1/* SPDX-License-Identifier: GPL-2.0+ */
2#ifndef _LINUX_MAPLE_TREE_H
3#define _LINUX_MAPLE_TREE_H
4/*
5 * Maple Tree - An RCU-safe adaptive tree for storing ranges
6 * Copyright (c) 2018-2022 Oracle
7 * Authors: Liam R. Howlett <Liam.Howlett@Oracle.com>
8 * Matthew Wilcox <willy@infradead.org>
9 */
10
11#include <linux/kernel.h>
12#include <linux/rcupdate.h>
13#include <linux/spinlock.h>
14/* #define CONFIG_MAPLE_RCU_DISABLED */
15
16/*
17 * Allocated nodes are mutable until they have been inserted into the tree,
18 * at which time they cannot change their type until they have been removed
19 * from the tree and an RCU grace period has passed.
20 *
21 * Removed nodes have their ->parent set to point to themselves. RCU readers
22 * check ->parent before relying on the value that they loaded from the
23 * slots array. This lets us reuse the slots array for the RCU head.
24 *
25 * Nodes in the tree point to their parent unless bit 0 is set.
26 */
27#if defined(CONFIG_64BIT) || defined(BUILD_VDSO32_64)
28/* 64bit sizes */
29#define MAPLE_NODE_SLOTS 31 /* 256 bytes including ->parent */
30#define MAPLE_RANGE64_SLOTS 16 /* 256 bytes */
31#define MAPLE_ARANGE64_SLOTS 10 /* 240 bytes */
32#define MAPLE_ALLOC_SLOTS (MAPLE_NODE_SLOTS - 1)
33#else
34/* 32bit sizes */
35#define MAPLE_NODE_SLOTS 63 /* 256 bytes including ->parent */
36#define MAPLE_RANGE64_SLOTS 32 /* 256 bytes */
37#define MAPLE_ARANGE64_SLOTS 21 /* 240 bytes */
38#define MAPLE_ALLOC_SLOTS (MAPLE_NODE_SLOTS - 2)
39#endif /* defined(CONFIG_64BIT) || defined(BUILD_VDSO32_64) */
40
41#define MAPLE_NODE_MASK 255UL
42
43/*
44 * The node->parent of the root node has bit 0 set and the rest of the pointer
45 * is a pointer to the tree itself. No more bits are available in this pointer
46 * (on m68k, the data structure may only be 2-byte aligned).
47 *
48 * Internal non-root nodes can only have maple_range_* nodes as parents. The
49 * parent pointer is 256B aligned like all other tree nodes. When storing a 32
50 * or 64 bit values, the offset can fit into 4 bits. The 16 bit values need an
51 * extra bit to store the offset. This extra bit comes from a reuse of the last
52 * bit in the node type. This is possible by using bit 1 to indicate if bit 2
53 * is part of the type or the slot.
54 *
55 * Once the type is decided, the decision of an allocation range type or a range
56 * type is done by examining the immutable tree flag for the MAPLE_ALLOC_RANGE
57 * flag.
58 *
59 * Node types:
60 * 0x??1 = Root
61 * 0x?00 = 16 bit nodes
62 * 0x010 = 32 bit nodes
63 * 0x110 = 64 bit nodes
64 *
65 * Slot size and location in the parent pointer:
66 * type : slot location
67 * 0x??1 : Root
68 * 0x?00 : 16 bit values, type in 0-1, slot in 2-6
69 * 0x010 : 32 bit values, type in 0-2, slot in 3-6
70 * 0x110 : 64 bit values, type in 0-2, slot in 3-6
71 */
72
73/*
74 * This metadata is used to optimize the gap updating code and in reverse
75 * searching for gaps or any other code that needs to find the end of the data.
76 */
77struct maple_metadata {
78 unsigned char end;
79 unsigned char gap;
80};
81
82/*
83 * Leaf nodes do not store pointers to nodes, they store user data. Users may
84 * store almost any bit pattern. As noted above, the optimisation of storing an
85 * entry at 0 in the root pointer cannot be done for data which have the bottom
86 * two bits set to '10'. We also reserve values with the bottom two bits set to
87 * '10' which are below 4096 (ie 2, 6, 10 .. 4094) for internal use. Some APIs
88 * return errnos as a negative errno shifted right by two bits and the bottom
89 * two bits set to '10', and while choosing to store these values in the array
90 * is not an error, it may lead to confusion if you're testing for an error with
91 * mas_is_err().
