the cluster is being freed, we
774 * don't want to (re-)insert this inode into the AIL. There is a race condition
775 * where the cluster buffer may be unpinned before the inode is inserted into
776 * the AIL during transaction committed processing. If the buffer is unpinned
777 * before the inode item has been committed and inserted, then it is possible
778 * for the buffer to be written and IO completes before the inode is inserted
779 * into the AIL. In that case, we'd be inserting a clean, stale inode into the
780 * AIL which will never get removed. It will, however, get reclaimed which
781 * triggers an assert in xfs_inode_free() complaining about freein an inode
782 * still in the AIL.
783 *
784 * To avoid this, just unpin the inode directly and return a LSN of -1 so the
785 * transaction committed code knows that it does not need to do any further
786 * processing on the item.
787 */
788STATIC xfs_lsn_t
789xfs_inode_item_committed(
790 struct xfs_log_item *lip,
791 xfs_lsn_t lsn)
792{
793 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
794 struct xfs_inode *ip = iip->ili_inode;
795
796 if (xfs_iflags_test(ip, XFS_ISTALE)) {
797 xfs_inode_item_unpin(lip, remove: 0);
798 return -1;
799 }
800 return lsn;
801}
802
803STATIC void
804xfs_inode_item_committing(
805 struct xfs_log_item *lip,
806 xfs_csn_t seq)
807{
808 INODE_ITEM(lip)->ili_commit_seq = seq;
809 return xfs_inode_item_release(lip);
810}
811
812static const struct xfs_item_ops xfs_inode_item_ops = {
813 .iop_sort = xfs_inode_item_sort,
814 .iop_precommit = xfs_inode_item_precommit,
815 .iop_size = xfs_inode_item_size,
816 .iop_format = xfs_inode_item_format,
817 .iop_pin = xfs_inode_item_pin,
818 .iop_unpin = xfs_inode_item_unpin,
819 .iop_release = xfs_inode_item_release,
820 .iop_committed = xfs_inode_item_committed,
821 .iop_push = xfs_inode_item_push,
822 .iop_committing = xfs_inode_item_committing,
823};
824
825
826/*
827 * Initialize the inode log item for a newly allocated (in-core) inode.
828 */
829void
830xfs_inode_item_init(
831 struct xfs_inode *ip,
832 struct xfs_mount *mp)
833{
834 struct xfs_inode_log_item *iip;
835
836 ASSERT(ip->i_itemp == NULL);
837 iip = ip->i_itemp = kmem_cache_zalloc(k: xfs_ili_cache,
838 GFP_KERNEL | __GFP_NOFAIL);
839
840 iip->ili_inode = ip;
841 spin_lock_init(&iip->ili_lock);
842 xfs_log_item_init(mp, &iip->ili_item, XFS_LI_INODE,
843 &xfs_inode_item_ops);
844}
845
846/*
847 * Free the inode log item and any memory hanging off of it.
848 */
849void
850xfs_inode_item_destroy(
851 struct xfs_inode *ip)
852{
853 struct xfs_inode_log_item *iip = ip->i_itemp;
854
855 ASSERT(iip->ili_item.li_buf == NULL);
856
857 ip->i_itemp = NULL;
858 kmem_free(ptr: iip->ili_item.li_lv_shadow);
859 kmem_cache_free(s: xfs_ili_cache, objp: iip);
860}
861
862
863/*
864 * We only want to pull the item from the AIL if it is actually there
865 * and its location in the log has not changed since we started the
866 * flush. Thus, we only bother if the inode's lsn has not changed.
867 */
868static void
869xfs_iflush_ail_updates(
870 struct xfs_ail *ailp,
871 struct list_head *list)
872{
873 struct xfs_log_item *lip;
874 xfs_lsn_t tail_lsn = 0;
875
876 /* this is an opencoded batch version of xfs_trans_ail_delete */
877 spin_lock(lock: &ailp->ail_lock);
878 list_for_each_entry(lip, list, li_bio_list) {
879 xfs_lsn_t lsn;
880
881 clear_bit(XFS_LI_FAILED, addr: &lip->li_flags);
882 if (INODE_ITEM(lip)->ili_flush_lsn != lip->li_lsn)
883 continue;
884
885 /*
886 * dgc: Not sure how this happens, but it happens very
887 * occassionaly via generic/388. xfs_iflush_abort() also
888 * silently handles this same "under writeback but not in AIL at
889 * shutdown" condition via xfs_trans_ail_delete().
890 */
891 if (!test_bit(XFS_LI_IN_AIL, &lip->li_flags)) {
892 ASSERT(xlog_is_shutdown(lip->li_log));
893 continue;
894 }
895
896 lsn = xfs_ail_delete_one(ailp, lip);
897 if (!tail_lsn && lsn)
898 tail_lsn = lsn;
899 }
900 xfs_ail_update_finish(ailp, tail_lsn);
901}
902
903/*
904 * Walk the list of inodes that have completed their IOs. If they are clean
905 * remove them from the list and dissociate them from the buffer. Buffers that
906 * are still dirty remain linked to the buffer and on the list. Caller must
907 * handle them appropriately.
