1// SPDX-License-Identifier: GPL-2.0-only
2
3/* PIPAPO: PIle PAcket POlicies: set for arbitrary concatenations of ranges
4 *
5 * Copyright (c) 2019-2020 Red Hat GmbH
6 *
7 * Author: Stefano Brivio <sbrivio@redhat.com>
8 */
9
10/**
11 * DOC: Theory of Operation
12 *
13 *
14 * Problem
15 * -------
16 *
17 * Match packet bytes against entries composed of ranged or non-ranged packet
18 * field specifiers, mapping them to arbitrary references. For example:
19 *
20 * ::
21 *
22 * --- fields --->
23 * | [net],[port],[net]... => [reference]
24 * entries [net],[port],[net]... => [reference]
25 * | [net],[port],[net]... => [reference]
26 * V ...
27 *
28 * where [net] fields can be IP ranges or netmasks, and [port] fields are port
29 * ranges. Arbitrary packet fields can be matched.
30 *
31 *
32 * Algorithm Overview
33 * ------------------
34 *
35 * This algorithm is loosely inspired by [Ligatti 2010], and fundamentally
36 * relies on the consideration that every contiguous range in a space of b bits
37 * can be converted into b * 2 netmasks, from Theorem 3 in [Rottenstreich 2010],
38 * as also illustrated in Section 9 of [Kogan 2014].
39 *
40 * Classification against a number of entries, that require matching given bits
41 * of a packet field, is performed by grouping those bits in sets of arbitrary
42 * size, and classifying packet bits one group at a time.
43 *
44 * Example:
45 * to match the source port (16 bits) of a packet, we can divide those 16 bits
46 * in 4 groups of 4 bits each. Given the entry:
47 * 0000 0001 0101 1001
48 * and a packet with source port:
49 * 0000 0001 1010 1001
50 * first and second groups match, but the third doesn't. We conclude that the
51 * packet doesn't match the given entry.
52 *
53 * Translate the set to a sequence of lookup tables, one per field. Each table
54 * has two dimensions: bit groups to be matched for a single packet field, and
55 * all the possible values of said groups (buckets). Input entries are
56 * represented as one or more rules, depending on the number of composing
57 * netmasks for the given field specifier, and a group match is indicated as a
58 * set bit, with number corresponding to the rule index, in all the buckets
59 * whose value matches the entry for a given group.
60 *
61 * Rules are mapped between fields through an array of x, n pairs, with each
62 * item mapping a matched rule to one or more rules. The position of the pair in
63 * the array indicates the matched rule to be mapped to the next field, x
64 * indicates the first rule index in the next field, and n the amount of
65 * next-field rules the current rule maps to.
66 *
67 * The mapping array for the last field maps to the desired references.
68 *
69 * To match, we perform table lookups using the values of grouped packet bits,
70 * and use a sequence of bitwise operations to progressively evaluate rule
71 * matching.
72 *
73 * A stand-alone, reference implementation, also including notes about possible
74 * future optimisations, is available at:
75 * https://pipapo.lameexcu.se/
76 *
77 * Insertion
78 * ---------
79 *
80 * - For each packet field:
81 *
82 * - divide the b packet bits we want to classify into groups of size t,
83 * obtaining ceil(b / t) groups
84 *
85 * Example: match on destination IP address, with t = 4: 32 bits, 8 groups
86 * of 4 bits each
87 *
88 * - allocate a lookup table with one column ("bucket") for each possible
89 * value of a group, and with one row for each group
90 *
91 * Example: 8 groups, 2^4 buckets:
92 *
93 * ::
94 *
95 * bucket
96 * group 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
97 * 0
98 * 1
99 * 2
100 * 3
101 * 4
102 * 5
103 * 6
104 * 7
105 *
106 * - map the bits we want to classify for the current field, for a given
107 * entry, to a single rule for non-ranged and netmask set items, and to one
108 * or multiple rules for ranges. Ranges are expanded to composing netmasks
109 * by pipapo_expand().
110 *
111 * Example: 2 entries, 10.0.0.5:1024 and 192.168.1.0-192.168.2.1:2048
112 * - rule #0: 10.0.0.5
113 * - rule #1: 192.168.1.0/24
114 * - rule #2: 192.168.2.0/31
115 *
116 * - insert references to the rules in the lookup table, selecting buckets
117 * according to bit values of a rule in the given group. This is done by
118 * pipapo_insert().
119 *
120 * Example: given:
121 * - rule #0: 10.0.0.5 mapping to buckets
122 * < 0 10 0 0 0 0 0 5 >
123 * - rule #1: 192.168.1.0/24 mapping to buckets
124 * < 12 0 10 8 0 1 < 0..15 > < 0..15 > >
125 * - rule #2: 192.168.2.0/31 mapping to buckets
126 * < 12 0 10 8 0 2 0 < 0..1 > >
127 *
128 * these bits are set in the lookup table:
129 *
130 * ::
131 *
132 * bucket
133 * group 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
134 * 0 0 1,2
135 * 1 1,2 0
136 * 2 0 1,2
137 * 3 0 1,2
138 * 4 0,1,2
139 * 5 0 1 2
140 * 6 0,1,2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
141 * 7 1,2 1,2 1 1 1 0,1 1 1 1 1 1 1 1 1 1 1
142 *
143 * - if this is not the last field in the set, fill a mapping array that maps
144 * rules from the lookup table to rules belonging to the same entry in
145 * the next lookup table, done by pipapo_map().
146 *
147 * Note that as rules map to contiguous ranges of rules, given how netmask
148 * expansion and insertion is performed, &union nft_pipapo_map_bucket stores
149 * this information as pairs of first rule index, rule count.
150 *
151 * Example: 2 entries, 10.0.0.5:1024 and 192.168.1.0-192.168.2.1:2048,
152 * given lookup table #0 for field 0 (see example above):
153 *
154 * ::
155 *
156 * bucket
157 * group 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
158 * 0 0 1,2
159 * 1 1,2 0
160 * 2 0 1,2
161 * 3 0 1,2
162 * 4 0,1,2
163 * 5 0 1 2
164 * 6 0,1,2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
165 * 7 1,2 1,2 1 1 1 0,1 1 1 1 1 1 1 1 1 1 1
166 *
167 * and lookup table #1 for field 1 with:
168 * - rule #0: 1024 mapping to buckets
169 * < 0 0 4 0 >
170 * - rule #1: 2048 mapping to buckets
171 * < 0 0 5 0 >
172 *
173 * ::
174 *
175 * bucket
176 * group 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
177 * 0 0,1
178 * 1 0,1
179 * 2 0 1
180 * 3 0,1
181 *
182 * we need to map rules for 10.0.0.5 in lookup table #0 (rule #0) to 1024
183 * in lookup table #1 (rule #0) and rules for 192.168.1.0-192.168.2.1
184 * (rules #1, #2) to 2048 in lookup table #2 (rule #1):
185 *
186 * ::
187 *
188 * rule indices in current field: 0 1 2
189 * map to rules in next field: 0 1 1
190 *
191 * - if this is the last field in the set, fill a mapping array that maps
192 * rules from the last lookup table to element pointers, also done by
193 * pipapo_map().
194 *
195 * Note that, in this implementation, we have two elements (start, end) for
196 * each entry. The pointer to the end element is stored in this array, and
197 * the pointer to the start element is linked from it.
198 *
199 * Example: entry 10.0.0.5:1024 has a corresponding &struct nft_pipapo_elem
200 * pointer, 0x66, and element for 192.168.1.0-192.168.2.1:2048 is at 0x42.
201 * From the rules of lookup table #1 as mapped above:
202 *
203 * ::
204 *
205 * rule indices in last field: 0 1
206 * map to elements: 0x66 0x42
207 *
208 *
209 * Matching
210 * --------
211 *
212 * We use a result bitmap, with the size of a single lookup table bucket, to
213 * represent the matching state that applies at every algorithm step. This is
214 * done by pipapo_lookup().
215 *
216 * - For each packet field:
217 *
218 * - start with an all-ones result bitmap (res_map in pipapo_lookup())
219 *
220 * - perform a lookup into the table corresponding to the current field,
221 * for each group, and at every group, AND the current result bitmap with
222 * the value from the lookup table bucket
223 *
224 * ::
225 *
226 * Example: 192.168.1.5 < 12 0 10 8 0 1 0 5 >, with lookup table from
227 * insertion examples.
228 * Lookup table buckets are at least 3 bits wide, we'll assume 8 bits for
229 * convenience in this example. Initial result bitmap is 0xff, the steps
230 * below show the value of the result bitmap after each group is processed:
231 *
232 * bucket
233 * group 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
234 * 0 0 1,2
235 * result bitmap is now: 0xff & 0x6 [bucket 12] = 0x6
236 *
237 * 1 1,2 0
238 * result bitmap is now: 0x6 & 0x6 [bucket 0] = 0x6
239 *
240 * 2 0 1,2
241 * result bitmap is now: 0x6 & 0x6 [bucket 10] = 0x6
242 *
243 * 3 0 1,2
244 * result bitmap is now: 0x6 & 0x6 [bucket 8] = 0x6
245 *
246 * 4 0,1,2
247 * result bitmap is now: 0x6 & 0x7 [bucket 0] = 0x6
248 *
249 * 5 0 1 2
250 * result bitmap is now: 0x6 & 0x2 [bucket 1] = 0x2
251 *
252 * 6 0,1,2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
253 * result bitmap is now: 0x2 & 0x7 [bucket 0] = 0x2
254 *
255 * 7 1,2 1,2 1 1 1 0,1 1 1 1 1 1 1 1 1 1 1
256 * final result bitmap for this field is: 0x2 & 0x3 [bucket 5] = 0x2
257 *
258 * - at the next field, start with a new, all-zeroes result bitmap. For each
259 * bit set in the previous result bitmap, fill the new result bitmap
260 * (fill_map in pipapo_lookup()) with the rule indices from the
261 * corresponding buckets of the mapping field for this field, done by
262 * pipapo_refill()
263 *
264 * Example: with mapping table from insertion examples, with the current
265 * result bitmap from the previous example, 0x02:
266 *
267 * ::
268 *
269 * rule indices in current field: 0 1 2
270 * map to rules in next field: 0 1 1
271 *
272 * the new result bitmap will be 0x02: rule 1 was set, and rule 1 will be
273 * set.
274 *
275 * We can now extend this example to cover the second iteration of the step
276 * above (lookup and AND bitmap): assuming the port field is
277 * 2048 < 0 0 5 0 >, with starting result bitmap 0x2, and lookup table
278 * for "port" field from pre-computation example:
279 *
280 * ::
281 *
282 * bucket
283 * group 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
284 * 0 0,1
285 * 1 0,1
286 * 2 0 1
287 * 3 0,1
288 *
289 * operations are: 0x2 & 0x3 [bucket 0] & 0x3 [bucket 0] & 0x2 [bucket 5]
290 * & 0x3 [bucket 0], resulting bitmap is 0x2.
291 *
292 * - if this is the last field in the set, look up the value from the mapping
293 * array corresponding to the final result bitmap
294 *
295 * Example: 0x2 resulting bitmap from 192.168.1.5:2048, mapping array for
296 * last field from insertion example:
297 *
298 * ::
299 *
300 * rule indices in last field: 0 1
301 * map to elements: 0x66 0x42
302 *
303 * the matching element is at 0x42.
