1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * Copyright (C) 2016 Oracle. All Rights Reserved.
4 * Author: Darrick J. Wong <darrick.wong@oracle.com>
5 */
6#include "xfs.h"
7#include "xfs_fs.h"
8#include "xfs_shared.h"
9#include "xfs_format.h"
10#include "xfs_log_format.h"
11#include "xfs_trans_resv.h"
12#include "xfs_mount.h"
13#include "xfs_defer.h"
14#include "xfs_inode.h"
15#include "xfs_trans.h"
16#include "xfs_bmap.h"
17#include "xfs_bmap_util.h"
18#include "xfs_trace.h"
19#include "xfs_icache.h"
20#include "xfs_btree.h"
21#include "xfs_refcount_btree.h"
22#include "xfs_refcount.h"
23#include "xfs_bmap_btree.h"
24#include "xfs_trans_space.h"
25#include "xfs_bit.h"
26#include "xfs_alloc.h"
27#include "xfs_quota.h"
28#include "xfs_reflink.h"
29#include "xfs_iomap.h"
30#include "xfs_ag.h"
31#include "xfs_ag_resv.h"
32
33/*
34 * Copy on Write of Shared Blocks
35 *
36 * XFS must preserve "the usual" file semantics even when two files share
37 * the same physical blocks. This means that a write to one file must not
38 * alter the blocks in a different file; the way that we'll do that is
39 * through the use of a copy-on-write mechanism. At a high level, that
40 * means that when we want to write to a shared block, we allocate a new
41 * block, write the data to the new block, and if that succeeds we map the
42 * new block into the file.
43 *
44 * XFS provides a "delayed allocation" mechanism that defers the allocation
45 * of disk blocks to dirty-but-not-yet-mapped file blocks as long as
46 * possible. This reduces fragmentation by enabling the filesystem to ask
47 * for bigger chunks less often, which is exactly what we want for CoW.
48 *
49 * The delalloc mechanism begins when the kernel wants to make a block
50 * writable (write_begin or page_mkwrite). If the offset is not mapped, we
51 * create a delalloc mapping, which is a regular in-core extent, but without
52 * a real startblock. (For delalloc mappings, the startblock encodes both
53 * a flag that this is a delalloc mapping, and a worst-case estimate of how
54 * many blocks might be required to put the mapping into the BMBT.) delalloc
55 * mappings are a reservation against the free space in the filesystem;
56 * adjacent mappings can also be combined into fewer larger mappings.
57 *
58 * As an optimization, the CoW extent size hint (cowextsz) creates
59 * outsized aligned delalloc reservations in the hope of landing out of
60 * order nearby CoW writes in a single extent on disk, thereby reducing
61 * fragmentation and improving future performance.
62 *
63 * D: --RRRRRRSSSRRRRRRRR--- (data fork)
64 * C: ------DDDDDDD--------- (CoW fork)
65 *
66 * When dirty pages are being written out (typically in writepage), the
67 * delalloc reservations are converted into unwritten mappings by
68 * allocating blocks and replacing the delalloc mapping with real ones.
69 * A delalloc mapping can be replaced by several unwritten ones if the
70 * free space is fragmented.
71 *
72 * D: --RRRRRRSSSRRRRRRRR---
73 * C: ------UUUUUUU---------
74 *
75 * We want to adapt the delalloc mechanism for copy-on-write, since the
76 * write paths are similar. The first two steps (creating the reservation
77 * and allocating the blocks) are exactly the same as delalloc except that
78 * the mappings must be stored in a separate CoW fork because we do not want
79 * to disturb the mapping in the data fork until we're sure that the write
80 * succeeded. IO completion in this case is the process of removing the old
81 * mapping from the data fork and moving the new mapping from the CoW fork to
82 * the data fork. This will be discussed shortly.
83 *
84 * For now, unaligned directio writes will be bounced back to the page cache.
85 * Block-aligned directio writes will use the same mechanism as buffered
86 * writes.
87 *
88 * Just prior to submitting the actual disk write requests, we convert
89 * the extents representing the range of the file actually being written
90 * (as opposed to extra pieces created for the cowextsize hint) to real
91 * extents. This will become important in the next step:
92 *
93 * D: --RRRRRRSSSRRRRRRRR---
94 * C: ------UUrrUUU---------
95 *
96 * CoW remapping must be done after the data block write completes,
97 * because we don't want to destroy the old data fork map until we're sure
98 * the new block has been written. Since the new mappings are kept in a
99 * separate fork, we can simply iterate these mappings to find the ones
100 * that cover the file blocks that we just CoW'd. For each extent, simply
101 * unmap the corresponding range in the data fork, map the new range into
102 * the data fork, and remove the extent from the CoW fork. Because of
103 * the presence of the cowextsize hint, however, we must be careful
104 * only to remap the blocks that we've actually written out -- we must
105 * never remap delalloc reservations nor CoW staging blocks that have
106 * yet to be written. This corresponds exactly to the real extents in
107 * the CoW fork:
108 *
109 * D: --RRRRRRrrSRRRRRRRR---
110 * C: ------UU--UUU---------
111 *
112 * Since the remapping operation can be applied to an arbitrary file
113 * range, we record the need for the remap step as a flag in the ioend
114 * instead of declaring a new IO type. This is required for direct io
115 * because we only have ioend for the whole dio, and we have to be able to
116 * remember the presence of unwritten blocks and CoW blocks with a single
117 * ioend structure. Better yet, the more ground we can cover with one
118 * ioend, the better.
119 */
120
121/*
122 * Given an AG extent, find the lowest-numbered run of shared blocks
123 * within that range and return the range in fbno/flen. If
124 * find_end_of_shared is true, return the longest contiguous extent of
125 * shared blocks. If there are no shared extents, fbno and flen will
126 * be set to NULLAGBLOCK and 0, respectively.
127 */
128static int
129xfs_reflink_find_shared(
130 struct xfs_perag *pag,
131 struct xfs_trans *tp,
132 xfs_agblock_t agbno,
133 xfs_extlen_t aglen,
134 xfs_agblock_t *fbno,
135 xfs_extlen_t *flen,
136 bool find_end_of_shared)
137{
138 struct xfs_buf *agbp;
139 struct xfs_btree_cur *cur;
140 int error;
141
142 error = xfs_alloc_read_agf(pag, tp, 0, &agbp);
143 if (error)
144 return error;
145
146 cur = xfs_refcountbt_init_cursor(pag->pag_mount, tp, agbp, pag);
147
148 error = xfs_refcount_find_shared(cur, agbno, aglen, fbno, flen,
149 find_end_of_shared);
150
151 xfs_btree_del_cursor(cur, error);
152
153 xfs_trans_brelse(tp, agbp);
154 return error;
155}
156
157/*
158 * Trim the mapping to the next block where there's a change in the
159 * shared/unshared status. More specifically, this means that we
160 * find the lowest-numbered extent of shared blocks that coincides with
161 * the given block mapping. If the shared extent overlaps the start of
162 * the mapping, trim the mapping to the end of the shared extent. If
163 * the shared region intersects the mapping, trim the mapping to the
164 * start of the shared extent. If there are no shared regions that
165 * overlap, just return the original extent.
166 */
167int
168xfs_reflink_trim_around_shared(
169 struct xfs_inode *ip,
170 struct xfs_bmbt_irec *irec,
171 bool *shared)
172{
173 struct xfs_mount *mp = ip->i_mount;
174 struct xfs_perag *pag;
175 xfs_agblock_t agbno;
176 xfs_extlen_t aglen;
177 xfs_agblock_t fbno;
178 xfs_extlen_t flen;
179 int error = 0;
180
181 /* Holes, unwritten, and delalloc extents cannot be shared */
182 if (!xfs_is_cow_inode(ip) || !xfs_bmap_is_written_extent(irec)) {
183 *shared = false;
184 return 0;
185 }
186
187 trace_xfs_reflink_trim_around_shared(ip, irec);
188
189 pag = xfs_perag_get(mp, XFS_FSB_TO_AGNO(mp, irec->br_startblock));
190 agbno = XFS_FSB_TO_AGBNO(mp, irec->br_startblock);
191 aglen = irec->br_blockcount;
192
193 error = xfs_reflink_find_shared(pag, NULL, agbno, aglen, &fbno, &flen,
194 true);
195 xfs_perag_put(pag);
196 if (error)
197 return error;
198
199 *shared = false;
200 if (fbno == NULLAGBLOCK) {
201 /* No shared blocks at all. */
202 return 0;
203 }
204
205 if (fbno == agbno) {
206 /*
207 * The start of this extent is shared. Truncate the
208 * mapping at the end of the shared region so that a
209 * subsequent iteration starts at the start of the
210 * unshared region.