908 */
909static void
910xfs_iflush_finish(
911 struct xfs_buf *bp,
912 struct list_head *list)
913{
914 struct xfs_log_item *lip, *n;
915
916 list_for_each_entry_safe(lip, n, list, li_bio_list) {
917 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
918 bool drop_buffer = false;
919
920 spin_lock(lock: &iip->ili_lock);
921
922 /*
923 * Remove the reference to the cluster buffer if the inode is
924 * clean in memory and drop the buffer reference once we've
925 * dropped the locks we hold.
926 */
927 ASSERT(iip->ili_item.li_buf == bp);
928 if (!iip->ili_fields) {
929 iip->ili_item.li_buf = NULL;
930 list_del_init(entry: &lip->li_bio_list);
931 drop_buffer = true;
932 }
933 iip->ili_last_fields = 0;
934 iip->ili_flush_lsn = 0;
935 spin_unlock(lock: &iip->ili_lock);
936 xfs_iflags_clear(ip: iip->ili_inode, XFS_IFLUSHING);
937 if (drop_buffer)
938 xfs_buf_rele(bp);
939 }
940}
941
942/*
943 * Inode buffer IO completion routine. It is responsible for removing inodes
944 * attached to the buffer from the AIL if they have not been re-logged and
945 * completing the inode flush.
946 */
947void
948xfs_buf_inode_iodone(
949 struct xfs_buf *bp)
950{
951 struct xfs_log_item *lip, *n;
952 LIST_HEAD(flushed_inodes);
953 LIST_HEAD(ail_updates);
954
955 /*
956 * Pull the attached inodes from the buffer one at a time and take the
957 * appropriate action on them.
958 */
959 list_for_each_entry_safe(lip, n, &bp->b_li_list, li_bio_list) {
960 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
961
962 if (xfs_iflags_test(ip: iip->ili_inode, XFS_ISTALE)) {
963 xfs_iflush_abort(iip->ili_inode);
964 continue;
965 }
966 if (!iip->ili_last_fields)
967 continue;
968
969 /* Do an unlocked check for needing the AIL lock. */
970 if (iip->ili_flush_lsn == lip->li_lsn ||
971 test_bit(XFS_LI_FAILED, &lip->li_flags))
972 list_move_tail(list: &lip->li_bio_list, head: &ail_updates);
973 else
974 list_move_tail(list: &lip->li_bio_list, head: &flushed_inodes);
975 }
976
977 if (!list_empty(head: &ail_updates)) {
978 xfs_iflush_ail_updates(ailp: bp->b_mount->m_ail, list: &ail_updates);
979 list_splice_tail(list: &ail_updates, head: &flushed_inodes);
980 }
981
982 xfs_iflush_finish(bp, list: &flushed_inodes);
983 if (!list_empty(head: &flushed_inodes))
984 list_splice_tail(list: &flushed_inodes, head: &bp->b_li_list);
985}
986
987void
988xfs_buf_inode_io_fail(
989 struct xfs_buf *bp)
990{
991 struct xfs_log_item *lip;
992
993 list_for_each_entry(lip, &bp->b_li_list, li_bio_list)
994 set_bit(XFS_LI_FAILED, addr: &lip->li_flags);
995}
996
997/*
998 * Clear the inode logging fields so no more flushes are attempted. If we are
999 * on a buffer list, it is now safe to remove it because the buffer is
1000 * guaranteed to be locked. The caller will drop the reference to the buffer
1001 * the log item held.
1002 */
1003static void
1004xfs_iflush_abort_clean(
1005 struct xfs_inode_log_item *iip)
1006{
1007 iip->ili_last_fields = 0;
1008 iip->ili_fields = 0;
1009 iip->ili_fsync_fields = 0;
1010 iip->ili_flush_lsn = 0;
1011 iip->ili_item.li_buf = NULL;
1012 list_del_init(entry: &iip->ili_item.li_bio_list);
1013}
1014
1015/*
1016 * Abort flushing the inode from a context holding the cluster buffer locked.
1017 *
1018 * This is the normal runtime method of aborting writeback of an inode that is
1019 * attached to a cluster buffer. It occurs when the inode and the backing
1020 * cluster buffer have been freed (i.e. inode is XFS_ISTALE), or when cluster
1021 * flushing or buffer IO completion encounters a log shutdown situation.
1022 *
1023 * If we need to abort inode writeback and we don't already hold the buffer
1024 * locked, call xfs_iflush_shutdown_abort() instead as this should only ever be
1025 * necessary in a shutdown situation.
1026 */
1027void
1028xfs_iflush_abort(
1029 struct xfs_inode *ip)
1030{
1031 struct xfs_inode_log_item *iip = ip->i_itemp;
1032 struct xfs_buf *bp;
1033
1034 if (!iip) {
1035 /* clean inode, nothing to do */
1036 xfs_iflags_clear(ip, XFS_IFLUSHING);
1037 return;
1038 }
1039
1040 /*
1041 * Remove the inode item from the AIL before we clear its internal
1042 * state. Whilst the inode is in the AIL, it should have a valid buffer
1043 * pointer for push operations to access - it is only safe to remove the
1044 * inode from the buffer once it has been removed from the AIL.
