1// SPDX-License-Identifier: GPL-2.0
2
3#include <linux/kernel.h>
4#include <linux/irqflags.h>
5#include <linux/string.h>
6#include <linux/errno.h>
7#include <linux/bug.h>
8#include "printk_ringbuffer.h"
9#include "internal.h"
10
11/**
12 * DOC: printk_ringbuffer overview
13 *
14 * Data Structure
15 * --------------
16 * The printk_ringbuffer is made up of 3 internal ringbuffers:
17 *
18 * desc_ring
19 * A ring of descriptors and their meta data (such as sequence number,
20 * timestamp, loglevel, etc.) as well as internal state information about
21 * the record and logical positions specifying where in the other
22 * ringbuffer the text strings are located.
23 *
24 * text_data_ring
25 * A ring of data blocks. A data block consists of an unsigned long
26 * integer (ID) that maps to a desc_ring index followed by the text
27 * string of the record.
28 *
29 * The internal state information of a descriptor is the key element to allow
30 * readers and writers to locklessly synchronize access to the data.
31 *
32 * Implementation
33 * --------------
34 *
35 * Descriptor Ring
36 * ~~~~~~~~~~~~~~~
37 * The descriptor ring is an array of descriptors. A descriptor contains
38 * essential meta data to track the data of a printk record using
39 * blk_lpos structs pointing to associated text data blocks (see
40 * "Data Rings" below). Each descriptor is assigned an ID that maps
41 * directly to index values of the descriptor array and has a state. The ID
42 * and the state are bitwise combined into a single descriptor field named
43 * @state_var, allowing ID and state to be synchronously and atomically
44 * updated.
45 *
46 * Descriptors have four states:
47 *
48 * reserved
49 * A writer is modifying the record.
50 *
51 * committed
52 * The record and all its data are written. A writer can reopen the
53 * descriptor (transitioning it back to reserved), but in the committed
54 * state the data is consistent.
55 *
56 * finalized
57 * The record and all its data are complete and available for reading. A
58 * writer cannot reopen the descriptor.
59 *
60 * reusable
61 * The record exists, but its text and/or meta data may no longer be
62 * available.
63 *
64 * Querying the @state_var of a record requires providing the ID of the
65 * descriptor to query. This can yield a possible fifth (pseudo) state:
66 *
67 * miss
68 * The descriptor being queried has an unexpected ID.
69 *
70 * The descriptor ring has a @tail_id that contains the ID of the oldest
71 * descriptor and @head_id that contains the ID of the newest descriptor.
72 *
73 * When a new descriptor should be created (and the ring is full), the tail
74 * descriptor is invalidated by first transitioning to the reusable state and
75 * then invalidating all tail data blocks up to and including the data blocks
76 * associated with the tail descriptor (for the text ring). Then
77 * @tail_id is advanced, followed by advancing @head_id. And finally the
78 * @state_var of the new descriptor is initialized to the new ID and reserved
79 * state.
80 *
81 * The @tail_id can only be advanced if the new @tail_id would be in the
82 * committed or reusable queried state. This makes it possible that a valid
83 * sequence number of the tail is always available.
84 *
85 * Descriptor Finalization
86 * ~~~~~~~~~~~~~~~~~~~~~~~
87 * When a writer calls the commit function prb_commit(), record data is
88 * fully stored and is consistent within the ringbuffer. However, a writer can
89 * reopen that record, claiming exclusive access (as with prb_reserve()), and
90 * modify that record. When finished, the writer must again commit the record.
91 *
92 * In order for a record to be made available to readers (and also become
93 * recyclable for writers), it must be finalized. A finalized record cannot be
94 * reopened and can never become "unfinalized". Record finalization can occur
95 * in three different scenarios:
96 *
97 * 1) A writer can simultaneously commit and finalize its record by calling
98 * prb_final_commit() instead of prb_commit().
99 *
100 * 2) When a new record is reserved and the previous record has been
101 * committed via prb_commit(), that previous record is automatically
102 * finalized.
103 *
104 * 3) When a record is committed via prb_commit() and a newer record
105 * already exists, the record being committed is automatically finalized.
106 *
107 * Data Ring
108 * ~~~~~~~~~
109 * The text data ring is a byte array composed of data blocks. Data blocks are
110 * referenced by blk_lpos structs that point to the logical position of the
111 * beginning of a data block and the beginning of the next adjacent data
112 * block. Logical positions are mapped directly to index values of the byte
113 * array ringbuffer.
114 *
115 * Each data block consists of an ID followed by the writer data. The ID is
116 * the identifier of a descriptor that is associated with the data block. A
117 * given data block is considered valid if all of the following conditions
118 * are met:
119 *
120 * 1) The descriptor associated with the data block is in the committed
121 * or finalized queried state.
122 *
123 * 2) The blk_lpos struct within the descriptor associated with the data
124 * block references back to the same data block.
125 *
126 * 3) The data block is within the head/tail logical position range.
127 *
128 * If the writer data of a data block would extend beyond the end of the
129 * byte array, only the ID of the data block is stored at the logical
130 * position and the full data block (ID and writer data) is stored at the
131 * beginning of the byte array. The referencing blk_lpos will point to the
132 * ID before the wrap and the next data block will be at the logical
133 * position adjacent the full data block after the wrap.
134 *
135 * Data rings have a @tail_lpos that points to the beginning of the oldest
136 * data block and a @head_lpos that points to the logical position of the
137 * next (not yet existing) data block.
138 *
139 * When a new data block should be created (and the ring is full), tail data
140 * blocks will first be invalidated by putting their associated descriptors
141 * into the reusable state and then pushing the @tail_lpos forward beyond
142 * them. Then the @head_lpos is pushed forward and is associated with a new
143 * descriptor. If a data block is not valid, the @tail_lpos cannot be
144 * advanced beyond it.
145 *
146 * Info Array
147 * ~~~~~~~~~~
148 * The general meta data of printk records are stored in printk_info structs,
149 * stored in an array with the same number of elements as the descriptor ring.
150 * Each info corresponds to the descriptor of the same index in the
151 * descriptor ring. Info validity is confirmed by evaluating the corresponding
152 * descriptor before and after loading the info.
153 *
154 * Usage
155 * -----
156 * Here are some simple examples demonstrating writers and readers. For the
157 * examples a global ringbuffer (test_rb) is available (which is not the
158 * actual ringbuffer used by printk)::
159 *
160 * DEFINE_PRINTKRB(test_rb, 15, 5);
161 *
162 * This ringbuffer allows up to 32768 records (2 ^ 15) and has a size of
163 * 1 MiB (2 ^ (15 + 5)) for text data.
164 *
165 * Sample writer code::
166 *
167 * const char *textstr = "message text";
168 * struct prb_reserved_entry e;
169 * struct printk_record r;
170 *
171 * // specify how much to allocate
172 * prb_rec_init_wr(&r, strlen(textstr) + 1);
173 *
174 * if (prb_reserve(&e, &test_rb, &r)) {
175 * snprintf(r.text_buf, r.text_buf_size, "%s", textstr);
176 *
177 * r.info->text_len = strlen(textstr);
178 * r.info->ts_nsec = local_clock();
179 * r.info->caller_id = printk_caller_id();
180 *
181 * // commit and finalize the record
182 * prb_final_commit(&e);
183 * }
184 *
185 * Note that additional writer functions are available to extend a record
186 * after it has been committed but not yet finalized. This can be done as
187 * long as no new records have been reserved and the caller is the same.
188 *
189 * Sample writer code (record extending)::
190 *
191 * // alternate rest of previous example
192 *
193 * r.info->text_len = strlen(textstr);
194 * r.info->ts_nsec = local_clock();
195 * r.info->caller_id = printk_caller_id();
196 *
197 * // commit the record (but do not finalize yet)
198 * prb_commit(&e);
199 * }
200 *
201 * ...
202 *
203 * // specify additional 5 bytes text space to extend
204 * prb_rec_init_wr(&r, 5);
205 *
206 * // try to extend, but only if it does not exceed 32 bytes
207 * if (prb_reserve_in_last(&e, &test_rb, &r, printk_caller_id(), 32)) {
208 * snprintf(&r.text_buf[r.info->text_len],
209 * r.text_buf_size - r.info->text_len, "hello");
210 *
211 * r.info->text_len += 5;
212 *
213 * // commit and finalize the record
214 * prb_final_commit(&e);
215 * }
216 *
217 * Sample reader code::
218 *
219 * struct printk_info info;
220 * struct printk_record r;
221 * char text_buf[32];
222 * u64 seq;
223 *
224 * prb_rec_init_rd(&r, &info, &text_buf[0], sizeof(text_buf));
225 *
226 * prb_for_each_record(0, &test_rb, &seq, &r) {
227 * if (info.seq != seq)
228 * pr_warn("lost %llu records\n", info.seq - seq);
229 *
230 * if (info.text_len > r.text_buf_size) {
231 * pr_warn("record %llu text truncated\n", info.seq);
232 * text_buf[r.text_buf_size - 1] = 0;
233 * }
234 *
235 * pr_info("%llu: %llu: %s\n", info.seq, info.ts_nsec,
236 * &text_buf[0]);
237 * }
238 *
239 * Note that additional less convenient reader functions are available to
240 * allow complex record access.
241 *
242 * ABA Issues
243 * ~~~~~~~~~~
244 * To help avoid ABA issues, descriptors are referenced by IDs (array index
245 * values combined with tagged bits counting array wraps) and data blocks are
246 * referenced by logical positions (array index values combined with tagged
247 * bits counting array wraps). However, on 32-bit systems the number of
248 * tagged bits is relatively small such that an ABA incident is (at least
249 * theoretically) possible. For example, if 4 million maximally sized (1KiB)
250 * printk messages were to occur in NMI context on a 32-bit system, the
251 * interrupted context would not be able to recognize that the 32-bit integer
252 * completely wrapped and thus represents a different data block than the one
253 * the interrupted context expects.
254 *
255 * To help combat this possibility, additional state checking is performed
256 * (such as using cmpxchg() even though set() would suffice). These extra
257 * checks are commented as such and will hopefully catch any ABA issue that
258 * a 32-bit system might experience.
259 *
260 * Memory Barriers
261 * ~~~~~~~~~~~~~~~
262 * Multiple memory barriers are used. To simplify proving correctness and
263 * generating litmus tests, lines of code related to memory barriers
264 * (loads, stores, and the associated memory barriers) are labeled::
265 *
266 * LMM(function:letter)
267 *
268 * Comments reference the labels using only the "function:letter" part.
