1/* Software floating-point emulation. Common operations.
2 Copyright (C) 1997,1998,1999 Free Software Foundation, Inc.
3 This file is part of the GNU C Library.
4 Contributed by Richard Henderson (rth@cygnus.com),
5 Jakub Jelinek (jj@ultra.linux.cz),
6 David S. Miller (davem@redhat.com) and
7 Peter Maydell (pmaydell@chiark.greenend.org.uk).
8
9 The GNU C Library is free software; you can redistribute it and/or
10 modify it under the terms of the GNU Library General Public License as
11 published by the Free Software Foundation; either version 2 of the
12 License, or (at your option) any later version.
13
14 The GNU C Library is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 Library General Public License for more details.
18
19 You should have received a copy of the GNU Library General Public
20 License along with the GNU C Library; see the file COPYING.LIB. If
21 not, write to the Free Software Foundation, Inc.,
22 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
23
24#ifndef __MATH_EMU_OP_COMMON_H__
25#define __MATH_EMU_OP_COMMON_H__
26
27#define _FP_DECL(wc, X) \
28 _FP_I_TYPE X##_c=0, X##_s=0, X##_e=0; \
29 _FP_FRAC_DECL_##wc(X)
30
31/*
32 * Finish truly unpacking a native fp value by classifying the kind
33 * of fp value and normalizing both the exponent and the fraction.
34 */
35
36#define _FP_UNPACK_CANONICAL(fs, wc, X) \
37do { \
38 switch (X##_e) \
39 { \
40 default: \
41 _FP_FRAC_HIGH_RAW_##fs(X) |= _FP_IMPLBIT_##fs; \
42 _FP_FRAC_SLL_##wc(X, _FP_WORKBITS); \
43 X##_e -= _FP_EXPBIAS_##fs; \
44 X##_c = FP_CLS_NORMAL; \
45 break; \
46 \
47 case 0: \
48 if (_FP_FRAC_ZEROP_##wc(X)) \
49 X##_c = FP_CLS_ZERO; \
50 else \
51 { \
52 /* a denormalized number */ \
53 _FP_I_TYPE _shift; \
54 _FP_FRAC_CLZ_##wc(_shift, X); \
55 _shift -= _FP_FRACXBITS_##fs; \
56 _FP_FRAC_SLL_##wc(X, (_shift+_FP_WORKBITS)); \
57 X##_e -= _FP_EXPBIAS_##fs - 1 + _shift; \
58 X##_c = FP_CLS_NORMAL; \
59 FP_SET_EXCEPTION(FP_EX_DENORM); \
60 if (FP_DENORM_ZERO) \
61 { \
62 FP_SET_EXCEPTION(FP_EX_INEXACT); \
63 X##_c = FP_CLS_ZERO; \
64 } \
65 } \
66 break; \
67 \
68 case _FP_EXPMAX_##fs: \
69 if (_FP_FRAC_ZEROP_##wc(X)) \
70 X##_c = FP_CLS_INF; \
71 else \
72 { \
73 X##_c = FP_CLS_NAN; \
74 /* Check for signaling NaN */ \
75 if (!(_FP_FRAC_HIGH_RAW_##fs(X) & _FP_QNANBIT_##fs)) \
76 FP_SET_EXCEPTION(FP_EX_INVALID | FP_EX_INVALID_SNAN); \
77 } \
78 break; \
79 } \
80} while (0)
81
82/*
83 * Before packing the bits back into the native fp result, take care
84 * of such mundane things as rounding and overflow. Also, for some
85 * kinds of fp values, the original parts may not have been fully
86 * extracted -- but that is ok, we can regenerate them now.