211 */
212 irec->br_blockcount = flen;
213 *shared = true;
214 return 0;
215 }
216
217 /*
218 * There's a shared extent midway through this extent.
219 * Truncate the mapping at the start of the shared
220 * extent so that a subsequent iteration starts at the
221 * start of the shared region.
222 */
223 irec->br_blockcount = fbno - agbno;
224 return 0;
225}
226
227int
228xfs_bmap_trim_cow(
229 struct xfs_inode *ip,
230 struct xfs_bmbt_irec *imap,
231 bool *shared)
232{
233 /* We can't update any real extents in always COW mode. */
234 if (xfs_is_always_cow_inode(ip) &&
235 !isnullstartblock(imap->br_startblock)) {
236 *shared = true;
237 return 0;
238 }
239
240 /* Trim the mapping to the nearest shared extent boundary. */
241 return xfs_reflink_trim_around_shared(ip, irec: imap, shared);
242}
243
244static int
245xfs_reflink_convert_cow_locked(
246 struct xfs_inode *ip,
247 xfs_fileoff_t offset_fsb,
248 xfs_filblks_t count_fsb)
249{
250 struct xfs_iext_cursor icur;
251 struct xfs_bmbt_irec got;
252 struct xfs_btree_cur *dummy_cur = NULL;
253 int dummy_logflags;
254 int error = 0;
255
256 if (!xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, &got))
257 return 0;
258
259 do {
260 if (got.br_startoff >= offset_fsb + count_fsb)
261 break;
262 if (got.br_state == XFS_EXT_NORM)
263 continue;
264 if (WARN_ON_ONCE(isnullstartblock(got.br_startblock)))
265 return -EIO;
266
267 xfs_trim_extent(&got, offset_fsb, count_fsb);
268 if (!got.br_blockcount)
269 continue;
270
271 got.br_state = XFS_EXT_NORM;
272 error = xfs_bmap_add_extent_unwritten_real(NULL, ip,
273 XFS_COW_FORK, &icur, &dummy_cur, &got,
274 &dummy_logflags);
275 if (error)
276 return error;
277 } while (xfs_iext_next_extent(ip->i_cowfp, &icur, &got));
278
279 return error;
280}
281
282/* Convert all of the unwritten CoW extents in a file's range to real ones. */
283int
284xfs_reflink_convert_cow(
285 struct xfs_inode *ip,
286 xfs_off_t offset,
287 xfs_off_t count)
288{
289 struct xfs_mount *mp = ip->i_mount;
290 xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset);
291 xfs_fileoff_t end_fsb = XFS_B_TO_FSB(mp, offset + count);
292 xfs_filblks_t count_fsb = end_fsb - offset_fsb;
293 int error;
294
295 ASSERT(count != 0);
296
297 xfs_ilock(ip, XFS_ILOCK_EXCL);
298 error = xfs_reflink_convert_cow_locked(ip, offset_fsb, count_fsb);
299 xfs_iunlock(ip, XFS_ILOCK_EXCL);
300 return error;
301}
302
303/*
304 * Find the extent that maps the given range in the COW fork. Even if the extent
305 * is not shared we might have a preallocation for it in the COW fork. If so we
306 * use it that rather than trigger a new allocation.
307 */
308static int
309xfs_find_trim_cow_extent(
310 struct xfs_inode *ip,
311 struct xfs_bmbt_irec *imap,
312 struct xfs_bmbt_irec *cmap,
313 bool *shared,
314 bool *found)
315{
316 xfs_fileoff_t offset_fsb = imap->br_startoff;
317 xfs_filblks_t count_fsb = imap->br_blockcount;
318 struct xfs_iext_cursor icur;
319
320 *found = false;
321
322 /*
323 * If we don't find an overlapping extent, trim the range we need to
324 * allocate to fit the hole we found.
325 */
326 if (!xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, cmap))
327 cmap->br_startoff = offset_fsb + count_fsb;
328 if (cmap->br_startoff > offset_fsb) {
329 xfs_trim_extent(imap, imap->br_startoff,
330 cmap->br_startoff - imap->br_startoff);
331 return xfs_bmap_trim_cow(ip, imap, shared);
332 }
333
334 *shared = true;
335 if (isnullstartblock(cmap->br_startblock)) {
336 xfs_trim_extent(imap, cmap->br_startoff, cmap->br_blockcount);
337 return 0;
338 }
339
340 /* real extent found - no need to allocate */
341 xfs_trim_extent(cmap, offset_fsb, count_fsb);
342 *found = true;
343 return 0;
344}
345
346static int
347xfs_reflink_convert_unwritten(
348 struct xfs_inode *ip,
349 struct xfs_bmbt_irec *imap,
350 struct xfs_bmbt_irec *cmap,
351 bool convert_now)
352{
353 xfs_fileoff_t offset_fsb = imap->br_startoff;
354 xfs_filblks_t count_fsb = imap->br_blockcount;
355 int error;
356
357 /*
358 * cmap might larger than imap due to cowextsize hint.
359 */
360 xfs_trim_extent(cmap, offset_fsb, count_fsb);
361
362 /*
363 * COW fork extents are supposed to remain unwritten until we're ready
364 * to initiate a disk write. For direct I/O we are going to write the
365 * data and need the conversion, but for buffered writes we're done.
366 */
367 if (!convert_now || cmap->br_state == XFS_EXT_NORM)
368 return 0;
369
370 trace_xfs_reflink_convert_cow(ip, irec: cmap);
371
372 error = xfs_reflink_convert_cow_locked(ip, offset_fsb, count_fsb);
373 if (!error)
374 cmap->br_state = XFS_EXT_NORM;
375
376 return error;
377}
378
379static int
380xfs_reflink_fill_cow_hole(
381 struct xfs_inode *ip,
382 struct xfs_bmbt_irec *imap,
383 struct xfs_bmbt_irec *cmap,
384 bool *shared,
385 uint *lockmode,
386 bool convert_now)
387{
388 struct xfs_mount *mp = ip->i_mount;
389 struct xfs_trans *tp;
390 xfs_filblks_t resaligned;
391 xfs_extlen_t resblks;
392 int nimaps;
393 int error;
394 bool found;
395
396 resaligned = xfs_aligned_fsb_count(imap->br_startoff,
397 imap->br_blockcount, xfs_get_cowextsz_hint(ip));
398 resblks = XFS_DIOSTRAT_SPACE_RES(mp, resaligned);
399
400 xfs_iunlock(ip, *lockmode);
401 *lockmode = 0;
402
403 error = xfs_trans_alloc_inode(ip, &M_RES(mp)->tr_write, resblks, 0,
404 false, &tp);
405 if (error)
406 return error;
407
408 *lockmode = XFS_ILOCK_EXCL;
409
410 error = xfs_find_trim_cow_extent(ip, imap, cmap, shared, found: &found);
411 if (error || !*shared)
412 goto out_trans_cancel;
413
414 if (found) {
415 xfs_trans_cancel(tp);
416 goto convert;
417 }
418
419 /* Allocate the entire reservation as unwritten blocks. */
420 nimaps = 1;
421 error = xfs_bmapi_write(tp, ip, imap->br_startoff, imap->br_blockcount,
422 XFS_BMAPI_COWFORK | XFS_BMAPI_PREALLOC, 0, cmap,
423 &nimaps);
424 if (error)
425 goto out_trans_cancel;
426
427 xfs_inode_set_cowblocks_tag(ip);
428 error = xfs_trans_commit(tp);
429 if (error)
430 return error;
431
432 /*
433 * Allocation succeeded but the requested range was not even partially
434 * satisfied? Bail out!