269 *
270 * The memory barrier pairs and their ordering are:
271 *
272 * desc_reserve:D / desc_reserve:B
273 * push descriptor tail (id), then push descriptor head (id)
274 *
275 * desc_reserve:D / data_push_tail:B
276 * push data tail (lpos), then set new descriptor reserved (state)
277 *
278 * desc_reserve:D / desc_push_tail:C
279 * push descriptor tail (id), then set new descriptor reserved (state)
280 *
281 * desc_reserve:D / prb_first_seq:C
282 * push descriptor tail (id), then set new descriptor reserved (state)
283 *
284 * desc_reserve:F / desc_read:D
285 * set new descriptor id and reserved (state), then allow writer changes
286 *
287 * data_alloc:A (or data_realloc:A) / desc_read:D
288 * set old descriptor reusable (state), then modify new data block area
289 *
290 * data_alloc:A (or data_realloc:A) / data_push_tail:B
291 * push data tail (lpos), then modify new data block area
292 *
293 * _prb_commit:B / desc_read:B
294 * store writer changes, then set new descriptor committed (state)
295 *
296 * desc_reopen_last:A / _prb_commit:B
297 * set descriptor reserved (state), then read descriptor data
298 *
299 * _prb_commit:B / desc_reserve:D
300 * set new descriptor committed (state), then check descriptor head (id)
301 *
302 * data_push_tail:D / data_push_tail:A
303 * set descriptor reusable (state), then push data tail (lpos)
304 *
305 * desc_push_tail:B / desc_reserve:D
306 * set descriptor reusable (state), then push descriptor tail (id)
307 *
308 * desc_update_last_finalized:A / desc_last_finalized_seq:A
309 * store finalized record, then set new highest finalized sequence number
310 */
311
312#define DATA_SIZE(data_ring) _DATA_SIZE((data_ring)->size_bits)
313#define DATA_SIZE_MASK(data_ring) (DATA_SIZE(data_ring) - 1)
314
315#define DESCS_COUNT(desc_ring) _DESCS_COUNT((desc_ring)->count_bits)
316#define DESCS_COUNT_MASK(desc_ring) (DESCS_COUNT(desc_ring) - 1)
317
318/* Determine the data array index from a logical position. */
319#define DATA_INDEX(data_ring, lpos) ((lpos) & DATA_SIZE_MASK(data_ring))
320
321/* Determine the desc array index from an ID or sequence number. */
322#define DESC_INDEX(desc_ring, n) ((n) & DESCS_COUNT_MASK(desc_ring))
323
324/* Determine how many times the data array has wrapped. */
325#define DATA_WRAPS(data_ring, lpos) ((lpos) >> (data_ring)->size_bits)
326
327/* Determine if a logical position refers to a data-less block. */
328#define LPOS_DATALESS(lpos) ((lpos) & 1UL)
329#define BLK_DATALESS(blk) (LPOS_DATALESS((blk)->begin) && \
330 LPOS_DATALESS((blk)->next))
331
332/* Get the logical position at index 0 of the current wrap. */
333#define DATA_THIS_WRAP_START_LPOS(data_ring, lpos) \
334((lpos) & ~DATA_SIZE_MASK(data_ring))
335
336/* Get the ID for the same index of the previous wrap as the given ID. */
337#define DESC_ID_PREV_WRAP(desc_ring, id) \
338DESC_ID((id) - DESCS_COUNT(desc_ring))
339
340/*
341 * A data block: mapped directly to the beginning of the data block area
342 * specified as a logical position within the data ring.
343 *
344 * @id: the ID of the associated descriptor
345 * @data: the writer data
346 *
347 * Note that the size of a data block is only known by its associated
348 * descriptor.
349 */
350struct prb_data_block {
351 unsigned long id;
352 char data[];
353};
354
355/*
356 * Return the descriptor associated with @n. @n can be either a
357 * descriptor ID or a sequence number.
358 */
359static struct prb_desc *to_desc(struct prb_desc_ring *desc_ring, u64 n)
360{
361 return &desc_ring->descs[DESC_INDEX(desc_ring, n)];
362}
363
364/*
365 * Return the printk_info associated with @n. @n can be either a
366 * descriptor ID or a sequence number.
367 */
368static struct printk_info *to_info(struct prb_desc_ring *desc_ring, u64 n)
369{
370 return &desc_ring->infos[DESC_INDEX(desc_ring, n)];
371}
372
373static struct prb_data_block *to_block(struct prb_data_ring *data_ring,
374 unsigned long begin_lpos)
375{
376 return (void *)&data_ring->data[DATA_INDEX(data_ring, begin_lpos)];
377}
378
379/*
380 * Increase the data size to account for data block meta data plus any
381 * padding so that the adjacent data block is aligned on the ID size.
382 */
383static unsigned int to_blk_size(unsigned int size)
384{
385 struct prb_data_block *db = NULL;
386
387 size += sizeof(*db);
388 size = ALIGN(size, sizeof(db->id));
389 return size;
390}
391
392/*
393 * Sanity checker for reserve size. The ringbuffer code assumes that a data
394 * block does not exceed the maximum possible size that could fit within the
395 * ringbuffer. This function provides that basic size check so that the
396 * assumption is safe.
397 */
398static bool data_check_size(struct prb_data_ring *data_ring, unsigned int size)
399{
400 struct prb_data_block *db = NULL;
401
402 if (size == 0)
403 return true;
404
405 /*
406 * Ensure the alignment padded size could possibly fit in the data
407 * array. The largest possible data block must still leave room for
408 * at least the ID of the next block.
409 */
410 size = to_blk_size(size);
411 if (size > DATA_SIZE(data_ring) - sizeof(db->id))
412 return false;
413
414 return true;
415}
416
417/* Query the state of a descriptor. */
418static enum desc_state get_desc_state(unsigned long id,
419 unsigned long state_val)
420{
421 if (id != DESC_ID(state_val))
422 return desc_miss;
423
424 return DESC_STATE(state_val);
425}
426
427/*
428 * Get a copy of a specified descriptor and return its queried state. If the
429 * descriptor is in an inconsistent state (miss or reserved), the caller can
430 * only expect the descriptor's @state_var field to be valid.
431 *
432 * The sequence number and caller_id can be optionally retrieved. Like all
433 * non-state_var data, they are only valid if the descriptor is in a
434 * consistent state.
435 */
436static enum desc_state desc_read(struct prb_desc_ring *desc_ring,
437 unsigned long id, struct prb_desc *desc_out,
438 u64 *seq_out, u32 *caller_id_out)
439{
440 struct printk_info *info = to_info(desc_ring, n: id);
441 struct prb_desc *desc = to_desc(desc_ring, n: id);
442 atomic_long_t *state_var = &desc->state_var;
443 enum desc_state d_state;
444 unsigned long state_val;
445
446 /* Check the descriptor state. */
447 state_val = atomic_long_read(v: state_var); /* LMM(desc_read:A) */
448 d_state = get_desc_state(id, state_val);
449 if (d_state == desc_miss || d_state == desc_reserved) {
450 /*
451 * The descriptor is in an inconsistent state. Set at least
452 * @state_var so that the caller can see the details of
453 * the inconsistent state.
454 */
455 goto out;
456 }
457
458 /*
459 * Guarantee the state is loaded before copying the descriptor
460 * content. This avoids copying obsolete descriptor content that might
461 * not apply to the descriptor state. This pairs with _prb_commit:B.
462 *
463 * Memory barrier involvement:
464 *
465 * If desc_read:A reads from _prb_commit:B, then desc_read:C reads
466 * from _prb_commit:A.
467 *
468 * Relies on:
469 *
470 * WMB from _prb_commit:A to _prb_commit:B
471 * matching
472 * RMB from desc_read:A to desc_read:C
473 */
474 smp_rmb(); /* LMM(desc_read:B) */
475
476 /*
477 * Copy the descriptor data. The data is not valid until the
478 * state has been re-checked. A memcpy() for all of @desc
479 * cannot be used because of the atomic_t @state_var field.
480 */
481 if (desc_out) {
482 memcpy(&desc_out->text_blk_lpos, &desc->text_blk_lpos,
483 sizeof(desc_out->text_blk_lpos)); /* LMM(desc_read:C) */
484 }
485 if (seq_out)
486 *seq_out = info->seq; /* also part of desc_read:C */
487 if (caller_id_out)
488 *caller_id_out = info->caller_id; /* also part of desc_read:C */
489
490 /*
491 * 1. Guarantee the descriptor content is loaded before re-checking
492 * the state. This avoids reading an obsolete descriptor state
493 * that may not apply to the copied content. This pairs with
494 * desc_reserve:F.
495 *
496 * Memory barrier involvement:
497 *
498 * If desc_read:C reads from desc_reserve:G, then desc_read:E
499 * reads from desc_reserve:F.
500 *
501 * Relies on:
502 *
503 * WMB from desc_reserve:F to desc_reserve:G
504 * matching
505 * RMB from desc_read:C to desc_read:E
506 *
507 * 2. Guarantee the record data is loaded before re-checking the
508 * state. This avoids reading an obsolete descriptor state that may
509 * not apply to the copied data. This pairs with data_alloc:A and
510 * data_realloc:A.
511 *
512 * Memory barrier involvement:
513 *
514 * If copy_data:A reads from data_alloc:B, then desc_read:E
515 * reads from desc_make_reusable:A.
516 *
517 * Relies on:
518 *
519 * MB from desc_make_reusable:A to data_alloc:B
520 * matching
521 * RMB from desc_read:C to desc_read:E
522 *
523 * Note: desc_make_reusable:A and data_alloc:B can be different
524 * CPUs. However, the data_alloc:B CPU (which performs the
525 * full memory barrier) must have previously seen
526 * desc_make_reusable:A.
527 */
528 smp_rmb(); /* LMM(desc_read:D) */
529
530 /*
531 * The data has been copied. Return the current descriptor state,
532 * which may have changed since the load above.
533 */
534 state_val = atomic_long_read(v: state_var); /* LMM(desc_read:E) */
535 d_state = get_desc_state(id, state_val);
536out:
537 if (desc_out)
538 atomic_long_set(v: &desc_out->state_var, i: state_val);
539 return d_state;
540}
541
542/*
543 * Take a specified descriptor out of the finalized state by attempting
544 * the transition from finalized to reusable. Either this context or some
545 * other context will have been successful.
546 */
547static void desc_make_reusable(struct prb_desc_ring *desc_ring,
548 unsigned long id)
549{
550 unsigned long val_finalized = DESC_SV(id, desc_finalized);
551 unsigned long val_reusable = DESC_SV(id, desc_reusable);
552 struct prb_desc *desc = to_desc(desc_ring, n: id);
553 atomic_long_t *state_var = &desc->state_var;
554
555 atomic_long_cmpxchg_relaxed(v: state_var, old: val_finalized,
556 new: val_reusable); /* LMM(desc_make_reusable:A) */
557}
558
559/*
560 * Given the text data ring, put the associated descriptor of each
561 * data block from @lpos_begin until @lpos_end into the reusable state.
562 *
563 * If there is any problem making the associated descriptor reusable, either
564 * the descriptor has not yet been finalized or another writer context has
565 * already pushed the tail lpos past the problematic data block. Regardless,
566 * on error the caller can re-load the tail lpos to determine the situation.
567 */
568static bool data_make_reusable(struct printk_ringbuffer *rb,
569 unsigned long lpos_begin,
570 unsigned long lpos_end,
571 unsigned long *lpos_out)
572{
573
574 struct prb_data_ring *data_ring = &rb->text_data_ring;
575 struct prb_desc_ring *desc_ring = &rb->desc_ring;
576 struct prb_data_block *blk;
577 enum desc_state d_state;
578 struct prb_desc desc;
579 struct prb_data_blk_lpos *blk_lpos = &desc.text_blk_lpos;
580 unsigned long id;
581
582 /* Loop until @lpos_begin has advanced to or beyond @lpos_end. */
583 while ((lpos_end - lpos_begin) - 1 < DATA_SIZE(data_ring)) {
584 blk = to_block(data_ring, begin_lpos: lpos_begin);
585
586 /*
587 * Load the block ID from the data block. This is a data race
588 * against a writer that may have newly reserved this data
589 * area. If the loaded value matches a valid descriptor ID,
590 * the blk_lpos of that descriptor will be checked to make
591 * sure it points back to this data block. If the check fails,
592 * the data area has been recycled by another writer.