87 */
88
89#define _FP_PACK_CANONICAL(fs, wc, X) \
90do { \
91 switch (X##_c) \
92 { \
93 case FP_CLS_NORMAL: \
94 X##_e += _FP_EXPBIAS_##fs; \
95 if (X##_e > 0) \
96 { \
97 _FP_ROUND(wc, X); \
98 if (_FP_FRAC_OVERP_##wc(fs, X)) \
99 { \
100 _FP_FRAC_CLEAR_OVERP_##wc(fs, X); \
101 X##_e++; \
102 } \
103 _FP_FRAC_SRL_##wc(X, _FP_WORKBITS); \
104 if (X##_e >= _FP_EXPMAX_##fs) \
105 { \
106 /* overflow */ \
107 switch (FP_ROUNDMODE) \
108 { \
109 case FP_RND_NEAREST: \
110 X##_c = FP_CLS_INF; \
111 break; \
112 case FP_RND_PINF: \
113 if (!X##_s) X##_c = FP_CLS_INF; \
114 break; \
115 case FP_RND_MINF: \
116 if (X##_s) X##_c = FP_CLS_INF; \
117 break; \
118 } \
119 if (X##_c == FP_CLS_INF) \
120 { \
121 /* Overflow to infinity */ \
122 X##_e = _FP_EXPMAX_##fs; \
123 _FP_FRAC_SET_##wc(X, _FP_ZEROFRAC_##wc); \
124 } \
125 else \
126 { \
127 /* Overflow to maximum normal */ \
128 X##_e = _FP_EXPMAX_##fs - 1; \
129 _FP_FRAC_SET_##wc(X, _FP_MAXFRAC_##wc); \
130 } \
131 FP_SET_EXCEPTION(FP_EX_OVERFLOW); \
132 FP_SET_EXCEPTION(FP_EX_INEXACT); \
133 } \
134 } \
135 else \
136 { \
137 /* we've got a denormalized number */ \
138 X##_e = -X##_e + 1; \
139 if (X##_e <= _FP_WFRACBITS_##fs) \
140 { \
141 _FP_FRAC_SRS_##wc(X, X##_e, _FP_WFRACBITS_##fs); \
142 if (_FP_FRAC_HIGH_##fs(X) \
143 & (_FP_OVERFLOW_##fs >> 1)) \
144 { \
145 X##_e = 1; \
146 _FP_FRAC_SET_##wc(X, _FP_ZEROFRAC_##wc); \
147 } \
148 else \
149 { \
150 _FP_ROUND(wc, X); \
151 if (_FP_FRAC_HIGH_##fs(X) \
152 & (_FP_OVERFLOW_##fs >> 1)) \
153 { \
154 X##_e = 1; \
155 _FP_FRAC_SET_##wc(X, _FP_ZEROFRAC_##wc); \
156 FP_SET_EXCEPTION(FP_EX_INEXACT); \
157 } \
158 else \
159 { \
160 X##_e = 0; \
161 _FP_FRAC_SRL_##wc(X, _FP_WORKBITS); \
162 } \
163 } \
164 if ((FP_CUR_EXCEPTIONS & FP_EX_INEXACT) || \
165 (FP_TRAPPING_EXCEPTIONS & FP_EX_UNDERFLOW)) \
166 FP_SET_EXCEPTION(FP_EX_UNDERFLOW); \
167 } \
168 else \
169 { \
170 /* underflow to zero */ \
171 X##_e = 0; \
172 if (!_FP_FRAC_ZEROP_##wc(X)) \
173 { \
174 _FP_FRAC_SET_##wc(X, _FP_MINFRAC_##wc); \
175 _FP_ROUND(wc, X); \
176 _FP_FRAC_LOW_##wc(X) >>= (_FP_WORKBITS); \
177 } \
178 FP_SET_EXCEPTION(FP_EX_UNDERFLOW); \
179 } \
180 } \
181 break; \
182 \
183 case FP_CLS_ZERO: \
184 X##_e = 0; \
185 _FP_FRAC_SET_##wc(X, _FP_ZEROFRAC_##wc); \
186 break; \
187 \
188 case FP_CLS_INF: \
189 X##_e = _FP_EXPMAX_##fs; \
190 _FP_FRAC_SET_##wc(X, _FP_ZEROFRAC_##wc); \
191 break; \
192 \
193 case FP_CLS_NAN: \
194 X##_e = _FP_EXPMAX_##fs; \
195 if (!_FP_KEEPNANFRACP) \
196 { \
197 _FP_FRAC_SET_##wc(X, _FP_NANFRAC_##fs); \
198 X##_s = _FP_NANSIGN_##fs; \
199 } \
200 else \
201 _FP_FRAC_HIGH_RAW_##fs(X) |= _FP_QNANBIT_##fs; \
202 break; \
203 } \
204} while (0)
205
206/* This one accepts raw argument and not cooked, returns
207 * 1 if X is a signaling NaN.