435 */
436 if (nimaps == 0)
437 return -ENOSPC;
438
439convert:
440 return xfs_reflink_convert_unwritten(ip, imap, cmap, convert_now);
441
442out_trans_cancel:
443 xfs_trans_cancel(tp);
444 return error;
445}
446
447static int
448xfs_reflink_fill_delalloc(
449 struct xfs_inode *ip,
450 struct xfs_bmbt_irec *imap,
451 struct xfs_bmbt_irec *cmap,
452 bool *shared,
453 uint *lockmode,
454 bool convert_now)
455{
456 struct xfs_mount *mp = ip->i_mount;
457 struct xfs_trans *tp;
458 int nimaps;
459 int error;
460 bool found;
461
462 do {
463 xfs_iunlock(ip, *lockmode);
464 *lockmode = 0;
465
466 error = xfs_trans_alloc_inode(ip, resv: &M_RES(mp)->tr_write, dblocks: 0, rblocks: 0,
467 force: false, tpp: &tp);
468 if (error)
469 return error;
470
471 *lockmode = XFS_ILOCK_EXCL;
472
473 error = xfs_find_trim_cow_extent(ip, imap, cmap, shared,
474 found: &found);
475 if (error || !*shared)
476 goto out_trans_cancel;
477
478 if (found) {
479 xfs_trans_cancel(tp);
480 break;
481 }
482
483 ASSERT(isnullstartblock(cmap->br_startblock) ||
484 cmap->br_startblock == DELAYSTARTBLOCK);
485
486 /*
487 * Replace delalloc reservation with an unwritten extent.
488 */
489 nimaps = 1;
490 error = xfs_bmapi_write(tp, ip, cmap->br_startoff,
491 cmap->br_blockcount,
492 XFS_BMAPI_COWFORK | XFS_BMAPI_PREALLOC, 0,
493 cmap, &nimaps);
494 if (error)
495 goto out_trans_cancel;
496
497 xfs_inode_set_cowblocks_tag(ip);
498 error = xfs_trans_commit(tp);
499 if (error)
500 return error;
501
502 /*
503 * Allocation succeeded but the requested range was not even
504 * partially satisfied? Bail out!
505 */
506 if (nimaps == 0)
507 return -ENOSPC;
508 } while (cmap->br_startoff + cmap->br_blockcount <= imap->br_startoff);
509
510 return xfs_reflink_convert_unwritten(ip, imap, cmap, convert_now);
511
512out_trans_cancel:
513 xfs_trans_cancel(tp);
514 return error;
515}
516
517/* Allocate all CoW reservations covering a range of blocks in a file. */
518int
519xfs_reflink_allocate_cow(
520 struct xfs_inode *ip,
521 struct xfs_bmbt_irec *imap,
522 struct xfs_bmbt_irec *cmap,
523 bool *shared,
524 uint *lockmode,
525 bool convert_now)
526{
527 int error;
528 bool found;
529
530 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
531 if (!ip->i_cowfp) {
532 ASSERT(!xfs_is_reflink_inode(ip));
533 xfs_ifork_init_cow(ip);
534 }
535
536 error = xfs_find_trim_cow_extent(ip, imap, cmap, shared, found: &found);
537 if (error || !*shared)
538 return error;
539
540 /* CoW fork has a real extent */
541 if (found)
542 return xfs_reflink_convert_unwritten(ip, imap, cmap,
543 convert_now);
544
545 /*
546 * CoW fork does not have an extent and data extent is shared.
547 * Allocate a real extent in the CoW fork.
548 */
549 if (cmap->br_startoff > imap->br_startoff)
550 return xfs_reflink_fill_cow_hole(ip, imap, cmap, shared,
551 lockmode, convert_now);
552
553 /*
554 * CoW fork has a delalloc reservation. Replace it with a real extent.
555 * There may or may not be a data fork mapping.
556 */
557 if (isnullstartblock(cmap->br_startblock) ||
558 cmap->br_startblock == DELAYSTARTBLOCK)
559 return xfs_reflink_fill_delalloc(ip, imap, cmap, shared,
560 lockmode, convert_now);
561
562 /* Shouldn't get here. */
563 ASSERT(0);
564 return -EFSCORRUPTED;
565}
566
567/*
568 * Cancel CoW reservations for some block range of an inode.
569 *
570 * If cancel_real is true this function cancels all COW fork extents for the
571 * inode; if cancel_real is false, real extents are not cleared.
572 *
573 * Caller must have already joined the inode to the current transaction. The
574 * inode will be joined to the transaction returned to the caller.
575 */
576int
577xfs_reflink_cancel_cow_blocks(
578 struct xfs_inode *ip,
579 struct xfs_trans **tpp,
580 xfs_fileoff_t offset_fsb,
581 xfs_fileoff_t end_fsb,
582 bool cancel_real)
583{
584 struct xfs_ifork *ifp = xfs_ifork_ptr(ip, XFS_COW_FORK);
585 struct xfs_bmbt_irec got, del;
586 struct xfs_iext_cursor icur;
587 int error = 0;
588
589 if (!xfs_inode_has_cow_data(ip))
590 return 0;
591 if (!xfs_iext_lookup_extent_before(ip, ifp, &end_fsb, &icur, &got))
592 return 0;
593
594 /* Walk backwards until we're out of the I/O range... */
595 while (got.br_startoff + got.br_blockcount > offset_fsb) {
596 del = got;
597 xfs_trim_extent(&del, offset_fsb, end_fsb - offset_fsb);
598
599 /* Extent delete may have bumped ext forward */
600 if (!del.br_blockcount) {
601 xfs_iext_prev(ifp, &icur);
602 goto next_extent;
603 }
604
605 trace_xfs_reflink_cancel_cow(ip, irec: &del);
606
607 if (isnullstartblock(del.br_startblock)) {
608 error = xfs_bmap_del_extent_delay(ip, XFS_COW_FORK,
609 &icur, &got, &del);
610 if (error)
611 break;
612 } else if (del.br_state == XFS_EXT_UNWRITTEN || cancel_real) {
613 ASSERT((*tpp)->t_highest_agno == NULLAGNUMBER);
614
615 /* Free the CoW orphan record. */
616 xfs_refcount_free_cow_extent(*tpp, del.br_startblock,
617 del.br_blockcount);
618
619 error = xfs_free_extent_later(*tpp, del.br_startblock,
620 del.br_blockcount, NULL,
621 XFS_AG_RESV_NONE);
622 if (error)
623 break;
624
625 /* Roll the transaction */
626 error = xfs_defer_finish(tpp);
627 if (error)
628 break;
629
630 /* Remove the mapping from the CoW fork. */
631 xfs_bmap_del_extent_cow(ip, &icur, &got, &del);
632
633 /* Remove the quota reservation */
634 error = xfs_quota_unreserve_blkres(ip,
635 blocks: del.br_blockcount);
636 if (error)
637 break;
638 } else {
639 /* Didn't do anything, push cursor back. */
640 xfs_iext_prev(ifp, &icur);
641 }
642next_extent:
643 if (!xfs_iext_get_extent(ifp, &icur, &got))
644 break;
645 }
646
647 /* clear tag if cow fork is emptied */
648 if (!ifp->if_bytes)
649 xfs_inode_clear_cowblocks_tag(ip);
650 return error;
651}
652
653/*
654 * Cancel CoW reservations for some byte range of an inode.
655 *
656 * If cancel_real is true this function cancels all COW fork extents for the
657 * inode; if cancel_real is false, real extents are not cleared.
