1// SPDX-License-Identifier: GPL-2.0
2/*
3 * cfg80211 scan result handling
4 *
5 * Copyright 2008 Johannes Berg <johannes@sipsolutions.net>
6 * Copyright 2013-2014 Intel Mobile Communications GmbH
7 * Copyright 2016 Intel Deutschland GmbH
8 * Copyright (C) 2018-2023 Intel Corporation
9 */
10#include <linux/kernel.h>
11#include <linux/slab.h>
12#include <linux/module.h>
13#include <linux/netdevice.h>
14#include <linux/wireless.h>
15#include <linux/nl80211.h>
16#include <linux/etherdevice.h>
17#include <linux/crc32.h>
18#include <linux/bitfield.h>
19#include <net/arp.h>
20#include <net/cfg80211.h>
21#include <net/cfg80211-wext.h>
22#include <net/iw_handler.h>
23#include "core.h"
24#include "nl80211.h"
25#include "wext-compat.h"
26#include "rdev-ops.h"
27
28/**
29 * DOC: BSS tree/list structure
30 *
31 * At the top level, the BSS list is kept in both a list in each
32 * registered device (@bss_list) as well as an RB-tree for faster
33 * lookup. In the RB-tree, entries can be looked up using their
34 * channel, MESHID, MESHCONF (for MBSSes) or channel, BSSID, SSID
35 * for other BSSes.
36 *
37 * Due to the possibility of hidden SSIDs, there's a second level
38 * structure, the "hidden_list" and "hidden_beacon_bss" pointer.
39 * The hidden_list connects all BSSes belonging to a single AP
40 * that has a hidden SSID, and connects beacon and probe response
41 * entries. For a probe response entry for a hidden SSID, the
42 * hidden_beacon_bss pointer points to the BSS struct holding the
43 * beacon's information.
44 *
45 * Reference counting is done for all these references except for
46 * the hidden_list, so that a beacon BSS struct that is otherwise
47 * not referenced has one reference for being on the bss_list and
48 * one for each probe response entry that points to it using the
49 * hidden_beacon_bss pointer. When a BSS struct that has such a
50 * pointer is get/put, the refcount update is also propagated to
51 * the referenced struct, this ensure that it cannot get removed
52 * while somebody is using the probe response version.
53 *
54 * Note that the hidden_beacon_bss pointer never changes, due to
55 * the reference counting. Therefore, no locking is needed for
56 * it.
57 *
58 * Also note that the hidden_beacon_bss pointer is only relevant
59 * if the driver uses something other than the IEs, e.g. private
60 * data stored in the BSS struct, since the beacon IEs are
61 * also linked into the probe response struct.
62 */
63
64/*
65 * Limit the number of BSS entries stored in mac80211. Each one is
66 * a bit over 4k at most, so this limits to roughly 4-5M of memory.
67 * If somebody wants to really attack this though, they'd likely
68 * use small beacons, and only one type of frame, limiting each of
69 * the entries to a much smaller size (in order to generate more
70 * entries in total, so overhead is bigger.)
71 */
72static int bss_entries_limit = 1000;
73module_param(bss_entries_limit, int, 0644);
74MODULE_PARM_DESC(bss_entries_limit,
75 "limit to number of scan BSS entries (per wiphy, default 1000)");
76
77#define IEEE80211_SCAN_RESULT_EXPIRE (30 * HZ)
78
79/**
80 * struct cfg80211_colocated_ap - colocated AP information
81 *
82 * @list: linked list to all colocated aPS
83 * @bssid: BSSID of the reported AP
84 * @ssid: SSID of the reported AP
85 * @ssid_len: length of the ssid
86 * @center_freq: frequency the reported AP is on
87 * @unsolicited_probe: the reported AP is part of an ESS, where all the APs
88 * that operate in the same channel as the reported AP and that might be
89 * detected by a STA receiving this frame, are transmitting unsolicited
90 * Probe Response frames every 20 TUs
91 * @oct_recommended: OCT is recommended to exchange MMPDUs with the reported AP
92 * @same_ssid: the reported AP has the same SSID as the reporting AP
93 * @multi_bss: the reported AP is part of a multiple BSSID set
94 * @transmitted_bssid: the reported AP is the transmitting BSSID
95 * @colocated_ess: all the APs that share the same ESS as the reported AP are
96 * colocated and can be discovered via legacy bands.
97 * @short_ssid_valid: short_ssid is valid and can be used
98 * @short_ssid: the short SSID for this SSID
99 * @psd_20: The 20MHz PSD EIRP of the primary 20MHz channel for the reported AP
100 */
101struct cfg80211_colocated_ap {
102 struct list_head list;
103 u8 bssid[ETH_ALEN];
104 u8 ssid[IEEE80211_MAX_SSID_LEN];
105 size_t ssid_len;
106 u32 short_ssid;
107 u32 center_freq;
108 u8 unsolicited_probe:1,
109 oct_recommended:1,
110 same_ssid:1,
111 multi_bss:1,
112 transmitted_bssid:1,
113 colocated_ess:1,
114 short_ssid_valid:1;
115 s8 psd_20;
116};
117
118static void bss_free(struct cfg80211_internal_bss *bss)
119{
120 struct cfg80211_bss_ies *ies;
121
122 if (WARN_ON(atomic_read(&bss->hold)))
123 return;
124
125 ies = (void *)rcu_access_pointer(bss->pub.beacon_ies);
126 if (ies && !bss->pub.hidden_beacon_bss)
127 kfree_rcu(ies, rcu_head);
128 ies = (void *)rcu_access_pointer(bss->pub.proberesp_ies);
129 if (ies)
130 kfree_rcu(ies, rcu_head);
131
132 /*
133 * This happens when the module is removed, it doesn't
134 * really matter any more save for completeness
135 */
136 if (!list_empty(head: &bss->hidden_list))
137 list_del(entry: &bss->hidden_list);
138
139 kfree(objp: bss);
140}
141
142static inline void bss_ref_get(struct cfg80211_registered_device *rdev,
143 struct cfg80211_internal_bss *bss)
144{
145 lockdep_assert_held(&rdev->bss_lock);
146
147 bss->refcount++;
148
149 if (bss->pub.hidden_beacon_bss)
150 bss_from_pub(pub: bss->pub.hidden_beacon_bss)->refcount++;
151
152 if (bss->pub.transmitted_bss)
153 bss_from_pub(pub: bss->pub.transmitted_bss)->refcount++;
154}
155
156static inline void bss_ref_put(struct cfg80211_registered_device *rdev,
157 struct cfg80211_internal_bss *bss)
158{
159 lockdep_assert_held(&rdev->bss_lock);
160
161 if (bss->pub.hidden_beacon_bss) {
162 struct cfg80211_internal_bss *hbss;
163
164 hbss = bss_from_pub(pub: bss->pub.hidden_beacon_bss);
165 hbss->refcount--;
166 if (hbss->refcount == 0)
167 bss_free(bss: hbss);
168 }
169
170 if (bss->pub.transmitted_bss) {
171 struct cfg80211_internal_bss *tbss;
172
173 tbss = bss_from_pub(pub: bss->pub.transmitted_bss);
174 tbss->refcount--;
175 if (tbss->refcount == 0)
176 bss_free(bss: tbss);
177 }
178
179 bss->refcount--;
180 if (bss->refcount == 0)
181 bss_free(bss);
182}
183
184static bool __cfg80211_unlink_bss(struct cfg80211_registered_device *rdev,
185 struct cfg80211_internal_bss *bss)
186{
187 lockdep_assert_held(&rdev->bss_lock);
188
189 if (!list_empty(head: &bss->hidden_list)) {
190 /*
191 * don't remove the beacon entry if it has
192 * probe responses associated with it
193 */
194 if (!bss->pub.hidden_beacon_bss)
195 return false;
196 /*
197 * if it's a probe response entry break its
198 * link to the other entries in the group
199 */
200 list_del_init(entry: &bss->hidden_list);
201 }
202
203 list_del_init(entry: &bss->list);
204 list_del_init(entry: &bss->pub.nontrans_list);
205 rb_erase(&bss->rbn, &rdev->bss_tree);
206 rdev->bss_entries--;
207 WARN_ONCE((rdev->bss_entries == 0) ^ list_empty(&rdev->bss_list),
208 "rdev bss entries[%d]/list[empty:%d] corruption\n",
209 rdev->bss_entries, list_empty(&rdev->bss_list));
210 bss_ref_put(rdev, bss);
211 return true;
212}
213
214bool cfg80211_is_element_inherited(const struct element *elem,
215 const struct element *non_inherit_elem)
216{
217 u8 id_len, ext_id_len, i, loop_len, id;
218 const u8 *list;
219
220 if (elem->id == WLAN_EID_MULTIPLE_BSSID)
221 return false;
222
223 if (elem->id == WLAN_EID_EXTENSION && elem->datalen > 1 &&
224 elem->data[0] == WLAN_EID_EXT_EHT_MULTI_LINK)
225 return false;
226
227 if (!non_inherit_elem || non_inherit_elem->datalen < 2)
228 return true;
229
230 /*
231 * non inheritance element format is:
232 * ext ID (56) | IDs list len | list | extension IDs list len | list
233 * Both lists are optional. Both lengths are mandatory.
234 * This means valid length is:
235 * elem_len = 1 (extension ID) + 2 (list len fields) + list lengths
236 */
237 id_len = non_inherit_elem->data[1];
238 if (non_inherit_elem->datalen < 3 + id_len)
239 return true;
240
241 ext_id_len = non_inherit_elem->data[2 + id_len];
242 if (non_inherit_elem->datalen < 3 + id_len + ext_id_len)
243 return true;
244
245 if (elem->id == WLAN_EID_EXTENSION) {
246 if (!ext_id_len)
247 return true;
248 loop_len = ext_id_len;
249 list = &non_inherit_elem->data[3 + id_len];
250 id = elem->data[0];
251 } else {
252 if (!id_len)
253 return true;
254 loop_len = id_len;
255 list = &non_inherit_elem->data[2];
256 id = elem->id;
257 }
258
259 for (i = 0; i < loop_len; i++) {
260 if (list[i] == id)
261 return false;
262 }
263
264 return true;
265}
266EXPORT_SYMBOL(cfg80211_is_element_inherited);
267
268static size_t cfg80211_copy_elem_with_frags(const struct element *elem,
269 const u8 *ie, size_t ie_len,
270 u8 **pos, u8 *buf, size_t buf_len)
271{
272 if (WARN_ON((u8 *)elem < ie || elem->data > ie + ie_len ||
273 elem->data + elem->datalen > ie + ie_len))
274 return 0;
275
276 if (elem->datalen + 2 > buf + buf_len - *pos)
277 return 0;
278
279 memcpy(*pos, elem, elem->datalen + 2);
280 *pos += elem->datalen + 2;
281
282 /* Finish if it is not fragmented */
283 if (elem->datalen != 255)
284 return *pos - buf;
285
286 ie_len = ie + ie_len - elem->data - elem->datalen;
287 ie = (const u8 *)elem->data + elem->datalen;
288
289 for_each_element(elem, ie, ie_len) {
290 if (elem->id != WLAN_EID_FRAGMENT)
291 break;
292
293 if (elem->datalen + 2 > buf + buf_len - *pos)
294 return 0;
295
296 memcpy(*pos, elem, elem->datalen + 2);
297 *pos += elem->datalen + 2;
298
299 if (elem->datalen != 255)
300 break;
301 }
302
303 return *pos - buf;
304}
305
306static size_t cfg80211_gen_new_ie(const u8 *ie, size_t ielen,
307 const u8 *subie, size_t subie_len,
308 u8 *new_ie, size_t new_ie_len)
309{
310 const struct element *non_inherit_elem, *parent, *sub;
311 u8 *pos = new_ie;
312 u8 id, ext_id;
313 unsigned int match_len;
314
315 non_inherit_elem = cfg80211_find_ext_elem(ext_eid: WLAN_EID_EXT_NON_INHERITANCE,
316 ies: subie, len: subie_len);
317
318 /* We copy the elements one by one from the parent to the generated
319 * elements.
320 * If they are not inherited (included in subie or in the non
321 * inheritance element), then we copy all occurrences the first time
322 * we see this element type.
323 */
324 for_each_element(parent, ie, ielen) {
325 if (parent->id == WLAN_EID_FRAGMENT)
326 continue;
327
328 if (parent->id == WLAN_EID_EXTENSION) {
329 if (parent->datalen < 1)
330 continue;
331
332 id = WLAN_EID_EXTENSION;
333 ext_id = parent->data[0];
334 match_len = 1;
335 } else {
336 id = parent->id;
337 match_len = 0;
338 }
339
340 /* Find first occurrence in subie */
341 sub = cfg80211_find_elem_match(eid: id, ies: subie, len: subie_len,
342 match: &ext_id, match_len, match_offset: 0);
343
344 /* Copy from parent if not in subie and inherited */
345 if (!sub &&
346 cfg80211_is_element_inherited(parent, non_inherit_elem)) {
347 if (!cfg80211_copy_elem_with_frags(elem: parent,
348 ie, ie_len: ielen,
349 pos: &pos, buf: new_ie,
350 buf_len: new_ie_len))
351 return 0;
352
353 continue;
354 }
355
356 /* Already copied if an earlier element had the same type */
357 if (cfg80211_find_elem_match(eid: id, ies: ie, len: (u8 *)parent - ie,
358 match: &ext_id, match_len, match_offset: 0))
359 continue;
360
361 /* Not inheriting, copy all similar elements from subie */
362 while (sub) {
363 if (!cfg80211_copy_elem_with_frags(elem: sub,
364 ie: subie, ie_len: subie_len,
365 pos: &pos, buf: new_ie,
366 buf_len: new_ie_len))
367 return 0;
368
369 sub = cfg80211_find_elem_match(eid: id,
370 ies: sub->data + sub->datalen,
371 len: subie_len + subie -
372 (sub->data +
373 sub->datalen),
374 match: &ext_id, match_len, match_offset: 0);
375 }
376 }
377
378 /* The above misses elements that are included in subie but not in the
379 * parent, so do a pass over subie and append those.
380 * Skip the non-tx BSSID caps and non-inheritance element.