593 */
594 id = blk->id; /* LMM(data_make_reusable:A) */
595
596 d_state = desc_read(desc_ring, id, desc_out: &desc,
597 NULL, NULL); /* LMM(data_make_reusable:B) */
598
599 switch (d_state) {
600 case desc_miss:
601 case desc_reserved:
602 case desc_committed:
603 return false;
604 case desc_finalized:
605 /*
606 * This data block is invalid if the descriptor
607 * does not point back to it.
608 */
609 if (blk_lpos->begin != lpos_begin)
610 return false;
611 desc_make_reusable(desc_ring, id);
612 break;
613 case desc_reusable:
614 /*
615 * This data block is invalid if the descriptor
616 * does not point back to it.
617 */
618 if (blk_lpos->begin != lpos_begin)
619 return false;
620 break;
621 }
622
623 /* Advance @lpos_begin to the next data block. */
624 lpos_begin = blk_lpos->next;
625 }
626
627 *lpos_out = lpos_begin;
628 return true;
629}
630
631/*
632 * Advance the data ring tail to at least @lpos. This function puts
633 * descriptors into the reusable state if the tail is pushed beyond
634 * their associated data block.
635 */
636static bool data_push_tail(struct printk_ringbuffer *rb, unsigned long lpos)
637{
638 struct prb_data_ring *data_ring = &rb->text_data_ring;
639 unsigned long tail_lpos_new;
640 unsigned long tail_lpos;
641 unsigned long next_lpos;
642
643 /* If @lpos is from a data-less block, there is nothing to do. */
644 if (LPOS_DATALESS(lpos))
645 return true;
646
647 /*
648 * Any descriptor states that have transitioned to reusable due to the
649 * data tail being pushed to this loaded value will be visible to this
650 * CPU. This pairs with data_push_tail:D.
651 *
652 * Memory barrier involvement:
653 *
654 * If data_push_tail:A reads from data_push_tail:D, then this CPU can
655 * see desc_make_reusable:A.
656 *
657 * Relies on:
658 *
659 * MB from desc_make_reusable:A to data_push_tail:D
660 * matches
661 * READFROM from data_push_tail:D to data_push_tail:A
662 * thus
663 * READFROM from desc_make_reusable:A to this CPU
664 */
665 tail_lpos = atomic_long_read(v: &data_ring->tail_lpos); /* LMM(data_push_tail:A) */
666
667 /*
668 * Loop until the tail lpos is at or beyond @lpos. This condition
669 * may already be satisfied, resulting in no full memory barrier
670 * from data_push_tail:D being performed. However, since this CPU
671 * sees the new tail lpos, any descriptor states that transitioned to
672 * the reusable state must already be visible.
673 */
674 while ((lpos - tail_lpos) - 1 < DATA_SIZE(data_ring)) {
675 /*
676 * Make all descriptors reusable that are associated with
677 * data blocks before @lpos.
678 */
679 if (!data_make_reusable(rb, lpos_begin: tail_lpos, lpos_end: lpos, lpos_out: &next_lpos)) {
680 /*
681 * 1. Guarantee the block ID loaded in
682 * data_make_reusable() is performed before
683 * reloading the tail lpos. The failed
684 * data_make_reusable() may be due to a newly
685 * recycled data area causing the tail lpos to
686 * have been previously pushed. This pairs with
687 * data_alloc:A and data_realloc:A.
688 *
689 * Memory barrier involvement:
690 *
691 * If data_make_reusable:A reads from data_alloc:B,
692 * then data_push_tail:C reads from
693 * data_push_tail:D.
694 *
695 * Relies on:
696 *
697 * MB from data_push_tail:D to data_alloc:B
698 * matching
699 * RMB from data_make_reusable:A to
700 * data_push_tail:C
701 *
702 * Note: data_push_tail:D and data_alloc:B can be
703 * different CPUs. However, the data_alloc:B
704 * CPU (which performs the full memory
705 * barrier) must have previously seen
706 * data_push_tail:D.
707 *
708 * 2. Guarantee the descriptor state loaded in
709 * data_make_reusable() is performed before
710 * reloading the tail lpos. The failed
711 * data_make_reusable() may be due to a newly
712 * recycled descriptor causing the tail lpos to
713 * have been previously pushed. This pairs with
714 * desc_reserve:D.
715 *
716 * Memory barrier involvement:
717 *
718 * If data_make_reusable:B reads from
719 * desc_reserve:F, then data_push_tail:C reads
720 * from data_push_tail:D.
721 *
722 * Relies on:
723 *
724 * MB from data_push_tail:D to desc_reserve:F
725 * matching
726 * RMB from data_make_reusable:B to
727 * data_push_tail:C
728 *
729 * Note: data_push_tail:D and desc_reserve:F can
730 * be different CPUs. However, the
731 * desc_reserve:F CPU (which performs the
732 * full memory barrier) must have previously
733 * seen data_push_tail:D.
734 */
735 smp_rmb(); /* LMM(data_push_tail:B) */
736
737 tail_lpos_new = atomic_long_read(v: &data_ring->tail_lpos
738 ); /* LMM(data_push_tail:C) */
739 if (tail_lpos_new == tail_lpos)
740 return false;
741
742 /* Another CPU pushed the tail. Try again. */
743 tail_lpos = tail_lpos_new;
744 continue;
745 }
746
747 /*
748 * Guarantee any descriptor states that have transitioned to
749 * reusable are stored before pushing the tail lpos. A full
750 * memory barrier is needed since other CPUs may have made
751 * the descriptor states reusable. This pairs with
752 * data_push_tail:A.
753 */
754 if (atomic_long_try_cmpxchg(v: &data_ring->tail_lpos, old: &tail_lpos,
755 new: next_lpos)) { /* LMM(data_push_tail:D) */
756 break;
757 }
758 }
759
760 return true;
761}
762
763/*
764 * Advance the desc ring tail. This function advances the tail by one
765 * descriptor, thus invalidating the oldest descriptor. Before advancing
766 * the tail, the tail descriptor is made reusable and all data blocks up to
767 * and including the descriptor's data block are invalidated (i.e. the data
768 * ring tail is pushed past the data block of the descriptor being made
769 * reusable).
770 */
771static bool desc_push_tail(struct printk_ringbuffer *rb,
772 unsigned long tail_id)
773{
774 struct prb_desc_ring *desc_ring = &rb->desc_ring;
775 enum desc_state d_state;
776 struct prb_desc desc;
777
778 d_state = desc_read(desc_ring, id: tail_id, desc_out: &desc, NULL, NULL);
779
780 switch (d_state) {
781 case desc_miss:
782 /*
783 * If the ID is exactly 1 wrap behind the expected, it is
784 * in the process of being reserved by another writer and
785 * must be considered reserved.
786 */
787 if (DESC_ID(atomic_long_read(&desc.state_var)) ==
788 DESC_ID_PREV_WRAP(desc_ring, tail_id)) {
789 return false;
790 }
791
792 /*
793 * The ID has changed. Another writer must have pushed the
794 * tail and recycled the descriptor already. Success is
795 * returned because the caller is only interested in the
796 * specified tail being pushed, which it was.
797 */
798 return true;
799 case desc_reserved:
800 case desc_committed:
801 return false;
802 case desc_finalized:
803 desc_make_reusable(desc_ring, id: tail_id);
804 break;
805 case desc_reusable:
806 break;
807 }
808
809 /*
810 * Data blocks must be invalidated before their associated
811 * descriptor can be made available for recycling. Invalidating
812 * them later is not possible because there is no way to trust
813 * data blocks once their associated descriptor is gone.
814 */
815
816 if (!data_push_tail(rb, lpos: desc.text_blk_lpos.next))
817 return false;
818
819 /*
820 * Check the next descriptor after @tail_id before pushing the tail
821 * to it because the tail must always be in a finalized or reusable
822 * state. The implementation of prb_first_seq() relies on this.
823 *
824 * A successful read implies that the next descriptor is less than or
825 * equal to @head_id so there is no risk of pushing the tail past the
826 * head.
827 */
828 d_state = desc_read(desc_ring, DESC_ID(tail_id + 1), desc_out: &desc,
829 NULL, NULL); /* LMM(desc_push_tail:A) */
830
831 if (d_state == desc_finalized || d_state == desc_reusable) {
832 /*
833 * Guarantee any descriptor states that have transitioned to
834 * reusable are stored before pushing the tail ID. This allows
835 * verifying the recycled descriptor state. A full memory
836 * barrier is needed since other CPUs may have made the
837 * descriptor states reusable. This pairs with desc_reserve:D.
838 */
839 atomic_long_cmpxchg(v: &desc_ring->tail_id, old: tail_id,
840 DESC_ID(tail_id + 1)); /* LMM(desc_push_tail:B) */
841 } else {
842 /*
843 * Guarantee the last state load from desc_read() is before
844 * reloading @tail_id in order to see a new tail ID in the
845 * case that the descriptor has been recycled. This pairs
846 * with desc_reserve:D.
847 *
848 * Memory barrier involvement:
849 *
850 * If desc_push_tail:A reads from desc_reserve:F, then
851 * desc_push_tail:D reads from desc_push_tail:B.
852 *
853 * Relies on:
854 *
855 * MB from desc_push_tail:B to desc_reserve:F
856 * matching
857 * RMB from desc_push_tail:A to desc_push_tail:D
858 *
859 * Note: desc_push_tail:B and desc_reserve:F can be different
860 * CPUs. However, the desc_reserve:F CPU (which performs
861 * the full memory barrier) must have previously seen
862 * desc_push_tail:B.
863 */
864 smp_rmb(); /* LMM(desc_push_tail:C) */
865
866 /*
867 * Re-check the tail ID. The descriptor following @tail_id is
868 * not in an allowed tail state. But if the tail has since
869 * been moved by another CPU, then it does not matter.
870 */
871 if (atomic_long_read(v: &desc_ring->tail_id) == tail_id) /* LMM(desc_push_tail:D) */
872 return false;
873 }
874
875 return true;
876}
877
878/* Reserve a new descriptor, invalidating the oldest if necessary. */
879static bool desc_reserve(struct printk_ringbuffer *rb, unsigned long *id_out)
880{
881 struct prb_desc_ring *desc_ring = &rb->desc_ring;
882 unsigned long prev_state_val;
883 unsigned long id_prev_wrap;
884 struct prb_desc *desc;
885 unsigned long head_id;
886 unsigned long id;
887
888 head_id = atomic_long_read(v: &desc_ring->head_id); /* LMM(desc_reserve:A) */
889
890 do {
891 id = DESC_ID(head_id + 1);
892 id_prev_wrap = DESC_ID_PREV_WRAP(desc_ring, id);
893
894 /*
895 * Guarantee the head ID is read before reading the tail ID.
896 * Since the tail ID is updated before the head ID, this
897 * guarantees that @id_prev_wrap is never ahead of the tail
898 * ID. This pairs with desc_reserve:D.
899 *
900 * Memory barrier involvement:
901 *
902 * If desc_reserve:A reads from desc_reserve:D, then
903 * desc_reserve:C reads from desc_push_tail:B.