208 */
209#define _FP_ISSIGNAN(fs, wc, X) \
210({ \
211 int __ret = 0; \
212 if (X##_e == _FP_EXPMAX_##fs) \
213 { \
214 if (!_FP_FRAC_ZEROP_##wc(X) \
215 && !(_FP_FRAC_HIGH_RAW_##fs(X) & _FP_QNANBIT_##fs)) \
216 __ret = 1; \
217 } \
218 __ret; \
219})
220
221
222
223
224
225/*
226 * Main addition routine. The input values should be cooked.
227 */
228
229#define _FP_ADD_INTERNAL(fs, wc, R, X, Y, OP) \
230do { \
231 switch (_FP_CLS_COMBINE(X##_c, Y##_c)) \
232 { \
233 case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_NORMAL): \
234 { \
235 /* shift the smaller number so that its exponent matches the larger */ \
236 _FP_I_TYPE diff = X##_e - Y##_e; \
237 \
238 if (diff < 0) \
239 { \
240 diff = -diff; \
241 if (diff <= _FP_WFRACBITS_##fs) \
242 _FP_FRAC_SRS_##wc(X, diff, _FP_WFRACBITS_##fs); \
243 else if (!_FP_FRAC_ZEROP_##wc(X)) \
244 _FP_FRAC_SET_##wc(X, _FP_MINFRAC_##wc); \
245 R##_e = Y##_e; \
246 } \
247 else \
248 { \
249 if (diff > 0) \
250 { \
251 if (diff <= _FP_WFRACBITS_##fs) \
252 _FP_FRAC_SRS_##wc(Y, diff, _FP_WFRACBITS_##fs); \
253 else if (!_FP_FRAC_ZEROP_##wc(Y)) \
254 _FP_FRAC_SET_##wc(Y, _FP_MINFRAC_##wc); \
255 } \
256 R##_e = X##_e; \
257 } \
258 \
259 R##_c = FP_CLS_NORMAL; \
260 \
261 if (X##_s == Y##_s) \
262 { \
263 R##_s = X##_s; \
264 _FP_FRAC_ADD_##wc(R, X, Y); \
265 if (_FP_FRAC_OVERP_##wc(fs, R)) \
266 { \
267 _FP_FRAC_SRS_##wc(R, 1, _FP_WFRACBITS_##fs); \
268 R##_e++; \
269 } \
270 } \
271 else \
272 { \
273 R##_s = X##_s; \
274 _FP_FRAC_SUB_##wc(R, X, Y); \
275 if (_FP_FRAC_ZEROP_##wc(R)) \
276 { \
277 /* return an exact zero */ \
278 if (FP_ROUNDMODE == FP_RND_MINF) \
279 R##_s |= Y##_s; \
280 else \
281 R##_s &= Y##_s; \
282 R##_c = FP_CLS_ZERO; \
283 } \
284 else \
285 { \
286 if (_FP_FRAC_NEGP_##wc(R)) \
287 { \
288 _FP_FRAC_SUB_##wc(R, Y, X); \
289 R##_s = Y##_s; \
290 } \
291 \
292 /* renormalize after subtraction */ \
293 _FP_FRAC_CLZ_##wc(diff, R); \
294 diff -= _FP_WFRACXBITS_##fs; \
295 if (diff) \
296 { \
297 R##_e -= diff; \
298 _FP_FRAC_SLL_##wc(R, diff); \
299 } \
300 } \
301 } \
302 break; \
303 } \
304 \
305 case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_NAN): \
306 _FP_CHOOSENAN(fs, wc, R, X, Y, OP); \
307 break; \
308 \
309 case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_ZERO): \
310 R##_e = X##_e; \
311 fallthrough; \
312 case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_NORMAL): \
313 case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_INF): \
314 case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_ZERO): \
315 _FP_FRAC_COPY_##wc(R, X); \
316 R##_s = X##_s; \
317 R##_c = X##_c; \
318 break; \
319 \
320 case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_NORMAL): \
321 R##_e = Y##_e; \
322 fallthrough; \
323 case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_NAN): \
324 case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_NAN): \
325 case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_NAN): \
326 _FP_FRAC_COPY_##wc(R, Y); \
327 R##_s = Y##_s; \
328 R##_c = Y##_c; \
329 break; \
330 \
331 case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_INF): \
332 if (X##_s != Y##_s) \
333 { \
334 /* +INF + -INF => NAN */ \
335 _FP_FRAC_SET_##wc(R, _FP_NANFRAC_##fs); \
336 R##_s = _FP_NANSIGN_##fs; \
337 R##_c = FP_CLS_NAN; \
338 FP_SET_EXCEPTION(FP_EX_INVALID | FP_EX_INVALID_ISI); \
339 break; \
340 } \
341 fallthrough; \
342 \
343 case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_NORMAL): \