381 */
382 for_each_element(sub, subie, subie_len) {
383 if (sub->id == WLAN_EID_NON_TX_BSSID_CAP)
384 continue;
385
386 if (sub->id == WLAN_EID_FRAGMENT)
387 continue;
388
389 if (sub->id == WLAN_EID_EXTENSION) {
390 if (sub->datalen < 1)
391 continue;
392
393 id = WLAN_EID_EXTENSION;
394 ext_id = sub->data[0];
395 match_len = 1;
396
397 if (ext_id == WLAN_EID_EXT_NON_INHERITANCE)
398 continue;
399 } else {
400 id = sub->id;
401 match_len = 0;
402 }
403
404 /* Processed if one was included in the parent */
405 if (cfg80211_find_elem_match(eid: id, ies: ie, len: ielen,
406 match: &ext_id, match_len, match_offset: 0))
407 continue;
408
409 if (!cfg80211_copy_elem_with_frags(elem: sub, ie: subie, ie_len: subie_len,
410 pos: &pos, buf: new_ie, buf_len: new_ie_len))
411 return 0;
412 }
413
414 return pos - new_ie;
415}
416
417static bool is_bss(struct cfg80211_bss *a, const u8 *bssid,
418 const u8 *ssid, size_t ssid_len)
419{
420 const struct cfg80211_bss_ies *ies;
421 const struct element *ssid_elem;
422
423 if (bssid && !ether_addr_equal(addr1: a->bssid, addr2: bssid))
424 return false;
425
426 if (!ssid)
427 return true;
428
429 ies = rcu_access_pointer(a->ies);
430 if (!ies)
431 return false;
432 ssid_elem = cfg80211_find_elem(eid: WLAN_EID_SSID, ies: ies->data, len: ies->len);
433 if (!ssid_elem)
434 return false;
435 if (ssid_elem->datalen != ssid_len)
436 return false;
437 return memcmp(p: ssid_elem->data, q: ssid, size: ssid_len) == 0;
438}
439
440static int
441cfg80211_add_nontrans_list(struct cfg80211_bss *trans_bss,
442 struct cfg80211_bss *nontrans_bss)
443{
444 const struct element *ssid_elem;
445 struct cfg80211_bss *bss = NULL;
446
447 rcu_read_lock();
448 ssid_elem = ieee80211_bss_get_elem(bss: nontrans_bss, id: WLAN_EID_SSID);
449 if (!ssid_elem) {
450 rcu_read_unlock();
451 return -EINVAL;
452 }
453
454 /* check if nontrans_bss is in the list */
455 list_for_each_entry(bss, &trans_bss->nontrans_list, nontrans_list) {
456 if (is_bss(a: bss, bssid: nontrans_bss->bssid, ssid: ssid_elem->data,
457 ssid_len: ssid_elem->datalen)) {
458 rcu_read_unlock();
459 return 0;
460 }
461 }
462
463 rcu_read_unlock();
464
465 /*
466 * This is a bit weird - it's not on the list, but already on another
467 * one! The only way that could happen is if there's some BSSID/SSID
468 * shared by multiple APs in their multi-BSSID profiles, potentially
469 * with hidden SSID mixed in ... ignore it.
470 */
471 if (!list_empty(head: &nontrans_bss->nontrans_list))
472 return -EINVAL;
473
474 /* add to the list */
475 list_add_tail(new: &nontrans_bss->nontrans_list, head: &trans_bss->nontrans_list);
476 return 0;
477}
478
479static void __cfg80211_bss_expire(struct cfg80211_registered_device *rdev,
480 unsigned long expire_time)
481{
482 struct cfg80211_internal_bss *bss, *tmp;
483 bool expired = false;
484
485 lockdep_assert_held(&rdev->bss_lock);
486
487 list_for_each_entry_safe(bss, tmp, &rdev->bss_list, list) {
488 if (atomic_read(v: &bss->hold))
489 continue;
490 if (!time_after(expire_time, bss->ts))
491 continue;
492
493 if (__cfg80211_unlink_bss(rdev, bss))
494 expired = true;
495 }
496
497 if (expired)
498 rdev->bss_generation++;
499}
500
501static bool cfg80211_bss_expire_oldest(struct cfg80211_registered_device *rdev)
502{
503 struct cfg80211_internal_bss *bss, *oldest = NULL;
504 bool ret;
505
506 lockdep_assert_held(&rdev->bss_lock);
507
508 list_for_each_entry(bss, &rdev->bss_list, list) {
509 if (atomic_read(v: &bss->hold))
510 continue;
511
512 if (!list_empty(head: &bss->hidden_list) &&
513 !bss->pub.hidden_beacon_bss)
514 continue;
515
516 if (oldest && time_before(oldest->ts, bss->ts))
517 continue;
518 oldest = bss;
519 }
520
521 if (WARN_ON(!oldest))
522 return false;
523
524 /*
525 * The callers make sure to increase rdev->bss_generation if anything
526 * gets removed (and a new entry added), so there's no need to also do
527 * it here.
528 */
529
530 ret = __cfg80211_unlink_bss(rdev, bss: oldest);
531 WARN_ON(!ret);
532 return ret;
533}
534
535static u8 cfg80211_parse_bss_param(u8 data,
536 struct cfg80211_colocated_ap *coloc_ap)
537{
538 coloc_ap->oct_recommended =
539 u8_get_bits(v: data, IEEE80211_RNR_TBTT_PARAMS_OCT_RECOMMENDED);
540 coloc_ap->same_ssid =
541 u8_get_bits(v: data, IEEE80211_RNR_TBTT_PARAMS_SAME_SSID);
542 coloc_ap->multi_bss =
543 u8_get_bits(v: data, IEEE80211_RNR_TBTT_PARAMS_MULTI_BSSID);
544 coloc_ap->transmitted_bssid =
545 u8_get_bits(v: data, IEEE80211_RNR_TBTT_PARAMS_TRANSMITTED_BSSID);
546 coloc_ap->unsolicited_probe =
547 u8_get_bits(v: data, IEEE80211_RNR_TBTT_PARAMS_PROBE_ACTIVE);
548 coloc_ap->colocated_ess =
549 u8_get_bits(v: data, IEEE80211_RNR_TBTT_PARAMS_COLOC_ESS);
550
551 return u8_get_bits(v: data, IEEE80211_RNR_TBTT_PARAMS_COLOC_AP);
552}
553
554static int cfg80211_calc_short_ssid(const struct cfg80211_bss_ies *ies,
555 const struct element **elem, u32 *s_ssid)
556{
557
558 *elem = cfg80211_find_elem(eid: WLAN_EID_SSID, ies: ies->data, len: ies->len);
559 if (!*elem || (*elem)->datalen > IEEE80211_MAX_SSID_LEN)
560 return -EINVAL;
561
562 *s_ssid = ~crc32_le(crc: ~0, p: (*elem)->data, len: (*elem)->datalen);
563 return 0;
564}
565
566static void cfg80211_free_coloc_ap_list(struct list_head *coloc_ap_list)
567{
568 struct cfg80211_colocated_ap *ap, *tmp_ap;
569
570 list_for_each_entry_safe(ap, tmp_ap, coloc_ap_list, list) {
571 list_del(entry: &ap->list);
572 kfree(objp: ap);
573 }
574}
575
576static int cfg80211_parse_ap_info(struct cfg80211_colocated_ap *entry,
577 const u8 *pos, u8 length,
578 const struct element *ssid_elem,
579 u32 s_ssid_tmp)
580{
581 u8 bss_params;
582
583 entry->psd_20 = IEEE80211_RNR_TBTT_PARAMS_PSD_RESERVED;
584
585 /* The length is already verified by the caller to contain bss_params */
586 if (length > sizeof(struct ieee80211_tbtt_info_7_8_9)) {
587 struct ieee80211_tbtt_info_ge_11 *tbtt_info = (void *)pos;
588
589 memcpy(entry->bssid, tbtt_info->bssid, ETH_ALEN);
590 entry->short_ssid = le32_to_cpu(tbtt_info->short_ssid);
591 entry->short_ssid_valid = true;
592
593 bss_params = tbtt_info->bss_params;
594
595 /* Ignore disabled links */
596 if (length >= offsetofend(typeof(*tbtt_info), mld_params)) {
597 if (le16_get_bits(v: tbtt_info->mld_params.params,
598 IEEE80211_RNR_MLD_PARAMS_DISABLED_LINK))
599 return -EINVAL;
600 }
601
602 if (length >= offsetofend(struct ieee80211_tbtt_info_ge_11,
603 psd_20))
604 entry->psd_20 = tbtt_info->psd_20;
605 } else {
606 struct ieee80211_tbtt_info_7_8_9 *tbtt_info = (void *)pos;
607
608 memcpy(entry->bssid, tbtt_info->bssid, ETH_ALEN);
609
610 bss_params = tbtt_info->bss_params;
611
612 if (length == offsetofend(struct ieee80211_tbtt_info_7_8_9,
613 psd_20))
614 entry->psd_20 = tbtt_info->psd_20;
615 }
616
617 /* ignore entries with invalid BSSID */
618 if (!is_valid_ether_addr(addr: entry->bssid))
619 return -EINVAL;
620
621 /* skip non colocated APs */
622 if (!cfg80211_parse_bss_param(data: bss_params, coloc_ap: entry))
623 return -EINVAL;
624
625 /* no information about the short ssid. Consider the entry valid
626 * for now. It would later be dropped in case there are explicit
627 * SSIDs that need to be matched
628 */
629 if (!entry->same_ssid && !entry->short_ssid_valid)
630 return 0;
631
632 if (entry->same_ssid) {
633 entry->short_ssid = s_ssid_tmp;
634 entry->short_ssid_valid = true;
635
636 /*
637 * This is safe because we validate datalen in
638 * cfg80211_parse_colocated_ap(), before calling this
639 * function.
640 */
641 memcpy(&entry->ssid, &ssid_elem->data, ssid_elem->datalen);
642 entry->ssid_len = ssid_elem->datalen;
643 }
644
645 return 0;
646}
647
648static int cfg80211_parse_colocated_ap(const struct cfg80211_bss_ies *ies,
649 struct list_head *list)
650{
651 struct ieee80211_neighbor_ap_info *ap_info;
652 const struct element *elem, *ssid_elem;
653 const u8 *pos, *end;
654 u32 s_ssid_tmp;
655 int n_coloc = 0, ret;
656 LIST_HEAD(ap_list);
657
658 ret = cfg80211_calc_short_ssid(ies, elem: &ssid_elem, s_ssid: &s_ssid_tmp);
659 if (ret)
660 return 0;
661
662 for_each_element_id(elem, WLAN_EID_REDUCED_NEIGHBOR_REPORT,
663 ies->data, ies->len) {
664 pos = elem->data;
665 end = elem->data + elem->datalen;
666
667 /* RNR IE may contain more than one NEIGHBOR_AP_INFO */
668 while (pos + sizeof(*ap_info) <= end) {
669 enum nl80211_band band;
670 int freq;
671 u8 length, i, count;
672
673 ap_info = (void *)pos;
674 count = u8_get_bits(v: ap_info->tbtt_info_hdr,
675 IEEE80211_AP_INFO_TBTT_HDR_COUNT) + 1;
676 length = ap_info->tbtt_info_len;
677
678 pos += sizeof(*ap_info);
679
680 if (!ieee80211_operating_class_to_band(operating_class: ap_info->op_class,
681 band: &band))
682 break;
683
684 freq = ieee80211_channel_to_frequency(chan: ap_info->channel,
685 band);
686
687 if (end - pos < count * length)
688 break;
689
690 if (u8_get_bits(v: ap_info->tbtt_info_hdr,
691 IEEE80211_AP_INFO_TBTT_HDR_TYPE) !=
692 IEEE80211_TBTT_INFO_TYPE_TBTT) {
693 pos += count * length;
694 continue;
695 }
696
697 /* TBTT info must include bss param + BSSID +
698 * (short SSID or same_ssid bit to be set).
699 * ignore other options, and move to the
700 * next AP info
701 */
702 if (band != NL80211_BAND_6GHZ ||
703 !(length == offsetofend(struct ieee80211_tbtt_info_7_8_9,
704 bss_params) ||
705 length == sizeof(struct ieee80211_tbtt_info_7_8_9) ||
706 length >= offsetofend(struct ieee80211_tbtt_info_ge_11,
707 bss_params))) {
708 pos += count * length;
709 continue;
710 }
711
712 for (i = 0; i < count; i++) {
713 struct cfg80211_colocated_ap *entry;
714
715 entry = kzalloc(size: sizeof(*entry) + IEEE80211_MAX_SSID_LEN,
716 GFP_ATOMIC);
717
718 if (!entry)
719 goto error;
720
721 entry->center_freq = freq;
722
723 if (!cfg80211_parse_ap_info(entry, pos, length,
724 ssid_elem,
725 s_ssid_tmp)) {
726 n_coloc++;
727 list_add_tail(new: &entry->list, head: &ap_list);
728 } else {
729 kfree(objp: entry);
730 }
731
732 pos += length;
733 }
734 }
735
736error:
737 if (pos != end) {
738 cfg80211_free_coloc_ap_list(coloc_ap_list: &ap_list);
739 return 0;
740 }
741 }
742
743 list_splice_tail(list: &ap_list, head: list);
744 return n_coloc;
745}
746
747static void cfg80211_scan_req_add_chan(struct cfg80211_scan_request *request,
748 struct ieee80211_channel *chan,
749 bool add_to_6ghz)
750{
751 int i;
752 u32 n_channels = request->n_channels;
753 struct cfg80211_scan_6ghz_params *params =
754 &request->scan_6ghz_params[request->n_6ghz_params];
755
756 for (i = 0; i < n_channels; i++) {
757 if (request->channels[i] == chan) {
758 if (add_to_6ghz)
759 params->channel_idx = i;
760 return;
761 }
762 }
763
764 request->channels[n_channels] = chan;
765 if (add_to_6ghz)
766 request->scan_6ghz_params[request->n_6ghz_params].channel_idx =
767 n_channels;
768
769 request->n_channels++;
770}
771
772static bool cfg80211_find_ssid_match(struct cfg80211_colocated_ap *ap,
773 struct cfg80211_scan_request *request)
774{
775 int i;
776 u32 s_ssid;
777
778 for (i = 0; i < request->n_ssids; i++) {
779 /* wildcard ssid in the scan request */
780 if (!request->ssids[i].ssid_len) {
781 if (ap->multi_bss && !ap->transmitted_bssid)
782 continue;
783
784 return true;
785 }
786
787 if (ap->ssid_len &&
788 ap->ssid_len == request->ssids[i].ssid_len) {
789 if (!memcmp(p: request->ssids[i].ssid, q: ap->ssid,
790 size: ap->ssid_len))
791 return true;
792 } else if (ap->short_ssid_valid) {
793 s_ssid = ~crc32_le(crc: ~0, p: request->ssids[i].ssid,
794 len: request->ssids[i].ssid_len);
795
796 if (ap->short_ssid == s_ssid)
797 return true;
798 }
799 }
800
801 return false;
802}
803
804static int cfg80211_scan_6ghz(struct cfg80211_registered_device *rdev)
805{
806 u8 i;
807 struct cfg80211_colocated_ap *ap;
808 int n_channels, count = 0, err;
809 struct cfg80211_scan_request *request, *rdev_req = rdev->scan_req;
810 LIST_HEAD(coloc_ap_list);
811 bool need_scan_psc = true;
812 const struct ieee80211_sband_iftype_data *iftd;
813
814 rdev_req->scan_6ghz = true;
815
816 if (!rdev->wiphy.bands[NL80211_BAND_6GHZ])
817 return -EOPNOTSUPP;
818
819 iftd = ieee80211_get_sband_iftype_data(sband: rdev->wiphy.bands[NL80211_BAND_6GHZ],
820 iftype: rdev_req->wdev->iftype);
821 if (!iftd || !iftd->he_cap.has_he)
822 return -EOPNOTSUPP;
823
824 n_channels = rdev->wiphy.bands[NL80211_BAND_6GHZ]->n_channels;
825
826 if (rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ) {
827 struct cfg80211_internal_bss *intbss;
828
829 spin_lock_bh(lock: &rdev->bss_lock);
830 list_for_each_entry(intbss, &rdev->bss_list, list) {
831 struct cfg80211_bss *res = &intbss->pub;
832 const struct cfg80211_bss_ies *ies;
833 const struct element *ssid_elem;
834 struct cfg80211_colocated_ap *entry;
835 u32 s_ssid_tmp;
836 int ret;
837
838 ies = rcu_access_pointer(res->ies);
839 count += cfg80211_parse_colocated_ap(ies,
840 list: &coloc_ap_list);
841
842 /* In case the scan request specified a specific BSSID
843 * and the BSS is found and operating on 6GHz band then
844 * add this AP to the collocated APs list.