304 *
305 *
306 * References
307 * ----------
308 *
309 * [Ligatti 2010]
310 * A Packet-classification Algorithm for Arbitrary Bitmask Rules, with
311 * Automatic Time-space Tradeoffs
312 * Jay Ligatti, Josh Kuhn, and Chris Gage.
313 * Proceedings of the IEEE International Conference on Computer
314 * Communication Networks (ICCCN), August 2010.
315 * https://www.cse.usf.edu/~ligatti/papers/grouper-conf.pdf
316 *
317 * [Rottenstreich 2010]
318 * Worst-Case TCAM Rule Expansion
319 * Ori Rottenstreich and Isaac Keslassy.
320 * 2010 Proceedings IEEE INFOCOM, San Diego, CA, 2010.
321 * http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.212.4592&rep=rep1&type=pdf
322 *
323 * [Kogan 2014]
324 * SAX-PAC (Scalable And eXpressive PAcket Classification)
325 * Kirill Kogan, Sergey Nikolenko, Ori Rottenstreich, William Culhane,
326 * and Patrick Eugster.
327 * Proceedings of the 2014 ACM conference on SIGCOMM, August 2014.
328 * https://www.sigcomm.org/sites/default/files/ccr/papers/2014/August/2619239-2626294.pdf
329 */
330
331#include <linux/kernel.h>
332#include <linux/init.h>
333#include <linux/module.h>
334#include <linux/netlink.h>
335#include <linux/netfilter.h>
336#include <linux/netfilter/nf_tables.h>
337#include <net/netfilter/nf_tables_core.h>
338#include <uapi/linux/netfilter/nf_tables.h>
339#include <linux/bitmap.h>
340#include <linux/bitops.h>
341
342#include "nft_set_pipapo_avx2.h"
343#include "nft_set_pipapo.h"
344
345/**
346 * pipapo_refill() - For each set bit, set bits from selected mapping table item
347 * @map: Bitmap to be scanned for set bits
348 * @len: Length of bitmap in longs
349 * @rules: Number of rules in field
350 * @dst: Destination bitmap
351 * @mt: Mapping table containing bit set specifiers
352 * @match_only: Find a single bit and return, don't fill
353 *
354 * Iteration over set bits with __builtin_ctzl(): Daniel Lemire, public domain.
355 *
356 * For each bit set in map, select the bucket from mapping table with index
357 * corresponding to the position of the bit set. Use start bit and amount of
358 * bits specified in bucket to fill region in dst.
359 *
360 * Return: -1 on no match, bit position on 'match_only', 0 otherwise.
361 */
362int pipapo_refill(unsigned long *map, unsigned int len, unsigned int rules,
363 unsigned long *dst,
364 const union nft_pipapo_map_bucket *mt, bool match_only)
365{
366 unsigned long bitset;
367 unsigned int k;
368 int ret = -1;
369
370 for (k = 0; k < len; k++) {
371 bitset = map[k];
372 while (bitset) {
373 unsigned long t = bitset & -bitset;
374 int r = __builtin_ctzl(bitset);
375 int i = k * BITS_PER_LONG + r;
376
377 if (unlikely(i >= rules)) {
378 map[k] = 0;
379 return -1;
380 }
381
382 if (match_only) {
383 bitmap_clear(map, start: i, nbits: 1);
384 return i;
385 }
386
387 ret = 0;
388
389 bitmap_set(map: dst, start: mt[i].to, nbits: mt[i].n);
390
391 bitset ^= t;
392 }
393 map[k] = 0;
394 }
395
396 return ret;
397}
398
399/**
400 * nft_pipapo_lookup() - Lookup function
401 * @net: Network namespace
402 * @set: nftables API set representation
403 * @key: nftables API element representation containing key data
404 * @ext: nftables API extension pointer, filled with matching reference
405 *
406 * For more details, see DOC: Theory of Operation.
407 *
408 * Return: true on match, false otherwise.
409 */
410bool nft_pipapo_lookup(const struct net *net, const struct nft_set *set,
411 const u32 *key, const struct nft_set_ext **ext)
412{
413 struct nft_pipapo *priv = nft_set_priv(set);
414 struct nft_pipapo_scratch *scratch;
415 unsigned long *res_map, *fill_map;
416 u8 genmask = nft_genmask_cur(net);
417 const struct nft_pipapo_match *m;
418 const struct nft_pipapo_field *f;
419 const u8 *rp = (const u8 *)key;
420 bool map_index;
421 int i;
422
423 local_bh_disable();
424
425 m = rcu_dereference(priv->match);
426
427 if (unlikely(!m || !*raw_cpu_ptr(m->scratch)))
428 goto out;
429
430 scratch = *raw_cpu_ptr(m->scratch);
431
432 map_index = scratch->map_index;
433
434 res_map = scratch->map + (map_index ? m->bsize_max : 0);
435 fill_map = scratch->map + (map_index ? 0 : m->bsize_max);
436
437 memset(res_map, 0xff, m->bsize_max * sizeof(*res_map));
438
439 nft_pipapo_for_each_field(f, i, m) {
440 bool last = i == m->field_count - 1;
441 int b;
442
443 /* For each bit group: select lookup table bucket depending on
444 * packet bytes value, then AND bucket value
445 */
446 if (likely(f->bb == 8))
447 pipapo_and_field_buckets_8bit(f, dst: res_map, data: rp);
448 else
449 pipapo_and_field_buckets_4bit(f, dst: res_map, data: rp);
450 NFT_PIPAPO_GROUP_BITS_ARE_8_OR_4;
451
452 rp += f->groups / NFT_PIPAPO_GROUPS_PER_BYTE(f);
453
454 /* Now populate the bitmap for the next field, unless this is
455 * the last field, in which case return the matched 'ext'
456 * pointer if any.
457 *
458 * Now res_map contains the matching bitmap, and fill_map is the
459 * bitmap for the next field.
460 */
461next_match:
462 b = pipapo_refill(map: res_map, len: f->bsize, rules: f->rules, dst: fill_map, mt: f->mt,
463 match_only: last);
464 if (b < 0) {
465 scratch->map_index = map_index;
466 local_bh_enable();
467
468 return false;
469 }
470
471 if (last) {
472 *ext = &f->mt[b].e->ext;
473 if (unlikely(nft_set_elem_expired(*ext) ||
474 !nft_set_elem_active(*ext, genmask)))
475 goto next_match;
476
477 /* Last field: we're just returning the key without
478 * filling the initial bitmap for the next field, so the
479 * current inactive bitmap is clean and can be reused as
480 * *next* bitmap (not initial) for the next packet.
481 */
482 scratch->map_index = map_index;
483 local_bh_enable();
484
485 return true;
486 }
487
488 /* Swap bitmap indices: res_map is the initial bitmap for the
489 * next field, and fill_map is guaranteed to be all-zeroes at
490 * this point.
491 */
492 map_index = !map_index;
493 swap(res_map, fill_map);
494
495 rp += NFT_PIPAPO_GROUPS_PADDING(f);
496 }
497
498out:
499 local_bh_enable();
500 return false;
501}
502
503/**
504 * pipapo_get() - Get matching element reference given key data
505 * @net: Network namespace
506 * @set: nftables API set representation
507 * @data: Key data to be matched against existing elements
508 * @genmask: If set, check that element is active in given genmask
509 * @tstamp: timestamp to check for expired elements
510 * @gfp: the type of memory to allocate (see kmalloc).
511 *
512 * This is essentially the same as the lookup function, except that it matches
513 * key data against the uncommitted copy and doesn't use preallocated maps for
514 * bitmap results.
515 *
516 * Return: pointer to &struct nft_pipapo_elem on match, error pointer otherwise.
517 */
518static struct nft_pipapo_elem *pipapo_get(const struct net *net,
519 const struct nft_set *set,
520 const u8 *data, u8 genmask,
521 u64 tstamp, gfp_t gfp)
522{
523 struct nft_pipapo_elem *ret = ERR_PTR(error: -ENOENT);
524 struct nft_pipapo *priv = nft_set_priv(set);
525 unsigned long *res_map, *fill_map = NULL;
526 const struct nft_pipapo_match *m;
527 const struct nft_pipapo_field *f;
528 int i;
529
530 m = priv->clone;
531 if (m->bsize_max == 0)
532 return ret;
533
534 res_map = kmalloc_array(n: m->bsize_max, size: sizeof(*res_map), flags: gfp);
535 if (!res_map) {
536 ret = ERR_PTR(error: -ENOMEM);
537 goto out;
538 }
539
540 fill_map = kcalloc(n: m->bsize_max, size: sizeof(*res_map), flags: gfp);
541 if (!fill_map) {
542 ret = ERR_PTR(error: -ENOMEM);
543 goto out;
544 }
545
546 memset(res_map, 0xff, m->bsize_max * sizeof(*res_map));
547
548 nft_pipapo_for_each_field(f, i, m) {
549 bool last = i == m->field_count - 1;
550 int b;
551
552 /* For each bit group: select lookup table bucket depending on
553 * packet bytes value, then AND bucket value
554 */
555 if (f->bb == 8)
556 pipapo_and_field_buckets_8bit(f, dst: res_map, data);
557 else if (f->bb == 4)
558 pipapo_and_field_buckets_4bit(f, dst: res_map, data);
559 else
560 BUG();
561
562 data += f->groups / NFT_PIPAPO_GROUPS_PER_BYTE(f);
563
564 /* Now populate the bitmap for the next field, unless this is
565 * the last field, in which case return the matched 'ext'
566 * pointer if any.
567 *
568 * Now res_map contains the matching bitmap, and fill_map is the
569 * bitmap for the next field.
570 */
571next_match:
572 b = pipapo_refill(map: res_map, len: f->bsize, rules: f->rules, dst: fill_map, mt: f->mt,
573 match_only: last);
574 if (b < 0)
575 goto out;
576
577 if (last) {
578 if (__nft_set_elem_expired(ext: &f->mt[b].e->ext, tstamp))
579 goto next_match;
580 if ((genmask &&
581 !nft_set_elem_active(ext: &f->mt[b].e->ext, genmask)))
582 goto next_match;
583
584 ret = f->mt[b].e;
585 goto out;
586 }
587
588 data += NFT_PIPAPO_GROUPS_PADDING(f);
589
590 /* Swap bitmap indices: fill_map will be the initial bitmap for
591 * the next field (i.e. the new res_map), and res_map is
592 * guaranteed to be all-zeroes at this point, ready to be filled
593 * according to the next mapping table.
594 */
595 swap(res_map, fill_map);
596 }
597
598out:
599 kfree(objp: fill_map);
600 kfree(objp: res_map);
601 return ret;
602}
603
604/**
605 * nft_pipapo_get() - Get matching element reference given key data
606 * @net: Network namespace
607 * @set: nftables API set representation
608 * @elem: nftables API element representation containing key data
609 * @flags: Unused
610 */
611static struct nft_elem_priv *
612nft_pipapo_get(const struct net *net, const struct nft_set *set,
613 const struct nft_set_elem *elem, unsigned int flags)
614{
615 struct nft_pipapo_elem *e;
616
617 e = pipapo_get(net, set, data: (const u8 *)elem->key.val.data,
618 genmask: nft_genmask_cur(net), tstamp: get_jiffies_64(),
619 GFP_ATOMIC);
620 if (IS_ERR(ptr: e))
621 return ERR_CAST(ptr: e);
622
623 return &e->priv;
624}
625
626/**
627 * pipapo_realloc_mt() - Reallocate mapping table if needed upon resize
628 * @f: Field containing mapping table
629 * @old_rules: Amount of existing mapped rules
630 * @rules: Amount of new rules to map
631 *
632 * Return: 0 on success, negative error code on failure.