92 *
93 * Non-leaf nodes store the type of the node pointed to (enum maple_type in bits
94 * 3-6), bit 2 is reserved. That leaves bits 0-1 unused for now.
95 *
96 * In regular B-Tree terms, pivots are called keys. The term pivot is used to
97 * indicate that the tree is specifying ranges, Pivots may appear in the
98 * subtree with an entry attached to the value whereas keys are unique to a
99 * specific position of a B-tree. Pivot values are inclusive of the slot with
100 * the same index.
101 */
102
103struct maple_range_64 {
104 struct maple_pnode *parent;
105 unsigned long pivot[MAPLE_RANGE64_SLOTS - 1];
106 union {
107 void __rcu *slot[MAPLE_RANGE64_SLOTS];
108 struct {
109 void __rcu *pad[MAPLE_RANGE64_SLOTS - 1];
110 struct maple_metadata meta;
111 };
112 };
113};
114
115/*
116 * At tree creation time, the user can specify that they're willing to trade off
117 * storing fewer entries in a tree in return for storing more information in
118 * each node.
119 *
120 * The maple tree supports recording the largest range of NULL entries available
121 * in this node, also called gaps. This optimises the tree for allocating a
122 * range.
123 */
124struct maple_arange_64 {
125 struct maple_pnode *parent;
126 unsigned long pivot[MAPLE_ARANGE64_SLOTS - 1];
127 void __rcu *slot[MAPLE_ARANGE64_SLOTS];
128 unsigned long gap[MAPLE_ARANGE64_SLOTS];
129 struct maple_metadata meta;
130};
131
132struct maple_alloc {
133 unsigned long total;
134 unsigned char node_count;
135 unsigned int request_count;
136 struct maple_alloc *slot[MAPLE_ALLOC_SLOTS];
137};
138
139struct maple_topiary {
140 struct maple_pnode *parent;
141 struct maple_enode *next; /* Overlaps the pivot */
142};
143
144enum maple_type {
145 maple_dense,
146 maple_leaf_64,
147 maple_range_64,
148 maple_arange_64,
149};
150
151
152/**
153 * DOC: Maple tree flags
154 *
155 * * MT_FLAGS_ALLOC_RANGE - Track gaps in this tree
156 * * MT_FLAGS_USE_RCU - Operate in RCU mode
157 * * MT_FLAGS_HEIGHT_OFFSET - The position of the tree height in the flags
158 * * MT_FLAGS_HEIGHT_MASK - The mask for the maple tree height value
159 * * MT_FLAGS_LOCK_MASK - How the mt_lock is used
160 * * MT_FLAGS_LOCK_IRQ - Acquired irq-safe
161 * * MT_FLAGS_LOCK_BH - Acquired bh-safe
162 * * MT_FLAGS_LOCK_EXTERN - mt_lock is not used
163 *
164 * MAPLE_HEIGHT_MAX The largest height that can be stored
165 */
166#define MT_FLAGS_ALLOC_RANGE 0x01
167#define MT_FLAGS_USE_RCU 0x02
168#define MT_FLAGS_HEIGHT_OFFSET 0x02
169#define MT_FLAGS_HEIGHT_MASK 0x7C
170#define MT_FLAGS_LOCK_MASK 0x300
171#define MT_FLAGS_LOCK_IRQ 0x100
172#define MT_FLAGS_LOCK_BH 0x200
173#define MT_FLAGS_LOCK_EXTERN 0x300
174#define MT_FLAGS_ALLOC_WRAPPED 0x0800
175
176#define MAPLE_HEIGHT_MAX 31
177
178
179#define MAPLE_NODE_TYPE_MASK 0x0F
180#define MAPLE_NODE_TYPE_SHIFT 0x03
181
182#define MAPLE_RESERVED_RANGE 4096
183
184#ifdef CONFIG_LOCKDEP
185typedef struct lockdep_map *lockdep_map_p;
186#define mt_lock_is_held(mt) \
187 (!(mt)->ma_external_lock || lock_is_held((mt)->ma_external_lock))
188
189#define mt_write_lock_is_held(mt) \
190 (!(mt)->ma_external_lock || \
191 lock_is_held_type((mt)->ma_external_lock, 0))
192
193#define mt_set_external_lock(mt, lock) \
194 (mt)->ma_external_lock = &(lock)->dep_map
195
196#define mt_on_stack(mt) (mt).ma_external_lock = NULL
197#else
198typedef struct { /* nothing */ } lockdep_map_p;
199#define mt_lock_is_held(mt) 1
200#define mt_write_lock_is_held(mt) 1
201#define mt_set_external_lock(mt, lock) do { } while (0)
202#define mt_on_stack(mt) do { } while (0)
203#endif
204
205/*
206 * If the tree contains a single entry at index 0, it is usually stored in
207 * tree->ma_root. To optimise for the page cache, an entry which ends in '00',
208 * '01' or '11' is stored in the root, but an entry which ends in '10' will be
209 * stored in a node. Bits 3-6 are used to store enum maple_type.