845 * This is relevant for ML probe requests when the lower
846 * band APs have not been discovered.
847 */
848 if (is_broadcast_ether_addr(addr: rdev_req->bssid) ||
849 !ether_addr_equal(addr1: rdev_req->bssid, addr2: res->bssid) ||
850 res->channel->band != NL80211_BAND_6GHZ)
851 continue;
852
853 ret = cfg80211_calc_short_ssid(ies, elem: &ssid_elem,
854 s_ssid: &s_ssid_tmp);
855 if (ret)
856 continue;
857
858 entry = kzalloc(size: sizeof(*entry) + IEEE80211_MAX_SSID_LEN,
859 GFP_ATOMIC);
860
861 if (!entry)
862 continue;
863
864 memcpy(entry->bssid, res->bssid, ETH_ALEN);
865 entry->short_ssid = s_ssid_tmp;
866 memcpy(entry->ssid, ssid_elem->data,
867 ssid_elem->datalen);
868 entry->ssid_len = ssid_elem->datalen;
869 entry->short_ssid_valid = true;
870 entry->center_freq = res->channel->center_freq;
871
872 list_add_tail(new: &entry->list, head: &coloc_ap_list);
873 count++;
874 }
875 spin_unlock_bh(lock: &rdev->bss_lock);
876 }
877
878 request = kzalloc(struct_size(request, channels, n_channels) +
879 sizeof(*request->scan_6ghz_params) * count +
880 sizeof(*request->ssids) * rdev_req->n_ssids,
881 GFP_KERNEL);
882 if (!request) {
883 cfg80211_free_coloc_ap_list(coloc_ap_list: &coloc_ap_list);
884 return -ENOMEM;
885 }
886
887 *request = *rdev_req;
888 request->n_channels = 0;
889 request->scan_6ghz_params =
890 (void *)&request->channels[n_channels];
891
892 /*
893 * PSC channels should not be scanned in case of direct scan with 1 SSID
894 * and at least one of the reported co-located APs with same SSID
895 * indicating that all APs in the same ESS are co-located
896 */
897 if (count && request->n_ssids == 1 && request->ssids[0].ssid_len) {
898 list_for_each_entry(ap, &coloc_ap_list, list) {
899 if (ap->colocated_ess &&
900 cfg80211_find_ssid_match(ap, request)) {
901 need_scan_psc = false;
902 break;
903 }
904 }
905 }
906
907 /*
908 * add to the scan request the channels that need to be scanned
909 * regardless of the collocated APs (PSC channels or all channels
910 * in case that NL80211_SCAN_FLAG_COLOCATED_6GHZ is not set)
911 */
912 for (i = 0; i < rdev_req->n_channels; i++) {
913 if (rdev_req->channels[i]->band == NL80211_BAND_6GHZ &&
914 ((need_scan_psc &&
915 cfg80211_channel_is_psc(chan: rdev_req->channels[i])) ||
916 !(rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ))) {
917 cfg80211_scan_req_add_chan(request,
918 chan: rdev_req->channels[i],
919 add_to_6ghz: false);
920 }
921 }
922
923 if (!(rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ))
924 goto skip;
925
926 list_for_each_entry(ap, &coloc_ap_list, list) {
927 bool found = false;
928 struct cfg80211_scan_6ghz_params *scan_6ghz_params =
929 &request->scan_6ghz_params[request->n_6ghz_params];
930 struct ieee80211_channel *chan =
931 ieee80211_get_channel(wiphy: &rdev->wiphy, freq: ap->center_freq);
932
933 if (!chan || chan->flags & IEEE80211_CHAN_DISABLED)
934 continue;
935
936 for (i = 0; i < rdev_req->n_channels; i++) {
937 if (rdev_req->channels[i] == chan)
938 found = true;
939 }
940
941 if (!found)
942 continue;
943
944 if (request->n_ssids > 0 &&
945 !cfg80211_find_ssid_match(ap, request))
946 continue;
947
948 if (!is_broadcast_ether_addr(addr: request->bssid) &&
949 !ether_addr_equal(addr1: request->bssid, addr2: ap->bssid))
950 continue;
951
952 if (!request->n_ssids && ap->multi_bss && !ap->transmitted_bssid)
953 continue;
954
955 cfg80211_scan_req_add_chan(request, chan, add_to_6ghz: true);
956 memcpy(scan_6ghz_params->bssid, ap->bssid, ETH_ALEN);
957 scan_6ghz_params->short_ssid = ap->short_ssid;
958 scan_6ghz_params->short_ssid_valid = ap->short_ssid_valid;
959 scan_6ghz_params->unsolicited_probe = ap->unsolicited_probe;
960 scan_6ghz_params->psd_20 = ap->psd_20;
961
962 /*
963 * If a PSC channel is added to the scan and 'need_scan_psc' is
964 * set to false, then all the APs that the scan logic is
965 * interested with on the channel are collocated and thus there
966 * is no need to perform the initial PSC channel listen.
967 */
968 if (cfg80211_channel_is_psc(chan) && !need_scan_psc)
969 scan_6ghz_params->psc_no_listen = true;
970
971 request->n_6ghz_params++;
972 }
973
974skip:
975 cfg80211_free_coloc_ap_list(coloc_ap_list: &coloc_ap_list);
976
977 if (request->n_channels) {
978 struct cfg80211_scan_request *old = rdev->int_scan_req;
979 rdev->int_scan_req = request;
980
981 /*
982 * Add the ssids from the parent scan request to the new scan
983 * request, so the driver would be able to use them in its
984 * probe requests to discover hidden APs on PSC channels.
985 */
986 request->ssids = (void *)&request->channels[request->n_channels];
987 request->n_ssids = rdev_req->n_ssids;
988 memcpy(request->ssids, rdev_req->ssids, sizeof(*request->ssids) *
989 request->n_ssids);
990
991 /*
992 * If this scan follows a previous scan, save the scan start
993 * info from the first part of the scan
994 */
995 if (old)
996 rdev->int_scan_req->info = old->info;
997
998 err = rdev_scan(rdev, request);
999 if (err) {
1000 rdev->int_scan_req = old;
1001 kfree(objp: request);
1002 } else {
1003 kfree(objp: old);
1004 }
1005
1006 return err;
1007 }
1008
1009 kfree(objp: request);
1010 return -EINVAL;
1011}
1012
1013int cfg80211_scan(struct cfg80211_registered_device *rdev)
1014{
1015 struct cfg80211_scan_request *request;
1016 struct cfg80211_scan_request *rdev_req = rdev->scan_req;
1017 u32 n_channels = 0, idx, i;
1018
1019 if (!(rdev->wiphy.flags & WIPHY_FLAG_SPLIT_SCAN_6GHZ))
1020 return rdev_scan(rdev, request: rdev_req);
1021
1022 for (i = 0; i < rdev_req->n_channels; i++) {
1023 if (rdev_req->channels[i]->band != NL80211_BAND_6GHZ)
1024 n_channels++;
1025 }
1026
1027 if (!n_channels)
1028 return cfg80211_scan_6ghz(rdev);
1029
1030 request = kzalloc(struct_size(request, channels, n_channels),
1031 GFP_KERNEL);
1032 if (!request)
1033 return -ENOMEM;
1034
1035 *request = *rdev_req;
1036 request->n_channels = n_channels;
1037
1038 for (i = idx = 0; i < rdev_req->n_channels; i++) {
1039 if (rdev_req->channels[i]->band != NL80211_BAND_6GHZ)
1040 request->channels[idx++] = rdev_req->channels[i];
1041 }
1042
1043 rdev_req->scan_6ghz = false;
1044 rdev->int_scan_req = request;
1045 return rdev_scan(rdev, request);
1046}
1047
1048void ___cfg80211_scan_done(struct cfg80211_registered_device *rdev,
1049 bool send_message)
1050{
1051 struct cfg80211_scan_request *request, *rdev_req;
1052 struct wireless_dev *wdev;
1053 struct sk_buff *msg;
1054#ifdef CONFIG_CFG80211_WEXT
1055 union iwreq_data wrqu;
1056#endif
1057
1058 lockdep_assert_held(&rdev->wiphy.mtx);
1059
1060 if (rdev->scan_msg) {
1061 nl80211_send_scan_msg(rdev, msg: rdev->scan_msg);
1062 rdev->scan_msg = NULL;
1063 return;
1064 }
1065
1066 rdev_req = rdev->scan_req;
1067 if (!rdev_req)
1068 return;
1069
1070 wdev = rdev_req->wdev;
1071 request = rdev->int_scan_req ? rdev->int_scan_req : rdev_req;
1072
1073 if (wdev_running(wdev) &&
1074 (rdev->wiphy.flags & WIPHY_FLAG_SPLIT_SCAN_6GHZ) &&
1075 !rdev_req->scan_6ghz && !request->info.aborted &&
1076 !cfg80211_scan_6ghz(rdev))
1077 return;
1078
1079 /*
1080 * This must be before sending the other events!
1081 * Otherwise, wpa_supplicant gets completely confused with
1082 * wext events.
1083 */
1084 if (wdev->netdev)
1085 cfg80211_sme_scan_done(dev: wdev->netdev);
1086
1087 if (!request->info.aborted &&
1088 request->flags & NL80211_SCAN_FLAG_FLUSH) {
1089 /* flush entries from previous scans */
1090 spin_lock_bh(lock: &rdev->bss_lock);
1091 __cfg80211_bss_expire(rdev, expire_time: request->scan_start);
1092 spin_unlock_bh(lock: &rdev->bss_lock);
1093 }
1094
1095 msg = nl80211_build_scan_msg(rdev, wdev, aborted: request->info.aborted);
1096
1097#ifdef CONFIG_CFG80211_WEXT
1098 if (wdev->netdev && !request->info.aborted) {
1099 memset(&wrqu, 0, sizeof(wrqu));
1100
1101 wireless_send_event(dev: wdev->netdev, SIOCGIWSCAN, wrqu: &wrqu, NULL);
1102 }
1103#endif
1104
1105 dev_put(dev: wdev->netdev);
1106
1107 kfree(objp: rdev->int_scan_req);
1108 rdev->int_scan_req = NULL;
1109
1110 kfree(objp: rdev->scan_req);
1111 rdev->scan_req = NULL;
1112
1113 if (!send_message)
1114 rdev->scan_msg = msg;
1115 else
1116 nl80211_send_scan_msg(rdev, msg);
1117}
1118
1119void __cfg80211_scan_done(struct wiphy *wiphy, struct wiphy_work *wk)
1120{
1121 ___cfg80211_scan_done(rdev: wiphy_to_rdev(wiphy), send_message: true);
1122}
1123
1124void cfg80211_scan_done(struct cfg80211_scan_request *request,
1125 struct cfg80211_scan_info *info)
1126{
1127 struct cfg80211_scan_info old_info = request->info;
1128
1129 trace_cfg80211_scan_done(request, info);
1130 WARN_ON(request != wiphy_to_rdev(request->wiphy)->scan_req &&
1131 request != wiphy_to_rdev(request->wiphy)->int_scan_req);
1132
1133 request->info = *info;
1134
1135 /*
1136 * In case the scan is split, the scan_start_tsf and tsf_bssid should
1137 * be of the first part. In such a case old_info.scan_start_tsf should
1138 * be non zero.
1139 */
1140 if (request->scan_6ghz && old_info.scan_start_tsf) {
1141 request->info.scan_start_tsf = old_info.scan_start_tsf;
1142 memcpy(request->info.tsf_bssid, old_info.tsf_bssid,
1143 sizeof(request->info.tsf_bssid));
1144 }
1145
1146 request->notified = true;
1147 wiphy_work_queue(wiphy: request->wiphy,
1148 work: &wiphy_to_rdev(wiphy: request->wiphy)->scan_done_wk);
1149}
1150EXPORT_SYMBOL(cfg80211_scan_done);
1151
1152void cfg80211_add_sched_scan_req(struct cfg80211_registered_device *rdev,
1153 struct cfg80211_sched_scan_request *req)
1154{
1155 lockdep_assert_held(&rdev->wiphy.mtx);
1156
1157 list_add_rcu(new: &req->list, head: &rdev->sched_scan_req_list);
1158}
1159
1160static void cfg80211_del_sched_scan_req(struct cfg80211_registered_device *rdev,
1161 struct cfg80211_sched_scan_request *req)
1162{
1163 lockdep_assert_held(&rdev->wiphy.mtx);
1164
1165 list_del_rcu(entry: &req->list);
1166 kfree_rcu(req, rcu_head);
1167}
1168
1169static struct cfg80211_sched_scan_request *
1170cfg80211_find_sched_scan_req(struct cfg80211_registered_device *rdev, u64 reqid)
1171{
1172 struct cfg80211_sched_scan_request *pos;
1173
1174 list_for_each_entry_rcu(pos, &rdev->sched_scan_req_list, list,
1175 lockdep_is_held(&rdev->wiphy.mtx)) {
1176 if (pos->reqid == reqid)
1177 return pos;
1178 }
1179 return NULL;
1180}
1181
1182/*
1183 * Determines if a scheduled scan request can be handled. When a legacy
1184 * scheduled scan is running no other scheduled scan is allowed regardless
1185 * whether the request is for legacy or multi-support scan. When a multi-support
1186 * scheduled scan is running a request for legacy scan is not allowed. In this
1187 * case a request for multi-support scan can be handled if resources are
1188 * available, ie. struct wiphy::max_sched_scan_reqs limit is not yet reached.