633 */
634static int pipapo_realloc_mt(struct nft_pipapo_field *f,
635 unsigned int old_rules, unsigned int rules)
636{
637 union nft_pipapo_map_bucket *new_mt = NULL, *old_mt = f->mt;
638 const unsigned int extra = PAGE_SIZE / sizeof(*new_mt);
639 unsigned int rules_alloc = rules;
640
641 might_sleep();
642
643 if (unlikely(rules == 0))
644 goto out_free;
645
646 /* growing and enough space left, no action needed */
647 if (rules > old_rules && f->rules_alloc > rules)
648 return 0;
649
650 /* downsize and extra slack has not grown too large */
651 if (rules < old_rules) {
652 unsigned int remove = f->rules_alloc - rules;
653
654 if (remove < (2u * extra))
655 return 0;
656 }
657
658 /* If set needs more than one page of memory for rules then
659 * allocate another extra page to avoid frequent reallocation.
660 */
661 if (rules > extra &&
662 check_add_overflow(rules, extra, &rules_alloc))
663 return -EOVERFLOW;
664
665 new_mt = kvmalloc_array(n: rules_alloc, size: sizeof(*new_mt), GFP_KERNEL);
666 if (!new_mt)
667 return -ENOMEM;
668
669 if (old_mt)
670 memcpy(new_mt, old_mt, min(old_rules, rules) * sizeof(*new_mt));
671
672 if (rules > old_rules) {
673 memset(new_mt + old_rules, 0,
674 (rules - old_rules) * sizeof(*new_mt));
675 }
676out_free:
677 f->rules_alloc = rules_alloc;
678 f->mt = new_mt;
679
680 kvfree(addr: old_mt);
681
682 return 0;
683}
684
685/**
686 * pipapo_resize() - Resize lookup or mapping table, or both
687 * @f: Field containing lookup and mapping tables
688 * @old_rules: Previous amount of rules in field
689 * @rules: New amount of rules
690 *
691 * Increase, decrease or maintain tables size depending on new amount of rules,
692 * and copy data over. In case the new size is smaller, throw away data for
693 * highest-numbered rules.
694 *
695 * Return: 0 on success, -ENOMEM on allocation failure.
696 */
697static int pipapo_resize(struct nft_pipapo_field *f,
698 unsigned int old_rules, unsigned int rules)
699{
700 long *new_lt = NULL, *new_p, *old_lt = f->lt, *old_p;
701 unsigned int new_bucket_size, copy;
702 int group, bucket, err;
703
704 if (rules >= NFT_PIPAPO_RULE0_MAX)
705 return -ENOSPC;
706
707 new_bucket_size = DIV_ROUND_UP(rules, BITS_PER_LONG);
708#ifdef NFT_PIPAPO_ALIGN
709 new_bucket_size = roundup(new_bucket_size,
710 NFT_PIPAPO_ALIGN / sizeof(*new_lt));
711#endif
712
713 if (new_bucket_size == f->bsize)
714 goto mt;
715
716 if (new_bucket_size > f->bsize)
717 copy = f->bsize;
718 else
719 copy = new_bucket_size;
720
721 new_lt = kvzalloc(size: f->groups * NFT_PIPAPO_BUCKETS(f->bb) *
722 new_bucket_size * sizeof(*new_lt) +
723 NFT_PIPAPO_ALIGN_HEADROOM,
724 GFP_KERNEL);
725 if (!new_lt)
726 return -ENOMEM;
727
728 new_p = NFT_PIPAPO_LT_ALIGN(new_lt);
729 old_p = NFT_PIPAPO_LT_ALIGN(old_lt);
730
731 for (group = 0; group < f->groups; group++) {
732 for (bucket = 0; bucket < NFT_PIPAPO_BUCKETS(f->bb); bucket++) {
733 memcpy(new_p, old_p, copy * sizeof(*new_p));
734 new_p += copy;
735 old_p += copy;
736
737 if (new_bucket_size > f->bsize)
738 new_p += new_bucket_size - f->bsize;
739 else
740 old_p += f->bsize - new_bucket_size;
741 }
742 }
743
744mt:
745 err = pipapo_realloc_mt(f, old_rules, rules);
746 if (err) {
747 kvfree(addr: new_lt);
748 return err;
749 }
750
751 if (new_lt) {
752 f->bsize = new_bucket_size;
753 f->lt = new_lt;
754 kvfree(addr: old_lt);
755 }
756
757 return 0;
758}
759
760/**
761 * pipapo_bucket_set() - Set rule bit in bucket given group and group value
762 * @f: Field containing lookup table
763 * @rule: Rule index
764 * @group: Group index
765 * @v: Value of bit group
766 */
767static void pipapo_bucket_set(struct nft_pipapo_field *f, int rule, int group,
768 int v)
769{
770 unsigned long *pos;
771
772 pos = NFT_PIPAPO_LT_ALIGN(f->lt);
773 pos += f->bsize * NFT_PIPAPO_BUCKETS(f->bb) * group;
774 pos += f->bsize * v;
775
776 __set_bit(rule, pos);
777}
778
779/**
780 * pipapo_lt_4b_to_8b() - Switch lookup table group width from 4 bits to 8 bits
781 * @old_groups: Number of current groups
782 * @bsize: Size of one bucket, in longs
783 * @old_lt: Pointer to the current lookup table
784 * @new_lt: Pointer to the new, pre-allocated lookup table
785 *
786 * Each bucket with index b in the new lookup table, belonging to group g, is
787 * filled with the bit intersection between:
788 * - bucket with index given by the upper 4 bits of b, from group g, and
789 * - bucket with index given by the lower 4 bits of b, from group g + 1
790 *
791 * That is, given buckets from the new lookup table N(x, y) and the old lookup
792 * table O(x, y), with x bucket index, and y group index:
793 *
794 * N(b, g) := O(b / 16, g) & O(b % 16, g + 1)
795 *
796 * This ensures equivalence of the matching results on lookup. Two examples in
797 * pictures:
798 *
799 * bucket
800 * group 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 ... 254 255
801 * 0 ^
802 * 1 | ^
803 * ... ( & ) |
804 * / \ |
805 * / \ .-( & )-.
806 * / bucket \ | |
807 * group 0 / 1 2 3 \ 4 5 6 7 8 9 10 11 12 13 |14 15 |
808 * 0 / \ | |
809 * 1 \ | |
810 * 2 | --'
811 * 3 '-
812 * ...
813 */
814static void pipapo_lt_4b_to_8b(int old_groups, int bsize,
815 unsigned long *old_lt, unsigned long *new_lt)
816{
817 int g, b, i;
818
819 for (g = 0; g < old_groups / 2; g++) {
820 int src_g0 = g * 2, src_g1 = g * 2 + 1;
821
822 for (b = 0; b < NFT_PIPAPO_BUCKETS(8); b++) {
823 int src_b0 = b / NFT_PIPAPO_BUCKETS(4);
824 int src_b1 = b % NFT_PIPAPO_BUCKETS(4);
825 int src_i0 = src_g0 * NFT_PIPAPO_BUCKETS(4) + src_b0;
826 int src_i1 = src_g1 * NFT_PIPAPO_BUCKETS(4) + src_b1;
827
828 for (i = 0; i < bsize; i++) {
829 *new_lt = old_lt[src_i0 * bsize + i] &
830 old_lt[src_i1 * bsize + i];
831 new_lt++;
832 }
833 }
834 }
835}
836
837/**
838 * pipapo_lt_8b_to_4b() - Switch lookup table group width from 8 bits to 4 bits
839 * @old_groups: Number of current groups
840 * @bsize: Size of one bucket, in longs
841 * @old_lt: Pointer to the current lookup table
842 * @new_lt: Pointer to the new, pre-allocated lookup table
843 *
844 * Each bucket with index b in the new lookup table, belonging to group g, is
845 * filled with the bit union of:
846 * - all the buckets with index such that the upper four bits of the lower byte
847 * equal b, from group g, with g odd
848 * - all the buckets with index such that the lower four bits equal b, from
849 * group g, with g even
850 *
851 * That is, given buckets from the new lookup table N(x, y) and the old lookup
852 * table O(x, y), with x bucket index, and y group index:
853 *
854 * - with g odd: N(b, g) := U(O(x, g) for each x : x = (b & 0xf0) >> 4)
855 * - with g even: N(b, g) := U(O(x, g) for each x : x = b & 0x0f)
856 *
857 * where U() denotes the arbitrary union operation (binary OR of n terms). This
858 * ensures equivalence of the matching results on lookup.
859 */
860static void pipapo_lt_8b_to_4b(int old_groups, int bsize,
861 unsigned long *old_lt, unsigned long *new_lt)
862{
863 int g, b, bsrc, i;
864
865 memset(new_lt, 0, old_groups * 2 * NFT_PIPAPO_BUCKETS(4) * bsize *
866 sizeof(unsigned long));
867
868 for (g = 0; g < old_groups * 2; g += 2) {
869 int src_g = g / 2;
870
871 for (b = 0; b < NFT_PIPAPO_BUCKETS(4); b++) {
872 for (bsrc = NFT_PIPAPO_BUCKETS(8) * src_g;
873 bsrc < NFT_PIPAPO_BUCKETS(8) * (src_g + 1);
874 bsrc++) {
875 if (((bsrc & 0xf0) >> 4) != b)
876 continue;
877
878 for (i = 0; i < bsize; i++)
879 new_lt[i] |= old_lt[bsrc * bsize + i];
880 }
881
882 new_lt += bsize;
883 }
884
885 for (b = 0; b < NFT_PIPAPO_BUCKETS(4); b++) {
886 for (bsrc = NFT_PIPAPO_BUCKETS(8) * src_g;
887 bsrc < NFT_PIPAPO_BUCKETS(8) * (src_g + 1);
888 bsrc++) {
889 if ((bsrc & 0x0f) != b)
890 continue;
891
892 for (i = 0; i < bsize; i++)
893 new_lt[i] |= old_lt[bsrc * bsize + i];
894 }
895
896 new_lt += bsize;
897 }
898 }
899}
900
901/**
902 * pipapo_lt_bits_adjust() - Adjust group size for lookup table if needed
903 * @f: Field containing lookup table
904 */
905static void pipapo_lt_bits_adjust(struct nft_pipapo_field *f)
906{
907 unsigned int groups, bb;
908 unsigned long *new_lt;
909 size_t lt_size;
910
911 lt_size = f->groups * NFT_PIPAPO_BUCKETS(f->bb) * f->bsize *
912 sizeof(*f->lt);
913
914 if (f->bb == NFT_PIPAPO_GROUP_BITS_SMALL_SET &&
915 lt_size > NFT_PIPAPO_LT_SIZE_HIGH) {
916 groups = f->groups * 2;
917 bb = NFT_PIPAPO_GROUP_BITS_LARGE_SET;
918
919 lt_size = groups * NFT_PIPAPO_BUCKETS(bb) * f->bsize *
920 sizeof(*f->lt);
921 } else if (f->bb == NFT_PIPAPO_GROUP_BITS_LARGE_SET &&
922 lt_size < NFT_PIPAPO_LT_SIZE_LOW) {
923 groups = f->groups / 2;
924 bb = NFT_PIPAPO_GROUP_BITS_SMALL_SET;
925
926 lt_size = groups * NFT_PIPAPO_BUCKETS(bb) * f->bsize *
927 sizeof(*f->lt);
928
929 /* Don't increase group width if the resulting lookup table size
930 * would exceed the upper size threshold for a "small" set.