658 */
659int
660xfs_reflink_cancel_cow_range(
661 struct xfs_inode *ip,
662 xfs_off_t offset,
663 xfs_off_t count,
664 bool cancel_real)
665{
666 struct xfs_trans *tp;
667 xfs_fileoff_t offset_fsb;
668 xfs_fileoff_t end_fsb;
669 int error;
670
671 trace_xfs_reflink_cancel_cow_range(ip, offset, count);
672 ASSERT(ip->i_cowfp);
673
674 offset_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
675 if (count == NULLFILEOFF)
676 end_fsb = NULLFILEOFF;
677 else
678 end_fsb = XFS_B_TO_FSB(ip->i_mount, offset + count);
679
680 /* Start a rolling transaction to remove the mappings */
681 error = xfs_trans_alloc(mp: ip->i_mount, resp: &M_RES(ip->i_mount)->tr_write,
682 blocks: 0, rtextents: 0, flags: 0, tpp: &tp);
683 if (error)
684 goto out;
685
686 xfs_ilock(ip, XFS_ILOCK_EXCL);
687 xfs_trans_ijoin(tp, ip, 0);
688
689 /* Scrape out the old CoW reservations */
690 error = xfs_reflink_cancel_cow_blocks(ip, &tp, offset_fsb, end_fsb,
691 cancel_real);
692 if (error)
693 goto out_cancel;
694
695 error = xfs_trans_commit(tp);
696
697 xfs_iunlock(ip, XFS_ILOCK_EXCL);
698 return error;
699
700out_cancel:
701 xfs_trans_cancel(tp);
702 xfs_iunlock(ip, XFS_ILOCK_EXCL);
703out:
704 trace_xfs_reflink_cancel_cow_range_error(ip, error, _RET_IP_);
705 return error;
706}
707
708/*
709 * Remap part of the CoW fork into the data fork.
710 *
711 * We aim to remap the range starting at @offset_fsb and ending at @end_fsb
712 * into the data fork; this function will remap what it can (at the end of the
713 * range) and update @end_fsb appropriately. Each remap gets its own
714 * transaction because we can end up merging and splitting bmbt blocks for
715 * every remap operation and we'd like to keep the block reservation
716 * requirements as low as possible.
717 */
718STATIC int
719xfs_reflink_end_cow_extent(
720 struct xfs_inode *ip,
721 xfs_fileoff_t *offset_fsb,
722 xfs_fileoff_t end_fsb)
723{
724 struct xfs_iext_cursor icur;
725 struct xfs_bmbt_irec got, del, data;
726 struct xfs_mount *mp = ip->i_mount;
727 struct xfs_trans *tp;
728 struct xfs_ifork *ifp = xfs_ifork_ptr(ip, XFS_COW_FORK);
729 unsigned int resblks;
730 int nmaps;
731 int error;
732
733 /* No COW extents? That's easy! */
734 if (ifp->if_bytes == 0) {
735 *offset_fsb = end_fsb;
736 return 0;
737 }
738
739 resblks = XFS_EXTENTADD_SPACE_RES(mp, XFS_DATA_FORK);
740 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks, 0,
741 XFS_TRANS_RESERVE, &tp);
742 if (error)
743 return error;
744
745 /*
746 * Lock the inode. We have to ijoin without automatic unlock because
747 * the lead transaction is the refcountbt record deletion; the data
748 * fork update follows as a deferred log item.
749 */
750 xfs_ilock(ip, XFS_ILOCK_EXCL);
751 xfs_trans_ijoin(tp, ip, 0);
752
753 error = xfs_iext_count_may_overflow(ip, XFS_DATA_FORK,
754 XFS_IEXT_REFLINK_END_COW_CNT);
755 if (error == -EFBIG)
756 error = xfs_iext_count_upgrade(tp, ip,
757 XFS_IEXT_REFLINK_END_COW_CNT);
758 if (error)
759 goto out_cancel;
760
761 /*
762 * In case of racing, overlapping AIO writes no COW extents might be
763 * left by the time I/O completes for the loser of the race. In that
764 * case we are done.
765 */
766 if (!xfs_iext_lookup_extent(ip, ifp, *offset_fsb, &icur, &got) ||
767 got.br_startoff >= end_fsb) {
768 *offset_fsb = end_fsb;
769 goto out_cancel;
770 }
771
772 /*
773 * Only remap real extents that contain data. With AIO, speculative
774 * preallocations can leak into the range we are called upon, and we
775 * need to skip them. Preserve @got for the eventual CoW fork
776 * deletion; from now on @del represents the mapping that we're
777 * actually remapping.
778 */
779 while (!xfs_bmap_is_written_extent(&got)) {
780 if (!xfs_iext_next_extent(ifp, &icur, &got) ||
781 got.br_startoff >= end_fsb) {
782 *offset_fsb = end_fsb;
783 goto out_cancel;
784 }
785 }
786 del = got;
787
788 /* Grab the corresponding mapping in the data fork. */
789 nmaps = 1;
790 error = xfs_bmapi_read(ip, del.br_startoff, del.br_blockcount, &data,
791 &nmaps, 0);
792 if (error)
793 goto out_cancel;
794
795 /* We can only remap the smaller of the two extent sizes. */
796 data.br_blockcount = min(data.br_blockcount, del.br_blockcount);
797 del.br_blockcount = data.br_blockcount;
798
799 trace_xfs_reflink_cow_remap_from(ip, irec: &del);
800 trace_xfs_reflink_cow_remap_to(ip, irec: &data);
801
802 if (xfs_bmap_is_real_extent(&data)) {
803 /*
804 * If the extent we're remapping is backed by storage (written
805 * or not), unmap the extent and drop its refcount.
806 */
807 xfs_bmap_unmap_extent(tp, ip, &data);
808 xfs_refcount_decrease_extent(tp, &data);
809 xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_BCOUNT,
810 -data.br_blockcount);
811 } else if (data.br_startblock == DELAYSTARTBLOCK) {
812 int done;
813
814 /*
815 * If the extent we're remapping is a delalloc reservation,
816 * we can use the regular bunmapi function to release the
817 * incore state. Dropping the delalloc reservation takes care
818 * of the quota reservation for us.
819 */
820 error = xfs_bunmapi(NULL, ip, data.br_startoff,
821 data.br_blockcount, 0, 1, &done);
822 if (error)
823 goto out_cancel;
824 ASSERT(done);
825 }
826
827 /* Free the CoW orphan record. */
828 xfs_refcount_free_cow_extent(tp, del.br_startblock, del.br_blockcount);
829
830 /* Map the new blocks into the data fork. */
831 xfs_bmap_map_extent(tp, ip, &del);
832
833 /* Charge this new data fork mapping to the on-disk quota. */
834 xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_DELBCOUNT,
835 (long)del.br_blockcount);
836
837 /* Remove the mapping from the CoW fork. */
838 xfs_bmap_del_extent_cow(ip, &icur, &got, &del);
839
840 error = xfs_trans_commit(tp);
841 xfs_iunlock(ip, XFS_ILOCK_EXCL);
842 if (error)
843 return error;
844
845 /* Update the caller about how much progress we made. */
846 *offset_fsb = del.br_startoff + del.br_blockcount;
847 return 0;
848
849out_cancel:
850 xfs_trans_cancel(tp);
851 xfs_iunlock(ip, XFS_ILOCK_EXCL);
852 return error;
853}
854
855/*
856 * Remap parts of a file's data fork after a successful CoW.
857 */
858int
859xfs_reflink_end_cow(
860 struct xfs_inode *ip,
861 xfs_off_t offset,
862 xfs_off_t count)
863{
864 xfs_fileoff_t offset_fsb;
865 xfs_fileoff_t end_fsb;
866 int error = 0;
867
868 trace_xfs_reflink_end_cow(ip, offset, count);
869
870 offset_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
871 end_fsb = XFS_B_TO_FSB(ip->i_mount, offset + count);
872
873 /*
874 * Walk forwards until we've remapped the I/O range. The loop function
875 * repeatedly cycles the ILOCK to allocate one transaction per remapped
876 * extent.
877 *
878 * If we're being called by writeback then the pages will still
879 * have PageWriteback set, which prevents races with reflink remapping
880 * and truncate. Reflink remapping prevents races with writeback by
881 * taking the iolock and mmaplock before flushing the pages and
882 * remapping, which means there won't be any further writeback or page
883 * cache dirtying until the reflink completes.
884 *
885 * We should never have two threads issuing writeback for the same file
886 * region. There are also have post-eof checks in the writeback
887 * preparation code so that we don't bother writing out pages that are
888 * about to be truncated.
889 *
890 * If we're being called as part of directio write completion, the dio
891 * count is still elevated, which reflink and truncate will wait for.
892 * Reflink remapping takes the iolock and mmaplock and waits for
893 * pending dio to finish, which should prevent any directio until the
894 * remap completes. Multiple concurrent directio writes to the same
895 * region are handled by end_cow processing only occurring for the
896 * threads which succeed; the outcome of multiple overlapping direct
897 * writes is not well defined anyway.