1189 */
1190int cfg80211_sched_scan_req_possible(struct cfg80211_registered_device *rdev,
1191 bool want_multi)
1192{
1193 struct cfg80211_sched_scan_request *pos;
1194 int i = 0;
1195
1196 list_for_each_entry(pos, &rdev->sched_scan_req_list, list) {
1197 /* request id zero means legacy in progress */
1198 if (!i && !pos->reqid)
1199 return -EINPROGRESS;
1200 i++;
1201 }
1202
1203 if (i) {
1204 /* no legacy allowed when multi request(s) are active */
1205 if (!want_multi)
1206 return -EINPROGRESS;
1207
1208 /* resource limit reached */
1209 if (i == rdev->wiphy.max_sched_scan_reqs)
1210 return -ENOSPC;
1211 }
1212 return 0;
1213}
1214
1215void cfg80211_sched_scan_results_wk(struct work_struct *work)
1216{
1217 struct cfg80211_registered_device *rdev;
1218 struct cfg80211_sched_scan_request *req, *tmp;
1219
1220 rdev = container_of(work, struct cfg80211_registered_device,
1221 sched_scan_res_wk);
1222
1223 wiphy_lock(wiphy: &rdev->wiphy);
1224 list_for_each_entry_safe(req, tmp, &rdev->sched_scan_req_list, list) {
1225 if (req->report_results) {
1226 req->report_results = false;
1227 if (req->flags & NL80211_SCAN_FLAG_FLUSH) {
1228 /* flush entries from previous scans */
1229 spin_lock_bh(lock: &rdev->bss_lock);
1230 __cfg80211_bss_expire(rdev, expire_time: req->scan_start);
1231 spin_unlock_bh(lock: &rdev->bss_lock);
1232 req->scan_start = jiffies;
1233 }
1234 nl80211_send_sched_scan(req,
1235 cmd: NL80211_CMD_SCHED_SCAN_RESULTS);
1236 }
1237 }
1238 wiphy_unlock(wiphy: &rdev->wiphy);
1239}
1240
1241void cfg80211_sched_scan_results(struct wiphy *wiphy, u64 reqid)
1242{
1243 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1244 struct cfg80211_sched_scan_request *request;
1245
1246 trace_cfg80211_sched_scan_results(wiphy, id: reqid);
1247 /* ignore if we're not scanning */
1248
1249 rcu_read_lock();
1250 request = cfg80211_find_sched_scan_req(rdev, reqid);
1251 if (request) {
1252 request->report_results = true;
1253 queue_work(wq: cfg80211_wq, work: &rdev->sched_scan_res_wk);
1254 }
1255 rcu_read_unlock();
1256}
1257EXPORT_SYMBOL(cfg80211_sched_scan_results);
1258
1259void cfg80211_sched_scan_stopped_locked(struct wiphy *wiphy, u64 reqid)
1260{
1261 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1262
1263 lockdep_assert_held(&wiphy->mtx);
1264
1265 trace_cfg80211_sched_scan_stopped(wiphy, id: reqid);
1266
1267 __cfg80211_stop_sched_scan(rdev, reqid, driver_initiated: true);
1268}
1269EXPORT_SYMBOL(cfg80211_sched_scan_stopped_locked);
1270
1271void cfg80211_sched_scan_stopped(struct wiphy *wiphy, u64 reqid)
1272{
1273 wiphy_lock(wiphy);
1274 cfg80211_sched_scan_stopped_locked(wiphy, reqid);
1275 wiphy_unlock(wiphy);
1276}
1277EXPORT_SYMBOL(cfg80211_sched_scan_stopped);
1278
1279int cfg80211_stop_sched_scan_req(struct cfg80211_registered_device *rdev,
1280 struct cfg80211_sched_scan_request *req,
1281 bool driver_initiated)
1282{
1283 lockdep_assert_held(&rdev->wiphy.mtx);
1284
1285 if (!driver_initiated) {
1286 int err = rdev_sched_scan_stop(rdev, dev: req->dev, reqid: req->reqid);
1287 if (err)
1288 return err;
1289 }
1290
1291 nl80211_send_sched_scan(req, cmd: NL80211_CMD_SCHED_SCAN_STOPPED);
1292
1293 cfg80211_del_sched_scan_req(rdev, req);
1294
1295 return 0;
1296}
1297
1298int __cfg80211_stop_sched_scan(struct cfg80211_registered_device *rdev,
1299 u64 reqid, bool driver_initiated)
1300{
1301 struct cfg80211_sched_scan_request *sched_scan_req;
1302
1303 lockdep_assert_held(&rdev->wiphy.mtx);
1304
1305 sched_scan_req = cfg80211_find_sched_scan_req(rdev, reqid);
1306 if (!sched_scan_req)
1307 return -ENOENT;
1308
1309 return cfg80211_stop_sched_scan_req(rdev, req: sched_scan_req,
1310 driver_initiated);
1311}
1312
1313void cfg80211_bss_age(struct cfg80211_registered_device *rdev,
1314 unsigned long age_secs)
1315{
1316 struct cfg80211_internal_bss *bss;
1317 unsigned long age_jiffies = msecs_to_jiffies(m: age_secs * MSEC_PER_SEC);
1318
1319 spin_lock_bh(lock: &rdev->bss_lock);
1320 list_for_each_entry(bss, &rdev->bss_list, list)
1321 bss->ts -= age_jiffies;
1322 spin_unlock_bh(lock: &rdev->bss_lock);
1323}
1324
1325void cfg80211_bss_expire(struct cfg80211_registered_device *rdev)
1326{
1327 __cfg80211_bss_expire(rdev, expire_time: jiffies - IEEE80211_SCAN_RESULT_EXPIRE);
1328}
1329
1330void cfg80211_bss_flush(struct wiphy *wiphy)
1331{
1332 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1333
1334 spin_lock_bh(lock: &rdev->bss_lock);
1335 __cfg80211_bss_expire(rdev, expire_time: jiffies);
1336 spin_unlock_bh(lock: &rdev->bss_lock);
1337}
1338EXPORT_SYMBOL(cfg80211_bss_flush);
1339
1340const struct element *
1341cfg80211_find_elem_match(u8 eid, const u8 *ies, unsigned int len,
1342 const u8 *match, unsigned int match_len,
1343 unsigned int match_offset)
1344{
1345 const struct element *elem;
1346
1347 for_each_element_id(elem, eid, ies, len) {
1348 if (elem->datalen >= match_offset + match_len &&
1349 !memcmp(p: elem->data + match_offset, q: match, size: match_len))
1350 return elem;
1351 }
1352
1353 return NULL;
1354}
1355EXPORT_SYMBOL(cfg80211_find_elem_match);
1356
1357const struct element *cfg80211_find_vendor_elem(unsigned int oui, int oui_type,
1358 const u8 *ies,
1359 unsigned int len)
1360{
1361 const struct element *elem;
1362 u8 match[] = { oui >> 16, oui >> 8, oui, oui_type };
1363 int match_len = (oui_type < 0) ? 3 : sizeof(match);
1364
1365 if (WARN_ON(oui_type > 0xff))
1366 return NULL;
1367
1368 elem = cfg80211_find_elem_match(WLAN_EID_VENDOR_SPECIFIC, ies, len,
1369 match, match_len, 0);
1370
1371 if (!elem || elem->datalen < 4)
1372 return NULL;
1373
1374 return elem;
1375}
1376EXPORT_SYMBOL(cfg80211_find_vendor_elem);
1377
1378/**
1379 * enum bss_compare_mode - BSS compare mode
1380 * @BSS_CMP_REGULAR: regular compare mode (for insertion and normal find)
1381 * @BSS_CMP_HIDE_ZLEN: find hidden SSID with zero-length mode
1382 * @BSS_CMP_HIDE_NUL: find hidden SSID with NUL-ed out mode
1383 */
1384enum bss_compare_mode {
1385 BSS_CMP_REGULAR,
1386 BSS_CMP_HIDE_ZLEN,
1387 BSS_CMP_HIDE_NUL,
1388};
1389
1390static int cmp_bss(struct cfg80211_bss *a,
1391 struct cfg80211_bss *b,
1392 enum bss_compare_mode mode)
1393{
1394 const struct cfg80211_bss_ies *a_ies, *b_ies;
1395 const u8 *ie1 = NULL;
1396 const u8 *ie2 = NULL;
1397 int i, r;
1398
1399 if (a->channel != b->channel)
1400 return (b->channel->center_freq * 1000 + b->channel->freq_offset) -
1401 (a->channel->center_freq * 1000 + a->channel->freq_offset);
1402
1403 a_ies = rcu_access_pointer(a->ies);
1404 if (!a_ies)
1405 return -1;
1406 b_ies = rcu_access_pointer(b->ies);
1407 if (!b_ies)
1408 return 1;
1409
1410 if (WLAN_CAPABILITY_IS_STA_BSS(a->capability))
1411 ie1 = cfg80211_find_ie(eid: WLAN_EID_MESH_ID,
1412 ies: a_ies->data, len: a_ies->len);
1413 if (WLAN_CAPABILITY_IS_STA_BSS(b->capability))
1414 ie2 = cfg80211_find_ie(eid: WLAN_EID_MESH_ID,
1415 ies: b_ies->data, len: b_ies->len);
1416 if (ie1 && ie2) {
1417 int mesh_id_cmp;
1418
1419 if (ie1[1] == ie2[1])
1420 mesh_id_cmp = memcmp(p: ie1 + 2, q: ie2 + 2, size: ie1[1]);
1421 else
1422 mesh_id_cmp = ie2[1] - ie1[1];
1423
1424 ie1 = cfg80211_find_ie(eid: WLAN_EID_MESH_CONFIG,
1425 ies: a_ies->data, len: a_ies->len);
1426 ie2 = cfg80211_find_ie(eid: WLAN_EID_MESH_CONFIG,
1427 ies: b_ies->data, len: b_ies->len);
1428 if (ie1 && ie2) {
1429 if (mesh_id_cmp)
1430 return mesh_id_cmp;
1431 if (ie1[1] != ie2[1])
1432 return ie2[1] - ie1[1];
1433 return memcmp(p: ie1 + 2, q: ie2 + 2, size: ie1[1]);
1434 }
1435 }
1436
1437 r = memcmp(p: a->bssid, q: b->bssid, size: sizeof(a->bssid));
1438 if (r)
1439 return r;
1440
1441 ie1 = cfg80211_find_ie(eid: WLAN_EID_SSID, ies: a_ies->data, len: a_ies->len);
1442 ie2 = cfg80211_find_ie(eid: WLAN_EID_SSID, ies: b_ies->data, len: b_ies->len);
1443
1444 if (!ie1 && !ie2)
1445 return 0;
1446
1447 /*
1448 * Note that with "hide_ssid", the function returns a match if
1449 * the already-present BSS ("b") is a hidden SSID beacon for
1450 * the new BSS ("a").
1451 */
1452
1453 /* sort missing IE before (left of) present IE */
1454 if (!ie1)
1455 return -1;
1456 if (!ie2)
1457 return 1;
1458
1459 switch (mode) {
1460 case BSS_CMP_HIDE_ZLEN:
1461 /*
1462 * In ZLEN mode we assume the BSS entry we're
1463 * looking for has a zero-length SSID. So if
1464 * the one we're looking at right now has that,
1465 * return 0. Otherwise, return the difference
1466 * in length, but since we're looking for the
1467 * 0-length it's really equivalent to returning
1468 * the length of the one we're looking at.
1469 *
1470 * No content comparison is needed as we assume
1471 * the content length is zero.