904 *
905 * Relies on:
906 *
907 * MB from desc_push_tail:B to desc_reserve:D
908 * matching
909 * RMB from desc_reserve:A to desc_reserve:C
910 *
911 * Note: desc_push_tail:B and desc_reserve:D can be different
912 * CPUs. However, the desc_reserve:D CPU (which performs
913 * the full memory barrier) must have previously seen
914 * desc_push_tail:B.
915 */
916 smp_rmb(); /* LMM(desc_reserve:B) */
917
918 if (id_prev_wrap == atomic_long_read(v: &desc_ring->tail_id
919 )) { /* LMM(desc_reserve:C) */
920 /*
921 * Make space for the new descriptor by
922 * advancing the tail.
923 */
924 if (!desc_push_tail(rb, tail_id: id_prev_wrap))
925 return false;
926 }
927
928 /*
929 * 1. Guarantee the tail ID is read before validating the
930 * recycled descriptor state. A read memory barrier is
931 * sufficient for this. This pairs with desc_push_tail:B.
932 *
933 * Memory barrier involvement:
934 *
935 * If desc_reserve:C reads from desc_push_tail:B, then
936 * desc_reserve:E reads from desc_make_reusable:A.
937 *
938 * Relies on:
939 *
940 * MB from desc_make_reusable:A to desc_push_tail:B
941 * matching
942 * RMB from desc_reserve:C to desc_reserve:E
943 *
944 * Note: desc_make_reusable:A and desc_push_tail:B can be
945 * different CPUs. However, the desc_push_tail:B CPU
946 * (which performs the full memory barrier) must have
947 * previously seen desc_make_reusable:A.
948 *
949 * 2. Guarantee the tail ID is stored before storing the head
950 * ID. This pairs with desc_reserve:B.
951 *
952 * 3. Guarantee any data ring tail changes are stored before
953 * recycling the descriptor. Data ring tail changes can
954 * happen via desc_push_tail()->data_push_tail(). A full
955 * memory barrier is needed since another CPU may have
956 * pushed the data ring tails. This pairs with
957 * data_push_tail:B.
958 *
959 * 4. Guarantee a new tail ID is stored before recycling the
960 * descriptor. A full memory barrier is needed since
961 * another CPU may have pushed the tail ID. This pairs
962 * with desc_push_tail:C and this also pairs with
963 * prb_first_seq:C.
964 *
965 * 5. Guarantee the head ID is stored before trying to
966 * finalize the previous descriptor. This pairs with
967 * _prb_commit:B.
968 */
969 } while (!atomic_long_try_cmpxchg(v: &desc_ring->head_id, old: &head_id,
970 new: id)); /* LMM(desc_reserve:D) */
971
972 desc = to_desc(desc_ring, n: id);
973
974 /*
975 * If the descriptor has been recycled, verify the old state val.
976 * See "ABA Issues" about why this verification is performed.
977 */
978 prev_state_val = atomic_long_read(v: &desc->state_var); /* LMM(desc_reserve:E) */
979 if (prev_state_val &&
980 get_desc_state(id: id_prev_wrap, state_val: prev_state_val) != desc_reusable) {
981 WARN_ON_ONCE(1);
982 return false;
983 }
984
985 /*
986 * Assign the descriptor a new ID and set its state to reserved.
987 * See "ABA Issues" about why cmpxchg() instead of set() is used.
988 *
989 * Guarantee the new descriptor ID and state is stored before making
990 * any other changes. A write memory barrier is sufficient for this.
991 * This pairs with desc_read:D.
992 */
993 if (!atomic_long_try_cmpxchg(v: &desc->state_var, old: &prev_state_val,
994 DESC_SV(id, desc_reserved))) { /* LMM(desc_reserve:F) */
995 WARN_ON_ONCE(1);
996 return false;
997 }
998
999 /* Now data in @desc can be modified: LMM(desc_reserve:G) */
1000
1001 *id_out = id;
1002 return true;
1003}
1004
1005/* Determine the end of a data block. */
1006static unsigned long get_next_lpos(struct prb_data_ring *data_ring,
1007 unsigned long lpos, unsigned int size)
1008{
1009 unsigned long begin_lpos;
1010 unsigned long next_lpos;
1011
1012 begin_lpos = lpos;
1013 next_lpos = lpos + size;
1014
1015 /* First check if the data block does not wrap. */
1016 if (DATA_WRAPS(data_ring, begin_lpos) == DATA_WRAPS(data_ring, next_lpos))
1017 return next_lpos;
1018
1019 /* Wrapping data blocks store their data at the beginning. */
1020 return (DATA_THIS_WRAP_START_LPOS(data_ring, next_lpos) + size);
1021}
1022
1023/*
1024 * Allocate a new data block, invalidating the oldest data block(s)
1025 * if necessary. This function also associates the data block with
1026 * a specified descriptor.
1027 */
1028static char *data_alloc(struct printk_ringbuffer *rb, unsigned int size,
1029 struct prb_data_blk_lpos *blk_lpos, unsigned long id)
1030{
1031 struct prb_data_ring *data_ring = &rb->text_data_ring;
1032 struct prb_data_block *blk;
1033 unsigned long begin_lpos;
1034 unsigned long next_lpos;
1035
1036 if (size == 0) {
1037 /*
1038 * Data blocks are not created for empty lines. Instead, the
1039 * reader will recognize these special lpos values and handle
1040 * it appropriately.
1041 */
1042 blk_lpos->begin = EMPTY_LINE_LPOS;
1043 blk_lpos->next = EMPTY_LINE_LPOS;
1044 return NULL;
1045 }
1046
1047 size = to_blk_size(size);
1048
1049 begin_lpos = atomic_long_read(v: &data_ring->head_lpos);
1050
1051 do {
1052 next_lpos = get_next_lpos(data_ring, lpos: begin_lpos, size);
1053
1054 if (!data_push_tail(rb, lpos: next_lpos - DATA_SIZE(data_ring))) {
1055 /* Failed to allocate, specify a data-less block. */
1056 blk_lpos->begin = FAILED_LPOS;
1057 blk_lpos->next = FAILED_LPOS;
1058 return NULL;
1059 }
1060
1061 /*
1062 * 1. Guarantee any descriptor states that have transitioned
1063 * to reusable are stored before modifying the newly
1064 * allocated data area. A full memory barrier is needed
1065 * since other CPUs may have made the descriptor states
1066 * reusable. See data_push_tail:A about why the reusable
1067 * states are visible. This pairs with desc_read:D.
1068 *
1069 * 2. Guarantee any updated tail lpos is stored before
1070 * modifying the newly allocated data area. Another CPU may
1071 * be in data_make_reusable() and is reading a block ID
1072 * from this area. data_make_reusable() can handle reading
1073 * a garbage block ID value, but then it must be able to
1074 * load a new tail lpos. A full memory barrier is needed
1075 * since other CPUs may have updated the tail lpos. This
1076 * pairs with data_push_tail:B.
1077 */
1078 } while (!atomic_long_try_cmpxchg(v: &data_ring->head_lpos, old: &begin_lpos,
1079 new: next_lpos)); /* LMM(data_alloc:A) */
1080
1081 blk = to_block(data_ring, begin_lpos);
1082 blk->id = id; /* LMM(data_alloc:B) */
1083
1084 if (DATA_WRAPS(data_ring, begin_lpos) != DATA_WRAPS(data_ring, next_lpos)) {
1085 /* Wrapping data blocks store their data at the beginning. */
1086 blk = to_block(data_ring, begin_lpos: 0);
1087
1088 /*
1089 * Store the ID on the wrapped block for consistency.
1090 * The printk_ringbuffer does not actually use it.
1091 */
1092 blk->id = id;
1093 }
1094
1095 blk_lpos->begin = begin_lpos;
1096 blk_lpos->next = next_lpos;
1097
1098 return &blk->data[0];
1099}
1100
1101/*
1102 * Try to resize an existing data block associated with the descriptor
1103 * specified by @id. If the resized data block should become wrapped, it
1104 * copies the old data to the new data block. If @size yields a data block
1105 * with the same or less size, the data block is left as is.
1106 *
1107 * Fail if this is not the last allocated data block or if there is not
1108 * enough space or it is not possible make enough space.
1109 *
1110 * Return a pointer to the beginning of the entire data buffer or NULL on
1111 * failure.
1112 */
1113static char *data_realloc(struct printk_ringbuffer *rb, unsigned int size,
1114 struct prb_data_blk_lpos *blk_lpos, unsigned long id)
1115{
1116 struct prb_data_ring *data_ring = &rb->text_data_ring;
1117 struct prb_data_block *blk;
1118 unsigned long head_lpos;
1119 unsigned long next_lpos;
1120 bool wrapped;
1121
1122 /* Reallocation only works if @blk_lpos is the newest data block. */
1123 head_lpos = atomic_long_read(v: &data_ring->head_lpos);
1124 if (head_lpos != blk_lpos->next)
1125 return NULL;
1126
1127 /* Keep track if @blk_lpos was a wrapping data block. */
1128 wrapped = (DATA_WRAPS(data_ring, blk_lpos->begin) != DATA_WRAPS(data_ring, blk_lpos->next));
1129
1130 size = to_blk_size(size);
1131
1132 next_lpos = get_next_lpos(data_ring, lpos: blk_lpos->begin, size);
1133
1134 /* If the data block does not increase, there is nothing to do. */
1135 if (head_lpos - next_lpos < DATA_SIZE(data_ring)) {
1136 if (wrapped)
1137 blk = to_block(data_ring, begin_lpos: 0);
1138 else
1139 blk = to_block(data_ring, begin_lpos: blk_lpos->begin);
1140 return &blk->data[0];
1141 }
1142
1143 if (!data_push_tail(rb, lpos: next_lpos - DATA_SIZE(data_ring)))
1144 return NULL;
1145
1146 /* The memory barrier involvement is the same as data_alloc:A. */
1147 if (!atomic_long_try_cmpxchg(v: &data_ring->head_lpos, old: &head_lpos,
1148 new: next_lpos)) { /* LMM(data_realloc:A) */
1149 return NULL;
1150 }
1151
1152 blk = to_block(data_ring, begin_lpos: blk_lpos->begin);
1153
1154 if (DATA_WRAPS(data_ring, blk_lpos->begin) != DATA_WRAPS(data_ring, next_lpos)) {
1155 struct prb_data_block *old_blk = blk;
1156
1157 /* Wrapping data blocks store their data at the beginning. */
1158 blk = to_block(data_ring, begin_lpos: 0);
1159
1160 /*
1161 * Store the ID on the wrapped block for consistency.
1162 * The printk_ringbuffer does not actually use it.
1163 */
1164 blk->id = id;
1165
1166 if (!wrapped) {
1167 /*
1168 * Since the allocated space is now in the newly
1169 * created wrapping data block, copy the content
1170 * from the old data block.