210 *
211 * The flags are used both to store some immutable information about this tree
212 * (set at tree creation time) and dynamic information set under the spinlock.
213 *
214 * Another use of flags are to indicate global states of the tree. This is the
215 * case with the MAPLE_USE_RCU flag, which indicates the tree is currently in
216 * RCU mode. This mode was added to allow the tree to reuse nodes instead of
217 * re-allocating and RCU freeing nodes when there is a single user.
218 */
219struct maple_tree {
220 union {
221 spinlock_t ma_lock;
222 lockdep_map_p ma_external_lock;
223 };
224 unsigned int ma_flags;
225 void __rcu *ma_root;
226};
227
228/**
229 * MTREE_INIT() - Initialize a maple tree
230 * @name: The maple tree name
231 * @__flags: The maple tree flags
232 *
233 */
234#define MTREE_INIT(name, __flags) { \
235 .ma_lock = __SPIN_LOCK_UNLOCKED((name).ma_lock), \
236 .ma_flags = __flags, \
237 .ma_root = NULL, \
238}
239
240/**
241 * MTREE_INIT_EXT() - Initialize a maple tree with an external lock.
242 * @name: The tree name
243 * @__flags: The maple tree flags
244 * @__lock: The external lock
245 */
246#ifdef CONFIG_LOCKDEP
247#define MTREE_INIT_EXT(name, __flags, __lock) { \
248 .ma_external_lock = &(__lock).dep_map, \
249 .ma_flags = (__flags), \
250 .ma_root = NULL, \
251}
252#else
253#define MTREE_INIT_EXT(name, __flags, __lock) MTREE_INIT(name, __flags)
254#endif
255
256#define DEFINE_MTREE(name) \
257 struct maple_tree name = MTREE_INIT(name, 0)
258
259#define mtree_lock(mt) spin_lock((&(mt)->ma_lock))
260#define mtree_lock_nested(mas, subclass) \
261 spin_lock_nested((&(mt)->ma_lock), subclass)
262#define mtree_unlock(mt) spin_unlock((&(mt)->ma_lock))
263
264/*
265 * The Maple Tree squeezes various bits in at various points which aren't
266 * necessarily obvious. Usually, this is done by observing that pointers are
267 * N-byte aligned and thus the bottom log_2(N) bits are available for use. We
268 * don't use the high bits of pointers to store additional information because
269 * we don't know what bits are unused on any given architecture.
270 *
271 * Nodes are 256 bytes in size and are also aligned to 256 bytes, giving us 8
272 * low bits for our own purposes. Nodes are currently of 4 types:
273 * 1. Single pointer (Range is 0-0)
274 * 2. Non-leaf Allocation Range nodes
275 * 3. Non-leaf Range nodes
276 * 4. Leaf Range nodes All nodes consist of a number of node slots,
277 * pivots, and a parent pointer.
278 */
279
280struct maple_node {
281 union {
282 struct {
283 struct maple_pnode *parent;
284 void __rcu *slot[MAPLE_NODE_SLOTS];
285 };
286 struct {
287 void *pad;
288 struct rcu_head rcu;
289 struct maple_enode *piv_parent;
290 unsigned char parent_slot;
291 enum maple_type type;
292 unsigned char slot_len;
293 unsigned int ma_flags;
294 };
295 struct maple_range_64 mr64;
296 struct maple_arange_64 ma64;
297 struct maple_alloc alloc;
298 };
299};
300
301/*
302 * More complicated stores can cause two nodes to become one or three and
303 * potentially alter the height of the tree. Either half of the tree may need
304 * to be rebalanced against the other. The ma_topiary struct is used to track
305 * which nodes have been 'cut' from the tree so that the change can be done
306 * safely at a later date. This is done to support RCU.