1472 */
1473 return ie2[1];
1474 case BSS_CMP_REGULAR:
1475 default:
1476 /* sort by length first, then by contents */
1477 if (ie1[1] != ie2[1])
1478 return ie2[1] - ie1[1];
1479 return memcmp(p: ie1 + 2, q: ie2 + 2, size: ie1[1]);
1480 case BSS_CMP_HIDE_NUL:
1481 if (ie1[1] != ie2[1])
1482 return ie2[1] - ie1[1];
1483 /* this is equivalent to memcmp(zeroes, ie2 + 2, len) */
1484 for (i = 0; i < ie2[1]; i++)
1485 if (ie2[i + 2])
1486 return -1;
1487 return 0;
1488 }
1489}
1490
1491static bool cfg80211_bss_type_match(u16 capability,
1492 enum nl80211_band band,
1493 enum ieee80211_bss_type bss_type)
1494{
1495 bool ret = true;
1496 u16 mask, val;
1497
1498 if (bss_type == IEEE80211_BSS_TYPE_ANY)
1499 return ret;
1500
1501 if (band == NL80211_BAND_60GHZ) {
1502 mask = WLAN_CAPABILITY_DMG_TYPE_MASK;
1503 switch (bss_type) {
1504 case IEEE80211_BSS_TYPE_ESS:
1505 val = WLAN_CAPABILITY_DMG_TYPE_AP;
1506 break;
1507 case IEEE80211_BSS_TYPE_PBSS:
1508 val = WLAN_CAPABILITY_DMG_TYPE_PBSS;
1509 break;
1510 case IEEE80211_BSS_TYPE_IBSS:
1511 val = WLAN_CAPABILITY_DMG_TYPE_IBSS;
1512 break;
1513 default:
1514 return false;
1515 }
1516 } else {
1517 mask = WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS;
1518 switch (bss_type) {
1519 case IEEE80211_BSS_TYPE_ESS:
1520 val = WLAN_CAPABILITY_ESS;
1521 break;
1522 case IEEE80211_BSS_TYPE_IBSS:
1523 val = WLAN_CAPABILITY_IBSS;
1524 break;
1525 case IEEE80211_BSS_TYPE_MBSS:
1526 val = 0;
1527 break;
1528 default:
1529 return false;
1530 }
1531 }
1532
1533 ret = ((capability & mask) == val);
1534 return ret;
1535}
1536
1537/* Returned bss is reference counted and must be cleaned up appropriately. */
1538struct cfg80211_bss *cfg80211_get_bss(struct wiphy *wiphy,
1539 struct ieee80211_channel *channel,
1540 const u8 *bssid,
1541 const u8 *ssid, size_t ssid_len,
1542 enum ieee80211_bss_type bss_type,
1543 enum ieee80211_privacy privacy)
1544{
1545 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1546 struct cfg80211_internal_bss *bss, *res = NULL;
1547 unsigned long now = jiffies;
1548 int bss_privacy;
1549
1550 trace_cfg80211_get_bss(wiphy, channel, bssid, ssid, ssid_len, bss_type,
1551 privacy);
1552
1553 spin_lock_bh(lock: &rdev->bss_lock);
1554
1555 list_for_each_entry(bss, &rdev->bss_list, list) {
1556 if (!cfg80211_bss_type_match(capability: bss->pub.capability,
1557 band: bss->pub.channel->band, bss_type))
1558 continue;
1559
1560 bss_privacy = (bss->pub.capability & WLAN_CAPABILITY_PRIVACY);
1561 if ((privacy == IEEE80211_PRIVACY_ON && !bss_privacy) ||
1562 (privacy == IEEE80211_PRIVACY_OFF && bss_privacy))
1563 continue;
1564 if (channel && bss->pub.channel != channel)
1565 continue;
1566 if (!is_valid_ether_addr(addr: bss->pub.bssid))
1567 continue;
1568 /* Don't get expired BSS structs */
1569 if (time_after(now, bss->ts + IEEE80211_SCAN_RESULT_EXPIRE) &&
1570 !atomic_read(v: &bss->hold))
1571 continue;
1572 if (is_bss(a: &bss->pub, bssid, ssid, ssid_len)) {
1573 res = bss;
1574 bss_ref_get(rdev, bss: res);
1575 break;
1576 }
1577 }
1578
1579 spin_unlock_bh(lock: &rdev->bss_lock);
1580 if (!res)
1581 return NULL;
1582 trace_cfg80211_return_bss(pub: &res->pub);
1583 return &res->pub;
1584}
1585EXPORT_SYMBOL(cfg80211_get_bss);
1586
1587static void rb_insert_bss(struct cfg80211_registered_device *rdev,
1588 struct cfg80211_internal_bss *bss)
1589{
1590 struct rb_node **p = &rdev->bss_tree.rb_node;
1591 struct rb_node *parent = NULL;
1592 struct cfg80211_internal_bss *tbss;
1593 int cmp;
1594
1595 while (*p) {
1596 parent = *p;
1597 tbss = rb_entry(parent, struct cfg80211_internal_bss, rbn);
1598
1599 cmp = cmp_bss(a: &bss->pub, b: &tbss->pub, mode: BSS_CMP_REGULAR);
1600
1601 if (WARN_ON(!cmp)) {
1602 /* will sort of leak this BSS */
1603 return;
1604 }
1605
1606 if (cmp < 0)
1607 p = &(*p)->rb_left;
1608 else
1609 p = &(*p)->rb_right;
1610 }
1611
1612 rb_link_node(node: &bss->rbn, parent, rb_link: p);
1613 rb_insert_color(&bss->rbn, &rdev->bss_tree);
1614}
1615
1616static struct cfg80211_internal_bss *
1617rb_find_bss(struct cfg80211_registered_device *rdev,
1618 struct cfg80211_internal_bss *res,
1619 enum bss_compare_mode mode)
1620{
1621 struct rb_node *n = rdev->bss_tree.rb_node;
1622 struct cfg80211_internal_bss *bss;
1623 int r;
1624
1625 while (n) {
1626 bss = rb_entry(n, struct cfg80211_internal_bss, rbn);
1627 r = cmp_bss(a: &res->pub, b: &bss->pub, mode);
1628
1629 if (r == 0)
1630 return bss;
1631 else if (r < 0)
1632 n = n->rb_left;
1633 else
1634 n = n->rb_right;
1635 }
1636
1637 return NULL;
1638}
1639
1640static bool cfg80211_combine_bsses(struct cfg80211_registered_device *rdev,
1641 struct cfg80211_internal_bss *new)
1642{
1643 const struct cfg80211_bss_ies *ies;
1644 struct cfg80211_internal_bss *bss;
1645 const u8 *ie;
1646 int i, ssidlen;
1647 u8 fold = 0;
1648 u32 n_entries = 0;
1649
1650 ies = rcu_access_pointer(new->pub.beacon_ies);
1651 if (WARN_ON(!ies))
1652 return false;
1653
1654 ie = cfg80211_find_ie(eid: WLAN_EID_SSID, ies: ies->data, len: ies->len);
1655 if (!ie) {
1656 /* nothing to do */
1657 return true;
1658 }
1659
1660 ssidlen = ie[1];
1661 for (i = 0; i < ssidlen; i++)
1662 fold |= ie[2 + i];
1663
1664 if (fold) {
1665 /* not a hidden SSID */
1666 return true;
1667 }
1668
1669 /* This is the bad part ... */
1670
1671 list_for_each_entry(bss, &rdev->bss_list, list) {
1672 /*
1673 * we're iterating all the entries anyway, so take the
1674 * opportunity to validate the list length accounting
1675 */
1676 n_entries++;
1677
1678 if (!ether_addr_equal(addr1: bss->pub.bssid, addr2: new->pub.bssid))
1679 continue;
1680 if (bss->pub.channel != new->pub.channel)
1681 continue;
1682 if (rcu_access_pointer(bss->pub.beacon_ies))
1683 continue;
1684 ies = rcu_access_pointer(bss->pub.ies);
1685 if (!ies)
1686 continue;
1687 ie = cfg80211_find_ie(eid: WLAN_EID_SSID, ies: ies->data, len: ies->len);
1688 if (!ie)
1689 continue;
1690 if (ssidlen && ie[1] != ssidlen)
1691 continue;
1692 if (WARN_ON_ONCE(bss->pub.hidden_beacon_bss))
1693 continue;
1694 if (WARN_ON_ONCE(!list_empty(&bss->hidden_list)))
1695 list_del(entry: &bss->hidden_list);
1696 /* combine them */
1697 list_add(new: &bss->hidden_list, head: &new->hidden_list);
1698 bss->pub.hidden_beacon_bss = &new->pub;
1699 new->refcount += bss->refcount;
1700 rcu_assign_pointer(bss->pub.beacon_ies,
1701 new->pub.beacon_ies);
1702 }
1703
1704 WARN_ONCE(n_entries != rdev->bss_entries,
1705 "rdev bss entries[%d]/list[len:%d] corruption\n",
1706 rdev->bss_entries, n_entries);
1707
1708 return true;
1709}
1710
1711static void cfg80211_update_hidden_bsses(struct cfg80211_internal_bss *known,
1712 const struct cfg80211_bss_ies *new_ies,
1713 const struct cfg80211_bss_ies *old_ies)
1714{
1715 struct cfg80211_internal_bss *bss;
1716
1717 /* Assign beacon IEs to all sub entries */
1718 list_for_each_entry(bss, &known->hidden_list, hidden_list) {
1719 const struct cfg80211_bss_ies *ies;
1720
1721 ies = rcu_access_pointer(bss->pub.beacon_ies);
1722 WARN_ON(ies != old_ies);
1723
1724 rcu_assign_pointer(bss->pub.beacon_ies, new_ies);
1725 }
1726}
1727
1728static bool
1729cfg80211_update_known_bss(struct cfg80211_registered_device *rdev,
1730 struct cfg80211_internal_bss *known,
1731 struct cfg80211_internal_bss *new,
1732 bool signal_valid)
1733{
1734 lockdep_assert_held(&rdev->bss_lock);
1735
1736 /* Update IEs */
1737 if (rcu_access_pointer(new->pub.proberesp_ies)) {
1738 const struct cfg80211_bss_ies *old;
1739
1740 old = rcu_access_pointer(known->pub.proberesp_ies);
1741
1742 rcu_assign_pointer(known->pub.proberesp_ies,
1743 new->pub.proberesp_ies);
1744 /* Override possible earlier Beacon frame IEs */
1745 rcu_assign_pointer(known->pub.ies,
1746 new->pub.proberesp_ies);
1747 if (old)
1748 kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
1749 } else if (rcu_access_pointer(new->pub.beacon_ies)) {
1750 const struct cfg80211_bss_ies *old;
1751
1752 if (known->pub.hidden_beacon_bss &&
1753 !list_empty(head: &known->hidden_list)) {
1754 const struct cfg80211_bss_ies *f;
1755
1756 /* The known BSS struct is one of the probe
1757 * response members of a group, but we're
1758 * receiving a beacon (beacon_ies in the new
1759 * bss is used). This can only mean that the
1760 * AP changed its beacon from not having an
1761 * SSID to showing it, which is confusing so
1762 * drop this information.
1763 */
1764
1765 f = rcu_access_pointer(new->pub.beacon_ies);
1766 kfree_rcu((struct cfg80211_bss_ies *)f, rcu_head);
1767 return false;
1768 }
1769
1770 old = rcu_access_pointer(known->pub.beacon_ies);
1771
1772 rcu_assign_pointer(known->pub.beacon_ies, new->pub.beacon_ies);
1773
1774 /* Override IEs if they were from a beacon before */
1775 if (old == rcu_access_pointer(known->pub.ies))
1776 rcu_assign_pointer(known->pub.ies, new->pub.beacon_ies);
1777
1778 cfg80211_update_hidden_bsses(known,
1779 rcu_access_pointer(new->pub.beacon_ies),
1780 old_ies: old);
1781
1782 if (old)
1783 kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
1784 }
1785
1786 known->pub.beacon_interval = new->pub.beacon_interval;
1787
1788 /* don't update the signal if beacon was heard on
1789 * adjacent channel.
1790 */
1791 if (signal_valid)
1792 known->pub.signal = new->pub.signal;
1793 known->pub.capability = new->pub.capability;
1794 known->ts = new->ts;
1795 known->ts_boottime = new->ts_boottime;
1796 known->parent_tsf = new->parent_tsf;
1797 known->pub.chains = new->pub.chains;
1798 memcpy(known->pub.chain_signal, new->pub.chain_signal,
1799 IEEE80211_MAX_CHAINS);
1800 ether_addr_copy(dst: known->parent_bssid, src: new->parent_bssid);
1801 known->pub.max_bssid_indicator = new->pub.max_bssid_indicator;
1802 known->pub.bssid_index = new->pub.bssid_index;
1803
1804 return true;
1805}
1806
1807/* Returned bss is reference counted and must be cleaned up appropriately. */
1808static struct cfg80211_internal_bss *
1809__cfg80211_bss_update(struct cfg80211_registered_device *rdev,
1810 struct cfg80211_internal_bss *tmp,
1811 bool signal_valid, unsigned long ts)
1812{
1813 struct cfg80211_internal_bss *found = NULL;
1814
1815 if (WARN_ON(!tmp->pub.channel))
1816 return NULL;
1817
1818 tmp->ts = ts;
1819
1820 if (WARN_ON(!rcu_access_pointer(tmp->pub.ies))) {
1821 return NULL;
1822 }
1823
1824 found = rb_find_bss(rdev, res: tmp, mode: BSS_CMP_REGULAR);
1825
1826 if (found) {
1827 if (!cfg80211_update_known_bss(rdev, known: found, new: tmp, signal_valid))
1828 return NULL;
1829 } else {
1830 struct cfg80211_internal_bss *new;
1831 struct cfg80211_internal_bss *hidden;
1832 struct cfg80211_bss_ies *ies;
1833
1834 /*
1835 * create a copy -- the "res" variable that is passed in
1836 * is allocated on the stack since it's not needed in the
1837 * more common case of an update
1838 */
1839 new = kzalloc(size: sizeof(*new) + rdev->wiphy.bss_priv_size,
1840 GFP_ATOMIC);
1841 if (!new) {
1842 ies = (void *)rcu_dereference(tmp->pub.beacon_ies);
1843 if (ies)
1844 kfree_rcu(ies, rcu_head);
1845 ies = (void *)rcu_dereference(tmp->pub.proberesp_ies);
1846 if (ies)
1847 kfree_rcu(ies, rcu_head);
1848 return NULL;
1849 }
1850 memcpy(new, tmp, sizeof(*new));
1851 new->refcount = 1;
1852 INIT_LIST_HEAD(list: &new->hidden_list);
1853 INIT_LIST_HEAD(list: &new->pub.nontrans_list);
1854 /* we'll set this later if it was non-NULL */
1855 new->pub.transmitted_bss = NULL;
1856
1857 if (rcu_access_pointer(tmp->pub.proberesp_ies)) {
1858 hidden = rb_find_bss(rdev, res: tmp, mode: BSS_CMP_HIDE_ZLEN);
1859 if (!hidden)
1860 hidden = rb_find_bss(rdev, res: tmp,
1861 mode: BSS_CMP_HIDE_NUL);
1862 if (hidden) {
1863 new->pub.hidden_beacon_bss = &hidden->pub;
1864 list_add(new: &new->hidden_list,
1865 head: &hidden->hidden_list);
1866 hidden->refcount++;
1867 rcu_assign_pointer(new->pub.beacon_ies,
1868 hidden->pub.beacon_ies);
1869 }
1870 } else {
1871 /*
1872 * Ok so we found a beacon, and don't have an entry. If
1873 * it's a beacon with hidden SSID, we might be in for an
1874 * expensive search for any probe responses that should
1875 * be grouped with this beacon for updates ...
1876 */
1877 if (!cfg80211_combine_bsses(rdev, new)) {
1878 bss_ref_put(rdev, bss: new);
1879 return NULL;
1880 }
1881 }
1882
1883 if (rdev->bss_entries >= bss_entries_limit &&
1884 !cfg80211_bss_expire_oldest(rdev)) {
1885 bss_ref_put(rdev, bss: new);
1886 return NULL;
1887 }
1888
1889 /* This must be before the call to bss_ref_get */
1890 if (tmp->pub.transmitted_bss) {
1891 new->pub.transmitted_bss = tmp->pub.transmitted_bss;
1892 bss_ref_get(rdev, bss: bss_from_pub(pub: tmp->pub.transmitted_bss));
1893 }
1894
1895 list_add_tail(new: &new->list, head: &rdev->bss_list);
1896 rdev->bss_entries++;
1897 rb_insert_bss(rdev, bss: new);
1898 found = new;
1899 }
1900
1901 rdev->bss_generation++;
1902 bss_ref_get(rdev, bss: found);
1903
1904 return found;
1905}
1906
1907struct cfg80211_internal_bss *
1908cfg80211_bss_update(struct cfg80211_registered_device *rdev,
1909 struct cfg80211_internal_bss *tmp,
1910 bool signal_valid, unsigned long ts)
1911{
1912 struct cfg80211_internal_bss *res;
1913
1914 spin_lock_bh(lock: &rdev->bss_lock);
1915 res = __cfg80211_bss_update(rdev, tmp, signal_valid, ts);
1916 spin_unlock_bh(lock: &rdev->bss_lock);
1917
1918 return res;
1919}
1920
1921int cfg80211_get_ies_channel_number(const u8 *ie, size_t ielen,
1922 enum nl80211_band band)
1923{
1924 const struct element *tmp;
1925
1926 if (band == NL80211_BAND_6GHZ) {
1927 struct ieee80211_he_operation *he_oper;
1928
1929 tmp = cfg80211_find_ext_elem(ext_eid: WLAN_EID_EXT_HE_OPERATION, ies: ie,
1930 len: ielen);
1931 if (tmp && tmp->datalen >= sizeof(*he_oper) &&
1932 tmp->datalen >= ieee80211_he_oper_size(he_oper_ie: &tmp->data[1])) {
1933 const struct ieee80211_he_6ghz_oper *he_6ghz_oper;
1934
1935 he_oper = (void *)&tmp->data[1];
1936
1937 he_6ghz_oper = ieee80211_he_6ghz_oper(he_oper);
1938 if (!he_6ghz_oper)
1939 return -1;
1940
1941 return he_6ghz_oper->primary;
1942 }
1943 } else if (band == NL80211_BAND_S1GHZ) {
1944 tmp = cfg80211_find_elem(eid: WLAN_EID_S1G_OPERATION, ies: ie, len: ielen);
1945 if (tmp && tmp->datalen >= sizeof(struct ieee80211_s1g_oper_ie)) {
1946 struct ieee80211_s1g_oper_ie *s1gop = (void *)tmp->data;
1947
1948 return s1gop->oper_ch;
1949 }
1950 } else {
1951 tmp = cfg80211_find_elem(eid: WLAN_EID_DS_PARAMS, ies: ie, len: ielen);
1952 if (tmp && tmp->datalen == 1)
1953 return tmp->data[0];
1954
1955 tmp = cfg80211_find_elem(eid: WLAN_EID_HT_OPERATION, ies: ie, len: ielen);
1956 if (tmp &&
1957 tmp->datalen >= sizeof(struct ieee80211_ht_operation)) {
1958 struct ieee80211_ht_operation *htop = (void *)tmp->data;
1959
1960 return htop->primary_chan;
1961 }
1962 }
1963
1964 return -1;
1965}
1966EXPORT_SYMBOL(cfg80211_get_ies_channel_number);
1967
1968/*
1969 * Update RX channel information based on the available frame payload
1970 * information. This is mainly for the 2.4 GHz band where frames can be received
1971 * from neighboring channels and the Beacon frames use the DSSS Parameter Set
1972 * element to indicate the current (transmitting) channel, but this might also
1973 * be needed on other bands if RX frequency does not match with the actual
1974 * operating channel of a BSS, or if the AP reports a different primary channel.