931 */
932 if (lt_size > NFT_PIPAPO_LT_SIZE_HIGH)
933 return;
934 } else {
935 return;
936 }
937
938 new_lt = kvzalloc(size: lt_size + NFT_PIPAPO_ALIGN_HEADROOM, GFP_KERNEL);
939 if (!new_lt)
940 return;
941
942 NFT_PIPAPO_GROUP_BITS_ARE_8_OR_4;
943 if (f->bb == 4 && bb == 8) {
944 pipapo_lt_4b_to_8b(old_groups: f->groups, bsize: f->bsize,
945 NFT_PIPAPO_LT_ALIGN(f->lt),
946 NFT_PIPAPO_LT_ALIGN(new_lt));
947 } else if (f->bb == 8 && bb == 4) {
948 pipapo_lt_8b_to_4b(old_groups: f->groups, bsize: f->bsize,
949 NFT_PIPAPO_LT_ALIGN(f->lt),
950 NFT_PIPAPO_LT_ALIGN(new_lt));
951 } else {
952 BUG();
953 }
954
955 f->groups = groups;
956 f->bb = bb;
957 kvfree(addr: f->lt);
958 f->lt = new_lt;
959}
960
961/**
962 * pipapo_insert() - Insert new rule in field given input key and mask length
963 * @f: Field containing lookup table
964 * @k: Input key for classification, without nftables padding
965 * @mask_bits: Length of mask; matches field length for non-ranged entry
966 *
967 * Insert a new rule reference in lookup buckets corresponding to k and
968 * mask_bits.
969 *
970 * Return: 1 on success (one rule inserted), negative error code on failure.
971 */
972static int pipapo_insert(struct nft_pipapo_field *f, const uint8_t *k,
973 int mask_bits)
974{
975 unsigned int rule = f->rules, group, ret, bit_offset = 0;
976
977 ret = pipapo_resize(f, old_rules: f->rules, rules: f->rules + 1);
978 if (ret)
979 return ret;
980
981 f->rules++;
982
983 for (group = 0; group < f->groups; group++) {
984 int i, v;
985 u8 mask;
986
987 v = k[group / (BITS_PER_BYTE / f->bb)];
988 v &= GENMASK(BITS_PER_BYTE - bit_offset - 1, 0);
989 v >>= (BITS_PER_BYTE - bit_offset) - f->bb;
990
991 bit_offset += f->bb;
992 bit_offset %= BITS_PER_BYTE;
993
994 if (mask_bits >= (group + 1) * f->bb) {
995 /* Not masked */
996 pipapo_bucket_set(f, rule, group, v);
997 } else if (mask_bits <= group * f->bb) {
998 /* Completely masked */
999 for (i = 0; i < NFT_PIPAPO_BUCKETS(f->bb); i++)
1000 pipapo_bucket_set(f, rule, group, v: i);
1001 } else {
1002 /* The mask limit falls on this group */
1003 mask = GENMASK(f->bb - 1, 0);
1004 mask >>= mask_bits - group * f->bb;
1005 for (i = 0; i < NFT_PIPAPO_BUCKETS(f->bb); i++) {
1006 if ((i & ~mask) == (v & ~mask))
1007 pipapo_bucket_set(f, rule, group, v: i);
1008 }
1009 }
1010 }
1011
1012 pipapo_lt_bits_adjust(f);
1013
1014 return 1;
1015}
1016
1017/**
1018 * pipapo_step_diff() - Check if setting @step bit in netmask would change it
1019 * @base: Mask we are expanding
1020 * @step: Step bit for given expansion step
1021 * @len: Total length of mask space (set and unset bits), bytes
1022 *
1023 * Convenience function for mask expansion.
1024 *
1025 * Return: true if step bit changes mask (i.e. isn't set), false otherwise.
1026 */
1027static bool pipapo_step_diff(u8 *base, int step, int len)
1028{
1029 /* Network order, byte-addressed */
1030#ifdef __BIG_ENDIAN__
1031 return !(BIT(step % BITS_PER_BYTE) & base[step / BITS_PER_BYTE]);
1032#else
1033 return !(BIT(step % BITS_PER_BYTE) &
1034 base[len - 1 - step / BITS_PER_BYTE]);
1035#endif
1036}
1037
1038/**
1039 * pipapo_step_after_end() - Check if mask exceeds range end with given step
1040 * @base: Mask we are expanding
1041 * @end: End of range
1042 * @step: Step bit for given expansion step, highest bit to be set
1043 * @len: Total length of mask space (set and unset bits), bytes
1044 *
1045 * Convenience function for mask expansion.
1046 *
1047 * Return: true if mask exceeds range setting step bits, false otherwise.
1048 */
1049static bool pipapo_step_after_end(const u8 *base, const u8 *end, int step,
1050 int len)
1051{
1052 u8 tmp[NFT_PIPAPO_MAX_BYTES];
1053 int i;
1054
1055 memcpy(tmp, base, len);
1056
1057 /* Network order, byte-addressed */
1058 for (i = 0; i <= step; i++)
1059#ifdef __BIG_ENDIAN__
1060 tmp[i / BITS_PER_BYTE] |= BIT(i % BITS_PER_BYTE);
1061#else
1062 tmp[len - 1 - i / BITS_PER_BYTE] |= BIT(i % BITS_PER_BYTE);
1063#endif
1064
1065 return memcmp(p: tmp, q: end, size: len) > 0;
1066}
1067
1068/**
1069 * pipapo_base_sum() - Sum step bit to given len-sized netmask base with carry
1070 * @base: Netmask base
1071 * @step: Step bit to sum
1072 * @len: Netmask length, bytes
1073 */
1074static void pipapo_base_sum(u8 *base, int step, int len)
1075{
1076 bool carry = false;
1077 int i;
1078
1079 /* Network order, byte-addressed */
1080#ifdef __BIG_ENDIAN__
1081 for (i = step / BITS_PER_BYTE; i < len; i++) {
1082#else
1083 for (i = len - 1 - step / BITS_PER_BYTE; i >= 0; i--) {
1084#endif
1085 if (carry)
1086 base[i]++;
1087 else
1088 base[i] += 1 << (step % BITS_PER_BYTE);
1089
1090 if (base[i])
1091 break;
1092
1093 carry = true;
1094 }
1095}
1096
1097/**
1098 * pipapo_expand() - Expand to composing netmasks, insert into lookup table
1099 * @f: Field containing lookup table
1100 * @start: Start of range
1101 * @end: End of range
1102 * @len: Length of value in bits
1103 *
1104 * Expand range to composing netmasks and insert corresponding rule references
1105 * in lookup buckets.
1106 *
1107 * Return: number of inserted rules on success, negative error code on failure.
1108 */
1109static int pipapo_expand(struct nft_pipapo_field *f,
1110 const u8 *start, const u8 *end, int len)
1111{
1112 int step, masks = 0, bytes = DIV_ROUND_UP(len, BITS_PER_BYTE);
1113 u8 base[NFT_PIPAPO_MAX_BYTES];
1114
1115 memcpy(base, start, bytes);
1116 while (memcmp(p: base, q: end, size: bytes) <= 0) {
1117 int err;
1118
1119 step = 0;
1120 while (pipapo_step_diff(base, step, len: bytes)) {
1121 if (pipapo_step_after_end(base, end, step, len: bytes))
1122 break;
1123
1124 step++;
1125 if (step >= len) {
1126 if (!masks) {
1127 err = pipapo_insert(f, k: base, mask_bits: 0);
1128 if (err < 0)
1129 return err;
1130 masks = 1;
1131 }
1132 goto out;
1133 }
1134 }
1135
1136 err = pipapo_insert(f, k: base, mask_bits: len - step);
1137
1138 if (err < 0)
1139 return err;
1140
1141 masks++;
1142 pipapo_base_sum(base, step, len: bytes);
1143 }
1144out:
1145 return masks;
1146}
1147
1148/**
1149 * pipapo_map() - Insert rules in mapping tables, mapping them between fields
1150 * @m: Matching data, including mapping table
1151 * @map: Table of rule maps: array of first rule and amount of rules
1152 * in next field a given rule maps to, for each field
1153 * @e: For last field, nft_set_ext pointer matching rules map to
1154 */
1155static void pipapo_map(struct nft_pipapo_match *m,
1156 union nft_pipapo_map_bucket map[NFT_PIPAPO_MAX_FIELDS],
1157 struct nft_pipapo_elem *e)
1158{
1159 struct nft_pipapo_field *f;
1160 int i, j;
1161
1162 for (i = 0, f = m->f; i < m->field_count - 1; i++, f++) {
1163 for (j = 0; j < map[i].n; j++) {
1164 f->mt[map[i].to + j].to = map[i + 1].to;
1165 f->mt[map[i].to + j].n = map[i + 1].n;
1166 }
1167 }
1168
1169 /* Last field: map to ext instead of mapping to next field */
1170 for (j = 0; j < map[i].n; j++)
1171 f->mt[map[i].to + j].e = e;
1172}
1173
1174/**
1175 * pipapo_free_scratch() - Free per-CPU map at original (not aligned) address
1176 * @m: Matching data
1177 * @cpu: CPU number
1178 */
1179static void pipapo_free_scratch(const struct nft_pipapo_match *m, unsigned int cpu)
1180{
1181 struct nft_pipapo_scratch *s;
1182 void *mem;
1183
1184 s = *per_cpu_ptr(m->scratch, cpu);
1185 if (!s)
1186 return;
1187
1188 mem = s;
1189 mem -= s->align_off;
1190 kfree(objp: mem);
1191}
1192
1193/**
1194 * pipapo_realloc_scratch() - Reallocate scratch maps for partial match results
1195 * @clone: Copy of matching data with pending insertions and deletions
1196 * @bsize_max: Maximum bucket size, scratch maps cover two buckets
1197 *
1198 * Return: 0 on success, -ENOMEM on failure.
1199 */
1200static int pipapo_realloc_scratch(struct nft_pipapo_match *clone,
1201 unsigned long bsize_max)
1202{
1203 int i;
1204
1205 for_each_possible_cpu(i) {
1206 struct nft_pipapo_scratch *scratch;
1207#ifdef NFT_PIPAPO_ALIGN
1208 void *scratch_aligned;
1209 u32 align_off;
1210#endif
1211 scratch = kzalloc_node(struct_size(scratch, map,
1212 bsize_max * 2) +
1213 NFT_PIPAPO_ALIGN_HEADROOM,
1214 GFP_KERNEL, cpu_to_node(cpu: i));
1215 if (!scratch) {
1216 /* On failure, there's no need to undo previous
1217 * allocations: this means that some scratch maps have
1218 * a bigger allocated size now (this is only called on
1219 * insertion), but the extra space won't be used by any
1220 * CPU as new elements are not inserted and m->bsize_max
1221 * is not updated.