1171 */
1172 memcpy(&blk->data[0], &old_blk->data[0],
1173 (blk_lpos->next - blk_lpos->begin) - sizeof(blk->id));
1174 }
1175 }
1176
1177 blk_lpos->next = next_lpos;
1178
1179 return &blk->data[0];
1180}
1181
1182/* Return the number of bytes used by a data block. */
1183static unsigned int space_used(struct prb_data_ring *data_ring,
1184 struct prb_data_blk_lpos *blk_lpos)
1185{
1186 /* Data-less blocks take no space. */
1187 if (BLK_DATALESS(blk_lpos))
1188 return 0;
1189
1190 if (DATA_WRAPS(data_ring, blk_lpos->begin) == DATA_WRAPS(data_ring, blk_lpos->next)) {
1191 /* Data block does not wrap. */
1192 return (DATA_INDEX(data_ring, blk_lpos->next) -
1193 DATA_INDEX(data_ring, blk_lpos->begin));
1194 }
1195
1196 /*
1197 * For wrapping data blocks, the trailing (wasted) space is
1198 * also counted.
1199 */
1200 return (DATA_INDEX(data_ring, blk_lpos->next) +
1201 DATA_SIZE(data_ring) - DATA_INDEX(data_ring, blk_lpos->begin));
1202}
1203
1204/*
1205 * Given @blk_lpos, return a pointer to the writer data from the data block
1206 * and calculate the size of the data part. A NULL pointer is returned if
1207 * @blk_lpos specifies values that could never be legal.
1208 *
1209 * This function (used by readers) performs strict validation on the lpos
1210 * values to possibly detect bugs in the writer code. A WARN_ON_ONCE() is
1211 * triggered if an internal error is detected.
1212 */
1213static const char *get_data(struct prb_data_ring *data_ring,
1214 struct prb_data_blk_lpos *blk_lpos,
1215 unsigned int *data_size)
1216{
1217 struct prb_data_block *db;
1218
1219 /* Data-less data block description. */
1220 if (BLK_DATALESS(blk_lpos)) {
1221 /*
1222 * Records that are just empty lines are also valid, even
1223 * though they do not have a data block. For such records
1224 * explicitly return empty string data to signify success.
1225 */
1226 if (blk_lpos->begin == EMPTY_LINE_LPOS &&
1227 blk_lpos->next == EMPTY_LINE_LPOS) {
1228 *data_size = 0;
1229 return "";
1230 }
1231
1232 /* Data lost, invalid, or otherwise unavailable. */
1233 return NULL;
1234 }
1235
1236 /* Regular data block: @begin less than @next and in same wrap. */
1237 if (DATA_WRAPS(data_ring, blk_lpos->begin) == DATA_WRAPS(data_ring, blk_lpos->next) &&
1238 blk_lpos->begin < blk_lpos->next) {
1239 db = to_block(data_ring, begin_lpos: blk_lpos->begin);
1240 *data_size = blk_lpos->next - blk_lpos->begin;
1241
1242 /* Wrapping data block: @begin is one wrap behind @next. */
1243 } else if (DATA_WRAPS(data_ring, blk_lpos->begin + DATA_SIZE(data_ring)) ==
1244 DATA_WRAPS(data_ring, blk_lpos->next)) {
1245 db = to_block(data_ring, begin_lpos: 0);
1246 *data_size = DATA_INDEX(data_ring, blk_lpos->next);
1247
1248 /* Illegal block description. */
1249 } else {
1250 WARN_ON_ONCE(1);
1251 return NULL;
1252 }
1253
1254 /* A valid data block will always be aligned to the ID size. */
1255 if (WARN_ON_ONCE(blk_lpos->begin != ALIGN(blk_lpos->begin, sizeof(db->id))) ||
1256 WARN_ON_ONCE(blk_lpos->next != ALIGN(blk_lpos->next, sizeof(db->id)))) {
1257 return NULL;
1258 }
1259
1260 /* A valid data block will always have at least an ID. */
1261 if (WARN_ON_ONCE(*data_size < sizeof(db->id)))
1262 return NULL;
1263
1264 /* Subtract block ID space from size to reflect data size. */
1265 *data_size -= sizeof(db->id);
1266
1267 return &db->data[0];
1268}
1269
1270/*
1271 * Attempt to transition the newest descriptor from committed back to reserved
1272 * so that the record can be modified by a writer again. This is only possible
1273 * if the descriptor is not yet finalized and the provided @caller_id matches.
1274 */
1275static struct prb_desc *desc_reopen_last(struct prb_desc_ring *desc_ring,
1276 u32 caller_id, unsigned long *id_out)
1277{
1278 unsigned long prev_state_val;
1279 enum desc_state d_state;
1280 struct prb_desc desc;
1281 struct prb_desc *d;
1282 unsigned long id;
1283 u32 cid;
1284
1285 id = atomic_long_read(v: &desc_ring->head_id);
1286
1287 /*
1288 * To reduce unnecessarily reopening, first check if the descriptor
1289 * state and caller ID are correct.
1290 */
1291 d_state = desc_read(desc_ring, id, desc_out: &desc, NULL, caller_id_out: &cid);
1292 if (d_state != desc_committed || cid != caller_id)
1293 return NULL;
1294
1295 d = to_desc(desc_ring, n: id);
1296
1297 prev_state_val = DESC_SV(id, desc_committed);
1298
1299 /*
1300 * Guarantee the reserved state is stored before reading any
1301 * record data. A full memory barrier is needed because @state_var
1302 * modification is followed by reading. This pairs with _prb_commit:B.
1303 *
1304 * Memory barrier involvement:
1305 *
1306 * If desc_reopen_last:A reads from _prb_commit:B, then
1307 * prb_reserve_in_last:A reads from _prb_commit:A.
1308 *
1309 * Relies on:
1310 *
1311 * WMB from _prb_commit:A to _prb_commit:B
1312 * matching
1313 * MB If desc_reopen_last:A to prb_reserve_in_last:A
1314 */
1315 if (!atomic_long_try_cmpxchg(v: &d->state_var, old: &prev_state_val,
1316 DESC_SV(id, desc_reserved))) { /* LMM(desc_reopen_last:A) */
1317 return NULL;
1318 }
1319
1320 *id_out = id;
1321 return d;
1322}
1323
1324/**
1325 * prb_reserve_in_last() - Re-reserve and extend the space in the ringbuffer
1326 * used by the newest record.
1327 *
1328 * @e: The entry structure to setup.
1329 * @rb: The ringbuffer to re-reserve and extend data in.
1330 * @r: The record structure to allocate buffers for.
1331 * @caller_id: The caller ID of the caller (reserving writer).
1332 * @max_size: Fail if the extended size would be greater than this.
1333 *
1334 * This is the public function available to writers to re-reserve and extend
1335 * data.
1336 *
1337 * The writer specifies the text size to extend (not the new total size) by
1338 * setting the @text_buf_size field of @r. To ensure proper initialization
1339 * of @r, prb_rec_init_wr() should be used.
1340 *
1341 * This function will fail if @caller_id does not match the caller ID of the
1342 * newest record. In that case the caller must reserve new data using
1343 * prb_reserve().
1344 *
1345 * Context: Any context. Disables local interrupts on success.
1346 * Return: true if text data could be extended, otherwise false.
1347 *
1348 * On success:
1349 *
1350 * - @r->text_buf points to the beginning of the entire text buffer.
1351 *
1352 * - @r->text_buf_size is set to the new total size of the buffer.
1353 *
1354 * - @r->info is not touched so that @r->info->text_len could be used
1355 * to append the text.
1356 *
1357 * - prb_record_text_space() can be used on @e to query the new
1358 * actually used space.
1359 *
1360 * Important: All @r->info fields will already be set with the current values
1361 * for the record. I.e. @r->info->text_len will be less than
1362 * @text_buf_size. Writers can use @r->info->text_len to know
1363 * where concatenation begins and writers should update
1364 * @r->info->text_len after concatenating.
1365 */
1366bool prb_reserve_in_last(struct prb_reserved_entry *e, struct printk_ringbuffer *rb,
1367 struct printk_record *r, u32 caller_id, unsigned int max_size)
1368{
1369 struct prb_desc_ring *desc_ring = &rb->desc_ring;
1370 struct printk_info *info;
1371 unsigned int data_size;
1372 struct prb_desc *d;
1373 unsigned long id;
1374
1375 local_irq_save(e->irqflags);
1376
1377 /* Transition the newest descriptor back to the reserved state. */
1378 d = desc_reopen_last(desc_ring, caller_id, id_out: &id);
1379 if (!d) {
1380 local_irq_restore(e->irqflags);
1381 goto fail_reopen;
1382 }
1383
1384 /* Now the writer has exclusive access: LMM(prb_reserve_in_last:A) */
1385
1386 info = to_info(desc_ring, n: id);
1387
1388 /*
1389 * Set the @e fields here so that prb_commit() can be used if
1390 * anything fails from now on.
1391 */
1392 e->rb = rb;
1393 e->id = id;
1394
1395 /*
1396 * desc_reopen_last() checked the caller_id, but there was no
1397 * exclusive access at that point. The descriptor may have
1398 * changed since then.
1399 */
1400 if (caller_id != info->caller_id)
1401 goto fail;
1402
1403 if (BLK_DATALESS(&d->text_blk_lpos)) {
1404 if (WARN_ON_ONCE(info->text_len != 0)) {
1405 pr_warn_once("wrong text_len value (%hu, expecting 0)\n",
1406 info->text_len);
1407 info->text_len = 0;
1408 }
1409
1410 if (!data_check_size(data_ring: &rb->text_data_ring, size: r->text_buf_size))
1411 goto fail;
1412
1413 if (r->text_buf_size > max_size)
1414 goto fail;
1415
1416 r->text_buf = data_alloc(rb, size: r->text_buf_size,
1417 blk_lpos: &d->text_blk_lpos, id);
1418 } else {
1419 if (!get_data(data_ring: &rb->text_data_ring, blk_lpos: &d->text_blk_lpos, data_size: &data_size))
1420 goto fail;
1421
1422 /*
1423 * Increase the buffer size to include the original size. If
1424 * the meta data (@text_len) is not sane, use the full data
1425 * block size.
1426 */
1427 if (WARN_ON_ONCE(info->text_len > data_size)) {
1428 pr_warn_once("wrong text_len value (%hu, expecting <=%u)\n",
1429 info->text_len, data_size);
1430 info->text_len = data_size;
1431 }
1432 r->text_buf_size += info->text_len;
1433
1434 if (!data_check_size(data_ring: &rb->text_data_ring, size: r->text_buf_size))
1435 goto fail;
1436
1437 if (r->text_buf_size > max_size)
1438 goto fail;
1439
1440 r->text_buf = data_realloc(rb, size: r->text_buf_size,
1441 blk_lpos: &d->text_blk_lpos, id);
1442 }
1443 if (r->text_buf_size && !r->text_buf)
1444 goto fail;
1445
1446 r->info = info;
1447
1448 e->text_space = space_used(data_ring: &rb->text_data_ring, blk_lpos: &d->text_blk_lpos);
1449
1450 return true;
1451fail:
1452 prb_commit(e);
1453 /* prb_commit() re-enabled interrupts. */
1454fail_reopen:
1455 /* Make it clear to the caller that the re-reserve failed. */
1456 memset(r, 0, sizeof(*r));
1457 return false;
1458}
1459
1460/*
1461 * @last_finalized_seq value guarantees that all records up to and including
1462 * this sequence number are finalized and can be read. The only exception are
1463 * too old records which have already been overwritten.
1464 *
1465 * It is also guaranteed that @last_finalized_seq only increases.