1975 */
1976static struct ieee80211_channel *
1977cfg80211_get_bss_channel(struct wiphy *wiphy, const u8 *ie, size_t ielen,
1978 struct ieee80211_channel *channel)
1979{
1980 u32 freq;
1981 int channel_number;
1982 struct ieee80211_channel *alt_channel;
1983
1984 channel_number = cfg80211_get_ies_channel_number(ie, ielen,
1985 channel->band);
1986
1987 if (channel_number < 0) {
1988 /* No channel information in frame payload */
1989 return channel;
1990 }
1991
1992 freq = ieee80211_channel_to_freq_khz(chan: channel_number, band: channel->band);
1993
1994 /*
1995 * Frame info (beacon/prob res) is the same as received channel,
1996 * no need for further processing.
1997 */
1998 if (freq == ieee80211_channel_to_khz(chan: channel))
1999 return channel;
2000
2001 alt_channel = ieee80211_get_channel_khz(wiphy, freq);
2002 if (!alt_channel) {
2003 if (channel->band == NL80211_BAND_2GHZ ||
2004 channel->band == NL80211_BAND_6GHZ) {
2005 /*
2006 * Better not allow unexpected channels when that could
2007 * be going beyond the 1-11 range (e.g., discovering
2008 * BSS on channel 12 when radio is configured for
2009 * channel 11) or beyond the 6 GHz channel range.
2010 */
2011 return NULL;
2012 }
2013
2014 /* No match for the payload channel number - ignore it */
2015 return channel;
2016 }
2017
2018 /*
2019 * Use the channel determined through the payload channel number
2020 * instead of the RX channel reported by the driver.
2021 */
2022 if (alt_channel->flags & IEEE80211_CHAN_DISABLED)
2023 return NULL;
2024 return alt_channel;
2025}
2026
2027struct cfg80211_inform_single_bss_data {
2028 struct cfg80211_inform_bss *drv_data;
2029 enum cfg80211_bss_frame_type ftype;
2030 struct ieee80211_channel *channel;
2031 u8 bssid[ETH_ALEN];
2032 u64 tsf;
2033 u16 capability;
2034 u16 beacon_interval;
2035 const u8 *ie;
2036 size_t ielen;
2037
2038 enum {
2039 BSS_SOURCE_DIRECT = 0,
2040 BSS_SOURCE_MBSSID,
2041 BSS_SOURCE_STA_PROFILE,
2042 } bss_source;
2043 /* Set if reporting bss_source != BSS_SOURCE_DIRECT */
2044 struct cfg80211_bss *source_bss;
2045 u8 max_bssid_indicator;
2046 u8 bssid_index;
2047};
2048
2049/* Returned bss is reference counted and must be cleaned up appropriately. */
2050static struct cfg80211_bss *
2051cfg80211_inform_single_bss_data(struct wiphy *wiphy,
2052 struct cfg80211_inform_single_bss_data *data,
2053 gfp_t gfp)
2054{
2055 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2056 struct cfg80211_inform_bss *drv_data = data->drv_data;
2057 struct cfg80211_bss_ies *ies;
2058 struct ieee80211_channel *channel;
2059 struct cfg80211_internal_bss tmp = {}, *res;
2060 int bss_type;
2061 bool signal_valid;
2062 unsigned long ts;
2063
2064 if (WARN_ON(!wiphy))
2065 return NULL;
2066
2067 if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC &&
2068 (drv_data->signal < 0 || drv_data->signal > 100)))
2069 return NULL;
2070
2071 if (WARN_ON(data->bss_source != BSS_SOURCE_DIRECT && !data->source_bss))
2072 return NULL;
2073
2074 channel = data->channel;
2075 if (!channel)
2076 channel = cfg80211_get_bss_channel(wiphy, ie: data->ie, ielen: data->ielen,
2077 channel: drv_data->chan);
2078 if (!channel)
2079 return NULL;
2080
2081 memcpy(tmp.pub.bssid, data->bssid, ETH_ALEN);
2082 tmp.pub.channel = channel;
2083 if (data->bss_source != BSS_SOURCE_STA_PROFILE)
2084 tmp.pub.signal = drv_data->signal;
2085 else
2086 tmp.pub.signal = 0;
2087 tmp.pub.beacon_interval = data->beacon_interval;
2088 tmp.pub.capability = data->capability;
2089 tmp.ts_boottime = drv_data->boottime_ns;
2090 tmp.parent_tsf = drv_data->parent_tsf;
2091 ether_addr_copy(dst: tmp.parent_bssid, src: drv_data->parent_bssid);
2092
2093 if (data->bss_source != BSS_SOURCE_DIRECT) {
2094 tmp.pub.transmitted_bss = data->source_bss;
2095 ts = bss_from_pub(pub: data->source_bss)->ts;
2096 tmp.pub.bssid_index = data->bssid_index;
2097 tmp.pub.max_bssid_indicator = data->max_bssid_indicator;
2098 } else {
2099 ts = jiffies;
2100
2101 if (channel->band == NL80211_BAND_60GHZ) {
2102 bss_type = data->capability &
2103 WLAN_CAPABILITY_DMG_TYPE_MASK;
2104 if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP ||
2105 bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS)
2106 regulatory_hint_found_beacon(wiphy, beacon_chan: channel,
2107 gfp);
2108 } else {
2109 if (data->capability & WLAN_CAPABILITY_ESS)
2110 regulatory_hint_found_beacon(wiphy, beacon_chan: channel,
2111 gfp);
2112 }
2113 }
2114
2115 /*
2116 * If we do not know here whether the IEs are from a Beacon or Probe
2117 * Response frame, we need to pick one of the options and only use it
2118 * with the driver that does not provide the full Beacon/Probe Response
2119 * frame. Use Beacon frame pointer to avoid indicating that this should
2120 * override the IEs pointer should we have received an earlier
2121 * indication of Probe Response data.
2122 */
2123 ies = kzalloc(size: sizeof(*ies) + data->ielen, flags: gfp);
2124 if (!ies)
2125 return NULL;
2126 ies->len = data->ielen;
2127 ies->tsf = data->tsf;
2128 ies->from_beacon = false;
2129 memcpy(ies->data, data->ie, data->ielen);
2130
2131 switch (data->ftype) {
2132 case CFG80211_BSS_FTYPE_BEACON:
2133 ies->from_beacon = true;
2134 fallthrough;
2135 case CFG80211_BSS_FTYPE_UNKNOWN:
2136 rcu_assign_pointer(tmp.pub.beacon_ies, ies);
2137 break;
2138 case CFG80211_BSS_FTYPE_PRESP:
2139 rcu_assign_pointer(tmp.pub.proberesp_ies, ies);
2140 break;
2141 }
2142 rcu_assign_pointer(tmp.pub.ies, ies);
2143
2144 signal_valid = drv_data->chan == channel;
2145 spin_lock_bh(lock: &rdev->bss_lock);
2146 res = __cfg80211_bss_update(rdev, tmp: &tmp, signal_valid, ts);
2147 if (!res)
2148 goto drop;
2149
2150 rdev_inform_bss(rdev, bss: &res->pub, ies, drv_data: drv_data->drv_data);
2151
2152 if (data->bss_source == BSS_SOURCE_MBSSID) {
2153 /* this is a nontransmitting bss, we need to add it to
2154 * transmitting bss' list if it is not there
2155 */
2156 if (cfg80211_add_nontrans_list(trans_bss: data->source_bss, nontrans_bss: &res->pub)) {
2157 if (__cfg80211_unlink_bss(rdev, bss: res)) {
2158 rdev->bss_generation++;
2159 res = NULL;
2160 }
2161 }
2162
2163 if (!res)
2164 goto drop;
2165 }
2166 spin_unlock_bh(lock: &rdev->bss_lock);
2167
2168 trace_cfg80211_return_bss(pub: &res->pub);
2169 /* __cfg80211_bss_update gives us a referenced result */
2170 return &res->pub;
2171
2172drop:
2173 spin_unlock_bh(lock: &rdev->bss_lock);
2174 return NULL;
2175}
2176
2177static const struct element
2178*cfg80211_get_profile_continuation(const u8 *ie, size_t ielen,
2179 const struct element *mbssid_elem,
2180 const struct element *sub_elem)
2181{
2182 const u8 *mbssid_end = mbssid_elem->data + mbssid_elem->datalen;
2183 const struct element *next_mbssid;
2184 const struct element *next_sub;
2185
2186 next_mbssid = cfg80211_find_elem(eid: WLAN_EID_MULTIPLE_BSSID,
2187 ies: mbssid_end,
2188 len: ielen - (mbssid_end - ie));
2189
2190 /*
2191 * If it is not the last subelement in current MBSSID IE or there isn't
2192 * a next MBSSID IE - profile is complete.
2193 */
2194 if ((sub_elem->data + sub_elem->datalen < mbssid_end - 1) ||
2195 !next_mbssid)
2196 return NULL;
2197
2198 /* For any length error, just return NULL */
2199
2200 if (next_mbssid->datalen < 4)
2201 return NULL;
2202
2203 next_sub = (void *)&next_mbssid->data[1];
2204
2205 if (next_mbssid->data + next_mbssid->datalen <
2206 next_sub->data + next_sub->datalen)
2207 return NULL;
2208
2209 if (next_sub->id != 0 || next_sub->datalen < 2)
2210 return NULL;
2211
2212 /*
2213 * Check if the first element in the next sub element is a start
2214 * of a new profile
2215 */
2216 return next_sub->data[0] == WLAN_EID_NON_TX_BSSID_CAP ?
2217 NULL : next_mbssid;
2218}
2219
2220size_t cfg80211_merge_profile(const u8 *ie, size_t ielen,
2221 const struct element *mbssid_elem,
2222 const struct element *sub_elem,
2223 u8 *merged_ie, size_t max_copy_len)
2224{
2225 size_t copied_len = sub_elem->datalen;
2226 const struct element *next_mbssid;
2227
2228 if (sub_elem->datalen > max_copy_len)
2229 return 0;
2230
2231 memcpy(merged_ie, sub_elem->data, sub_elem->datalen);
2232
2233 while ((next_mbssid = cfg80211_get_profile_continuation(ie, ielen,
2234 mbssid_elem,
2235 sub_elem))) {
2236 const struct element *next_sub = (void *)&next_mbssid->data[1];
2237
2238 if (copied_len + next_sub->datalen > max_copy_len)
2239 break;
2240 memcpy(merged_ie + copied_len, next_sub->data,
2241 next_sub->datalen);
2242 copied_len += next_sub->datalen;
2243 }
2244
2245 return copied_len;
2246}
2247EXPORT_SYMBOL(cfg80211_merge_profile);
2248
2249static void
2250cfg80211_parse_mbssid_data(struct wiphy *wiphy,
2251 struct cfg80211_inform_single_bss_data *tx_data,
2252 struct cfg80211_bss *source_bss,
2253 gfp_t gfp)
2254{
2255 struct cfg80211_inform_single_bss_data data = {
2256 .drv_data = tx_data->drv_data,
2257 .ftype = tx_data->ftype,
2258 .tsf = tx_data->tsf,
2259 .beacon_interval = tx_data->beacon_interval,
2260 .source_bss = source_bss,
2261 .bss_source = BSS_SOURCE_MBSSID,
2262 };
2263 const u8 *mbssid_index_ie;
2264 const struct element *elem, *sub;
2265 u8 *new_ie, *profile;
2266 u64 seen_indices = 0;
2267 struct cfg80211_bss *bss;
2268
2269 if (!source_bss)
2270 return;
2271 if (!cfg80211_find_elem(eid: WLAN_EID_MULTIPLE_BSSID,
2272 ies: tx_data->ie, len: tx_data->ielen))
2273 return;
2274 if (!wiphy->support_mbssid)
2275 return;
2276 if (wiphy->support_only_he_mbssid &&
2277 !cfg80211_find_ext_elem(ext_eid: WLAN_EID_EXT_HE_CAPABILITY,
2278 ies: tx_data->ie, len: tx_data->ielen))
2279 return;
2280
2281 new_ie = kmalloc(IEEE80211_MAX_DATA_LEN, flags: gfp);
2282 if (!new_ie)
2283 return;
2284
2285 profile = kmalloc(size: tx_data->ielen, flags: gfp);
2286 if (!profile)
2287 goto out;
2288
2289 for_each_element_id(elem, WLAN_EID_MULTIPLE_BSSID,
2290 tx_data->ie, tx_data->ielen) {
2291 if (elem->datalen < 4)
2292 continue;
2293 if (elem->data[0] < 1 || (int)elem->data[0] > 8)
2294 continue;
2295 for_each_element(sub, elem->data + 1, elem->datalen - 1) {
2296 u8 profile_len;
2297
2298 if (sub->id != 0 || sub->datalen < 4) {
2299 /* not a valid BSS profile */
2300 continue;
2301 }
2302
2303 if (sub->data[0] != WLAN_EID_NON_TX_BSSID_CAP ||
2304 sub->data[1] != 2) {
2305 /* The first element within the Nontransmitted
2306 * BSSID Profile is not the Nontransmitted
2307 * BSSID Capability element.