344 case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_ZERO): \
345 R##_s = X##_s; \
346 R##_c = FP_CLS_INF; \
347 break; \
348 \
349 case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_INF): \
350 case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_INF): \
351 R##_s = Y##_s; \
352 R##_c = FP_CLS_INF; \
353 break; \
354 \
355 case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_ZERO): \
356 /* make sure the sign is correct */ \
357 if (FP_ROUNDMODE == FP_RND_MINF) \
358 R##_s = X##_s | Y##_s; \
359 else \
360 R##_s = X##_s & Y##_s; \
361 R##_c = FP_CLS_ZERO; \
362 break; \
363 \
364 default: \
365 abort(); \
366 } \
367} while (0)
368
369#define _FP_ADD(fs, wc, R, X, Y) _FP_ADD_INTERNAL(fs, wc, R, X, Y, '+')
370#define _FP_SUB(fs, wc, R, X, Y) \
371 do { \
372 if (Y##_c != FP_CLS_NAN) Y##_s ^= 1; \
373 _FP_ADD_INTERNAL(fs, wc, R, X, Y, '-'); \
374 } while (0)
375
376
377/*
378 * Main negation routine. FIXME -- when we care about setting exception
379 * bits reliably, this will not do. We should examine all of the fp classes.
380 */
381
382#define _FP_NEG(fs, wc, R, X) \
383 do { \
384 _FP_FRAC_COPY_##wc(R, X); \
385 R##_c = X##_c; \
386 R##_e = X##_e; \
387 R##_s = 1 ^ X##_s; \
388 } while (0)
389
390
391/*
392 * Main multiplication routine. The input values should be cooked.
393 */
394
395#define _FP_MUL(fs, wc, R, X, Y) \
396do { \
397 R##_s = X##_s ^ Y##_s; \
398 switch (_FP_CLS_COMBINE(X##_c, Y##_c)) \
399 { \
400 case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_NORMAL): \
401 R##_c = FP_CLS_NORMAL; \
402 R##_e = X##_e + Y##_e + 1; \
403 \
404 _FP_MUL_MEAT_##fs(R,X,Y); \
405 \
406 if (_FP_FRAC_OVERP_##wc(fs, R)) \
407 _FP_FRAC_SRS_##wc(R, 1, _FP_WFRACBITS_##fs); \
408 else \
409 R##_e--; \
410 break; \
411 \
412 case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_NAN): \
413 _FP_CHOOSENAN(fs, wc, R, X, Y, '*'); \
414 break; \
415 \
416 case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_NORMAL): \
417 case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_INF): \
418 case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_ZERO): \
419 R##_s = X##_s; \
420 fallthrough; \
421 \
422 case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_INF): \
423 case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_NORMAL): \
424 case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_NORMAL): \
425 case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_ZERO): \
426 _FP_FRAC_COPY_##wc(R, X); \
427 R##_c = X##_c; \
428 break; \
429 \
430 case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_NAN): \
431 case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_NAN): \
432 case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_NAN): \
433 R##_s = Y##_s; \
434 fallthrough; \
435 \
436 case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_INF): \
437 case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_ZERO): \
438 _FP_FRAC_COPY_##wc(R, Y); \
439 R##_c = Y##_c; \
440 break; \
441 \
442 case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_ZERO): \
443 case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_INF): \
444 R##_s = _FP_NANSIGN_##fs; \
445 R##_c = FP_CLS_NAN; \
446 _FP_FRAC_SET_##wc(R, _FP_NANFRAC_##fs); \
447 FP_SET_EXCEPTION(FP_EX_INVALID | FP_EX_INVALID_IMZ);\
448 break; \
449 \
450 default: \
451 abort(); \
452 } \
453} while (0)
454
455
456/*
457 * Main division routine. The input values should be cooked.