1045 *
1046 * We also clear the failed bit before removing the item from the AIL
1047 * as xfs_trans_ail_delete()->xfs_clear_li_failed() will release buffer
1048 * references the inode item owns and needs to hold until we've fully
1049 * aborted the inode log item and detached it from the buffer.
1050 */
1051 clear_bit(XFS_LI_FAILED, addr: &iip->ili_item.li_flags);
1052 xfs_trans_ail_delete(lip: &iip->ili_item, shutdown_type: 0);
1053
1054 /*
1055 * Grab the inode buffer so can we release the reference the inode log
1056 * item holds on it.
1057 */
1058 spin_lock(lock: &iip->ili_lock);
1059 bp = iip->ili_item.li_buf;
1060 xfs_iflush_abort_clean(iip);
1061 spin_unlock(lock: &iip->ili_lock);
1062
1063 xfs_iflags_clear(ip, XFS_IFLUSHING);
1064 if (bp)
1065 xfs_buf_rele(bp);
1066}
1067
1068/*
1069 * Abort an inode flush in the case of a shutdown filesystem. This can be called
1070 * from anywhere with just an inode reference and does not require holding the
1071 * inode cluster buffer locked. If the inode is attached to a cluster buffer,
1072 * it will grab and lock it safely, then abort the inode flush.
1073 */
1074void
1075xfs_iflush_shutdown_abort(
1076 struct xfs_inode *ip)
1077{
1078 struct xfs_inode_log_item *iip = ip->i_itemp;
1079 struct xfs_buf *bp;
1080
1081 if (!iip) {
1082 /* clean inode, nothing to do */
1083 xfs_iflags_clear(ip, XFS_IFLUSHING);
1084 return;
1085 }
1086
1087 spin_lock(lock: &iip->ili_lock);
1088 bp = iip->ili_item.li_buf;
1089 if (!bp) {
1090 spin_unlock(lock: &iip->ili_lock);
1091 xfs_iflush_abort(ip);
1092 return;
1093 }
1094
1095 /*
1096 * We have to take a reference to the buffer so that it doesn't get
1097 * freed when we drop the ili_lock and then wait to lock the buffer.
1098 * We'll clean up the extra reference after we pick up the ili_lock
1099 * again.
1100 */
1101 xfs_buf_hold(bp);
1102 spin_unlock(lock: &iip->ili_lock);
1103 xfs_buf_lock(bp);
1104
1105 spin_lock(lock: &iip->ili_lock);
1106 if (!iip->ili_item.li_buf) {
1107 /*
1108 * Raced with another removal, hold the only reference
1109 * to bp now. Inode should not be in the AIL now, so just clean
1110 * up and return;
1111 */
1112 ASSERT(list_empty(&iip->ili_item.li_bio_list));
1113 ASSERT(!test_bit(XFS_LI_IN_AIL, &iip->ili_item.li_flags));
1114 xfs_iflush_abort_clean(iip);
1115 spin_unlock(lock: &iip->ili_lock);
1116 xfs_iflags_clear(ip, XFS_IFLUSHING);
1117 xfs_buf_relse(bp);
1118 return;
1119 }
1120
1121 /*
1122 * Got two references to bp. The first will get dropped by
1123 * xfs_iflush_abort() when the item is removed from the buffer list, but
1124 * we can't drop our reference until _abort() returns because we have to
1125 * unlock the buffer as well. Hence we abort and then unlock and release
1126 * our reference to the buffer.
1127 */
1128 ASSERT(iip->ili_item.li_buf == bp);
1129 spin_unlock(lock: &iip->ili_lock);
1130 xfs_iflush_abort(ip);
1131 xfs_buf_relse(bp);
1132}
1133
1134
1135/*
1136 * convert an xfs_inode_log_format struct from the old 32 bit version
1137 * (which can have different field alignments) to the native 64 bit version
1138 */
1139int
1140xfs_inode_item_format_convert(
1141 struct xfs_log_iovec *buf,
1142 struct xfs_inode_log_format *in_f)
1143{
1144 struct xfs_inode_log_format_32 *in_f32 = buf->i_addr;
1145
1146 if (buf->i_len != sizeof(*in_f32)) {
1147 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, NULL);
1148 return -EFSCORRUPTED;
1149 }
1150
1151 in_f->ilf_type = in_f32->ilf_type;
1152 in_f->ilf_size = in_f32->ilf_size;
1153 in_f->ilf_fields = in_f32->ilf_fields;
1154 in_f->ilf_asize = in_f32->ilf_asize;
1155 in_f->ilf_dsize = in_f32->ilf_dsize;
1156 in_f->ilf_ino = in_f32->ilf_ino;
1157 memcpy(&in_f->ilf_u, &in_f32->ilf_u, sizeof(in_f->ilf_u));
1158 in_f->ilf_blkno = in_f32->ilf_blkno;
1159 in_f->ilf_len = in_f32->ilf_len;
1160 in_f->ilf_boffset = in_f32->ilf_boffset;
1161 return 0;
1162}
1163

source code of linux/fs/xfs/xfs_inode_item.c