2308 */
2309 continue;
2310 }
2311
2312 memset(profile, 0, tx_data->ielen);
2313 profile_len = cfg80211_merge_profile(tx_data->ie,
2314 tx_data->ielen,
2315 elem,
2316 sub,
2317 profile,
2318 tx_data->ielen);
2319
2320 /* found a Nontransmitted BSSID Profile */
2321 mbssid_index_ie = cfg80211_find_ie
2322 (eid: WLAN_EID_MULTI_BSSID_IDX,
2323 ies: profile, len: profile_len);
2324 if (!mbssid_index_ie || mbssid_index_ie[1] < 1 ||
2325 mbssid_index_ie[2] == 0 ||
2326 mbssid_index_ie[2] > 46) {
2327 /* No valid Multiple BSSID-Index element */
2328 continue;
2329 }
2330
2331 if (seen_indices & BIT_ULL(mbssid_index_ie[2]))
2332 /* We don't support legacy split of a profile */
2333 net_dbg_ratelimited("Partial info for BSSID index %d\n",
2334 mbssid_index_ie[2]);
2335
2336 seen_indices |= BIT_ULL(mbssid_index_ie[2]);
2337
2338 data.bssid_index = mbssid_index_ie[2];
2339 data.max_bssid_indicator = elem->data[0];
2340
2341 cfg80211_gen_new_bssid(bssid: tx_data->bssid,
2342 max_bssid: data.max_bssid_indicator,
2343 mbssid_index: data.bssid_index,
2344 new_bssid: data.bssid);
2345
2346 memset(new_ie, 0, IEEE80211_MAX_DATA_LEN);
2347 data.ie = new_ie;
2348 data.ielen = cfg80211_gen_new_ie(ie: tx_data->ie,
2349 ielen: tx_data->ielen,
2350 subie: profile,
2351 subie_len: profile_len,
2352 new_ie,
2353 IEEE80211_MAX_DATA_LEN);
2354 if (!data.ielen)
2355 continue;
2356
2357 data.capability = get_unaligned_le16(p: profile + 2);
2358 bss = cfg80211_inform_single_bss_data(wiphy, data: &data, gfp);
2359 if (!bss)
2360 break;
2361 cfg80211_put_bss(wiphy, bss);
2362 }
2363 }
2364
2365out:
2366 kfree(objp: new_ie);
2367 kfree(objp: profile);
2368}
2369
2370ssize_t cfg80211_defragment_element(const struct element *elem, const u8 *ies,
2371 size_t ieslen, u8 *data, size_t data_len,
2372 u8 frag_id)
2373{
2374 const struct element *next;
2375 ssize_t copied;
2376 u8 elem_datalen;
2377
2378 if (!elem)
2379 return -EINVAL;
2380
2381 /* elem might be invalid after the memmove */
2382 next = (void *)(elem->data + elem->datalen);
2383 elem_datalen = elem->datalen;
2384
2385 if (elem->id == WLAN_EID_EXTENSION) {
2386 copied = elem->datalen - 1;
2387 if (copied > data_len)
2388 return -ENOSPC;
2389
2390 memmove(data, elem->data + 1, copied);
2391 } else {
2392 copied = elem->datalen;
2393 if (copied > data_len)
2394 return -ENOSPC;
2395
2396 memmove(data, elem->data, copied);
2397 }
2398
2399 /* Fragmented elements must have 255 bytes */
2400 if (elem_datalen < 255)
2401 return copied;
2402
2403 for (elem = next;
2404 elem->data < ies + ieslen &&
2405 elem->data + elem->datalen <= ies + ieslen;
2406 elem = next) {
2407 /* elem might be invalid after the memmove */
2408 next = (void *)(elem->data + elem->datalen);
2409
2410 if (elem->id != frag_id)
2411 break;
2412
2413 elem_datalen = elem->datalen;
2414
2415 if (copied + elem_datalen > data_len)
2416 return -ENOSPC;
2417
2418 memmove(data + copied, elem->data, elem_datalen);
2419 copied += elem_datalen;
2420
2421 /* Only the last fragment may be short */
2422 if (elem_datalen != 255)
2423 break;
2424 }
2425
2426 return copied;
2427}
2428EXPORT_SYMBOL(cfg80211_defragment_element);
2429
2430struct cfg80211_mle {
2431 struct ieee80211_multi_link_elem *mle;
2432 struct ieee80211_mle_per_sta_profile
2433 *sta_prof[IEEE80211_MLD_MAX_NUM_LINKS];
2434 ssize_t sta_prof_len[IEEE80211_MLD_MAX_NUM_LINKS];
2435
2436 u8 data[];
2437};
2438
2439static struct cfg80211_mle *
2440cfg80211_defrag_mle(const struct element *mle, const u8 *ie, size_t ielen,
2441 gfp_t gfp)
2442{
2443 const struct element *elem;
2444 struct cfg80211_mle *res;
2445 size_t buf_len;
2446 ssize_t mle_len;
2447 u8 common_size, idx;
2448
2449 if (!mle || !ieee80211_mle_size_ok(data: mle->data + 1, len: mle->datalen - 1))
2450 return NULL;
2451
2452 /* Required length for first defragmentation */
2453 buf_len = mle->datalen - 1;
2454 for_each_element(elem, mle->data + mle->datalen,
2455 ielen - sizeof(*mle) + mle->datalen) {
2456 if (elem->id != WLAN_EID_FRAGMENT)
2457 break;
2458
2459 buf_len += elem->datalen;
2460 }
2461
2462 res = kzalloc(struct_size(res, data, buf_len), flags: gfp);
2463 if (!res)
2464 return NULL;
2465
2466 mle_len = cfg80211_defragment_element(mle, ie, ielen,
2467 res->data, buf_len,
2468 WLAN_EID_FRAGMENT);
2469 if (mle_len < 0)
2470 goto error;
2471
2472 res->mle = (void *)res->data;
2473
2474 /* Find the sub-element area in the buffer */
2475 common_size = ieee80211_mle_common_size(data: (u8 *)res->mle);
2476 ie = res->data + common_size;
2477 ielen = mle_len - common_size;
2478
2479 idx = 0;
2480 for_each_element_id(elem, IEEE80211_MLE_SUBELEM_PER_STA_PROFILE,
2481 ie, ielen) {
2482 res->sta_prof[idx] = (void *)elem->data;
2483 res->sta_prof_len[idx] = elem->datalen;
2484
2485 idx++;
2486 if (idx >= IEEE80211_MLD_MAX_NUM_LINKS)
2487 break;
2488 }
2489 if (!for_each_element_completed(element: elem, data: ie, datalen: ielen))
2490 goto error;
2491
2492 /* Defragment sta_info in-place */
2493 for (idx = 0; idx < IEEE80211_MLD_MAX_NUM_LINKS && res->sta_prof[idx];
2494 idx++) {
2495 if (res->sta_prof_len[idx] < 255)
2496 continue;
2497
2498 elem = (void *)res->sta_prof[idx] - 2;
2499
2500 if (idx + 1 < ARRAY_SIZE(res->sta_prof) &&
2501 res->sta_prof[idx + 1])
2502 buf_len = (u8 *)res->sta_prof[idx + 1] -
2503 (u8 *)res->sta_prof[idx];
2504 else
2505 buf_len = ielen + ie - (u8 *)elem;
2506
2507 res->sta_prof_len[idx] =
2508 cfg80211_defragment_element(elem,
2509 (u8 *)elem, buf_len,
2510 (u8 *)res->sta_prof[idx],
2511 buf_len,
2512 IEEE80211_MLE_SUBELEM_FRAGMENT);
2513 if (res->sta_prof_len[idx] < 0)
2514 goto error;
2515 }
2516
2517 return res;
2518
2519error:
2520 kfree(objp: res);
2521 return NULL;
2522}
2523
2524static bool
2525cfg80211_tbtt_info_for_mld_ap(const u8 *ie, size_t ielen, u8 mld_id, u8 link_id,
2526 const struct ieee80211_neighbor_ap_info **ap_info,
2527 const u8 **tbtt_info)
2528{
2529 const struct ieee80211_neighbor_ap_info *info;
2530 const struct element *rnr;
2531 const u8 *pos, *end;
2532
2533 for_each_element_id(rnr, WLAN_EID_REDUCED_NEIGHBOR_REPORT, ie, ielen) {
2534 pos = rnr->data;
2535 end = rnr->data + rnr->datalen;
2536
2537 /* RNR IE may contain more than one NEIGHBOR_AP_INFO */
2538 while (sizeof(*info) <= end - pos) {
2539 const struct ieee80211_rnr_mld_params *mld_params;
2540 u16 params;
2541 u8 length, i, count, mld_params_offset;
2542 u8 type, lid;
2543
2544 info = (void *)pos;
2545 count = u8_get_bits(v: info->tbtt_info_hdr,
2546 IEEE80211_AP_INFO_TBTT_HDR_COUNT) + 1;
2547 length = info->tbtt_info_len;
2548
2549 pos += sizeof(*info);
2550
2551 if (count * length > end - pos)
2552 return false;
2553
2554 type = u8_get_bits(v: info->tbtt_info_hdr,
2555 IEEE80211_AP_INFO_TBTT_HDR_TYPE);
2556
2557 /* Only accept full TBTT information. NSTR mobile APs
2558 * use the shortened version, but we ignore them here.
2559 */
2560 if (type == IEEE80211_TBTT_INFO_TYPE_TBTT &&
2561 length >=
2562 offsetofend(struct ieee80211_tbtt_info_ge_11,
2563 mld_params)) {
2564 mld_params_offset =
2565 offsetof(struct ieee80211_tbtt_info_ge_11, mld_params);
2566 } else {
2567 pos += count * length;
2568 continue;
2569 }
2570
2571 for (i = 0; i < count; i++) {
2572 mld_params = (void *)pos + mld_params_offset;
2573 params = le16_to_cpu(mld_params->params);
2574
2575 lid = u16_get_bits(v: params,
2576 IEEE80211_RNR_MLD_PARAMS_LINK_ID);
2577
2578 if (mld_id == mld_params->mld_id &&
2579 link_id == lid) {
2580 *ap_info = info;
2581 *tbtt_info = pos;
2582
2583 return true;
2584 }
2585
2586 pos += length;
2587 }
2588 }
2589 }
2590
2591 return false;
2592}
2593
2594static void cfg80211_parse_ml_sta_data(struct wiphy *wiphy,
2595 struct cfg80211_inform_single_bss_data *tx_data,
2596 struct cfg80211_bss *source_bss,
2597 gfp_t gfp)
2598{
2599 struct cfg80211_inform_single_bss_data data = {
2600 .drv_data = tx_data->drv_data,
2601 .ftype = tx_data->ftype,
2602 .source_bss = source_bss,
2603 .bss_source = BSS_SOURCE_STA_PROFILE,
2604 };
2605 struct ieee80211_multi_link_elem *ml_elem;
2606 const struct element *elem;
2607 struct cfg80211_mle *mle;
2608 u16 control;
2609 u8 *new_ie;
2610 struct cfg80211_bss *bss;
2611 int mld_id;
2612 u16 seen_links = 0;
2613 const u8 *pos;
2614 u8 i;
2615
2616 if (!source_bss)
2617 return;
2618
2619 if (tx_data->ftype != CFG80211_BSS_FTYPE_PRESP)
2620 return;
2621
2622 elem = cfg80211_find_ext_elem(ext_eid: WLAN_EID_EXT_EHT_MULTI_LINK,
2623 ies: tx_data->ie, len: tx_data->ielen);
2624 if (!elem || !ieee80211_mle_size_ok(data: elem->data + 1, len: elem->datalen - 1))
2625 return;
2626
2627 ml_elem = (void *)elem->data + 1;
2628 control = le16_to_cpu(ml_elem->control);
2629 if (u16_get_bits(v: control, IEEE80211_ML_CONTROL_TYPE) !=
2630 IEEE80211_ML_CONTROL_TYPE_BASIC)
2631 return;
2632
2633 /* Must be present when transmitted by an AP (in a probe response) */
2634 if (!(control & IEEE80211_MLC_BASIC_PRES_BSS_PARAM_CH_CNT) ||
2635 !(control & IEEE80211_MLC_BASIC_PRES_LINK_ID) ||
2636 !(control & IEEE80211_MLC_BASIC_PRES_MLD_CAPA_OP))
2637 return;
2638
2639 /* length + MLD MAC address + link ID info + BSS Params Change Count */
2640 pos = ml_elem->variable + 1 + 6 + 1 + 1;
2641
2642 if (u16_get_bits(v: control, IEEE80211_MLC_BASIC_PRES_MED_SYNC_DELAY))
2643 pos += 2;
2644 if (u16_get_bits(v: control, IEEE80211_MLC_BASIC_PRES_EML_CAPA))
2645 pos += 2;
2646
2647 /* MLD capabilities and operations */
2648 pos += 2;
2649
2650 /* Not included when the (nontransmitted) AP is responding itself,
2651 * but defined to zero then (Draft P802.11be_D3.0, 9.4.2.170.2)
2652 */
2653 if (u16_get_bits(v: control, IEEE80211_MLC_BASIC_PRES_MLD_ID)) {
2654 mld_id = *pos;
2655 pos += 1;
2656 } else {
2657 mld_id = 0;
2658 }
2659
2660 /* Extended MLD capabilities and operations */
2661 pos += 2;
2662
2663 /* Fully defrag the ML element for sta information/profile iteration */
2664 mle = cfg80211_defrag_mle(mle: elem, ie: tx_data->ie, ielen: tx_data->ielen, gfp);
2665 if (!mle)
2666 return;
2667
2668 new_ie = kmalloc(IEEE80211_MAX_DATA_LEN, flags: gfp);
2669 if (!new_ie)
2670 goto out;
2671
2672 for (i = 0; i < ARRAY_SIZE(mle->sta_prof) && mle->sta_prof[i]; i++) {
2673 const struct ieee80211_neighbor_ap_info *ap_info;
2674 enum nl80211_band band;
2675 u32 freq;
2676 const u8 *profile;
2677 const u8 *tbtt_info;
2678 ssize_t profile_len;
2679 u8 link_id;
2680
2681 if (!ieee80211_mle_basic_sta_prof_size_ok(data: (u8 *)mle->sta_prof[i],
2682 len: mle->sta_prof_len[i]))
2683 continue;
2684
2685 control = le16_to_cpu(mle->sta_prof[i]->control);
2686
2687 if (!(control & IEEE80211_MLE_STA_CONTROL_COMPLETE_PROFILE))
2688 continue;
2689
2690 link_id = u16_get_bits(v: control,
2691 IEEE80211_MLE_STA_CONTROL_LINK_ID);
2692 if (seen_links & BIT(link_id))
2693 break;
2694 seen_links |= BIT(link_id);
2695
2696 if (!(control & IEEE80211_MLE_STA_CONTROL_BEACON_INT_PRESENT) ||
2697 !(control & IEEE80211_MLE_STA_CONTROL_TSF_OFFS_PRESENT) ||
2698 !(control & IEEE80211_MLE_STA_CONTROL_STA_MAC_ADDR_PRESENT))
2699 continue;
2700
2701 memcpy(data.bssid, mle->sta_prof[i]->variable, ETH_ALEN);
2702 data.beacon_interval =
2703 get_unaligned_le16(p: mle->sta_prof[i]->variable + 6);
2704 data.tsf = tx_data->tsf +
2705 get_unaligned_le64(p: mle->sta_prof[i]->variable + 8);
2706
2707 /* sta_info_len counts itself */
2708 profile = mle->sta_prof[i]->variable +
2709 mle->sta_prof[i]->sta_info_len - 1;
2710 profile_len = (u8 *)mle->sta_prof[i] + mle->sta_prof_len[i] -