458 */
459
460#define _FP_DIV(fs, wc, R, X, Y) \
461do { \
462 R##_s = X##_s ^ Y##_s; \
463 switch (_FP_CLS_COMBINE(X##_c, Y##_c)) \
464 { \
465 case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_NORMAL): \
466 R##_c = FP_CLS_NORMAL; \
467 R##_e = X##_e - Y##_e; \
468 \
469 _FP_DIV_MEAT_##fs(R,X,Y); \
470 break; \
471 \
472 case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_NAN): \
473 _FP_CHOOSENAN(fs, wc, R, X, Y, '/'); \
474 break; \
475 \
476 case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_NORMAL): \
477 case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_INF): \
478 case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_ZERO): \
479 R##_s = X##_s; \
480 _FP_FRAC_COPY_##wc(R, X); \
481 R##_c = X##_c; \
482 break; \
483 \
484 case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_NAN): \
485 case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_NAN): \
486 case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_NAN): \
487 R##_s = Y##_s; \
488 _FP_FRAC_COPY_##wc(R, Y); \
489 R##_c = Y##_c; \
490 break; \
491 \
492 case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_INF): \
493 case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_INF): \
494 case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_NORMAL): \
495 R##_c = FP_CLS_ZERO; \
496 break; \
497 \
498 case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_ZERO): \
499 FP_SET_EXCEPTION(FP_EX_DIVZERO); \
500 fallthrough; \
501 case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_ZERO): \
502 case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_NORMAL): \
503 R##_c = FP_CLS_INF; \
504 break; \
505 \
506 case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_INF): \
507 R##_s = _FP_NANSIGN_##fs; \
508 R##_c = FP_CLS_NAN; \
509 _FP_FRAC_SET_##wc(R, _FP_NANFRAC_##fs); \
510 FP_SET_EXCEPTION(FP_EX_INVALID | FP_EX_INVALID_IDI);\
511 break; \
512 \
513 case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_ZERO): \
514 R##_s = _FP_NANSIGN_##fs; \
515 R##_c = FP_CLS_NAN; \
516 _FP_FRAC_SET_##wc(R, _FP_NANFRAC_##fs); \
517 FP_SET_EXCEPTION(FP_EX_INVALID | FP_EX_INVALID_ZDZ);\
518 break; \
519 \
520 default: \
521 abort(); \
522 } \
523} while (0)
524
525
526/*
527 * Main differential comparison routine. The inputs should be raw not
528 * cooked. The return is -1,0,1 for normal values, 2 otherwise.
529 */
530
531#define _FP_CMP(fs, wc, ret, X, Y, un) \
532 do { \
533 /* NANs are unordered */ \
534 if ((X##_e == _FP_EXPMAX_##fs && !_FP_FRAC_ZEROP_##wc(X)) \
535 || (Y##_e == _FP_EXPMAX_##fs && !_FP_FRAC_ZEROP_##wc(Y))) \
536 { \
537 ret = un; \
538 } \
539 else \
540 { \
541 int __is_zero_x; \
542 int __is_zero_y; \
543 \
544 __is_zero_x = (!X##_e && _FP_FRAC_ZEROP_##wc(X)) ? 1 : 0; \
545 __is_zero_y = (!Y##_e && _FP_FRAC_ZEROP_##wc(Y)) ? 1 : 0; \
546 \
547 if (__is_zero_x && __is_zero_y) \
548 ret = 0; \
549 else if (__is_zero_x) \
550 ret = Y##_s ? 1 : -1; \
551 else if (__is_zero_y) \
552 ret = X##_s ? -1 : 1; \
553 else if (X##_s != Y##_s) \
554 ret = X##_s ? -1 : 1; \
555 else if (X##_e > Y##_e) \
556 ret = X##_s ? -1 : 1; \
557 else if (X##_e < Y##_e) \
558 ret = X##_s ? 1 : -1; \
559 else if (_FP_FRAC_GT_##wc(X, Y)) \
560 ret = X##_s ? -1 : 1; \
561 else if (_FP_FRAC_GT_##wc(Y, X)) \
562 ret = X##_s ? 1 : -1; \
563 else \
564 ret = 0; \
565 } \
566 } while (0)
567
568
569/* Simplification for strict equality. */
570
571#define _FP_CMP_EQ(fs, wc, ret, X, Y) \
572 do { \
573 /* NANs are unordered */ \
574 if ((X##_e == _FP_EXPMAX_##fs && !_FP_FRAC_ZEROP_##wc(X)) \
575 || (Y##_e == _FP_EXPMAX_##fs && !_FP_FRAC_ZEROP_##wc(Y))) \
576 { \
577 ret = 1; \
578 } \
579 else \
580 { \
581 ret = !(X##_e == Y##_e \
582 && _FP_FRAC_EQ_##wc(X, Y) \
583 && (X##_s == Y##_s || !X##_e && _FP_FRAC_ZEROP_##wc(X))); \
584 } \
585 } while (0)
586
587/*
588 * Main square root routine. The input value should be cooked.