898 *
899 * It's possible that a buffered write and a direct write could collide
900 * here (the buffered write stumbles in after the dio flushes and
901 * invalidates the page cache and immediately queues writeback), but we
902 * have never supported this 100%. If either disk write succeeds the
903 * blocks will be remapped.
904 */
905 while (end_fsb > offset_fsb && !error)
906 error = xfs_reflink_end_cow_extent(ip, &offset_fsb, end_fsb);
907
908 if (error)
909 trace_xfs_reflink_end_cow_error(ip, error, _RET_IP_);
910 return error;
911}
912
913/*
914 * Free all CoW staging blocks that are still referenced by the ondisk refcount
915 * metadata. The ondisk metadata does not track which inode created the
916 * staging extent, so callers must ensure that there are no cached inodes with
917 * live CoW staging extents.
918 */
919int
920xfs_reflink_recover_cow(
921 struct xfs_mount *mp)
922{
923 struct xfs_perag *pag;
924 xfs_agnumber_t agno;
925 int error = 0;
926
927 if (!xfs_has_reflink(mp))
928 return 0;
929
930 for_each_perag(mp, agno, pag) {
931 error = xfs_refcount_recover_cow_leftovers(mp, pag);
932 if (error) {
933 xfs_perag_rele(pag);
934 break;
935 }
936 }
937
938 return error;
939}
940
941/*
942 * Reflinking (Block) Ranges of Two Files Together
943 *
944 * First, ensure that the reflink flag is set on both inodes. The flag is an
945 * optimization to avoid unnecessary refcount btree lookups in the write path.
946 *
947 * Now we can iteratively remap the range of extents (and holes) in src to the
948 * corresponding ranges in dest. Let drange and srange denote the ranges of
949 * logical blocks in dest and src touched by the reflink operation.
950 *
951 * While the length of drange is greater than zero,
952 * - Read src's bmbt at the start of srange ("imap")
953 * - If imap doesn't exist, make imap appear to start at the end of srange
954 * with zero length.
955 * - If imap starts before srange, advance imap to start at srange.
956 * - If imap goes beyond srange, truncate imap to end at the end of srange.
957 * - Punch (imap start - srange start + imap len) blocks from dest at
958 * offset (drange start).
959 * - If imap points to a real range of pblks,
960 * > Increase the refcount of the imap's pblks
961 * > Map imap's pblks into dest at the offset
962 * (drange start + imap start - srange start)
963 * - Advance drange and srange by (imap start - srange start + imap len)
964 *
965 * Finally, if the reflink made dest longer, update both the in-core and
966 * on-disk file sizes.
967 *
968 * ASCII Art Demonstration:
969 *
970 * Let's say we want to reflink this source file:
971 *
972 * ----SSSSSSS-SSSSS----SSSSSS (src file)
973 * <-------------------->
974 *
975 * into this destination file:
976 *
977 * --DDDDDDDDDDDDDDDDDDD--DDD (dest file)
978 * <-------------------->
979 * '-' means a hole, and 'S' and 'D' are written blocks in the src and dest.
980 * Observe that the range has different logical offsets in either file.
981 *
982 * Consider that the first extent in the source file doesn't line up with our
983 * reflink range. Unmapping and remapping are separate operations, so we can
984 * unmap more blocks from the destination file than we remap.
985 *
986 * ----SSSSSSS-SSSSS----SSSSSS
987 * <------->
988 * --DDDDD---------DDDDD--DDD
989 * <------->
990 *
991 * Now remap the source extent into the destination file:
992 *
993 * ----SSSSSSS-SSSSS----SSSSSS
994 * <------->
995 * --DDDDD--SSSSSSSDDDDD--DDD
996 * <------->
997 *
998 * Do likewise with the second hole and extent in our range. Holes in the
999 * unmap range don't affect our operation.
1000 *
1001 * ----SSSSSSS-SSSSS----SSSSSS
1002 * <---->
1003 * --DDDDD--SSSSSSS-SSSSS-DDD
1004 * <---->
1005 *
1006 * Finally, unmap and remap part of the third extent. This will increase the
1007 * size of the destination file.
1008 *
1009 * ----SSSSSSS-SSSSS----SSSSSS
1010 * <----->
1011 * --DDDDD--SSSSSSS-SSSSS----SSS
1012 * <----->
1013 *
1014 * Once we update the destination file's i_size, we're done.
1015 */
1016
1017/*
1018 * Ensure the reflink bit is set in both inodes.
1019 */
1020STATIC int
1021xfs_reflink_set_inode_flag(
1022 struct xfs_inode *src,
1023 struct xfs_inode *dest)
1024{
1025 struct xfs_mount *mp = src->i_mount;
1026 int error;
1027 struct xfs_trans *tp;
1028
1029 if (xfs_is_reflink_inode(ip: src) && xfs_is_reflink_inode(ip: dest))
1030 return 0;
1031
1032 error = xfs_trans_alloc(mp, resp: &M_RES(mp)->tr_ichange, blocks: 0, rtextents: 0, flags: 0, tpp: &tp);
1033 if (error)
1034 goto out_error;
1035
1036 /* Lock both files against IO */
1037 if (src->i_ino == dest->i_ino)
1038 xfs_ilock(src, XFS_ILOCK_EXCL);
1039 else
1040 xfs_lock_two_inodes(ip0: src, XFS_ILOCK_EXCL, ip1: dest, XFS_ILOCK_EXCL);
1041
1042 if (!xfs_is_reflink_inode(ip: src)) {
1043 trace_xfs_reflink_set_inode_flag(ip: src);
1044 xfs_trans_ijoin(tp, src, XFS_ILOCK_EXCL);
1045 src->i_diflags2 |= XFS_DIFLAG2_REFLINK;
1046 xfs_trans_log_inode(tp, src, XFS_ILOG_CORE);
1047 xfs_ifork_init_cow(src);
1048 } else
1049 xfs_iunlock(src, XFS_ILOCK_EXCL);
1050
1051 if (src->i_ino == dest->i_ino)
1052 goto commit_flags;
1053
1054 if (!xfs_is_reflink_inode(ip: dest)) {
1055 trace_xfs_reflink_set_inode_flag(ip: dest);
1056 xfs_trans_ijoin(tp, dest, XFS_ILOCK_EXCL);
1057 dest->i_diflags2 |= XFS_DIFLAG2_REFLINK;
1058 xfs_trans_log_inode(tp, dest, XFS_ILOG_CORE);
1059 xfs_ifork_init_cow(dest);
1060 } else
1061 xfs_iunlock(dest, XFS_ILOCK_EXCL);
1062
1063commit_flags:
1064 error = xfs_trans_commit(tp);
1065 if (error)
1066 goto out_error;
1067 return error;
1068
1069out_error:
1070 trace_xfs_reflink_set_inode_flag_error(ip: dest, error, _RET_IP_);
1071 return error;
1072}
1073
1074/*
1075 * Update destination inode size & cowextsize hint, if necessary.
1076 */
1077int
1078xfs_reflink_update_dest(
1079 struct xfs_inode *dest,
1080 xfs_off_t newlen,
1081 xfs_extlen_t cowextsize,
1082 unsigned int remap_flags)
1083{
1084 struct xfs_mount *mp = dest->i_mount;
1085 struct xfs_trans *tp;
1086 int error;
1087
1088 if (newlen <= i_size_read(inode: VFS_I(ip: dest)) && cowextsize == 0)
1089 return 0;
1090
1091 error = xfs_trans_alloc(mp, resp: &M_RES(mp)->tr_ichange, blocks: 0, rtextents: 0, flags: 0, tpp: &tp);
1092 if (error)
1093 goto out_error;
1094
1095 xfs_ilock(dest, XFS_ILOCK_EXCL);
1096 xfs_trans_ijoin(tp, dest, XFS_ILOCK_EXCL);
1097
1098 if (newlen > i_size_read(inode: VFS_I(ip: dest))) {
1099 trace_xfs_reflink_update_inode_size(dest, newlen);
1100 i_size_write(inode: VFS_I(ip: dest), i_size: newlen);
1101 dest->i_disk_size = newlen;
1102 }
1103
1104 if (cowextsize) {
1105 dest->i_cowextsize = cowextsize;
1106 dest->i_diflags2 |= XFS_DIFLAG2_COWEXTSIZE;
1107 }
1108
1109 xfs_trans_log_inode(tp, dest, XFS_ILOG_CORE);
1110
1111 error = xfs_trans_commit(tp);
1112 if (error)
1113 goto out_error;
1114 return error;
1115
1116out_error:
1117 trace_xfs_reflink_update_inode_size_error(ip: dest, error, _RET_IP_);
1118 return error;
1119}
1120
1121/*
1122 * Do we have enough reserve in this AG to handle a reflink? The refcount
1123 * btree already reserved all the space it needs, but the rmap btree can grow
1124 * infinitely, so we won't allow more reflinks when the AG is down to the
1125 * btree reserves.