1466 *
1467 * Be aware that finalized records following non-finalized records are not
1468 * reported because they are not yet available to the reader. For example,
1469 * a new record stored via printk() will not be available to a printer if
1470 * it follows a record that has not been finalized yet. However, once that
1471 * non-finalized record becomes finalized, @last_finalized_seq will be
1472 * appropriately updated and the full set of finalized records will be
1473 * available to the printer. And since each printk() caller will either
1474 * directly print or trigger deferred printing of all available unprinted
1475 * records, all printk() messages will get printed.
1476 */
1477static u64 desc_last_finalized_seq(struct printk_ringbuffer *rb)
1478{
1479 struct prb_desc_ring *desc_ring = &rb->desc_ring;
1480 unsigned long ulseq;
1481
1482 /*
1483 * Guarantee the sequence number is loaded before loading the
1484 * associated record in order to guarantee that the record can be
1485 * seen by this CPU. This pairs with desc_update_last_finalized:A.
1486 */
1487 ulseq = atomic_long_read_acquire(v: &desc_ring->last_finalized_seq
1488 ); /* LMM(desc_last_finalized_seq:A) */
1489
1490 return __ulseq_to_u64seq(rb, ulseq);
1491}
1492
1493static bool _prb_read_valid(struct printk_ringbuffer *rb, u64 *seq,
1494 struct printk_record *r, unsigned int *line_count);
1495
1496/*
1497 * Check if there are records directly following @last_finalized_seq that are
1498 * finalized. If so, update @last_finalized_seq to the latest of these
1499 * records. It is not allowed to skip over records that are not yet finalized.
1500 */
1501static void desc_update_last_finalized(struct printk_ringbuffer *rb)
1502{
1503 struct prb_desc_ring *desc_ring = &rb->desc_ring;
1504 u64 old_seq = desc_last_finalized_seq(rb);
1505 unsigned long oldval;
1506 unsigned long newval;
1507 u64 finalized_seq;
1508 u64 try_seq;
1509
1510try_again:
1511 finalized_seq = old_seq;
1512 try_seq = finalized_seq + 1;
1513
1514 /* Try to find later finalized records. */
1515 while (_prb_read_valid(rb, seq: &try_seq, NULL, NULL)) {
1516 finalized_seq = try_seq;
1517 try_seq++;
1518 }
1519
1520 /* No update needed if no later finalized record was found. */
1521 if (finalized_seq == old_seq)
1522 return;
1523
1524 oldval = __u64seq_to_ulseq(old_seq);
1525 newval = __u64seq_to_ulseq(finalized_seq);
1526
1527 /*
1528 * Set the sequence number of a later finalized record that has been
1529 * seen.
1530 *
1531 * Guarantee the record data is visible to other CPUs before storing
1532 * its sequence number. This pairs with desc_last_finalized_seq:A.
1533 *
1534 * Memory barrier involvement:
1535 *
1536 * If desc_last_finalized_seq:A reads from
1537 * desc_update_last_finalized:A, then desc_read:A reads from
1538 * _prb_commit:B.
1539 *
1540 * Relies on:
1541 *
1542 * RELEASE from _prb_commit:B to desc_update_last_finalized:A
1543 * matching
1544 * ACQUIRE from desc_last_finalized_seq:A to desc_read:A
1545 *
1546 * Note: _prb_commit:B and desc_update_last_finalized:A can be
1547 * different CPUs. However, the desc_update_last_finalized:A
1548 * CPU (which performs the release) must have previously seen
1549 * _prb_commit:B.
1550 */
1551 if (!atomic_long_try_cmpxchg_release(v: &desc_ring->last_finalized_seq,
1552 old: &oldval, new: newval)) { /* LMM(desc_update_last_finalized:A) */
1553 old_seq = __ulseq_to_u64seq(rb, oldval);
1554 goto try_again;
1555 }
1556}
1557
1558/*
1559 * Attempt to finalize a specified descriptor. If this fails, the descriptor
1560 * is either already final or it will finalize itself when the writer commits.
1561 */
1562static void desc_make_final(struct printk_ringbuffer *rb, unsigned long id)
1563{
1564 struct prb_desc_ring *desc_ring = &rb->desc_ring;
1565 unsigned long prev_state_val = DESC_SV(id, desc_committed);
1566 struct prb_desc *d = to_desc(desc_ring, n: id);
1567
1568 if (atomic_long_try_cmpxchg_relaxed(v: &d->state_var, old: &prev_state_val,
1569 DESC_SV(id, desc_finalized))) { /* LMM(desc_make_final:A) */
1570 desc_update_last_finalized(rb);
1571 }
1572}
1573
1574/**
1575 * prb_reserve() - Reserve space in the ringbuffer.
1576 *
1577 * @e: The entry structure to setup.
1578 * @rb: The ringbuffer to reserve data in.
1579 * @r: The record structure to allocate buffers for.
1580 *
1581 * This is the public function available to writers to reserve data.
1582 *
1583 * The writer specifies the text size to reserve by setting the
1584 * @text_buf_size field of @r. To ensure proper initialization of @r,
1585 * prb_rec_init_wr() should be used.
1586 *
1587 * Context: Any context. Disables local interrupts on success.
1588 * Return: true if at least text data could be allocated, otherwise false.
1589 *
1590 * On success, the fields @info and @text_buf of @r will be set by this
1591 * function and should be filled in by the writer before committing. Also
1592 * on success, prb_record_text_space() can be used on @e to query the actual
1593 * space used for the text data block.
1594 *
1595 * Important: @info->text_len needs to be set correctly by the writer in
1596 * order for data to be readable and/or extended. Its value
1597 * is initialized to 0.
1598 */
1599bool prb_reserve(struct prb_reserved_entry *e, struct printk_ringbuffer *rb,
1600 struct printk_record *r)
1601{
1602 struct prb_desc_ring *desc_ring = &rb->desc_ring;
1603 struct printk_info *info;
1604 struct prb_desc *d;
1605 unsigned long id;
1606 u64 seq;
1607
1608 if (!data_check_size(data_ring: &rb->text_data_ring, size: r->text_buf_size))
1609 goto fail;
1610
1611 /*
1612 * Descriptors in the reserved state act as blockers to all further
1613 * reservations once the desc_ring has fully wrapped. Disable
1614 * interrupts during the reserve/commit window in order to minimize
1615 * the likelihood of this happening.
1616 */
1617 local_irq_save(e->irqflags);
1618
1619 if (!desc_reserve(rb, id_out: &id)) {
1620 /* Descriptor reservation failures are tracked. */
1621 atomic_long_inc(v: &rb->fail);
1622 local_irq_restore(e->irqflags);
1623 goto fail;
1624 }
1625
1626 d = to_desc(desc_ring, n: id);
1627 info = to_info(desc_ring, n: id);
1628
1629 /*
1630 * All @info fields (except @seq) are cleared and must be filled in
1631 * by the writer. Save @seq before clearing because it is used to
1632 * determine the new sequence number.
1633 */
1634 seq = info->seq;
1635 memset(info, 0, sizeof(*info));
1636
1637 /*
1638 * Set the @e fields here so that prb_commit() can be used if
1639 * text data allocation fails.
1640 */
1641 e->rb = rb;
1642 e->id = id;
1643
1644 /*
1645 * Initialize the sequence number if it has "never been set".
1646 * Otherwise just increment it by a full wrap.
1647 *
1648 * @seq is considered "never been set" if it has a value of 0,
1649 * _except_ for @infos[0], which was specially setup by the ringbuffer
1650 * initializer and therefore is always considered as set.
1651 *
1652 * See the "Bootstrap" comment block in printk_ringbuffer.h for
1653 * details about how the initializer bootstraps the descriptors.
1654 */
1655 if (seq == 0 && DESC_INDEX(desc_ring, id) != 0)
1656 info->seq = DESC_INDEX(desc_ring, id);
1657 else
1658 info->seq = seq + DESCS_COUNT(desc_ring);
1659
1660 /*
1661 * New data is about to be reserved. Once that happens, previous
1662 * descriptors are no longer able to be extended. Finalize the
1663 * previous descriptor now so that it can be made available to
1664 * readers. (For seq==0 there is no previous descriptor.)
1665 */
1666 if (info->seq > 0)
1667 desc_make_final(rb, DESC_ID(id - 1));
1668
1669 r->text_buf = data_alloc(rb, size: r->text_buf_size, blk_lpos: &d->text_blk_lpos, id);
1670 /* If text data allocation fails, a data-less record is committed. */
1671 if (r->text_buf_size && !r->text_buf) {
1672 prb_commit(e);
1673 /* prb_commit() re-enabled interrupts. */
1674 goto fail;
1675 }
1676
1677 r->info = info;
1678
1679 /* Record full text space used by record. */
1680 e->text_space = space_used(data_ring: &rb->text_data_ring, blk_lpos: &d->text_blk_lpos);
1681
1682 return true;
1683fail:
1684 /* Make it clear to the caller that the reserve failed. */
1685 memset(r, 0, sizeof(*r));
1686 return false;
1687}
1688
1689/* Commit the data (possibly finalizing it) and restore interrupts. */
1690static void _prb_commit(struct prb_reserved_entry *e, unsigned long state_val)
1691{
1692 struct prb_desc_ring *desc_ring = &e->rb->desc_ring;
1693 struct prb_desc *d = to_desc(desc_ring, n: e->id);
1694 unsigned long prev_state_val = DESC_SV(e->id, desc_reserved);
1695
1696 /* Now the writer has finished all writing: LMM(_prb_commit:A) */
1697
1698 /*
1699 * Set the descriptor as committed. See "ABA Issues" about why
1700 * cmpxchg() instead of set() is used.
1701 *
1702 * 1 Guarantee all record data is stored before the descriptor state
1703 * is stored as committed. A write memory barrier is sufficient
1704 * for this. This pairs with desc_read:B and desc_reopen_last:A.
1705 *
1706 * 2. Guarantee the descriptor state is stored as committed before
1707 * re-checking the head ID in order to possibly finalize this
1708 * descriptor. This pairs with desc_reserve:D.
1709 *
1710 * Memory barrier involvement:
1711 *
1712 * If prb_commit:A reads from desc_reserve:D, then
1713 * desc_make_final:A reads from _prb_commit:B.
1714 *
1715 * Relies on:
1716 *
1717 * MB _prb_commit:B to prb_commit:A
1718 * matching
1719 * MB desc_reserve:D to desc_make_final:A
1720 */
1721 if (!atomic_long_try_cmpxchg(v: &d->state_var, old: &prev_state_val,
1722 DESC_SV(e->id, state_val))) { /* LMM(_prb_commit:B) */
1723 WARN_ON_ONCE(1);
1724 }
1725
1726 /* Restore interrupts, the reserve/commit window is finished. */
1727 local_irq_restore(e->irqflags);
1728}
1729
1730/**
1731 * prb_commit() - Commit (previously reserved) data to the ringbuffer.
1732 *
1733 * @e: The entry containing the reserved data information.
1734 *
1735 * This is the public function available to writers to commit data.
1736 *
1737 * Note that the data is not yet available to readers until it is finalized.
1738 * Finalizing happens automatically when space for the next record is
1739 * reserved.
1740 *
1741 * See prb_final_commit() for a version of this function that finalizes
1742 * immediately.
1743 *
1744 * Context: Any context. Enables local interrupts.