307 */
308struct ma_topiary {
309 struct maple_enode *head;
310 struct maple_enode *tail;
311 struct maple_tree *mtree;
312};
313
314void *mtree_load(struct maple_tree *mt, unsigned long index);
315
316int mtree_insert(struct maple_tree *mt, unsigned long index,
317 void *entry, gfp_t gfp);
318int mtree_insert_range(struct maple_tree *mt, unsigned long first,
319 unsigned long last, void *entry, gfp_t gfp);
320int mtree_alloc_range(struct maple_tree *mt, unsigned long *startp,
321 void *entry, unsigned long size, unsigned long min,
322 unsigned long max, gfp_t gfp);
323int mtree_alloc_cyclic(struct maple_tree *mt, unsigned long *startp,
324 void *entry, unsigned long range_lo, unsigned long range_hi,
325 unsigned long *next, gfp_t gfp);
326int mtree_alloc_rrange(struct maple_tree *mt, unsigned long *startp,
327 void *entry, unsigned long size, unsigned long min,
328 unsigned long max, gfp_t gfp);
329
330int mtree_store_range(struct maple_tree *mt, unsigned long first,
331 unsigned long last, void *entry, gfp_t gfp);
332int mtree_store(struct maple_tree *mt, unsigned long index,
333 void *entry, gfp_t gfp);
334void *mtree_erase(struct maple_tree *mt, unsigned long index);
335
336int mtree_dup(struct maple_tree *mt, struct maple_tree *new, gfp_t gfp);
337int __mt_dup(struct maple_tree *mt, struct maple_tree *new, gfp_t gfp);
338
339void mtree_destroy(struct maple_tree *mt);
340void __mt_destroy(struct maple_tree *mt);
341
342/**
343 * mtree_empty() - Determine if a tree has any present entries.
344 * @mt: Maple Tree.
345 *
346 * Context: Any context.
347 * Return: %true if the tree contains only NULL pointers.
348 */
349static inline bool mtree_empty(const struct maple_tree *mt)
350{
351 return mt->ma_root == NULL;
352}
353
354/* Advanced API */
355
356/*
357 * Maple State Status
358 * ma_active means the maple state is pointing to a node and offset and can
359 * continue operating on the tree.
360 * ma_start means we have not searched the tree.
361 * ma_root means we have searched the tree and the entry we found lives in
362 * the root of the tree (ie it has index 0, length 1 and is the only entry in
363 * the tree).
364 * ma_none means we have searched the tree and there is no node in the
365 * tree for this entry. For example, we searched for index 1 in an empty
366 * tree. Or we have a tree which points to a full leaf node and we
367 * searched for an entry which is larger than can be contained in that
368 * leaf node.
369 * ma_pause means the data within the maple state may be stale, restart the
370 * operation
371 * ma_overflow means the search has reached the upper limit of the search
372 * ma_underflow means the search has reached the lower limit of the search
373 * ma_error means there was an error, check the node for the error number.
374 */
375enum maple_status {
376 ma_active,
377 ma_start,
378 ma_root,
379 ma_none,
380 ma_pause,
381 ma_overflow,
382 ma_underflow,
383 ma_error,
384};
385
386/*
387 * The maple state is defined in the struct ma_state and is used to keep track
388 * of information during operations, and even between operations when using the
389 * advanced API.
390 *
391 * If state->node has bit 0 set then it references a tree location which is not
392 * a node (eg the root). If bit 1 is set, the rest of the bits are a negative
393 * errno. Bit 2 (the 'unallocated slots' bit) is clear. Bits 3-6 indicate the
394 * node type.
395 *
396 * state->alloc either has a request number of nodes or an allocated node. If
397 * stat->alloc has a requested number of nodes, the first bit will be set (0x1)
398 * and the remaining bits are the value. If state->alloc is a node, then the
399 * node will be of type maple_alloc. maple_alloc has MAPLE_NODE_SLOTS - 1 for
400 * storing more allocated nodes, a total number of nodes allocated, and the
401 * node_count in this node. node_count is the number of allocated nodes in this
402 * node. The scaling beyond MAPLE_NODE_SLOTS - 1 is handled by storing further
403 * nodes into state->alloc->slot[0]'s node. Nodes are taken from state->alloc
404 * by removing a node from the state->alloc node until state->alloc->node_count
405 * is 1, when state->alloc is returned and the state->alloc->slot[0] is promoted
406 * to state->alloc. Nodes are pushed onto state->alloc by putting the current
407 * state->alloc into the pushed node's slot[0].
408 *
409 * The state also contains the implied min/max of the state->node, the depth of
410 * this search, and the offset. The implied min/max are either from the parent
411 * node or are 0-oo for the root node. The depth is incremented or decremented
412 * every time a node is walked down or up. The offset is the slot/pivot of
413 * interest in the node - either for reading or writing.