1126 */
1127static int
1128xfs_reflink_ag_has_free_space(
1129 struct xfs_mount *mp,
1130 xfs_agnumber_t agno)
1131{
1132 struct xfs_perag *pag;
1133 int error = 0;
1134
1135 if (!xfs_has_rmapbt(mp))
1136 return 0;
1137
1138 pag = xfs_perag_get(mp, agno);
1139 if (xfs_ag_resv_critical(pag, XFS_AG_RESV_RMAPBT) ||
1140 xfs_ag_resv_critical(pag, XFS_AG_RESV_METADATA))
1141 error = -ENOSPC;
1142 xfs_perag_put(pag);
1143 return error;
1144}
1145
1146/*
1147 * Remap the given extent into the file. The dmap blockcount will be set to
1148 * the number of blocks that were actually remapped.
1149 */
1150STATIC int
1151xfs_reflink_remap_extent(
1152 struct xfs_inode *ip,
1153 struct xfs_bmbt_irec *dmap,
1154 xfs_off_t new_isize)
1155{
1156 struct xfs_bmbt_irec smap;
1157 struct xfs_mount *mp = ip->i_mount;
1158 struct xfs_trans *tp;
1159 xfs_off_t newlen;
1160 int64_t qdelta = 0;
1161 unsigned int resblks;
1162 bool quota_reserved = true;
1163 bool smap_real;
1164 bool dmap_written = xfs_bmap_is_written_extent(dmap);
1165 int iext_delta = 0;
1166 int nimaps;
1167 int error;
1168
1169 /*
1170 * Start a rolling transaction to switch the mappings.
1171 *
1172 * Adding a written extent to the extent map can cause a bmbt split,
1173 * and removing a mapped extent from the extent can cause a bmbt split.
1174 * The two operations cannot both cause a split since they operate on
1175 * the same index in the bmap btree, so we only need a reservation for
1176 * one bmbt split if either thing is happening. However, we haven't
1177 * locked the inode yet, so we reserve assuming this is the case.
1178 *
1179 * The first allocation call tries to reserve enough space to handle
1180 * mapping dmap into a sparse part of the file plus the bmbt split. We
1181 * haven't locked the inode or read the existing mapping yet, so we do
1182 * not know for sure that we need the space. This should succeed most
1183 * of the time.
1184 *
1185 * If the first attempt fails, try again but reserving only enough
1186 * space to handle a bmbt split. This is the hard minimum requirement,
1187 * and we revisit quota reservations later when we know more about what
1188 * we're remapping.
1189 */
1190 resblks = XFS_EXTENTADD_SPACE_RES(mp, XFS_DATA_FORK);
1191 error = xfs_trans_alloc_inode(ip, resv: &M_RES(mp)->tr_write,
1192 dblocks: resblks + dmap->br_blockcount, rblocks: 0, force: false, tpp: &tp);
1193 if (error == -EDQUOT || error == -ENOSPC) {
1194 quota_reserved = false;
1195 error = xfs_trans_alloc_inode(ip, resv: &M_RES(mp)->tr_write,
1196 dblocks: resblks, rblocks: 0, force: false, tpp: &tp);
1197 }
1198 if (error)
1199 goto out;
1200
1201 /*
1202 * Read what's currently mapped in the destination file into smap.
1203 * If smap isn't a hole, we will have to remove it before we can add
1204 * dmap to the destination file.
1205 */
1206 nimaps = 1;
1207 error = xfs_bmapi_read(ip, dmap->br_startoff, dmap->br_blockcount,
1208 &smap, &nimaps, 0);
1209 if (error)
1210 goto out_cancel;
1211 ASSERT(nimaps == 1 && smap.br_startoff == dmap->br_startoff);
1212 smap_real = xfs_bmap_is_real_extent(&smap);
1213
1214 /*
1215 * We can only remap as many blocks as the smaller of the two extent
1216 * maps, because we can only remap one extent at a time.
1217 */
1218 dmap->br_blockcount = min(dmap->br_blockcount, smap.br_blockcount);
1219 ASSERT(dmap->br_blockcount == smap.br_blockcount);
1220
1221 trace_xfs_reflink_remap_extent_dest(ip, irec: &smap);
1222
1223 /*
1224 * Two extents mapped to the same physical block must not have
1225 * different states; that's filesystem corruption. Move on to the next
1226 * extent if they're both holes or both the same physical extent.
1227 */
1228 if (dmap->br_startblock == smap.br_startblock) {
1229 if (dmap->br_state != smap.br_state)
1230 error = -EFSCORRUPTED;
1231 goto out_cancel;
1232 }
1233
1234 /* If both extents are unwritten, leave them alone. */
1235 if (dmap->br_state == XFS_EXT_UNWRITTEN &&
1236 smap.br_state == XFS_EXT_UNWRITTEN)
1237 goto out_cancel;
1238
1239 /* No reflinking if the AG of the dest mapping is low on space. */
1240 if (dmap_written) {
1241 error = xfs_reflink_ag_has_free_space(mp,
1242 XFS_FSB_TO_AGNO(mp, dmap->br_startblock));
1243 if (error)
1244 goto out_cancel;
1245 }
1246
1247 /*
1248 * Increase quota reservation if we think the quota block counter for
1249 * this file could increase.
1250 *
1251 * If we are mapping a written extent into the file, we need to have
1252 * enough quota block count reservation to handle the blocks in that
1253 * extent. We log only the delta to the quota block counts, so if the
1254 * extent we're unmapping also has blocks allocated to it, we don't
1255 * need a quota reservation for the extent itself.
1256 *
1257 * Note that if we're replacing a delalloc reservation with a written
1258 * extent, we have to take the full quota reservation because removing
1259 * the delalloc reservation gives the block count back to the quota
1260 * count. This is suboptimal, but the VFS flushed the dest range
1261 * before we started. That should have removed all the delalloc
1262 * reservations, but we code defensively.
1263 *
1264 * xfs_trans_alloc_inode above already tried to grab an even larger
1265 * quota reservation, and kicked off a blockgc scan if it couldn't.
1266 * If we can't get a potentially smaller quota reservation now, we're
1267 * done.
1268 */
1269 if (!quota_reserved && !smap_real && dmap_written) {
1270 error = xfs_trans_reserve_quota_nblks(tp, ip,
1271 dblocks: dmap->br_blockcount, rblocks: 0, force: false);
1272 if (error)
1273 goto out_cancel;
1274 }
1275
1276 if (smap_real)
1277 ++iext_delta;
1278
1279 if (dmap_written)
1280 ++iext_delta;
1281
1282 error = xfs_iext_count_may_overflow(ip, XFS_DATA_FORK, iext_delta);
1283 if (error == -EFBIG)
1284 error = xfs_iext_count_upgrade(tp, ip, iext_delta);
1285 if (error)
1286 goto out_cancel;
1287
1288 if (smap_real) {
1289 /*
1290 * If the extent we're unmapping is backed by storage (written
1291 * or not), unmap the extent and drop its refcount.
1292 */
1293 xfs_bmap_unmap_extent(tp, ip, &smap);
1294 xfs_refcount_decrease_extent(tp, &smap);
1295 qdelta -= smap.br_blockcount;
1296 } else if (smap.br_startblock == DELAYSTARTBLOCK) {
1297 int done;
1298
1299 /*
1300 * If the extent we're unmapping is a delalloc reservation,
1301 * we can use the regular bunmapi function to release the
1302 * incore state. Dropping the delalloc reservation takes care
1303 * of the quota reservation for us.