1222 */
1223 return -ENOMEM;
1224 }
1225
1226 pipapo_free_scratch(m: clone, cpu: i);
1227
1228#ifdef NFT_PIPAPO_ALIGN
1229 /* Align &scratch->map (not the struct itself): the extra
1230 * %NFT_PIPAPO_ALIGN_HEADROOM bytes passed to kzalloc_node()
1231 * above guarantee we can waste up to those bytes in order
1232 * to align the map field regardless of its offset within
1233 * the struct.
1234 */
1235 BUILD_BUG_ON(offsetof(struct nft_pipapo_scratch, map) > NFT_PIPAPO_ALIGN_HEADROOM);
1236
1237 scratch_aligned = NFT_PIPAPO_LT_ALIGN(&scratch->map);
1238 scratch_aligned -= offsetof(struct nft_pipapo_scratch, map);
1239 align_off = scratch_aligned - (void *)scratch;
1240
1241 scratch = scratch_aligned;
1242 scratch->align_off = align_off;
1243#endif
1244 *per_cpu_ptr(clone->scratch, i) = scratch;
1245 }
1246
1247 return 0;
1248}
1249
1250/**
1251 * nft_pipapo_insert() - Validate and insert ranged elements
1252 * @net: Network namespace
1253 * @set: nftables API set representation
1254 * @elem: nftables API element representation containing key data
1255 * @elem_priv: Filled with pointer to &struct nft_set_ext in inserted element
1256 *
1257 * Return: 0 on success, error pointer on failure.
1258 */
1259static int nft_pipapo_insert(const struct net *net, const struct nft_set *set,
1260 const struct nft_set_elem *elem,
1261 struct nft_elem_priv **elem_priv)
1262{
1263 const struct nft_set_ext *ext = nft_set_elem_ext(set, elem_priv: elem->priv);
1264 union nft_pipapo_map_bucket rulemap[NFT_PIPAPO_MAX_FIELDS];
1265 const u8 *start = (const u8 *)elem->key.val.data, *end;
1266 struct nft_pipapo *priv = nft_set_priv(set);
1267 struct nft_pipapo_match *m = priv->clone;
1268 u8 genmask = nft_genmask_next(net);
1269 struct nft_pipapo_elem *e, *dup;
1270 u64 tstamp = nft_net_tstamp(net);
1271 struct nft_pipapo_field *f;
1272 const u8 *start_p, *end_p;
1273 int i, bsize_max, err = 0;
1274
1275 if (nft_set_ext_exists(ext, id: NFT_SET_EXT_KEY_END))
1276 end = (const u8 *)nft_set_ext_key_end(ext)->data;
1277 else
1278 end = start;
1279
1280 dup = pipapo_get(net, set, data: start, genmask, tstamp, GFP_KERNEL);
1281 if (!IS_ERR(ptr: dup)) {
1282 /* Check if we already have the same exact entry */
1283 const struct nft_data *dup_key, *dup_end;
1284
1285 dup_key = nft_set_ext_key(ext: &dup->ext);
1286 if (nft_set_ext_exists(ext: &dup->ext, id: NFT_SET_EXT_KEY_END))
1287 dup_end = nft_set_ext_key_end(ext: &dup->ext);
1288 else
1289 dup_end = dup_key;
1290
1291 if (!memcmp(p: start, q: dup_key->data, size: sizeof(*dup_key->data)) &&
1292 !memcmp(p: end, q: dup_end->data, size: sizeof(*dup_end->data))) {
1293 *elem_priv = &dup->priv;
1294 return -EEXIST;
1295 }
1296
1297 return -ENOTEMPTY;
1298 }
1299
1300 if (PTR_ERR(ptr: dup) == -ENOENT) {
1301 /* Look for partially overlapping entries */
1302 dup = pipapo_get(net, set, data: end, genmask: nft_genmask_next(net), tstamp,
1303 GFP_KERNEL);
1304 }
1305
1306 if (PTR_ERR(ptr: dup) != -ENOENT) {
1307 if (IS_ERR(ptr: dup))
1308 return PTR_ERR(ptr: dup);
1309 *elem_priv = &dup->priv;
1310 return -ENOTEMPTY;
1311 }
1312
1313 /* Validate */
1314 start_p = start;
1315 end_p = end;
1316
1317 /* some helpers return -1, or 0 >= for valid rule pos,
1318 * so we cannot support more than INT_MAX rules at this time.
1319 */
1320 BUILD_BUG_ON(NFT_PIPAPO_RULE0_MAX > INT_MAX);
1321
1322 nft_pipapo_for_each_field(f, i, m) {
1323 if (f->rules >= NFT_PIPAPO_RULE0_MAX)
1324 return -ENOSPC;
1325
1326 if (memcmp(p: start_p, q: end_p,
1327 size: f->groups / NFT_PIPAPO_GROUPS_PER_BYTE(f)) > 0)
1328 return -EINVAL;
1329
1330 start_p += NFT_PIPAPO_GROUPS_PADDED_SIZE(f);
1331 end_p += NFT_PIPAPO_GROUPS_PADDED_SIZE(f);
1332 }
1333
1334 /* Insert */
1335 priv->dirty = true;
1336
1337 bsize_max = m->bsize_max;
1338
1339 nft_pipapo_for_each_field(f, i, m) {
1340 int ret;
1341
1342 rulemap[i].to = f->rules;
1343
1344 ret = memcmp(p: start, q: end,
1345 size: f->groups / NFT_PIPAPO_GROUPS_PER_BYTE(f));
1346 if (!ret)
1347 ret = pipapo_insert(f, k: start, mask_bits: f->groups * f->bb);
1348 else
1349 ret = pipapo_expand(f, start, end, len: f->groups * f->bb);
1350
1351 if (ret < 0)
1352 return ret;
1353
1354 if (f->bsize > bsize_max)
1355 bsize_max = f->bsize;
1356
1357 rulemap[i].n = ret;
1358
1359 start += NFT_PIPAPO_GROUPS_PADDED_SIZE(f);
1360 end += NFT_PIPAPO_GROUPS_PADDED_SIZE(f);
1361 }
1362
1363 if (!*get_cpu_ptr(m->scratch) || bsize_max > m->bsize_max) {
1364 put_cpu_ptr(m->scratch);
1365
1366 err = pipapo_realloc_scratch(clone: m, bsize_max);
1367 if (err)
1368 return err;
1369
1370 m->bsize_max = bsize_max;
1371 } else {
1372 put_cpu_ptr(m->scratch);
1373 }
1374
1375 e = nft_elem_priv_cast(priv: elem->priv);
1376 *elem_priv = &e->priv;
1377
1378 pipapo_map(m, map: rulemap, e);
1379
1380 return 0;
1381}
1382
1383/**
1384 * pipapo_clone() - Clone matching data to create new working copy
1385 * @old: Existing matching data
1386 *
1387 * Return: copy of matching data passed as 'old', error pointer on failure
1388 */
1389static struct nft_pipapo_match *pipapo_clone(struct nft_pipapo_match *old)
1390{
1391 struct nft_pipapo_field *dst, *src;
1392 struct nft_pipapo_match *new;
1393 int i;
1394
1395 new = kmalloc(struct_size(new, f, old->field_count), GFP_KERNEL);
1396 if (!new)
1397 return ERR_PTR(error: -ENOMEM);
1398
1399 new->field_count = old->field_count;
1400 new->bsize_max = old->bsize_max;
1401
1402 new->scratch = alloc_percpu(*new->scratch);
1403 if (!new->scratch)
1404 goto out_scratch;
1405
1406 for_each_possible_cpu(i)
1407 *per_cpu_ptr(new->scratch, i) = NULL;
1408
1409 if (pipapo_realloc_scratch(clone: new, bsize_max: old->bsize_max))
1410 goto out_scratch_realloc;
1411
1412 rcu_head_init(rhp: &new->rcu);
1413
1414 src = old->f;
1415 dst = new->f;
1416
1417 for (i = 0; i < old->field_count; i++) {
1418 unsigned long *new_lt;
1419
1420 memcpy(dst, src, offsetof(struct nft_pipapo_field, lt));
1421
1422 new_lt = kvzalloc(size: src->groups * NFT_PIPAPO_BUCKETS(src->bb) *
1423 src->bsize * sizeof(*dst->lt) +
1424 NFT_PIPAPO_ALIGN_HEADROOM,
1425 GFP_KERNEL);
1426 if (!new_lt)
1427 goto out_lt;
1428
1429 dst->lt = new_lt;
1430
1431 memcpy(NFT_PIPAPO_LT_ALIGN(new_lt),
1432 NFT_PIPAPO_LT_ALIGN(src->lt),
1433 src->bsize * sizeof(*dst->lt) *
1434 src->groups * NFT_PIPAPO_BUCKETS(src->bb));
1435
1436 if (src->rules > 0) {
1437 dst->mt = kvmalloc_array(n: src->rules_alloc,
1438 size: sizeof(*src->mt), GFP_KERNEL);
1439 if (!dst->mt)
1440 goto out_mt;
1441
1442 memcpy(dst->mt, src->mt, src->rules * sizeof(*src->mt));
1443 } else {
1444 dst->mt = NULL;
1445 dst->rules_alloc = 0;
1446 }
1447
1448 src++;
1449 dst++;
1450 }
1451
1452 return new;
1453
1454out_mt:
1455 kvfree(addr: dst->lt);
1456out_lt:
1457 for (dst--; i > 0; i--) {
1458 kvfree(addr: dst->mt);
1459 kvfree(addr: dst->lt);
1460 dst--;
1461 }
1462out_scratch_realloc:
1463 for_each_possible_cpu(i)
1464 pipapo_free_scratch(m: new, cpu: i);
1465out_scratch:
1466 free_percpu(pdata: new->scratch);
1467 kfree(objp: new);
1468
1469 return ERR_PTR(error: -ENOMEM);
1470}
1471
1472/**
1473 * pipapo_rules_same_key() - Get number of rules originated from the same entry
1474 * @f: Field containing mapping table
1475 * @first: Index of first rule in set of rules mapping to same entry
1476 *
1477 * Using the fact that all rules in a field that originated from the same entry
1478 * will map to the same set of rules in the next field, or to the same element
1479 * reference, return the cardinality of the set of rules that originated from
1480 * the same entry as the rule with index @first, @first rule included.
1481 *
1482 * In pictures:
1483 * rules
1484 * field #0 0 1 2 3 4
1485 * map to: 0 1 2-4 2-4 5-9
1486 * . . ....... . ...
1487 * | | | | \ \
1488 * | | | | \ \
1489 * | | | | \ \
1490 * ' ' ' ' ' \
1491 * in field #1 0 1 2 3 4 5 ...
1492 *
1493 * if this is called for rule 2 on field #0, it will return 3, as also rules 2
1494 * and 3 in field 0 map to the same set of rules (2, 3, 4) in the next field.
1495 *
1496 * For the last field in a set, we can rely on associated entries to map to the
1497 * same element references.
1498 *
1499 * Return: Number of rules that originated from the same entry as @first.
1500 */
1501static unsigned int pipapo_rules_same_key(struct nft_pipapo_field *f, unsigned int first)
1502{
1503 struct nft_pipapo_elem *e = NULL; /* Keep gcc happy */
1504 unsigned int r;
1505
1506 for (r = first; r < f->rules; r++) {
1507 if (r != first && e != f->mt[r].e)
1508 return r - first;
1509
1510 e = f->mt[r].e;
1511 }
1512
1513 if (r != first)
1514 return r - first;
1515
1516 return 0;
1517}
1518
1519/**
1520 * pipapo_unmap() - Remove rules from mapping tables, renumber remaining ones
1521 * @mt: Mapping array
1522 * @rules: Original amount of rules in mapping table
1523 * @start: First rule index to be removed
1524 * @n: Amount of rules to be removed
1525 * @to_offset: First rule index, in next field, this group of rules maps to
1526 * @is_last: If this is the last field, delete reference from mapping array
1527 *
1528 * This is used to unmap rules from the mapping table for a single field,
1529 * maintaining consistency and compactness for the existing ones.