414 *
415 * When returning a value the maple state index and last respectively contain
416 * the start and end of the range for the entry. Ranges are inclusive in the
417 * Maple Tree.
418 *
419 * The status of the state is used to determine how the next action should treat
420 * the state. For instance, if the status is ma_start then the next action
421 * should start at the root of the tree and walk down. If the status is
422 * ma_pause then the node may be stale data and should be discarded. If the
423 * status is ma_overflow, then the last action hit the upper limit.
424 *
425 */
426struct ma_state {
427 struct maple_tree *tree; /* The tree we're operating in */
428 unsigned long index; /* The index we're operating on - range start */
429 unsigned long last; /* The last index we're operating on - range end */
430 struct maple_enode *node; /* The node containing this entry */
431 unsigned long min; /* The minimum index of this node - implied pivot min */
432 unsigned long max; /* The maximum index of this node - implied pivot max */
433 struct maple_alloc *alloc; /* Allocated nodes for this operation */
434 enum maple_status status; /* The status of the state (active, start, none, etc) */
435 unsigned char depth; /* depth of tree descent during write */
436 unsigned char offset;
437 unsigned char mas_flags;
438 unsigned char end; /* The end of the node */
439};
440
441struct ma_wr_state {
442 struct ma_state *mas;
443 struct maple_node *node; /* Decoded mas->node */
444 unsigned long r_min; /* range min */
445 unsigned long r_max; /* range max */
446 enum maple_type type; /* mas->node type */
447 unsigned char offset_end; /* The offset where the write ends */
448 unsigned long *pivots; /* mas->node->pivots pointer */
449 unsigned long end_piv; /* The pivot at the offset end */
450 void __rcu **slots; /* mas->node->slots pointer */
451 void *entry; /* The entry to write */
452 void *content; /* The existing entry that is being overwritten */
453};
454
455#define mas_lock(mas) spin_lock(&((mas)->tree->ma_lock))
456#define mas_lock_nested(mas, subclass) \
457 spin_lock_nested(&((mas)->tree->ma_lock), subclass)
458#define mas_unlock(mas) spin_unlock(&((mas)->tree->ma_lock))
459
460/*
461 * Special values for ma_state.node.
462 * MA_ERROR represents an errno. After dropping the lock and attempting
463 * to resolve the error, the walk would have to be restarted from the
464 * top of the tree as the tree may have been modified.
465 */
466#define MA_ERROR(err) \
467 ((struct maple_enode *)(((unsigned long)err << 2) | 2UL))
468
469#define MA_STATE(name, mt, first, end) \
470 struct ma_state name = { \
471 .tree = mt, \
472 .index = first, \
473 .last = end, \
474 .node = NULL, \
475 .status = ma_start, \
476 .min = 0, \
477 .max = ULONG_MAX, \
478 .alloc = NULL, \
479 .mas_flags = 0, \
480 }
481
482#define MA_WR_STATE(name, ma_state, wr_entry) \
483 struct ma_wr_state name = { \
484 .mas = ma_state, \
485 .content = NULL, \
486 .entry = wr_entry, \
487 }
488
489#define MA_TOPIARY(name, tree) \
490 struct ma_topiary name = { \
491 .head = NULL, \
492 .tail = NULL, \
493 .mtree = tree, \
494 }
495
496void *mas_walk(struct ma_state *mas);
497void *mas_store(struct ma_state *mas, void *entry);
498void *mas_erase(struct ma_state *mas);
499int mas_store_gfp(struct ma_state *mas, void *entry, gfp_t gfp);
500void mas_store_prealloc(struct ma_state *mas, void *entry);
501void *mas_find(struct ma_state *mas, unsigned long max);
502void *mas_find_range(struct ma_state *mas, unsigned long max);
503void *mas_find_rev(struct ma_state *mas, unsigned long min);
504void *mas_find_range_rev(struct ma_state *mas, unsigned long max);
505int mas_preallocate(struct ma_state *mas, void *entry, gfp_t gfp);
506int mas_alloc_cyclic(struct ma_state *mas, unsigned long *startp,
507 void *entry, unsigned long range_lo, unsigned long range_hi,
508 unsigned long *next, gfp_t gfp);
509
510bool mas_nomem(struct ma_state *mas, gfp_t gfp);
511void mas_pause(struct ma_state *mas);
512void maple_tree_init(void);
513void mas_destroy(struct ma_state *mas);
514int mas_expected_entries(struct ma_state *mas, unsigned long nr_entries);
515
516void *mas_prev(struct ma_state *mas, unsigned long min);
517void *mas_prev_range(struct ma_state *mas, unsigned long max);
518void *mas_next(struct ma_state *mas, unsigned long max);
519void *mas_next_range(struct ma_state *mas, unsigned long max);
520
521int mas_empty_area(struct ma_state *mas, unsigned long min, unsigned long max,
522 unsigned long size);
523/*
524 * This finds an empty area from the highest address to the lowest.