589 */
590
591#define _FP_SQRT(fs, wc, R, X) \
592do { \
593 _FP_FRAC_DECL_##wc(T); _FP_FRAC_DECL_##wc(S); \
594 _FP_W_TYPE q; \
595 switch (X##_c) \
596 { \
597 case FP_CLS_NAN: \
598 _FP_FRAC_COPY_##wc(R, X); \
599 R##_s = X##_s; \
600 R##_c = FP_CLS_NAN; \
601 break; \
602 case FP_CLS_INF: \
603 if (X##_s) \
604 { \
605 R##_s = _FP_NANSIGN_##fs; \
606 R##_c = FP_CLS_NAN; /* NAN */ \
607 _FP_FRAC_SET_##wc(R, _FP_NANFRAC_##fs); \
608 FP_SET_EXCEPTION(FP_EX_INVALID); \
609 } \
610 else \
611 { \
612 R##_s = 0; \
613 R##_c = FP_CLS_INF; /* sqrt(+inf) = +inf */ \
614 } \
615 break; \
616 case FP_CLS_ZERO: \
617 R##_s = X##_s; \
618 R##_c = FP_CLS_ZERO; /* sqrt(+-0) = +-0 */ \
619 break; \
620 case FP_CLS_NORMAL: \
621 R##_s = 0; \
622 if (X##_s) \
623 { \
624 R##_c = FP_CLS_NAN; /* sNAN */ \
625 R##_s = _FP_NANSIGN_##fs; \
626 _FP_FRAC_SET_##wc(R, _FP_NANFRAC_##fs); \
627 FP_SET_EXCEPTION(FP_EX_INVALID); \
628 break; \
629 } \
630 R##_c = FP_CLS_NORMAL; \
631 if (X##_e & 1) \
632 _FP_FRAC_SLL_##wc(X, 1); \
633 R##_e = X##_e >> 1; \
634 _FP_FRAC_SET_##wc(S, _FP_ZEROFRAC_##wc); \
635 _FP_FRAC_SET_##wc(R, _FP_ZEROFRAC_##wc); \
636 q = _FP_OVERFLOW_##fs >> 1; \
637 _FP_SQRT_MEAT_##wc(R, S, T, X, q); \
638 } \
639 } while (0)
640
641/*
642 * Convert from FP to integer
643 */
644
645/* RSIGNED can have following values:
646 * 0: the number is required to be 0..(2^rsize)-1, if not, NV is set plus
647 * the result is either 0 or (2^rsize)-1 depending on the sign in such case.
648 * 1: the number is required to be -(2^(rsize-1))..(2^(rsize-1))-1, if not, NV is
649 * set plus the result is either -(2^(rsize-1)) or (2^(rsize-1))-1 depending
650 * on the sign in such case.
651 * 2: the number is required to be -(2^(rsize-1))..(2^(rsize-1))-1, if not, NV is
652 * set plus the result is truncated to fit into destination.
653 * -1: the number is required to be -(2^(rsize-1))..(2^rsize)-1, if not, NV is
654 * set plus the result is either -(2^(rsize-1)) or (2^(rsize-1))-1 depending
655 * on the sign in such case.