1745 */
1746void prb_commit(struct prb_reserved_entry *e)
1747{
1748 struct prb_desc_ring *desc_ring = &e->rb->desc_ring;
1749 unsigned long head_id;
1750
1751 _prb_commit(e, state_val: desc_committed);
1752
1753 /*
1754 * If this descriptor is no longer the head (i.e. a new record has
1755 * been allocated), extending the data for this record is no longer
1756 * allowed and therefore it must be finalized.
1757 */
1758 head_id = atomic_long_read(v: &desc_ring->head_id); /* LMM(prb_commit:A) */
1759 if (head_id != e->id)
1760 desc_make_final(rb: e->rb, id: e->id);
1761}
1762
1763/**
1764 * prb_final_commit() - Commit and finalize (previously reserved) data to
1765 * the ringbuffer.
1766 *
1767 * @e: The entry containing the reserved data information.
1768 *
1769 * This is the public function available to writers to commit+finalize data.
1770 *
1771 * By finalizing, the data is made immediately available to readers.
1772 *
1773 * This function should only be used if there are no intentions of extending
1774 * this data using prb_reserve_in_last().
1775 *
1776 * Context: Any context. Enables local interrupts.
1777 */
1778void prb_final_commit(struct prb_reserved_entry *e)
1779{
1780 _prb_commit(e, state_val: desc_finalized);
1781
1782 desc_update_last_finalized(rb: e->rb);
1783}
1784
1785/*
1786 * Count the number of lines in provided text. All text has at least 1 line
1787 * (even if @text_size is 0). Each '\n' processed is counted as an additional
1788 * line.
1789 */
1790static unsigned int count_lines(const char *text, unsigned int text_size)
1791{
1792 unsigned int next_size = text_size;
1793 unsigned int line_count = 1;
1794 const char *next = text;
1795
1796 while (next_size) {
1797 next = memchr(p: next, c: '\n', size: next_size);
1798 if (!next)
1799 break;
1800 line_count++;
1801 next++;
1802 next_size = text_size - (next - text);
1803 }
1804
1805 return line_count;
1806}
1807
1808/*
1809 * Given @blk_lpos, copy an expected @len of data into the provided buffer.
1810 * If @line_count is provided, count the number of lines in the data.
1811 *
1812 * This function (used by readers) performs strict validation on the data
1813 * size to possibly detect bugs in the writer code. A WARN_ON_ONCE() is
1814 * triggered if an internal error is detected.
1815 */
1816static bool copy_data(struct prb_data_ring *data_ring,
1817 struct prb_data_blk_lpos *blk_lpos, u16 len, char *buf,
1818 unsigned int buf_size, unsigned int *line_count)
1819{
1820 unsigned int data_size;
1821 const char *data;
1822
1823 /* Caller might not want any data. */
1824 if ((!buf || !buf_size) && !line_count)
1825 return true;
1826
1827 data = get_data(data_ring, blk_lpos, data_size: &data_size);
1828 if (!data)
1829 return false;
1830
1831 /*
1832 * Actual cannot be less than expected. It can be more than expected
1833 * because of the trailing alignment padding.
1834 *
1835 * Note that invalid @len values can occur because the caller loads
1836 * the value during an allowed data race.
1837 */
1838 if (data_size < (unsigned int)len)
1839 return false;
1840
1841 /* Caller interested in the line count? */
1842 if (line_count)
1843 *line_count = count_lines(text: data, text_size: len);
1844
1845 /* Caller interested in the data content? */
1846 if (!buf || !buf_size)
1847 return true;
1848
1849 data_size = min_t(unsigned int, buf_size, len);
1850
1851 memcpy(&buf[0], data, data_size); /* LMM(copy_data:A) */
1852 return true;
1853}
1854
1855/*
1856 * This is an extended version of desc_read(). It gets a copy of a specified
1857 * descriptor. However, it also verifies that the record is finalized and has
1858 * the sequence number @seq. On success, 0 is returned.
1859 *
1860 * Error return values:
1861 * -EINVAL: A finalized record with sequence number @seq does not exist.
1862 * -ENOENT: A finalized record with sequence number @seq exists, but its data
1863 * is not available. This is a valid record, so readers should
1864 * continue with the next record.
1865 */
1866static int desc_read_finalized_seq(struct prb_desc_ring *desc_ring,
1867 unsigned long id, u64 seq,
1868 struct prb_desc *desc_out)
1869{
1870 struct prb_data_blk_lpos *blk_lpos = &desc_out->text_blk_lpos;
1871 enum desc_state d_state;
1872 u64 s;
1873
1874 d_state = desc_read(desc_ring, id, desc_out, seq_out: &s, NULL);
1875
1876 /*
1877 * An unexpected @id (desc_miss) or @seq mismatch means the record
1878 * does not exist. A descriptor in the reserved or committed state
1879 * means the record does not yet exist for the reader.
1880 */
1881 if (d_state == desc_miss ||
1882 d_state == desc_reserved ||
1883 d_state == desc_committed ||
1884 s != seq) {
1885 return -EINVAL;
1886 }
1887
1888 /*
1889 * A descriptor in the reusable state may no longer have its data
1890 * available; report it as existing but with lost data. Or the record
1891 * may actually be a record with lost data.
1892 */
1893 if (d_state == desc_reusable ||
1894 (blk_lpos->begin == FAILED_LPOS && blk_lpos->next == FAILED_LPOS)) {
1895 return -ENOENT;
1896 }
1897
1898 return 0;
1899}
1900
1901/*
1902 * Copy the ringbuffer data from the record with @seq to the provided
1903 * @r buffer. On success, 0 is returned.
1904 *
1905 * See desc_read_finalized_seq() for error return values.
1906 */
1907static int prb_read(struct printk_ringbuffer *rb, u64 seq,
1908 struct printk_record *r, unsigned int *line_count)
1909{
1910 struct prb_desc_ring *desc_ring = &rb->desc_ring;
1911 struct printk_info *info = to_info(desc_ring, n: seq);
1912 struct prb_desc *rdesc = to_desc(desc_ring, n: seq);
1913 atomic_long_t *state_var = &rdesc->state_var;
1914 struct prb_desc desc;
1915 unsigned long id;
1916 int err;
1917
1918 /* Extract the ID, used to specify the descriptor to read. */
1919 id = DESC_ID(atomic_long_read(state_var));
1920
1921 /* Get a local copy of the correct descriptor (if available). */
1922 err = desc_read_finalized_seq(desc_ring, id, seq, desc_out: &desc);
1923
1924 /*
1925 * If @r is NULL, the caller is only interested in the availability
1926 * of the record.
1927 */
1928 if (err || !r)
1929 return err;
1930
1931 /* If requested, copy meta data. */
1932 if (r->info)
1933 memcpy(r->info, info, sizeof(*(r->info)));
1934
1935 /* Copy text data. If it fails, this is a data-less record. */
1936 if (!copy_data(data_ring: &rb->text_data_ring, blk_lpos: &desc.text_blk_lpos, len: info->text_len,
1937 buf: r->text_buf, buf_size: r->text_buf_size, line_count)) {
1938 return -ENOENT;
1939 }
1940
1941 /* Ensure the record is still finalized and has the same @seq. */
1942 return desc_read_finalized_seq(desc_ring, id, seq, desc_out: &desc);
1943}
1944
1945/* Get the sequence number of the tail descriptor. */
1946u64 prb_first_seq(struct printk_ringbuffer *rb)
1947{
1948 struct prb_desc_ring *desc_ring = &rb->desc_ring;
1949 enum desc_state d_state;
1950 struct prb_desc desc;
1951 unsigned long id;
1952 u64 seq;
1953
1954 for (;;) {
1955 id = atomic_long_read(v: &rb->desc_ring.tail_id); /* LMM(prb_first_seq:A) */
1956
1957 d_state = desc_read(desc_ring, id, desc_out: &desc, seq_out: &seq, NULL); /* LMM(prb_first_seq:B) */
1958
1959 /*
1960 * This loop will not be infinite because the tail is
1961 * _always_ in the finalized or reusable state.
1962 */
1963 if (d_state == desc_finalized || d_state == desc_reusable)
1964 break;
1965
1966 /*
1967 * Guarantee the last state load from desc_read() is before
1968 * reloading @tail_id in order to see a new tail in the case
1969 * that the descriptor has been recycled. This pairs with
1970 * desc_reserve:D.
1971 *
1972 * Memory barrier involvement:
1973 *
1974 * If prb_first_seq:B reads from desc_reserve:F, then
1975 * prb_first_seq:A reads from desc_push_tail:B.
1976 *
1977 * Relies on:
1978 *
1979 * MB from desc_push_tail:B to desc_reserve:F
1980 * matching
1981 * RMB prb_first_seq:B to prb_first_seq:A
1982 */
1983 smp_rmb(); /* LMM(prb_first_seq:C) */
1984 }
1985
1986 return seq;
1987}
1988
1989/**
1990 * prb_next_reserve_seq() - Get the sequence number after the most recently
1991 * reserved record.
1992 *
1993 * @rb: The ringbuffer to get the sequence number from.
1994 *
1995 * This is the public function available to readers to see what sequence
1996 * number will be assigned to the next reserved record.
1997 *
1998 * Note that depending on the situation, this value can be equal to or
1999 * higher than the sequence number returned by prb_next_seq().
2000 *
2001 * Context: Any context.
2002 * Return: The sequence number that will be assigned to the next record
2003 * reserved.
2004 */
2005u64 prb_next_reserve_seq(struct printk_ringbuffer *rb)
2006{
2007 struct prb_desc_ring *desc_ring = &rb->desc_ring;
2008 unsigned long last_finalized_id;
2009 atomic_long_t *state_var;
2010 u64 last_finalized_seq;
2011 unsigned long head_id;
2012 struct prb_desc desc;
2013 unsigned long diff;
2014 struct prb_desc *d;
2015 int err;
2016
2017 /*
2018 * It may not be possible to read a sequence number for @head_id.
2019 * So the ID of @last_finailzed_seq is used to calculate what the
2020 * sequence number of @head_id will be.
2021 */
2022
2023try_again:
2024 last_finalized_seq = desc_last_finalized_seq(rb);
2025
2026 /*
2027 * @head_id is loaded after @last_finalized_seq to ensure that
2028 * it points to the record with @last_finalized_seq or newer.
2029 *
2030 * Memory barrier involvement:
2031 *
2032 * If desc_last_finalized_seq:A reads from
2033 * desc_update_last_finalized:A, then
2034 * prb_next_reserve_seq:A reads from desc_reserve:D.
2035 *
2036 * Relies on:
2037 *
2038 * RELEASE from desc_reserve:D to desc_update_last_finalized:A
2039 * matching
2040 * ACQUIRE from desc_last_finalized_seq:A to prb_next_reserve_seq:A
2041 *
2042 * Note: desc_reserve:D and desc_update_last_finalized:A can be
2043 * different CPUs. However, the desc_update_last_finalized:A CPU
2044 * (which performs the release) must have previously seen
2045 * desc_read:C, which implies desc_reserve:D can be seen.
2046 */
2047 head_id = atomic_long_read(v: &desc_ring->head_id); /* LMM(prb_next_reserve_seq:A) */
2048
2049 d = to_desc(desc_ring, n: last_finalized_seq);
2050 state_var = &d->state_var;
2051
2052 /* Extract the ID, used to specify the descriptor to read. */
2053 last_finalized_id = DESC_ID(atomic_long_read(state_var));
2054
2055 /* Ensure @last_finalized_id is correct. */
2056 err = desc_read_finalized_seq(desc_ring, id: last_finalized_id, seq: last_finalized_seq, desc_out: &desc);
2057
2058 if (err == -EINVAL) {
2059 if (last_finalized_seq == 0) {
2060 /*
2061 * No record has been finalized or even reserved yet.