525 * AKA "Topdown" version,
526 */
527int mas_empty_area_rev(struct ma_state *mas, unsigned long min,
528 unsigned long max, unsigned long size);
529
530static inline void mas_init(struct ma_state *mas, struct maple_tree *tree,
531 unsigned long addr)
532{
533 memset(mas, 0, sizeof(struct ma_state));
534 mas->tree = tree;
535 mas->index = mas->last = addr;
536 mas->max = ULONG_MAX;
537 mas->status = ma_start;
538 mas->node = NULL;
539}
540
541static inline bool mas_is_active(struct ma_state *mas)
542{
543 return mas->status == ma_active;
544}
545
546static inline bool mas_is_err(struct ma_state *mas)
547{
548 return mas->status == ma_error;
549}
550
551/**
552 * mas_reset() - Reset a Maple Tree operation state.
553 * @mas: Maple Tree operation state.
554 *
555 * Resets the error or walk state of the @mas so future walks of the
556 * array will start from the root. Use this if you have dropped the
557 * lock and want to reuse the ma_state.
558 *
559 * Context: Any context.
560 */
561static __always_inline void mas_reset(struct ma_state *mas)
562{
563 mas->status = ma_start;
564 mas->node = NULL;
565}
566
567/**
568 * mas_for_each() - Iterate over a range of the maple tree.
569 * @__mas: Maple Tree operation state (maple_state)
570 * @__entry: Entry retrieved from the tree
571 * @__max: maximum index to retrieve from the tree
572 *
573 * When returned, mas->index and mas->last will hold the entire range for the
574 * entry.
575 *
576 * Note: may return the zero entry.
577 */
578#define mas_for_each(__mas, __entry, __max) \
579 while (((__entry) = mas_find((__mas), (__max))) != NULL)
580
581#ifdef CONFIG_DEBUG_MAPLE_TREE
582enum mt_dump_format {
583 mt_dump_dec,
584 mt_dump_hex,
585};
586
587extern atomic_t maple_tree_tests_run;
588extern atomic_t maple_tree_tests_passed;
589
590void mt_dump(const struct maple_tree *mt, enum mt_dump_format format);
591void mas_dump(const struct ma_state *mas);
592void mas_wr_dump(const struct ma_wr_state *wr_mas);
593void mt_validate(struct maple_tree *mt);
594void mt_cache_shrink(void);
595#define MT_BUG_ON(__tree, __x) do { \
596 atomic_inc(&maple_tree_tests_run); \
597 if (__x) { \
598 pr_info("BUG at %s:%d (%u)\n", \
599 __func__, __LINE__, __x); \
600 mt_dump(__tree, mt_dump_hex); \
601 pr_info("Pass: %u Run:%u\n", \
602 atomic_read(&maple_tree_tests_passed), \
603 atomic_read(&maple_tree_tests_run)); \
604 dump_stack(); \
605 } else { \
606 atomic_inc(&maple_tree_tests_passed); \
607 } \
608} while (0)
609
610#define MAS_BUG_ON(__mas, __x) do { \
611 atomic_inc(&maple_tree_tests_run); \
612 if (__x) { \
613 pr_info("BUG at %s:%d (%u)\n", \
614 __func__, __LINE__, __x); \
615 mas_dump(__mas); \
616 mt_dump((__mas)->tree, mt_dump_hex); \
617 pr_info("Pass: %u Run:%u\n", \
618 atomic_read(&maple_tree_tests_passed), \
619 atomic_read(&maple_tree_tests_run)); \
620 dump_stack(); \
621 } else { \
622 atomic_inc(&maple_tree_tests_passed); \
623 } \
624} while (0)
625
626#define MAS_WR_BUG_ON(__wrmas, __x) do { \
627 atomic_inc(&maple_tree_tests_run); \
628 if (__x) { \
629 pr_info("BUG at %s:%d (%u)\n", \
630 __func__, __LINE__, __x); \
631 mas_wr_dump(__wrmas); \
632 mas_dump((__wrmas)->mas); \
633 mt_dump((__wrmas)->mas->tree, mt_dump_hex); \
634 pr_info("Pass: %u Run:%u\n", \
635 atomic_read(&maple_tree_tests_passed), \
636 atomic_read(&maple_tree_tests_run)); \