656 */
657#define _FP_TO_INT(fs, wc, r, X, rsize, rsigned) \
658 do { \
659 switch (X##_c) \
660 { \
661 case FP_CLS_NORMAL: \
662 if (X##_e < 0) \
663 { \
664 FP_SET_EXCEPTION(FP_EX_INEXACT); \
665 fallthrough; \
666 case FP_CLS_ZERO: \
667 r = 0; \
668 } \
669 else if (X##_e >= rsize - (rsigned > 0 || X##_s) \
670 || (!rsigned && X##_s)) \
671 { /* overflow */ \
672 fallthrough; \
673 case FP_CLS_NAN: \
674 case FP_CLS_INF: \
675 if (rsigned == 2) \
676 { \
677 if (X##_c != FP_CLS_NORMAL \
678 || X##_e >= rsize - 1 + _FP_WFRACBITS_##fs) \
679 r = 0; \
680 else \
681 { \
682 _FP_FRAC_SLL_##wc(X, (X##_e - _FP_WFRACBITS_##fs + 1)); \
683 _FP_FRAC_ASSEMBLE_##wc(r, X, rsize); \
684 } \
685 } \
686 else if (rsigned) \
687 { \
688 r = 1; \
689 r <<= rsize - 1; \
690 r -= 1 - X##_s; \
691 } \
692 else \
693 { \
694 r = 0; \
695 if (!X##_s) \
696 r = ~r; \
697 } \
698 FP_SET_EXCEPTION(FP_EX_INVALID); \
699 } \
700 else \
701 { \
702 if (_FP_W_TYPE_SIZE*wc < rsize) \
703 { \
704 _FP_FRAC_ASSEMBLE_##wc(r, X, rsize); \
705 r <<= X##_e - _FP_WFRACBITS_##fs; \
706 } \
707 else \
708 { \
709 if (X##_e >= _FP_WFRACBITS_##fs) \
710 _FP_FRAC_SLL_##wc(X, (X##_e - _FP_WFRACBITS_##fs + 1)); \
711 else if (X##_e < _FP_WFRACBITS_##fs - 1) \
712 { \
713 _FP_FRAC_SRS_##wc(X, (_FP_WFRACBITS_##fs - X##_e - 2), \
714 _FP_WFRACBITS_##fs); \
715 if (_FP_FRAC_LOW_##wc(X) & 1) \
716 FP_SET_EXCEPTION(FP_EX_INEXACT); \
717 _FP_FRAC_SRL_##wc(X, 1); \
718 } \
719 _FP_FRAC_ASSEMBLE_##wc(r, X, rsize); \
720 } \
721 if (rsigned && X##_s) \
722 r = -r; \
723 } \
724 break; \
725 } \
726 } while (0)
727
728#define _FP_TO_INT_ROUND(fs, wc, r, X, rsize, rsigned) \
729 do { \
730 r = 0; \
731 switch (X##_c) \
732 { \
733 case FP_CLS_NORMAL: \
734 if (X##_e >= _FP_FRACBITS_##fs - 1) \
735 { \
736 if (X##_e < rsize - 1 + _FP_WFRACBITS_##fs) \
737 { \
738 if (X##_e >= _FP_WFRACBITS_##fs - 1) \
739 { \
740 _FP_FRAC_ASSEMBLE_##wc(r, X, rsize); \
741 r <<= X##_e - _FP_WFRACBITS_##fs + 1; \
742 } \
743 else \
744 { \
745 _FP_FRAC_SRL_##wc(X, _FP_WORKBITS - X##_e \
746 + _FP_FRACBITS_##fs - 1); \
747 _FP_FRAC_ASSEMBLE_##wc(r, X, rsize); \
748 } \
749 } \
750 } \
751 else \
752 { \
753 int _lz0, _lz1; \
754 if (X##_e <= -_FP_WORKBITS - 1) \
755 _FP_FRAC_SET_##wc(X, _FP_MINFRAC_##wc); \
756 else \
757 _FP_FRAC_SRS_##wc(X, _FP_FRACBITS_##fs - 1 - X##_e, \
758 _FP_WFRACBITS_##fs); \
759 _FP_FRAC_CLZ_##wc(_lz0, X); \
760 _FP_ROUND(wc, X); \
761 _FP_FRAC_CLZ_##wc(_lz1, X); \
762 if (_lz1 < _lz0) \
763 X##_e++; /* For overflow detection. */ \
764 _FP_FRAC_SRL_##wc(X, _FP_WORKBITS); \
765 _FP_FRAC_ASSEMBLE_##wc(r, X, rsize); \
766 } \
767 if (rsigned && X##_s) \
768 r = -r; \
769 if (X##_e >= rsize - (rsigned > 0 || X##_s) \
770 || (!rsigned && X##_s)) \
771 { /* overflow */ \
772 fallthrough; \
773 case FP_CLS_NAN: \
774 case FP_CLS_INF: \