2062 *
2063 * The @head_id is initialized such that the first
2064 * increment will yield the first record (seq=0).
2065 * Handle it separately to avoid a negative @diff
2066 * below.
2067 */
2068 if (head_id == DESC0_ID(desc_ring->count_bits))
2069 return 0;
2070
2071 /*
2072 * One or more descriptors are already reserved. Use
2073 * the descriptor ID of the first one (@seq=0) for
2074 * the @diff below.
2075 */
2076 last_finalized_id = DESC0_ID(desc_ring->count_bits) + 1;
2077 } else {
2078 /* Record must have been overwritten. Try again. */
2079 goto try_again;
2080 }
2081 }
2082
2083 /* Diff of known descriptor IDs to compute related sequence numbers. */
2084 diff = head_id - last_finalized_id;
2085
2086 /*
2087 * @head_id points to the most recently reserved record, but this
2088 * function returns the sequence number that will be assigned to the
2089 * next (not yet reserved) record. Thus +1 is needed.
2090 */
2091 return (last_finalized_seq + diff + 1);
2092}
2093
2094/*
2095 * Non-blocking read of a record.
2096 *
2097 * On success @seq is updated to the record that was read and (if provided)
2098 * @r and @line_count will contain the read/calculated data.
2099 *
2100 * On failure @seq is updated to a record that is not yet available to the
2101 * reader, but it will be the next record available to the reader.
2102 *
2103 * Note: When the current CPU is in panic, this function will skip over any
2104 * non-existent/non-finalized records in order to allow the panic CPU
2105 * to print any and all records that have been finalized.
2106 */
2107static bool _prb_read_valid(struct printk_ringbuffer *rb, u64 *seq,
2108 struct printk_record *r, unsigned int *line_count)
2109{
2110 u64 tail_seq;
2111 int err;
2112
2113 while ((err = prb_read(rb, seq: *seq, r, line_count))) {
2114 tail_seq = prb_first_seq(rb);
2115
2116 if (*seq < tail_seq) {
2117 /*
2118 * Behind the tail. Catch up and try again. This
2119 * can happen for -ENOENT and -EINVAL cases.
2120 */
2121 *seq = tail_seq;
2122
2123 } else if (err == -ENOENT) {
2124 /* Record exists, but the data was lost. Skip. */
2125 (*seq)++;
2126
2127 } else {
2128 /*
2129 * Non-existent/non-finalized record. Must stop.
2130 *
2131 * For panic situations it cannot be expected that
2132 * non-finalized records will become finalized. But
2133 * there may be other finalized records beyond that
2134 * need to be printed for a panic situation. If this
2135 * is the panic CPU, skip this
2136 * non-existent/non-finalized record unless it is
2137 * at or beyond the head, in which case it is not
2138 * possible to continue.
2139 *
2140 * Note that new messages printed on panic CPU are
2141 * finalized when we are here. The only exception
2142 * might be the last message without trailing newline.
2143 * But it would have the sequence number returned
2144 * by "prb_next_reserve_seq() - 1".
2145 */
2146 if (this_cpu_in_panic() && ((*seq + 1) < prb_next_reserve_seq(rb)))
2147 (*seq)++;
2148 else
2149 return false;
2150 }
2151 }
2152
2153 return true;
2154}
2155
2156/**
2157 * prb_read_valid() - Non-blocking read of a requested record or (if gone)
2158 * the next available record.
2159 *
2160 * @rb: The ringbuffer to read from.
2161 * @seq: The sequence number of the record to read.
2162 * @r: A record data buffer to store the read record to.
2163 *
2164 * This is the public function available to readers to read a record.
2165 *
2166 * The reader provides the @info and @text_buf buffers of @r to be
2167 * filled in. Any of the buffer pointers can be set to NULL if the reader
2168 * is not interested in that data. To ensure proper initialization of @r,
2169 * prb_rec_init_rd() should be used.
2170 *
2171 * Context: Any context.
2172 * Return: true if a record was read, otherwise false.
2173 *
2174 * On success, the reader must check r->info.seq to see which record was
2175 * actually read. This allows the reader to detect dropped records.
2176 *
2177 * Failure means @seq refers to a record not yet available to the reader.
2178 */
2179bool prb_read_valid(struct printk_ringbuffer *rb, u64 seq,
2180 struct printk_record *r)
2181{
2182 return _prb_read_valid(rb, seq: &seq, r, NULL);
2183}
2184
2185/**
2186 * prb_read_valid_info() - Non-blocking read of meta data for a requested
2187 * record or (if gone) the next available record.
2188 *
2189 * @rb: The ringbuffer to read from.
2190 * @seq: The sequence number of the record to read.
2191 * @info: A buffer to store the read record meta data to.
2192 * @line_count: A buffer to store the number of lines in the record text.
2193 *
2194 * This is the public function available to readers to read only the
2195 * meta data of a record.
2196 *
2197 * The reader provides the @info, @line_count buffers to be filled in.
2198 * Either of the buffer pointers can be set to NULL if the reader is not
2199 * interested in that data.
2200 *
2201 * Context: Any context.
2202 * Return: true if a record's meta data was read, otherwise false.
2203 *
2204 * On success, the reader must check info->seq to see which record meta data
2205 * was actually read. This allows the reader to detect dropped records.
2206 *
2207 * Failure means @seq refers to a record not yet available to the reader.
2208 */
2209bool prb_read_valid_info(struct printk_ringbuffer *rb, u64 seq,
2210 struct printk_info *info, unsigned int *line_count)
2211{
2212 struct printk_record r;
2213
2214 prb_rec_init_rd(r: &r, info, NULL, text_buf_size: 0);
2215
2216 return _prb_read_valid(rb, seq: &seq, r: &r, line_count);
2217}
2218
2219/**
2220 * prb_first_valid_seq() - Get the sequence number of the oldest available
2221 * record.
2222 *
2223 * @rb: The ringbuffer to get the sequence number from.
2224 *
2225 * This is the public function available to readers to see what the
2226 * first/oldest valid sequence number is.
2227 *
2228 * This provides readers a starting point to begin iterating the ringbuffer.
2229 *
2230 * Context: Any context.
2231 * Return: The sequence number of the first/oldest record or, if the
2232 * ringbuffer is empty, 0 is returned.
2233 */
2234u64 prb_first_valid_seq(struct printk_ringbuffer *rb)
2235{
2236 u64 seq = 0;
2237
2238 if (!_prb_read_valid(rb, seq: &seq, NULL, NULL))
2239 return 0;
2240
2241 return seq;
2242}
2243
2244/**
2245 * prb_next_seq() - Get the sequence number after the last available record.
2246 *
2247 * @rb: The ringbuffer to get the sequence number from.
2248 *
2249 * This is the public function available to readers to see what the next
2250 * newest sequence number available to readers will be.
2251 *
2252 * This provides readers a sequence number to jump to if all currently
2253 * available records should be skipped. It is guaranteed that all records
2254 * previous to the returned value have been finalized and are (or were)
2255 * available to the reader.
2256 *
2257 * Context: Any context.
2258 * Return: The sequence number of the next newest (not yet available) record
2259 * for readers.
2260 */
2261u64 prb_next_seq(struct printk_ringbuffer *rb)
2262{
2263 u64 seq;
2264
2265 seq = desc_last_finalized_seq(rb);
2266
2267 /*
2268 * Begin searching after the last finalized record.
2269 *
2270 * On 0, the search must begin at 0 because of hack#2
2271 * of the bootstrapping phase it is not known if a
2272 * record at index 0 exists.
2273 */
2274 if (seq != 0)
2275 seq++;
2276
2277 /*
2278 * The information about the last finalized @seq might be inaccurate.
2279 * Search forward to find the current one.
2280 */
2281 while (_prb_read_valid(rb, seq: &seq, NULL, NULL))
2282 seq++;
2283
2284 return seq;
2285}
2286
2287/**
2288 * prb_init() - Initialize a ringbuffer to use provided external buffers.
2289 *
2290 * @rb: The ringbuffer to initialize.
2291 * @text_buf: The data buffer for text data.
2292 * @textbits: The size of @text_buf as a power-of-2 value.
2293 * @descs: The descriptor buffer for ringbuffer records.
2294 * @descbits: The count of @descs items as a power-of-2 value.
2295 * @infos: The printk_info buffer for ringbuffer records.
2296 *
2297 * This is the public function available to writers to setup a ringbuffer
2298 * during runtime using provided buffers.
2299 *
2300 * This must match the initialization of DEFINE_PRINTKRB().
2301 *
2302 * Context: Any context.
2303 */
2304void prb_init(struct printk_ringbuffer *rb,
2305 char *text_buf, unsigned int textbits,
2306 struct prb_desc *descs, unsigned int descbits,
2307 struct printk_info *infos)
2308{
2309 memset(descs, 0, _DESCS_COUNT(descbits) * sizeof(descs[0]));
2310 memset(infos, 0, _DESCS_COUNT(descbits) * sizeof(infos[0]));
2311
2312 rb->desc_ring.count_bits = descbits;
2313 rb->desc_ring.descs = descs;
2314 rb->desc_ring.infos = infos;
2315 atomic_long_set(v: &rb->desc_ring.head_id, DESC0_ID(descbits));
2316 atomic_long_set(v: &rb->desc_ring.tail_id, DESC0_ID(descbits));
2317 atomic_long_set(v: &rb->desc_ring.last_finalized_seq, i: 0);
2318
2319 rb->text_data_ring.size_bits = textbits;
2320 rb->text_data_ring.data = text_buf;
2321 atomic_long_set(v: &rb->text_data_ring.head_lpos, BLK0_LPOS(textbits));
2322 atomic_long_set(v: &rb->text_data_ring.tail_lpos, BLK0_LPOS(textbits));
2323
2324 atomic_long_set(v: &rb->fail, i: 0);
2325
2326 atomic_long_set(v: &(descs[_DESCS_COUNT(descbits) - 1].state_var), DESC0_SV(descbits));
2327 descs[_DESCS_COUNT(descbits) - 1].text_blk_lpos.begin = FAILED_LPOS;
2328 descs[_DESCS_COUNT(descbits) - 1].text_blk_lpos.next = FAILED_LPOS;
2329
2330 infos[0].seq = -(u64)_DESCS_COUNT(descbits);
2331 infos[_DESCS_COUNT(descbits) - 1].seq = 0;
2332}
2333
2334/**
2335 * prb_record_text_space() - Query the full actual used ringbuffer space for
2336 * the text data of a reserved entry.
2337 *
2338 * @e: The successfully reserved entry to query.
2339 *
2340 * This is the public function available to writers to see how much actual
2341 * space is used in the ringbuffer to store the text data of the specified
2342 * entry.
2343 *
2344 * This function is only valid if @e has been successfully reserved using
2345 * prb_reserve().
2346 *
2347 * Context: Any context.
2348 * Return: The size in bytes used by the text data of the associated record.
2349 */
2350unsigned int prb_record_text_space(struct prb_reserved_entry *e)
2351{
2352 return e->text_space;
2353}
2354

source code of linux/kernel/printk/printk_ringbuffer.c