637 dump_stack(); \
638 } else { \
639 atomic_inc(&maple_tree_tests_passed); \
640 } \
641} while (0)
642
643#define MT_WARN_ON(__tree, __x) ({ \
644 int ret = !!(__x); \
645 atomic_inc(&maple_tree_tests_run); \
646 if (ret) { \
647 pr_info("WARN at %s:%d (%u)\n", \
648 __func__, __LINE__, __x); \
649 mt_dump(__tree, mt_dump_hex); \
650 pr_info("Pass: %u Run:%u\n", \
651 atomic_read(&maple_tree_tests_passed), \
652 atomic_read(&maple_tree_tests_run)); \
653 dump_stack(); \
654 } else { \
655 atomic_inc(&maple_tree_tests_passed); \
656 } \
657 unlikely(ret); \
658})
659
660#define MAS_WARN_ON(__mas, __x) ({ \
661 int ret = !!(__x); \
662 atomic_inc(&maple_tree_tests_run); \
663 if (ret) { \
664 pr_info("WARN at %s:%d (%u)\n", \
665 __func__, __LINE__, __x); \
666 mas_dump(__mas); \
667 mt_dump((__mas)->tree, mt_dump_hex); \
668 pr_info("Pass: %u Run:%u\n", \
669 atomic_read(&maple_tree_tests_passed), \
670 atomic_read(&maple_tree_tests_run)); \
671 dump_stack(); \
672 } else { \
673 atomic_inc(&maple_tree_tests_passed); \
674 } \
675 unlikely(ret); \
676})
677
678#define MAS_WR_WARN_ON(__wrmas, __x) ({ \
679 int ret = !!(__x); \
680 atomic_inc(&maple_tree_tests_run); \
681 if (ret) { \
682 pr_info("WARN at %s:%d (%u)\n", \
683 __func__, __LINE__, __x); \
684 mas_wr_dump(__wrmas); \
685 mas_dump((__wrmas)->mas); \
686 mt_dump((__wrmas)->mas->tree, mt_dump_hex); \
687 pr_info("Pass: %u Run:%u\n", \
688 atomic_read(&maple_tree_tests_passed), \
689 atomic_read(&maple_tree_tests_run)); \
690 dump_stack(); \
691 } else { \
692 atomic_inc(&maple_tree_tests_passed); \
693 } \
694 unlikely(ret); \
695})
696#else
697#define MT_BUG_ON(__tree, __x) BUG_ON(__x)
698#define MAS_BUG_ON(__mas, __x) BUG_ON(__x)
699#define MAS_WR_BUG_ON(__mas, __x) BUG_ON(__x)
700#define MT_WARN_ON(__tree, __x) WARN_ON(__x)
701#define MAS_WARN_ON(__mas, __x) WARN_ON(__x)
702#define MAS_WR_WARN_ON(__mas, __x) WARN_ON(__x)
703#endif /* CONFIG_DEBUG_MAPLE_TREE */
704
705/**
706 * __mas_set_range() - Set up Maple Tree operation state to a sub-range of the
707 * current location.
708 * @mas: Maple Tree operation state.
709 * @start: New start of range in the Maple Tree.
710 * @last: New end of range in the Maple Tree.
711 *
712 * set the internal maple state values to a sub-range.
713 * Please use mas_set_range() if you do not know where you are in the tree.
714 */
715static inline void __mas_set_range(struct ma_state *mas, unsigned long start,
716 unsigned long last)
717{
718 /* Ensure the range starts within the current slot */
719 MAS_WARN_ON(mas, mas_is_active(mas) &&
720 (mas->index > start || mas->last < start));
721 mas->index = start;
722 mas->last = last;
723}
724
725/**
726 * mas_set_range() - Set up Maple Tree operation state for a different index.
727 * @mas: Maple Tree operation state.
728 * @start: New start of range in the Maple Tree.
729 * @last: New end of range in the Maple Tree.
730 *
731 * Move the operation state to refer to a different range. This will
732 * have the effect of starting a walk from the top; see mas_next()
733 * to move to an adjacent index.
734 */
735static inline
736void mas_set_range(struct ma_state *mas, unsigned long start, unsigned long last)
737{
738 mas_reset(mas);
739 __mas_set_range(mas, start, last);
740}
741
742/**
743 * mas_set() - Set up Maple Tree operation state for a different index.