1530 *
1531 * In pictures: let's assume that we want to delete rules 2 and 3 from the
1532 * following mapping array:
1533 *
1534 * rules
1535 * 0 1 2 3 4
1536 * map to: 4-10 4-10 11-15 11-15 16-18
1537 *
1538 * the result will be:
1539 *
1540 * rules
1541 * 0 1 2
1542 * map to: 4-10 4-10 11-13
1543 *
1544 * for fields before the last one. In case this is the mapping table for the
1545 * last field in a set, and rules map to pointers to &struct nft_pipapo_elem:
1546 *
1547 * rules
1548 * 0 1 2 3 4
1549 * element pointers: 0x42 0x42 0x33 0x33 0x44
1550 *
1551 * the result will be:
1552 *
1553 * rules
1554 * 0 1 2
1555 * element pointers: 0x42 0x42 0x44
1556 */
1557static void pipapo_unmap(union nft_pipapo_map_bucket *mt, unsigned int rules,
1558 unsigned int start, unsigned int n,
1559 unsigned int to_offset, bool is_last)
1560{
1561 int i;
1562
1563 memmove(mt + start, mt + start + n, (rules - start - n) * sizeof(*mt));
1564 memset(mt + rules - n, 0, n * sizeof(*mt));
1565
1566 if (is_last)
1567 return;
1568
1569 for (i = start; i < rules - n; i++)
1570 mt[i].to -= to_offset;
1571}
1572
1573/**
1574 * pipapo_drop() - Delete entry from lookup and mapping tables, given rule map
1575 * @m: Matching data
1576 * @rulemap: Table of rule maps, arrays of first rule and amount of rules
1577 * in next field a given entry maps to, for each field
1578 *
1579 * For each rule in lookup table buckets mapping to this set of rules, drop
1580 * all bits set in lookup table mapping. In pictures, assuming we want to drop
1581 * rules 0 and 1 from this lookup table:
1582 *
1583 * bucket
1584 * group 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1585 * 0 0 1,2
1586 * 1 1,2 0
1587 * 2 0 1,2
1588 * 3 0 1,2
1589 * 4 0,1,2
1590 * 5 0 1 2
1591 * 6 0,1,2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1592 * 7 1,2 1,2 1 1 1 0,1 1 1 1 1 1 1 1 1 1 1
1593 *
1594 * rule 2 becomes rule 0, and the result will be:
1595 *
1596 * bucket
1597 * group 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1598 * 0 0
1599 * 1 0
1600 * 2 0
1601 * 3 0
1602 * 4 0
1603 * 5 0
1604 * 6 0
1605 * 7 0 0
1606 *
1607 * once this is done, call unmap() to drop all the corresponding rule references
1608 * from mapping tables.
1609 */
1610static void pipapo_drop(struct nft_pipapo_match *m,
1611 union nft_pipapo_map_bucket rulemap[])
1612{
1613 struct nft_pipapo_field *f;
1614 int i;
1615
1616 nft_pipapo_for_each_field(f, i, m) {
1617 int g;
1618
1619 for (g = 0; g < f->groups; g++) {
1620 unsigned long *pos;
1621 int b;
1622
1623 pos = NFT_PIPAPO_LT_ALIGN(f->lt) + g *
1624 NFT_PIPAPO_BUCKETS(f->bb) * f->bsize;
1625
1626 for (b = 0; b < NFT_PIPAPO_BUCKETS(f->bb); b++) {
1627 bitmap_cut(dst: pos, src: pos, first: rulemap[i].to,
1628 cut: rulemap[i].n,
1629 nbits: f->bsize * BITS_PER_LONG);
1630
1631 pos += f->bsize;
1632 }
1633 }
1634
1635 pipapo_unmap(mt: f->mt, rules: f->rules, start: rulemap[i].to, n: rulemap[i].n,
1636 to_offset: rulemap[i + 1].n, is_last: i == m->field_count - 1);
1637 if (pipapo_resize(f, old_rules: f->rules, rules: f->rules - rulemap[i].n)) {
1638 /* We can ignore this, a failure to shrink tables down
1639 * doesn't make tables invalid.
1640 */
1641 ;
1642 }
1643 f->rules -= rulemap[i].n;
1644
1645 pipapo_lt_bits_adjust(f);
1646 }
1647}
1648
1649static void nft_pipapo_gc_deactivate(struct net *net, struct nft_set *set,
1650 struct nft_pipapo_elem *e)
1651
1652{
1653 nft_setelem_data_deactivate(net, set, elem_priv: &e->priv);
1654}
1655
1656/**
1657 * pipapo_gc() - Drop expired entries from set, destroy start and end elements
1658 * @set: nftables API set representation
1659 * @m: Matching data
1660 */
1661static void pipapo_gc(struct nft_set *set, struct nft_pipapo_match *m)
1662{
1663 struct nft_pipapo *priv = nft_set_priv(set);
1664 struct net *net = read_pnet(pnet: &set->net);
1665 unsigned int rules_f0, first_rule = 0;
1666 u64 tstamp = nft_net_tstamp(net);
1667 struct nft_pipapo_elem *e;
1668 struct nft_trans_gc *gc;
1669
1670 gc = nft_trans_gc_alloc(set, gc_seq: 0, GFP_KERNEL);
1671 if (!gc)
1672 return;
1673
1674 while ((rules_f0 = pipapo_rules_same_key(f: m->f, first: first_rule))) {
1675 union nft_pipapo_map_bucket rulemap[NFT_PIPAPO_MAX_FIELDS];
1676 const struct nft_pipapo_field *f;
1677 unsigned int i, start, rules_fx;
1678
1679 start = first_rule;
1680 rules_fx = rules_f0;
1681
1682 nft_pipapo_for_each_field(f, i, m) {
1683 rulemap[i].to = start;
1684 rulemap[i].n = rules_fx;
1685
1686 if (i < m->field_count - 1) {
1687 rules_fx = f->mt[start].n;
1688 start = f->mt[start].to;
1689 }
1690 }
1691
1692 /* Pick the last field, and its last index */
1693 f--;
1694 i--;
1695 e = f->mt[rulemap[i].to].e;
1696
1697 /* synchronous gc never fails, there is no need to set on
1698 * NFT_SET_ELEM_DEAD_BIT.
1699 */
1700 if (__nft_set_elem_expired(ext: &e->ext, tstamp)) {
1701 priv->dirty = true;
1702
1703 gc = nft_trans_gc_queue_sync(gc, GFP_KERNEL);
1704 if (!gc)
1705 return;
1706
1707 nft_pipapo_gc_deactivate(net, set, e);
1708 pipapo_drop(m, rulemap);
1709 nft_trans_gc_elem_add(gc, priv: e);
1710
1711 /* And check again current first rule, which is now the
1712 * first we haven't checked.
1713 */
1714 } else {
1715 first_rule += rules_f0;
1716 }
1717 }
1718
1719 gc = nft_trans_gc_catchall_sync(gc);
1720 if (gc) {
1721 nft_trans_gc_queue_sync_done(trans: gc);
1722 priv->last_gc = jiffies;
1723 }
1724}
1725
1726/**
1727 * pipapo_free_fields() - Free per-field tables contained in matching data
1728 * @m: Matching data
1729 */
1730static void pipapo_free_fields(struct nft_pipapo_match *m)
1731{
1732 struct nft_pipapo_field *f;
1733 int i;
1734
1735 nft_pipapo_for_each_field(f, i, m) {
1736 kvfree(addr: f->lt);
1737 kvfree(addr: f->mt);
1738 }
1739}
1740
1741static void pipapo_free_match(struct nft_pipapo_match *m)
1742{
1743 int i;
1744
1745 for_each_possible_cpu(i)
1746 pipapo_free_scratch(m, cpu: i);
1747
1748 free_percpu(pdata: m->scratch);
1749 pipapo_free_fields(m);
1750
1751 kfree(objp: m);
1752}
1753
1754/**
1755 * pipapo_reclaim_match - RCU callback to free fields from old matching data
1756 * @rcu: RCU head
1757 */
1758static void pipapo_reclaim_match(struct rcu_head *rcu)
1759{
1760 struct nft_pipapo_match *m;
1761
1762 m = container_of(rcu, struct nft_pipapo_match, rcu);
1763 pipapo_free_match(m);
1764}
1765
1766/**
1767 * nft_pipapo_commit() - Replace lookup data with current working copy
1768 * @set: nftables API set representation
1769 *
1770 * While at it, check if we should perform garbage collection on the working
1771 * copy before committing it for lookup, and don't replace the table if the
1772 * working copy doesn't have pending changes.
1773 *
1774 * We also need to create a new working copy for subsequent insertions and
1775 * deletions.
1776 */
1777static void nft_pipapo_commit(struct nft_set *set)
1778{
1779 struct nft_pipapo *priv = nft_set_priv(set);
1780 struct nft_pipapo_match *new_clone, *old;
1781
1782 if (time_after_eq(jiffies, priv->last_gc + nft_set_gc_interval(set)))
1783 pipapo_gc(set, m: priv->clone);
1784
1785 if (!priv->dirty)
1786 return;
1787
1788 new_clone = pipapo_clone(old: priv->clone);
1789 if (IS_ERR(ptr: new_clone))
1790 return;
1791
1792 priv->dirty = false;
1793
1794 old = rcu_access_pointer(priv->match);
1795 rcu_assign_pointer(priv->match, priv->clone);
1796 if (old)
1797 call_rcu(head: &old->rcu, func: pipapo_reclaim_match);
1798
1799 priv->clone = new_clone;
1800}
1801
1802static bool nft_pipapo_transaction_mutex_held(const struct nft_set *set)
1803{
1804#ifdef CONFIG_PROVE_LOCKING
1805 const struct net *net = read_pnet(pnet: &set->net);
1806
1807 return lockdep_is_held(&nft_pernet(net)->commit_mutex);
1808#else
1809 return true;
1810#endif
1811}
1812
1813static void nft_pipapo_abort(const struct nft_set *set)
1814{
1815 struct nft_pipapo *priv = nft_set_priv(set);
1816 struct nft_pipapo_match *new_clone, *m;
1817
1818 if (!priv->dirty)
1819 return;
1820
1821 m = rcu_dereference_protected(priv->match, nft_pipapo_transaction_mutex_held(set));
1822
1823 new_clone = pipapo_clone(old: m);
1824 if (IS_ERR(ptr: new_clone))
1825 return;
1826
1827 priv->dirty = false;
1828
1829 pipapo_free_match(m: priv->clone);
1830 priv->clone = new_clone;
1831}
1832
1833/**
1834 * nft_pipapo_activate() - Mark element reference as active given key, commit
1835 * @net: Network namespace
1836 * @set: nftables API set representation
1837 * @elem_priv: nftables API element representation containing key data
1838 *
1839 * On insertion, elements are added to a copy of the matching data currently
1840 * in use for lookups, and not directly inserted into current lookup data. Both
1841 * nft_pipapo_insert() and nft_pipapo_activate() are called once for each
1842 * element, hence we can't purpose either one as a real commit operation.