1304 */
1305 error = xfs_bunmapi(NULL, ip, smap.br_startoff,
1306 smap.br_blockcount, 0, 1, &done);
1307 if (error)
1308 goto out_cancel;
1309 ASSERT(done);
1310 }
1311
1312 /*
1313 * If the extent we're sharing is backed by written storage, increase
1314 * its refcount and map it into the file.
1315 */
1316 if (dmap_written) {
1317 xfs_refcount_increase_extent(tp, dmap);
1318 xfs_bmap_map_extent(tp, ip, dmap);
1319 qdelta += dmap->br_blockcount;
1320 }
1321
1322 xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_BCOUNT, qdelta);
1323
1324 /* Update dest isize if needed. */
1325 newlen = XFS_FSB_TO_B(mp, dmap->br_startoff + dmap->br_blockcount);
1326 newlen = min_t(xfs_off_t, newlen, new_isize);
1327 if (newlen > i_size_read(inode: VFS_I(ip))) {
1328 trace_xfs_reflink_update_inode_size(ip, newlen);
1329 i_size_write(inode: VFS_I(ip), i_size: newlen);
1330 ip->i_disk_size = newlen;
1331 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1332 }
1333
1334 /* Commit everything and unlock. */
1335 error = xfs_trans_commit(tp);
1336 goto out_unlock;
1337
1338out_cancel:
1339 xfs_trans_cancel(tp);
1340out_unlock:
1341 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1342out:
1343 if (error)
1344 trace_xfs_reflink_remap_extent_error(ip, error, _RET_IP_);
1345 return error;
1346}
1347
1348/* Remap a range of one file to the other. */
1349int
1350xfs_reflink_remap_blocks(
1351 struct xfs_inode *src,
1352 loff_t pos_in,
1353 struct xfs_inode *dest,
1354 loff_t pos_out,
1355 loff_t remap_len,
1356 loff_t *remapped)
1357{
1358 struct xfs_bmbt_irec imap;
1359 struct xfs_mount *mp = src->i_mount;
1360 xfs_fileoff_t srcoff = XFS_B_TO_FSBT(mp, pos_in);
1361 xfs_fileoff_t destoff = XFS_B_TO_FSBT(mp, pos_out);
1362 xfs_filblks_t len;
1363 xfs_filblks_t remapped_len = 0;
1364 xfs_off_t new_isize = pos_out + remap_len;
1365 int nimaps;
1366 int error = 0;
1367
1368 len = min_t(xfs_filblks_t, XFS_B_TO_FSB(mp, remap_len),
1369 XFS_MAX_FILEOFF);
1370
1371 trace_xfs_reflink_remap_blocks(src, srcoff, len, dest, destoff);
1372
1373 while (len > 0) {
1374 unsigned int lock_mode;
1375
1376 /* Read extent from the source file */
1377 nimaps = 1;
1378 lock_mode = xfs_ilock_data_map_shared(src);
1379 error = xfs_bmapi_read(src, srcoff, len, &imap, &nimaps, 0);
1380 xfs_iunlock(src, lock_mode);
1381 if (error)
1382 break;
1383 /*
1384 * The caller supposedly flushed all dirty pages in the source
1385 * file range, which means that writeback should have allocated
1386 * or deleted all delalloc reservations in that range. If we
1387 * find one, that's a good sign that something is seriously
1388 * wrong here.
1389 */
1390 ASSERT(nimaps == 1 && imap.br_startoff == srcoff);
1391 if (imap.br_startblock == DELAYSTARTBLOCK) {
1392 ASSERT(imap.br_startblock != DELAYSTARTBLOCK);
1393 error = -EFSCORRUPTED;
1394 break;
1395 }
1396
1397 trace_xfs_reflink_remap_extent_src(ip: src, irec: &imap);
1398
1399 /* Remap into the destination file at the given offset. */
1400 imap.br_startoff = destoff;
1401 error = xfs_reflink_remap_extent(ip: dest, dmap: &imap, new_isize);
1402 if (error)
1403 break;
1404
1405 if (fatal_signal_pending(current)) {
1406 error = -EINTR;
1407 break;
1408 }
1409
1410 /* Advance drange/srange */
1411 srcoff += imap.br_blockcount;
1412 destoff += imap.br_blockcount;
1413 len -= imap.br_blockcount;
1414 remapped_len += imap.br_blockcount;
1415 }
1416
1417 if (error)
1418 trace_xfs_reflink_remap_blocks_error(ip: dest, error, _RET_IP_);
1419 *remapped = min_t(loff_t, remap_len,
1420 XFS_FSB_TO_B(src->i_mount, remapped_len));
1421 return error;
1422}
1423
1424/*
1425 * If we're reflinking to a point past the destination file's EOF, we must
1426 * zero any speculative post-EOF preallocations that sit between the old EOF
1427 * and the destination file offset.
1428 */
1429static int
1430xfs_reflink_zero_posteof(
1431 struct xfs_inode *ip,
1432 loff_t pos)
1433{
1434 loff_t isize = i_size_read(inode: VFS_I(ip));
1435
1436 if (pos <= isize)
1437 return 0;
1438
1439 trace_xfs_zero_eof(ip, offset: isize, count: pos - isize);
1440 return xfs_zero_range(ip, pos: isize, len: pos - isize, NULL);
1441}
1442
1443/*
1444 * Prepare two files for range cloning. Upon a successful return both inodes
1445 * will have the iolock and mmaplock held, the page cache of the out file will
1446 * be truncated, and any leases on the out file will have been broken. This
1447 * function borrows heavily from xfs_file_aio_write_checks.
1448 *
1449 * The VFS allows partial EOF blocks to "match" for dedupe even though it hasn't
1450 * checked that the bytes beyond EOF physically match. Hence we cannot use the
1451 * EOF block in the source dedupe range because it's not a complete block match,
1452 * hence can introduce a corruption into the file that has it's block replaced.
1453 *
1454 * In similar fashion, the VFS file cloning also allows partial EOF blocks to be
1455 * "block aligned" for the purposes of cloning entire files. However, if the
1456 * source file range includes the EOF block and it lands within the existing EOF
1457 * of the destination file, then we can expose stale data from beyond the source
1458 * file EOF in the destination file.
1459 *
1460 * XFS doesn't support partial block sharing, so in both cases we have check
1461 * these cases ourselves. For dedupe, we can simply round the length to dedupe
1462 * down to the previous whole block and ignore the partial EOF block. While this
1463 * means we can't dedupe the last block of a file, this is an acceptible
1464 * tradeoff for simplicity on implementation.
1465 *
1466 * For cloning, we want to share the partial EOF block if it is also the new EOF
1467 * block of the destination file. If the partial EOF block lies inside the
1468 * existing destination EOF, then we have to abort the clone to avoid exposing
1469 * stale data in the destination file. Hence we reject these clone attempts with
1470 * -EINVAL in this case.
1471 */
1472int
1473xfs_reflink_remap_prep(
1474 struct file *file_in,
1475 loff_t pos_in,
1476 struct file *file_out,
1477 loff_t pos_out,
1478 loff_t *len,
1479 unsigned int remap_flags)
1480{
1481 struct inode *inode_in = file_inode(f: file_in);
1482 struct xfs_inode *src = XFS_I(inode: inode_in);
1483 struct inode *inode_out = file_inode(f: file_out);
1484 struct xfs_inode *dest = XFS_I(inode: inode_out);
1485 int ret;
1486
1487 /* Lock both files against IO */
1488 ret = xfs_ilock2_io_mmap(ip1: src, ip2: dest);
1489 if (ret)
1490 return ret;
1491
1492 /* Check file eligibility and prepare for block sharing. */
1493 ret = -EINVAL;
1494 /* Don't reflink realtime inodes */
1495 if (XFS_IS_REALTIME_INODE(src) || XFS_IS_REALTIME_INODE(dest))
1496 goto out_unlock;
1497
1498 /* Don't share DAX file data with non-DAX file. */
1499 if (IS_DAX(inode_in) != IS_DAX(inode_out))
1500 goto out_unlock;
1501
1502 if (!IS_DAX(inode_in))
1503 ret = generic_remap_file_range_prep(file_in, pos_in, file_out,
1504 pos_out, count: len, remap_flags);
1505 else
1506 ret = dax_remap_file_range_prep(file_in, pos_in, file_out,
1507 pos_out, len, remap_flags, ops: &xfs_read_iomap_ops);
1508 if (ret || *len == 0)
1509 goto out_unlock;
1510
1511 /* Attach dquots to dest inode before changing block map */
1512 ret = xfs_qm_dqattach(dest);
1513 if (ret)
1514 goto out_unlock;
1515
1516 /*
1517 * Zero existing post-eof speculative preallocations in the destination
1518 * file.