744 * @mas: Maple Tree operation state.
745 * @index: New index into the Maple Tree.
746 *
747 * Move the operation state to refer to a different index. This will
748 * have the effect of starting a walk from the top; see mas_next()
749 * to move to an adjacent index.
750 */
751static inline void mas_set(struct ma_state *mas, unsigned long index)
752{
753
754 mas_set_range(mas, start: index, last: index);
755}
756
757static inline bool mt_external_lock(const struct maple_tree *mt)
758{
759 return (mt->ma_flags & MT_FLAGS_LOCK_MASK) == MT_FLAGS_LOCK_EXTERN;
760}
761
762/**
763 * mt_init_flags() - Initialise an empty maple tree with flags.
764 * @mt: Maple Tree
765 * @flags: maple tree flags.
766 *
767 * If you need to initialise a Maple Tree with special flags (eg, an
768 * allocation tree), use this function.
769 *
770 * Context: Any context.
771 */
772static inline void mt_init_flags(struct maple_tree *mt, unsigned int flags)
773{
774 mt->ma_flags = flags;
775 if (!mt_external_lock(mt))
776 spin_lock_init(&mt->ma_lock);
777 rcu_assign_pointer(mt->ma_root, NULL);
778}
779
780/**
781 * mt_init() - Initialise an empty maple tree.
782 * @mt: Maple Tree
783 *
784 * An empty Maple Tree.
785 *
786 * Context: Any context.
787 */
788static inline void mt_init(struct maple_tree *mt)
789{
790 mt_init_flags(mt, flags: 0);
791}
792
793static inline bool mt_in_rcu(struct maple_tree *mt)
794{
795#ifdef CONFIG_MAPLE_RCU_DISABLED
796 return false;
797#endif
798 return mt->ma_flags & MT_FLAGS_USE_RCU;
799}
800
801/**
802 * mt_clear_in_rcu() - Switch the tree to non-RCU mode.
803 * @mt: The Maple Tree
804 */
805static inline void mt_clear_in_rcu(struct maple_tree *mt)
806{
807 if (!mt_in_rcu(mt))
808 return;
809
810 if (mt_external_lock(mt)) {
811 WARN_ON(!mt_lock_is_held(mt));
812 mt->ma_flags &= ~MT_FLAGS_USE_RCU;
813 } else {
814 mtree_lock(mt);
815 mt->ma_flags &= ~MT_FLAGS_USE_RCU;
816 mtree_unlock(mt);
817 }
818}
819
820/**
821 * mt_set_in_rcu() - Switch the tree to RCU safe mode.
822 * @mt: The Maple Tree
823 */
824static inline void mt_set_in_rcu(struct maple_tree *mt)
825{
826 if (mt_in_rcu(mt))
827 return;
828
829 if (mt_external_lock(mt)) {
830 WARN_ON(!mt_lock_is_held(mt));
831 mt->ma_flags |= MT_FLAGS_USE_RCU;
832 } else {
833 mtree_lock(mt);
834 mt->ma_flags |= MT_FLAGS_USE_RCU;
835 mtree_unlock(mt);
836 }
837}
838
839static inline unsigned int mt_height(const struct maple_tree *mt)
840{
841 return (mt->ma_flags & MT_FLAGS_HEIGHT_MASK) >> MT_FLAGS_HEIGHT_OFFSET;
842}
843
844void *mt_find(struct maple_tree *mt, unsigned long *index, unsigned long max);
845void *mt_find_after(struct maple_tree *mt, unsigned long *index,
846 unsigned long max);
847void *mt_prev(struct maple_tree *mt, unsigned long index, unsigned long min);
848void *mt_next(struct maple_tree *mt, unsigned long index, unsigned long max);
849
850/**
851 * mt_for_each - Iterate over each entry starting at index until max.
852 * @__tree: The Maple Tree
853 * @__entry: The current entry
854 * @__index: The index to start the search from. Subsequently used as iterator.
855 * @__max: The maximum limit for @index
856 *
857 * This iterator skips all entries, which resolve to a NULL pointer,
858 * e.g. entries which has been reserved with XA_ZERO_ENTRY.
859 */
860#define mt_for_each(__tree, __entry, __index, __max) \
861 for (__entry = mt_find(__tree, &(__index), __max); \
862 __entry; __entry = mt_find_after(__tree, &(__index), __max))
863
864#endif /*_LINUX_MAPLE_TREE_H */
865

source code of linux/include/linux/maple_tree.h