1843 */
1844static void nft_pipapo_activate(const struct net *net,
1845 const struct nft_set *set,
1846 struct nft_elem_priv *elem_priv)
1847{
1848 struct nft_pipapo_elem *e = nft_elem_priv_cast(priv: elem_priv);
1849
1850 nft_clear(net, &e->ext);
1851}
1852
1853/**
1854 * pipapo_deactivate() - Check that element is in set, mark as inactive
1855 * @net: Network namespace
1856 * @set: nftables API set representation
1857 * @data: Input key data
1858 * @ext: nftables API extension pointer, used to check for end element
1859 *
1860 * This is a convenience function that can be called from both
1861 * nft_pipapo_deactivate() and nft_pipapo_flush(), as they are in fact the same
1862 * operation.
1863 *
1864 * Return: deactivated element if found, NULL otherwise.
1865 */
1866static void *pipapo_deactivate(const struct net *net, const struct nft_set *set,
1867 const u8 *data, const struct nft_set_ext *ext)
1868{
1869 struct nft_pipapo_elem *e;
1870
1871 e = pipapo_get(net, set, data, genmask: nft_genmask_next(net),
1872 tstamp: nft_net_tstamp(net), GFP_KERNEL);
1873 if (IS_ERR(ptr: e))
1874 return NULL;
1875
1876 nft_set_elem_change_active(net, set, ext: &e->ext);
1877
1878 return e;
1879}
1880
1881/**
1882 * nft_pipapo_deactivate() - Call pipapo_deactivate() to make element inactive
1883 * @net: Network namespace
1884 * @set: nftables API set representation
1885 * @elem: nftables API element representation containing key data
1886 *
1887 * Return: deactivated element if found, NULL otherwise.
1888 */
1889static struct nft_elem_priv *
1890nft_pipapo_deactivate(const struct net *net, const struct nft_set *set,
1891 const struct nft_set_elem *elem)
1892{
1893 const struct nft_set_ext *ext = nft_set_elem_ext(set, elem_priv: elem->priv);
1894
1895 return pipapo_deactivate(net, set, data: (const u8 *)elem->key.val.data, ext);
1896}
1897
1898/**
1899 * nft_pipapo_flush() - Call pipapo_deactivate() to make element inactive
1900 * @net: Network namespace
1901 * @set: nftables API set representation
1902 * @elem_priv: nftables API element representation containing key data
1903 *
1904 * This is functionally the same as nft_pipapo_deactivate(), with a slightly
1905 * different interface, and it's also called once for each element in a set
1906 * being flushed, so we can't implement, strictly speaking, a flush operation,
1907 * which would otherwise be as simple as allocating an empty copy of the
1908 * matching data.
1909 *
1910 * Note that we could in theory do that, mark the set as flushed, and ignore
1911 * subsequent calls, but we would leak all the elements after the first one,
1912 * because they wouldn't then be freed as result of API calls.
1913 *
1914 * Return: true if element was found and deactivated.
1915 */
1916static void nft_pipapo_flush(const struct net *net, const struct nft_set *set,
1917 struct nft_elem_priv *elem_priv)
1918{
1919 struct nft_pipapo_elem *e = nft_elem_priv_cast(priv: elem_priv);
1920
1921 nft_set_elem_change_active(net, set, ext: &e->ext);
1922}
1923
1924/**
1925 * pipapo_get_boundaries() - Get byte interval for associated rules
1926 * @f: Field including lookup table
1927 * @first_rule: First rule (lowest index)
1928 * @rule_count: Number of associated rules
1929 * @left: Byte expression for left boundary (start of range)
1930 * @right: Byte expression for right boundary (end of range)
1931 *
1932 * Given the first rule and amount of rules that originated from the same entry,
1933 * build the original range associated with the entry, and calculate the length
1934 * of the originating netmask.
1935 *
1936 * In pictures:
1937 *
1938 * bucket
1939 * group 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1940 * 0 1,2
1941 * 1 1,2
1942 * 2 1,2
1943 * 3 1,2
1944 * 4 1,2
1945 * 5 1 2
1946 * 6 1,2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1947 * 7 1,2 1,2 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1948 *
1949 * this is the lookup table corresponding to the IPv4 range
1950 * 192.168.1.0-192.168.2.1, which was expanded to the two composing netmasks,
1951 * rule #1: 192.168.1.0/24, and rule #2: 192.168.2.0/31.
1952 *
1953 * This function fills @left and @right with the byte values of the leftmost
1954 * and rightmost bucket indices for the lowest and highest rule indices,
1955 * respectively. If @first_rule is 1 and @rule_count is 2, we obtain, in
1956 * nibbles:
1957 * left: < 12, 0, 10, 8, 0, 1, 0, 0 >
1958 * right: < 12, 0, 10, 8, 0, 2, 2, 1 >
1959 * corresponding to bytes:
1960 * left: < 192, 168, 1, 0 >
1961 * right: < 192, 168, 2, 1 >
1962 * with mask length irrelevant here, unused on return, as the range is already
1963 * defined by its start and end points. The mask length is relevant for a single
1964 * ranged entry instead: if @first_rule is 1 and @rule_count is 1, we ignore
1965 * rule 2 above: @left becomes < 192, 168, 1, 0 >, @right becomes
1966 * < 192, 168, 1, 255 >, and the mask length, calculated from the distances
1967 * between leftmost and rightmost bucket indices for each group, would be 24.
1968 *
1969 * Return: mask length, in bits.
1970 */
1971static int pipapo_get_boundaries(struct nft_pipapo_field *f, int first_rule,
1972 int rule_count, u8 *left, u8 *right)
1973{
1974 int g, mask_len = 0, bit_offset = 0;
1975 u8 *l = left, *r = right;
1976
1977 for (g = 0; g < f->groups; g++) {
1978 int b, x0, x1;
1979
1980 x0 = -1;
1981 x1 = -1;
1982 for (b = 0; b < NFT_PIPAPO_BUCKETS(f->bb); b++) {
1983 unsigned long *pos;
1984
1985 pos = NFT_PIPAPO_LT_ALIGN(f->lt) +
1986 (g * NFT_PIPAPO_BUCKETS(f->bb) + b) * f->bsize;
1987 if (test_bit(first_rule, pos) && x0 == -1)
1988 x0 = b;
1989 if (test_bit(first_rule + rule_count - 1, pos))
1990 x1 = b;
1991 }
1992
1993 *l |= x0 << (BITS_PER_BYTE - f->bb - bit_offset);
1994 *r |= x1 << (BITS_PER_BYTE - f->bb - bit_offset);
1995
1996 bit_offset += f->bb;
1997 if (bit_offset >= BITS_PER_BYTE) {
1998 bit_offset %= BITS_PER_BYTE;
1999 l++;
2000 r++;
2001 }
2002
2003 if (x1 - x0 == 0)
2004 mask_len += 4;
2005 else if (x1 - x0 == 1)
2006 mask_len += 3;
2007 else if (x1 - x0 == 3)
2008 mask_len += 2;
2009 else if (x1 - x0 == 7)
2010 mask_len += 1;
2011 }
2012
2013 return mask_len;
2014}
2015
2016/**
2017 * pipapo_match_field() - Match rules against byte ranges
2018 * @f: Field including the lookup table
2019 * @first_rule: First of associated rules originating from same entry
2020 * @rule_count: Amount of associated rules
2021 * @start: Start of range to be matched
2022 * @end: End of range to be matched
2023 *
2024 * Return: true on match, false otherwise.
2025 */
2026static bool pipapo_match_field(struct nft_pipapo_field *f,
2027 int first_rule, int rule_count,
2028 const u8 *start, const u8 *end)
2029{
2030 u8 right[NFT_PIPAPO_MAX_BYTES] = { 0 };
2031 u8 left[NFT_PIPAPO_MAX_BYTES] = { 0 };
2032
2033 pipapo_get_boundaries(f, first_rule, rule_count, left, right);
2034
2035 return !memcmp(p: start, q: left,
2036 size: f->groups / NFT_PIPAPO_GROUPS_PER_BYTE(f)) &&
2037 !memcmp(p: end, q: right, size: f->groups / NFT_PIPAPO_GROUPS_PER_BYTE(f));
2038}
2039
2040/**
2041 * nft_pipapo_remove() - Remove element given key, commit
2042 * @net: Network namespace
2043 * @set: nftables API set representation
2044 * @elem_priv: nftables API element representation containing key data
2045 *
2046 * Similarly to nft_pipapo_activate(), this is used as commit operation by the
2047 * API, but it's called once per element in the pending transaction, so we can't
2048 * implement this as a single commit operation. Closest we can get is to remove
2049 * the matched element here, if any, and commit the updated matching data.
2050 */
2051static void nft_pipapo_remove(const struct net *net, const struct nft_set *set,
2052 struct nft_elem_priv *elem_priv)
2053{
2054 struct nft_pipapo *priv = nft_set_priv(set);
2055 struct nft_pipapo_match *m = priv->clone;
2056 unsigned int rules_f0, first_rule = 0;
2057 struct nft_pipapo_elem *e;
2058 const u8 *data;
2059
2060 e = nft_elem_priv_cast(priv: elem_priv);
2061 data = (const u8 *)nft_set_ext_key(ext: &e->ext);
2062
2063 while ((rules_f0 = pipapo_rules_same_key(f: m->f, first: first_rule))) {
2064 union nft_pipapo_map_bucket rulemap[NFT_PIPAPO_MAX_FIELDS];
2065 const u8 *match_start, *match_end;
2066 struct nft_pipapo_field *f;
2067 int i, start, rules_fx;
2068
2069 match_start = data;
2070
2071 if (nft_set_ext_exists(ext: &e->ext, id: NFT_SET_EXT_KEY_END))
2072 match_end = (const u8 *)nft_set_ext_key_end(ext: &e->ext)->data;
2073 else
2074 match_end = data;
2075
2076 start = first_rule;
2077 rules_fx = rules_f0;
2078
2079 nft_pipapo_for_each_field(f, i, m) {
2080 bool last = i == m->field_count - 1;
2081
2082 if (!pipapo_match_field(f, first_rule: start, rule_count: rules_fx,
2083 start: match_start, end: match_end))
2084 break;
2085
2086 rulemap[i].to = start;
2087 rulemap[i].n = rules_fx;
2088
2089 rules_fx = f->mt[start].n;
2090 start = f->mt[start].to;
2091
2092 match_start += NFT_PIPAPO_GROUPS_PADDED_SIZE(f);
2093 match_end += NFT_PIPAPO_GROUPS_PADDED_SIZE(f);
2094
2095 if (last && f->mt[rulemap[i].to].e == e) {
2096 priv->dirty = true;
2097 pipapo_drop(m, rulemap);
2098 return;
2099 }
2100 }
2101
2102 first_rule += rules_f0;
2103 }
2104
2105 WARN_ON_ONCE(1); /* elem_priv not found */
2106}
2107
2108/**
2109 * nft_pipapo_walk() - Walk over elements
2110 * @ctx: nftables API context
2111 * @set: nftables API set representation
2112 * @iter: Iterator
2113 *
2114 * As elements are referenced in the mapping array for the last field, directly
2115 * scan that array: there's no need to follow rule mappings from the first
2116 * field.