1519 */
1520 ret = xfs_reflink_zero_posteof(ip: dest, pos: pos_out);
1521 if (ret)
1522 goto out_unlock;
1523
1524 /* Set flags and remap blocks. */
1525 ret = xfs_reflink_set_inode_flag(src, dest);
1526 if (ret)
1527 goto out_unlock;
1528
1529 /*
1530 * If pos_out > EOF, we may have dirtied blocks between EOF and
1531 * pos_out. In that case, we need to extend the flush and unmap to cover
1532 * from EOF to the end of the copy length.
1533 */
1534 if (pos_out > XFS_ISIZE(dest)) {
1535 loff_t flen = *len + (pos_out - XFS_ISIZE(dest));
1536 ret = xfs_flush_unmap_range(ip: dest, offset: XFS_ISIZE(dest), len: flen);
1537 } else {
1538 ret = xfs_flush_unmap_range(ip: dest, offset: pos_out, len: *len);
1539 }
1540 if (ret)
1541 goto out_unlock;
1542
1543 xfs_iflags_set(ip: src, XFS_IREMAPPING);
1544 if (inode_in != inode_out)
1545 xfs_ilock_demote(src, XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL);
1546
1547 return 0;
1548out_unlock:
1549 xfs_iunlock2_io_mmap(ip1: src, ip2: dest);
1550 return ret;
1551}
1552
1553/* Does this inode need the reflink flag? */
1554int
1555xfs_reflink_inode_has_shared_extents(
1556 struct xfs_trans *tp,
1557 struct xfs_inode *ip,
1558 bool *has_shared)
1559{
1560 struct xfs_bmbt_irec got;
1561 struct xfs_mount *mp = ip->i_mount;
1562 struct xfs_ifork *ifp;
1563 struct xfs_iext_cursor icur;
1564 bool found;
1565 int error;
1566
1567 ifp = xfs_ifork_ptr(ip, XFS_DATA_FORK);
1568 error = xfs_iread_extents(tp, ip, XFS_DATA_FORK);
1569 if (error)
1570 return error;
1571
1572 *has_shared = false;
1573 found = xfs_iext_lookup_extent(ip, ifp, 0, &icur, &got);
1574 while (found) {
1575 struct xfs_perag *pag;
1576 xfs_agblock_t agbno;
1577 xfs_extlen_t aglen;
1578 xfs_agblock_t rbno;
1579 xfs_extlen_t rlen;
1580
1581 if (isnullstartblock(got.br_startblock) ||
1582 got.br_state != XFS_EXT_NORM)
1583 goto next;
1584
1585 pag = xfs_perag_get(mp, XFS_FSB_TO_AGNO(mp, got.br_startblock));
1586 agbno = XFS_FSB_TO_AGBNO(mp, got.br_startblock);
1587 aglen = got.br_blockcount;
1588 error = xfs_reflink_find_shared(pag, tp, agbno, aglen,
1589 &rbno, &rlen, false);
1590 xfs_perag_put(pag);
1591 if (error)
1592 return error;
1593
1594 /* Is there still a shared block here? */
1595 if (rbno != NULLAGBLOCK) {
1596 *has_shared = true;
1597 return 0;
1598 }
1599next:
1600 found = xfs_iext_next_extent(ifp, &icur, &got);
1601 }
1602
1603 return 0;
1604}
1605
1606/*
1607 * Clear the inode reflink flag if there are no shared extents.
1608 *
1609 * The caller is responsible for joining the inode to the transaction passed in.
1610 * The inode will be joined to the transaction that is returned to the caller.
1611 */
1612int
1613xfs_reflink_clear_inode_flag(
1614 struct xfs_inode *ip,
1615 struct xfs_trans **tpp)
1616{
1617 bool needs_flag;
1618 int error = 0;
1619
1620 ASSERT(xfs_is_reflink_inode(ip));
1621
1622 error = xfs_reflink_inode_has_shared_extents(tp: *tpp, ip, has_shared: &needs_flag);
1623 if (error || needs_flag)
1624 return error;
1625
1626 /*
1627 * We didn't find any shared blocks so turn off the reflink flag.
1628 * First, get rid of any leftover CoW mappings.
1629 */
1630 error = xfs_reflink_cancel_cow_blocks(ip, tpp, 0, XFS_MAX_FILEOFF,
1631 true);
1632 if (error)
1633 return error;
1634
1635 /* Clear the inode flag. */
1636 trace_xfs_reflink_unset_inode_flag(ip);
1637 ip->i_diflags2 &= ~XFS_DIFLAG2_REFLINK;
1638 xfs_inode_clear_cowblocks_tag(ip);
1639 xfs_trans_log_inode(*tpp, ip, XFS_ILOG_CORE);
1640
1641 return error;
1642}
1643
1644/*
1645 * Clear the inode reflink flag if there are no shared extents and the size
1646 * hasn't changed.
1647 */
1648STATIC int
1649xfs_reflink_try_clear_inode_flag(
1650 struct xfs_inode *ip)
1651{
1652 struct xfs_mount *mp = ip->i_mount;
1653 struct xfs_trans *tp;
1654 int error = 0;
1655
1656 /* Start a rolling transaction to remove the mappings */
1657 error = xfs_trans_alloc(mp, resp: &M_RES(mp)->tr_write, blocks: 0, rtextents: 0, flags: 0, tpp: &tp);
1658 if (error)
1659 return error;
1660
1661 xfs_ilock(ip, XFS_ILOCK_EXCL);
1662 xfs_trans_ijoin(tp, ip, 0);
1663
1664 error = xfs_reflink_clear_inode_flag(ip, tpp: &tp);
1665 if (error)
1666 goto cancel;
1667
1668 error = xfs_trans_commit(tp);
1669 if (error)
1670 goto out;
1671
1672 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1673 return 0;
1674cancel:
1675 xfs_trans_cancel(tp);
1676out:
1677 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1678 return error;
1679}
1680
1681/*
1682 * Pre-COW all shared blocks within a given byte range of a file and turn off
1683 * the reflink flag if we unshare all of the file's blocks.
1684 */
1685int
1686xfs_reflink_unshare(
1687 struct xfs_inode *ip,
1688 xfs_off_t offset,
1689 xfs_off_t len)
1690{
1691 struct inode *inode = VFS_I(ip);
1692 int error;
1693
1694 if (!xfs_is_reflink_inode(ip))
1695 return 0;
1696
1697 trace_xfs_reflink_unshare(ip, offset, count: len);
1698
1699 inode_dio_wait(inode);
1700
1701 if (IS_DAX(inode))
1702 error = dax_file_unshare(inode, pos: offset, len,
1703 ops: &xfs_dax_write_iomap_ops);
1704 else
1705 error = iomap_file_unshare(inode, pos: offset, len,
1706 ops: &xfs_buffered_write_iomap_ops);
1707 if (error)
1708 goto out;
1709
1710 error = filemap_write_and_wait_range(mapping: inode->i_mapping, lstart: offset,
1711 lend: offset + len - 1);
1712 if (error)
1713 goto out;
1714
1715 /* Turn off the reflink flag if possible. */
1716 error = xfs_reflink_try_clear_inode_flag(ip);
1717 if (error)
1718 goto out;
1719 return 0;
1720
1721out:
1722 trace_xfs_reflink_unshare_error(ip, error, _RET_IP_);
1723 return error;
1724}
1725

source code of linux/fs/xfs/xfs_reflink.c