775 if (!rsigned) \
776 { \
777 r = 0; \
778 if (!X##_s) \
779 r = ~r; \
780 } \
781 else if (rsigned != 2) \
782 { \
783 r = 1; \
784 r <<= rsize - 1; \
785 r -= 1 - X##_s; \
786 } \
787 FP_SET_EXCEPTION(FP_EX_INVALID); \
788 } \
789 break; \
790 case FP_CLS_ZERO: \
791 break; \
792 } \
793 } while (0)
794
795#define _FP_FROM_INT(fs, wc, X, r, rsize, rtype) \
796 do { \
797 if (r) \
798 { \
799 unsigned rtype ur_; \
800 X##_c = FP_CLS_NORMAL; \
801 \
802 if ((X##_s = (r < 0))) \
803 ur_ = (unsigned rtype) -r; \
804 else \
805 ur_ = (unsigned rtype) r; \
806 (void) (((rsize) <= _FP_W_TYPE_SIZE) \
807 ? ({ __FP_CLZ(X##_e, ur_); }) \
808 : ({ \
809 __FP_CLZ_2(X##_e, (_FP_W_TYPE)(ur_ >> _FP_W_TYPE_SIZE), \
810 (_FP_W_TYPE)ur_); \
811 })); \
812 if (rsize < _FP_W_TYPE_SIZE) \
813 X##_e -= (_FP_W_TYPE_SIZE - rsize); \
814 X##_e = rsize - X##_e - 1; \
815 \
816 if (_FP_FRACBITS_##fs < rsize && _FP_WFRACBITS_##fs <= X##_e) \
817 __FP_FRAC_SRS_1(ur_, (X##_e - _FP_WFRACBITS_##fs + 1), rsize);\
818 _FP_FRAC_DISASSEMBLE_##wc(X, ur_, rsize); \
819 if ((_FP_WFRACBITS_##fs - X##_e - 1) > 0) \
820 _FP_FRAC_SLL_##wc(X, (_FP_WFRACBITS_##fs - X##_e - 1)); \
821 } \
822 else \
823 { \
824 X##_c = FP_CLS_ZERO, X##_s = 0; \
825 } \
826 } while (0)
827
828
829#define FP_CONV(dfs,sfs,dwc,swc,D,S) \
830 do { \
831 _FP_FRAC_CONV_##dwc##_##swc(dfs, sfs, D, S); \
832 D##_e = S##_e; \
833 D##_c = S##_c; \
834 D##_s = S##_s; \
835 } while (0)
836
837/*
838 * Helper primitives.
839 */
840
841/* Count leading zeros in a word. */
842
843#ifndef __FP_CLZ
844#if _FP_W_TYPE_SIZE < 64
845/* this is just to shut the compiler up about shifts > word length -- PMM 02/1998 */
846#define __FP_CLZ(r, x) \
847 do { \
848 _FP_W_TYPE _t = (x); \
849 r = _FP_W_TYPE_SIZE - 1; \
850 if (_t > 0xffff) r -= 16; \
851 if (_t > 0xffff) _t >>= 16; \
852 if (_t > 0xff) r -= 8; \
853 if (_t > 0xff) _t >>= 8; \
854 if (_t & 0xf0) r -= 4; \
855 if (_t & 0xf0) _t >>= 4; \
856 if (_t & 0xc) r -= 2; \
857 if (_t & 0xc) _t >>= 2; \
858 if (_t & 0x2) r -= 1; \
859 } while (0)
860#else /* not _FP_W_TYPE_SIZE < 64 */
861#define __FP_CLZ(r, x) \
862 do { \
863 _FP_W_TYPE _t = (x); \
864 r = _FP_W_TYPE_SIZE - 1; \
865 if (_t > 0xffffffff) r -= 32; \
866 if (_t > 0xffffffff) _t >>= 32; \
867 if (_t > 0xffff) r -= 16; \
868 if (_t > 0xffff) _t >>= 16; \
869 if (_t > 0xff) r -= 8; \
870 if (_t > 0xff) _t >>= 8; \
871 if (_t & 0xf0) r -= 4; \
872 if (_t & 0xf0) _t >>= 4; \
873 if (_t & 0xc) r -= 2; \
874 if (_t & 0xc) _t >>= 2; \
875 if (_t & 0x2) r -= 1; \
876 } while (0)
877#endif /* not _FP_W_TYPE_SIZE < 64 */
878#endif /* ndef __FP_CLZ */
879
880#define _FP_DIV_HELP_imm(q, r, n, d) \
881 do { \
882 q = n / d, r = n % d; \
883 } while (0)
884
885#endif /* __MATH_EMU_OP_COMMON_H__ */
886

source code of linux/include/math-emu/op-common.h