2117 */
2118static void nft_pipapo_walk(const struct nft_ctx *ctx, struct nft_set *set,
2119 struct nft_set_iter *iter)
2120{
2121 struct nft_pipapo *priv = nft_set_priv(set);
2122 const struct nft_pipapo_match *m;
2123 const struct nft_pipapo_field *f;
2124 unsigned int i, r;
2125
2126 WARN_ON_ONCE(iter->type != NFT_ITER_READ &&
2127 iter->type != NFT_ITER_UPDATE);
2128
2129 rcu_read_lock();
2130 if (iter->type == NFT_ITER_READ)
2131 m = rcu_dereference(priv->match);
2132 else
2133 m = priv->clone;
2134
2135 if (unlikely(!m))
2136 goto out;
2137
2138 for (i = 0, f = m->f; i < m->field_count - 1; i++, f++)
2139 ;
2140
2141 for (r = 0; r < f->rules; r++) {
2142 struct nft_pipapo_elem *e;
2143
2144 if (r < f->rules - 1 && f->mt[r + 1].e == f->mt[r].e)
2145 continue;
2146
2147 if (iter->count < iter->skip)
2148 goto cont;
2149
2150 e = f->mt[r].e;
2151
2152 iter->err = iter->fn(ctx, set, iter, &e->priv);
2153 if (iter->err < 0)
2154 goto out;
2155
2156cont:
2157 iter->count++;
2158 }
2159
2160out:
2161 rcu_read_unlock();
2162}
2163
2164/**
2165 * nft_pipapo_privsize() - Return the size of private data for the set
2166 * @nla: netlink attributes, ignored as size doesn't depend on them
2167 * @desc: Set description, ignored as size doesn't depend on it
2168 *
2169 * Return: size of private data for this set implementation, in bytes
2170 */
2171static u64 nft_pipapo_privsize(const struct nlattr * const nla[],
2172 const struct nft_set_desc *desc)
2173{
2174 return sizeof(struct nft_pipapo);
2175}
2176
2177/**
2178 * nft_pipapo_estimate() - Set size, space and lookup complexity
2179 * @desc: Set description, element count and field description used
2180 * @features: Flags: NFT_SET_INTERVAL needs to be there
2181 * @est: Storage for estimation data
2182 *
2183 * Return: true if set description is compatible, false otherwise
2184 */
2185static bool nft_pipapo_estimate(const struct nft_set_desc *desc, u32 features,
2186 struct nft_set_estimate *est)
2187{
2188 if (!(features & NFT_SET_INTERVAL) ||
2189 desc->field_count < NFT_PIPAPO_MIN_FIELDS)
2190 return false;
2191
2192 est->size = pipapo_estimate_size(desc);
2193 if (!est->size)
2194 return false;
2195
2196 est->lookup = NFT_SET_CLASS_O_LOG_N;
2197
2198 est->space = NFT_SET_CLASS_O_N;
2199
2200 return true;
2201}
2202
2203/**
2204 * nft_pipapo_init() - Initialise data for a set instance
2205 * @set: nftables API set representation
2206 * @desc: Set description
2207 * @nla: netlink attributes
2208 *
2209 * Validate number and size of fields passed as NFTA_SET_DESC_CONCAT netlink
2210 * attributes, initialise internal set parameters, current instance of matching
2211 * data and a copy for subsequent insertions.
2212 *
2213 * Return: 0 on success, negative error code on failure.
2214 */
2215static int nft_pipapo_init(const struct nft_set *set,
2216 const struct nft_set_desc *desc,
2217 const struct nlattr * const nla[])
2218{
2219 struct nft_pipapo *priv = nft_set_priv(set);
2220 struct nft_pipapo_match *m;
2221 struct nft_pipapo_field *f;
2222 int err, i, field_count;
2223
2224 BUILD_BUG_ON(offsetof(struct nft_pipapo_elem, priv) != 0);
2225
2226 field_count = desc->field_count ? : 1;
2227
2228 BUILD_BUG_ON(NFT_PIPAPO_MAX_FIELDS > 255);
2229 BUILD_BUG_ON(NFT_PIPAPO_MAX_FIELDS != NFT_REG32_COUNT);
2230
2231 if (field_count > NFT_PIPAPO_MAX_FIELDS)
2232 return -EINVAL;
2233
2234 m = kmalloc(struct_size(m, f, field_count), GFP_KERNEL);
2235 if (!m)
2236 return -ENOMEM;
2237
2238 m->field_count = field_count;
2239 m->bsize_max = 0;
2240
2241 m->scratch = alloc_percpu(struct nft_pipapo_scratch *);
2242 if (!m->scratch) {
2243 err = -ENOMEM;
2244 goto out_scratch;
2245 }
2246 for_each_possible_cpu(i)
2247 *per_cpu_ptr(m->scratch, i) = NULL;
2248
2249 rcu_head_init(rhp: &m->rcu);
2250
2251 nft_pipapo_for_each_field(f, i, m) {
2252 unsigned int len = desc->field_len[i] ? : set->klen;
2253
2254 /* f->groups is u8 */
2255 BUILD_BUG_ON((NFT_PIPAPO_MAX_BYTES *
2256 BITS_PER_BYTE / NFT_PIPAPO_GROUP_BITS_LARGE_SET) >= 256);
2257
2258 f->bb = NFT_PIPAPO_GROUP_BITS_INIT;
2259 f->groups = len * NFT_PIPAPO_GROUPS_PER_BYTE(f);
2260
2261 priv->width += round_up(len, sizeof(u32));
2262
2263 f->bsize = 0;
2264 f->rules = 0;
2265 f->rules_alloc = 0;
2266 f->lt = NULL;
2267 f->mt = NULL;
2268 }
2269
2270 /* Create an initial clone of matching data for next insertion */
2271 priv->clone = pipapo_clone(old: m);
2272 if (IS_ERR(ptr: priv->clone)) {
2273 err = PTR_ERR(ptr: priv->clone);
2274 goto out_free;
2275 }
2276
2277 priv->dirty = false;
2278
2279 rcu_assign_pointer(priv->match, m);
2280
2281 return 0;
2282
2283out_free:
2284 free_percpu(pdata: m->scratch);
2285out_scratch:
2286 kfree(objp: m);
2287
2288 return err;
2289}
2290
2291/**
2292 * nft_set_pipapo_match_destroy() - Destroy elements from key mapping array
2293 * @ctx: context
2294 * @set: nftables API set representation
2295 * @m: matching data pointing to key mapping array
2296 */
2297static void nft_set_pipapo_match_destroy(const struct nft_ctx *ctx,
2298 const struct nft_set *set,
2299 struct nft_pipapo_match *m)
2300{
2301 struct nft_pipapo_field *f;
2302 unsigned int i, r;
2303
2304 for (i = 0, f = m->f; i < m->field_count - 1; i++, f++)
2305 ;
2306
2307 for (r = 0; r < f->rules; r++) {
2308 struct nft_pipapo_elem *e;
2309
2310 if (r < f->rules - 1 && f->mt[r + 1].e == f->mt[r].e)
2311 continue;
2312
2313 e = f->mt[r].e;
2314
2315 nf_tables_set_elem_destroy(ctx, set, elem_priv: &e->priv);
2316 }
2317}
2318
2319/**
2320 * nft_pipapo_destroy() - Free private data for set and all committed elements
2321 * @ctx: context
2322 * @set: nftables API set representation
2323 */
2324static void nft_pipapo_destroy(const struct nft_ctx *ctx,
2325 const struct nft_set *set)
2326{
2327 struct nft_pipapo *priv = nft_set_priv(set);
2328 struct nft_pipapo_match *m;
2329 int cpu;
2330
2331 m = rcu_dereference_protected(priv->match, true);
2332 if (m) {
2333 rcu_barrier();
2334
2335 for_each_possible_cpu(cpu)
2336 pipapo_free_scratch(m, cpu);
2337 free_percpu(pdata: m->scratch);
2338 pipapo_free_fields(m);
2339 kfree(objp: m);
2340 priv->match = NULL;
2341 }
2342
2343 if (priv->clone) {
2344 m = priv->clone;
2345
2346 nft_set_pipapo_match_destroy(ctx, set, m);
2347
2348 for_each_possible_cpu(cpu)
2349 pipapo_free_scratch(m: priv->clone, cpu);
2350 free_percpu(pdata: priv->clone->scratch);
2351
2352 pipapo_free_fields(m: priv->clone);
2353 kfree(objp: priv->clone);
2354 priv->clone = NULL;
2355 }
2356}
2357
2358/**
2359 * nft_pipapo_gc_init() - Initialise garbage collection
2360 * @set: nftables API set representation
2361 *
2362 * Instead of actually setting up a periodic work for garbage collection, as
2363 * this operation requires a swap of matching data with the working copy, we'll
2364 * do that opportunistically with other commit operations if the interval is
2365 * elapsed, so we just need to set the current jiffies timestamp here.
2366 */
2367static void nft_pipapo_gc_init(const struct nft_set *set)
2368{
2369 struct nft_pipapo *priv = nft_set_priv(set);
2370
2371 priv->last_gc = jiffies;
2372}
2373
2374const struct nft_set_type nft_set_pipapo_type = {
2375 .features = NFT_SET_INTERVAL | NFT_SET_MAP | NFT_SET_OBJECT |
2376 NFT_SET_TIMEOUT,
2377 .ops = {
2378 .lookup = nft_pipapo_lookup,
2379 .insert = nft_pipapo_insert,
2380 .activate = nft_pipapo_activate,
2381 .deactivate = nft_pipapo_deactivate,
2382 .flush = nft_pipapo_flush,
2383 .remove = nft_pipapo_remove,
2384 .walk = nft_pipapo_walk,
2385 .get = nft_pipapo_get,
2386 .privsize = nft_pipapo_privsize,
2387 .estimate = nft_pipapo_estimate,
2388 .init = nft_pipapo_init,
2389 .destroy = nft_pipapo_destroy,
2390 .gc_init = nft_pipapo_gc_init,
2391 .commit = nft_pipapo_commit,
2392 .abort = nft_pipapo_abort,
2393 .elemsize = offsetof(struct nft_pipapo_elem, ext),
2394 },
2395};
2396
2397#if defined(CONFIG_X86_64) && !defined(CONFIG_UML)
2398const struct nft_set_type nft_set_pipapo_avx2_type = {
2399 .features = NFT_SET_INTERVAL | NFT_SET_MAP | NFT_SET_OBJECT |
2400 NFT_SET_TIMEOUT,
2401 .ops = {
2402 .lookup = nft_pipapo_avx2_lookup,
2403 .insert = nft_pipapo_insert,
2404 .activate = nft_pipapo_activate,
2405 .deactivate = nft_pipapo_deactivate,
2406 .flush = nft_pipapo_flush,
2407 .remove = nft_pipapo_remove,
2408 .walk = nft_pipapo_walk,
2409 .get = nft_pipapo_get,
2410 .privsize = nft_pipapo_privsize,
2411 .estimate = nft_pipapo_avx2_estimate,
2412 .init = nft_pipapo_init,
2413 .destroy = nft_pipapo_destroy,
2414 .gc_init = nft_pipapo_gc_init,
2415 .commit = nft_pipapo_commit,
2416 .abort = nft_pipapo_abort,
2417 .elemsize = offsetof(struct nft_pipapo_elem, ext),
2418 },
2419};
2420#endif
2421

source code of linux/net/netfilter/nft_set_pipapo.c