2711 profile;
2712
2713 if (profile_len < 2)
2714 continue;
2715
2716 data.capability = get_unaligned_le16(p: profile);
2717 profile += 2;
2718 profile_len -= 2;
2719
2720 /* Find in RNR to look up channel information */
2721 if (!cfg80211_tbtt_info_for_mld_ap(ie: tx_data->ie, ielen: tx_data->ielen,
2722 mld_id, link_id,
2723 ap_info: &ap_info, tbtt_info: &tbtt_info))
2724 continue;
2725
2726 /* We could sanity check the BSSID is included */
2727
2728 if (!ieee80211_operating_class_to_band(operating_class: ap_info->op_class,
2729 band: &band))
2730 continue;
2731
2732 freq = ieee80211_channel_to_freq_khz(chan: ap_info->channel, band);
2733 data.channel = ieee80211_get_channel_khz(wiphy, freq);
2734
2735 /* Generate new elements */
2736 memset(new_ie, 0, IEEE80211_MAX_DATA_LEN);
2737 data.ie = new_ie;
2738 data.ielen = cfg80211_gen_new_ie(ie: tx_data->ie, ielen: tx_data->ielen,
2739 subie: profile, subie_len: profile_len,
2740 new_ie,
2741 IEEE80211_MAX_DATA_LEN);
2742 if (!data.ielen)
2743 continue;
2744
2745 bss = cfg80211_inform_single_bss_data(wiphy, data: &data, gfp);
2746 if (!bss)
2747 break;
2748 cfg80211_put_bss(wiphy, bss);
2749 }
2750
2751out:
2752 kfree(objp: new_ie);
2753 kfree(objp: mle);
2754}
2755
2756struct cfg80211_bss *
2757cfg80211_inform_bss_data(struct wiphy *wiphy,
2758 struct cfg80211_inform_bss *data,
2759 enum cfg80211_bss_frame_type ftype,
2760 const u8 *bssid, u64 tsf, u16 capability,
2761 u16 beacon_interval, const u8 *ie, size_t ielen,
2762 gfp_t gfp)
2763{
2764 struct cfg80211_inform_single_bss_data inform_data = {
2765 .drv_data = data,
2766 .ftype = ftype,
2767 .tsf = tsf,
2768 .capability = capability,
2769 .beacon_interval = beacon_interval,
2770 .ie = ie,
2771 .ielen = ielen,
2772 };
2773 struct cfg80211_bss *res;
2774
2775 memcpy(inform_data.bssid, bssid, ETH_ALEN);
2776
2777 res = cfg80211_inform_single_bss_data(wiphy, data: &inform_data, gfp);
2778 if (!res)
2779 return NULL;
2780
2781 cfg80211_parse_mbssid_data(wiphy, tx_data: &inform_data, source_bss: res, gfp);
2782
2783 cfg80211_parse_ml_sta_data(wiphy, tx_data: &inform_data, source_bss: res, gfp);
2784
2785 return res;
2786}
2787EXPORT_SYMBOL(cfg80211_inform_bss_data);
2788
2789/* cfg80211_inform_bss_width_frame helper */
2790static struct cfg80211_bss *
2791cfg80211_inform_single_bss_frame_data(struct wiphy *wiphy,
2792 struct cfg80211_inform_bss *data,
2793 struct ieee80211_mgmt *mgmt, size_t len,
2794 gfp_t gfp)
2795{
2796 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2797 struct cfg80211_internal_bss tmp = {}, *res;
2798 struct cfg80211_bss_ies *ies;
2799 struct ieee80211_channel *channel;
2800 bool signal_valid;
2801 struct ieee80211_ext *ext = NULL;
2802 u8 *bssid, *variable;
2803 u16 capability, beacon_int;
2804 size_t ielen, min_hdr_len = offsetof(struct ieee80211_mgmt,
2805 u.probe_resp.variable);
2806 int bss_type;
2807
2808 BUILD_BUG_ON(offsetof(struct ieee80211_mgmt, u.probe_resp.variable) !=
2809 offsetof(struct ieee80211_mgmt, u.beacon.variable));
2810
2811 trace_cfg80211_inform_bss_frame(wiphy, data, mgmt, len);
2812
2813 if (WARN_ON(!mgmt))
2814 return NULL;
2815
2816 if (WARN_ON(!wiphy))
2817 return NULL;
2818
2819 if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC &&
2820 (data->signal < 0 || data->signal > 100)))
2821 return NULL;
2822
2823 if (ieee80211_is_s1g_beacon(fc: mgmt->frame_control)) {
2824 ext = (void *) mgmt;
2825 min_hdr_len = offsetof(struct ieee80211_ext, u.s1g_beacon);
2826 if (ieee80211_is_s1g_short_beacon(fc: mgmt->frame_control))
2827 min_hdr_len = offsetof(struct ieee80211_ext,
2828 u.s1g_short_beacon.variable);
2829 }
2830
2831 if (WARN_ON(len < min_hdr_len))
2832 return NULL;
2833
2834 ielen = len - min_hdr_len;
2835 variable = mgmt->u.probe_resp.variable;
2836 if (ext) {
2837 if (ieee80211_is_s1g_short_beacon(fc: mgmt->frame_control))
2838 variable = ext->u.s1g_short_beacon.variable;
2839 else
2840 variable = ext->u.s1g_beacon.variable;
2841 }
2842
2843 channel = cfg80211_get_bss_channel(wiphy, ie: variable, ielen, channel: data->chan);
2844 if (!channel)
2845 return NULL;
2846
2847 if (ext) {
2848 const struct ieee80211_s1g_bcn_compat_ie *compat;
2849 const struct element *elem;
2850
2851 elem = cfg80211_find_elem(eid: WLAN_EID_S1G_BCN_COMPAT,
2852 ies: variable, len: ielen);
2853 if (!elem)
2854 return NULL;
2855 if (elem->datalen < sizeof(*compat))
2856 return NULL;
2857 compat = (void *)elem->data;
2858 bssid = ext->u.s1g_beacon.sa;
2859 capability = le16_to_cpu(compat->compat_info);
2860 beacon_int = le16_to_cpu(compat->beacon_int);
2861 } else {
2862 bssid = mgmt->bssid;
2863 beacon_int = le16_to_cpu(mgmt->u.probe_resp.beacon_int);
2864 capability = le16_to_cpu(mgmt->u.probe_resp.capab_info);
2865 }
2866
2867 if (channel->band == NL80211_BAND_60GHZ) {
2868 bss_type = capability & WLAN_CAPABILITY_DMG_TYPE_MASK;
2869 if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP ||
2870 bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS)
2871 regulatory_hint_found_beacon(wiphy, beacon_chan: channel, gfp);
2872 } else {
2873 if (capability & WLAN_CAPABILITY_ESS)
2874 regulatory_hint_found_beacon(wiphy, beacon_chan: channel, gfp);
2875 }
2876
2877 ies = kzalloc(size: sizeof(*ies) + ielen, flags: gfp);
2878 if (!ies)
2879 return NULL;
2880 ies->len = ielen;
2881 ies->tsf = le64_to_cpu(mgmt->u.probe_resp.timestamp);
2882 ies->from_beacon = ieee80211_is_beacon(fc: mgmt->frame_control) ||
2883 ieee80211_is_s1g_beacon(fc: mgmt->frame_control);
2884 memcpy(ies->data, variable, ielen);
2885
2886 if (ieee80211_is_probe_resp(fc: mgmt->frame_control))
2887 rcu_assign_pointer(tmp.pub.proberesp_ies, ies);
2888 else
2889 rcu_assign_pointer(tmp.pub.beacon_ies, ies);
2890 rcu_assign_pointer(tmp.pub.ies, ies);
2891
2892 memcpy(tmp.pub.bssid, bssid, ETH_ALEN);
2893 tmp.pub.beacon_interval = beacon_int;
2894 tmp.pub.capability = capability;
2895 tmp.pub.channel = channel;
2896 tmp.pub.signal = data->signal;
2897 tmp.ts_boottime = data->boottime_ns;
2898 tmp.parent_tsf = data->parent_tsf;
2899 tmp.pub.chains = data->chains;
2900 memcpy(tmp.pub.chain_signal, data->chain_signal, IEEE80211_MAX_CHAINS);
2901 ether_addr_copy(dst: tmp.parent_bssid, src: data->parent_bssid);
2902
2903 signal_valid = data->chan == channel;
2904 spin_lock_bh(lock: &rdev->bss_lock);
2905 res = __cfg80211_bss_update(rdev, tmp: &tmp, signal_valid, ts: jiffies);
2906 if (!res)
2907 goto drop;
2908
2909 rdev_inform_bss(rdev, bss: &res->pub, ies, drv_data: data->drv_data);
2910
2911 spin_unlock_bh(lock: &rdev->bss_lock);
2912
2913 trace_cfg80211_return_bss(pub: &res->pub);
2914 /* __cfg80211_bss_update gives us a referenced result */
2915 return &res->pub;
2916
2917drop:
2918 spin_unlock_bh(lock: &rdev->bss_lock);
2919 return NULL;
2920}
2921
2922struct cfg80211_bss *
2923cfg80211_inform_bss_frame_data(struct wiphy *wiphy,
2924 struct cfg80211_inform_bss *data,
2925 struct ieee80211_mgmt *mgmt, size_t len,
2926 gfp_t gfp)
2927{
2928 struct cfg80211_inform_single_bss_data inform_data = {
2929 .drv_data = data,
2930 .ie = mgmt->u.probe_resp.variable,
2931 .ielen = len - offsetof(struct ieee80211_mgmt,
2932 u.probe_resp.variable),
2933 };
2934 struct cfg80211_bss *res;
2935
2936 res = cfg80211_inform_single_bss_frame_data(wiphy, data, mgmt,
2937 len, gfp);
2938 if (!res)
2939 return NULL;
2940
2941 /* don't do any further MBSSID/ML handling for S1G */
2942 if (ieee80211_is_s1g_beacon(fc: mgmt->frame_control))
2943 return res;
2944
2945 inform_data.ftype = ieee80211_is_beacon(fc: mgmt->frame_control) ?
2946 CFG80211_BSS_FTYPE_BEACON : CFG80211_BSS_FTYPE_PRESP;
2947 memcpy(inform_data.bssid, mgmt->bssid, ETH_ALEN);
2948 inform_data.tsf = le64_to_cpu(mgmt->u.probe_resp.timestamp);
2949 inform_data.beacon_interval =
2950 le16_to_cpu(mgmt->u.probe_resp.beacon_int);
2951
2952 /* process each non-transmitting bss */
2953 cfg80211_parse_mbssid_data(wiphy, tx_data: &inform_data, source_bss: res, gfp);
2954
2955 cfg80211_parse_ml_sta_data(wiphy, tx_data: &inform_data, source_bss: res, gfp);
2956
2957 return res;
2958}
2959EXPORT_SYMBOL(cfg80211_inform_bss_frame_data);
2960
2961void cfg80211_ref_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
2962{
2963 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2964
2965 if (!pub)
2966 return;
2967
2968 spin_lock_bh(lock: &rdev->bss_lock);
2969 bss_ref_get(rdev, bss: bss_from_pub(pub));
2970 spin_unlock_bh(lock: &rdev->bss_lock);
2971}
2972EXPORT_SYMBOL(cfg80211_ref_bss);
2973
2974void cfg80211_put_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
2975{
2976 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2977
2978 if (!pub)
2979 return;
2980
2981 spin_lock_bh(lock: &rdev->bss_lock);
2982 bss_ref_put(rdev, bss: bss_from_pub(pub));
2983 spin_unlock_bh(lock: &rdev->bss_lock);
2984}
2985EXPORT_SYMBOL(cfg80211_put_bss);
2986
2987void cfg80211_unlink_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
2988{
2989 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2990 struct cfg80211_internal_bss *bss, *tmp1;
2991 struct cfg80211_bss *nontrans_bss, *tmp;
2992
2993 if (WARN_ON(!pub))
2994 return;
2995
2996 bss = bss_from_pub(pub);
2997
2998 spin_lock_bh(lock: &rdev->bss_lock);
2999 if (list_empty(head: &bss->list))
3000 goto out;
3001
3002 list_for_each_entry_safe(nontrans_bss, tmp,
3003 &pub->nontrans_list,
3004 nontrans_list) {
3005 tmp1 = bss_from_pub(pub: nontrans_bss);
3006 if (__cfg80211_unlink_bss(rdev, bss: tmp1))
3007 rdev->bss_generation++;
3008 }
3009
3010 if (__cfg80211_unlink_bss(rdev, bss))
3011 rdev->bss_generation++;
3012out:
3013 spin_unlock_bh(lock: &rdev->bss_lock);
3014}
3015EXPORT_SYMBOL(cfg80211_unlink_bss);
3016
3017void cfg80211_bss_iter(struct wiphy *wiphy,
3018 struct cfg80211_chan_def *chandef,
3019 void (*iter)(struct wiphy *wiphy,
3020 struct cfg80211_bss *bss,
3021 void *data),
3022 void *iter_data)
3023{
3024 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3025 struct cfg80211_internal_bss *bss;
3026
3027 spin_lock_bh(lock: &rdev->bss_lock);
3028
3029 list_for_each_entry(bss, &rdev->bss_list, list) {
3030 if (!chandef || cfg80211_is_sub_chan(chandef, chan: bss->pub.channel,
3031 primary_only: false))
3032 iter(wiphy, &bss->pub, iter_data);
3033 }
3034
3035 spin_unlock_bh(lock: &rdev->bss_lock);
3036}
3037EXPORT_SYMBOL(cfg80211_bss_iter);
3038
3039void cfg80211_update_assoc_bss_entry(struct wireless_dev *wdev,
3040 unsigned int link_id,
3041 struct ieee80211_channel *chan)
3042{
3043 struct wiphy *wiphy = wdev->wiphy;
3044 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3045 struct cfg80211_internal_bss *cbss = wdev->links[link_id].client.current_bss;
3046 struct cfg80211_internal_bss *new = NULL;
3047 struct cfg80211_internal_bss *bss;
3048 struct cfg80211_bss *nontrans_bss;
3049 struct cfg80211_bss *tmp;
3050
3051 spin_lock_bh(lock: &rdev->bss_lock);
3052
3053 /*
3054 * Some APs use CSA also for bandwidth changes, i.e., without actually
3055 * changing the control channel, so no need to update in such a case.
3056 */
3057 if (cbss->pub.channel == chan)
3058 goto done;
3059
3060 /* use transmitting bss */
3061 if (cbss->pub.transmitted_bss)
3062 cbss = bss_from_pub(pub: cbss->pub.transmitted_bss);
3063
3064 cbss->pub.channel = chan;
3065
3066 list_for_each_entry(bss, &rdev->bss_list, list) {
3067 if (!cfg80211_bss_type_match(capability: bss->pub.capability,
3068 band: bss->pub.channel->band,
3069 bss_type: wdev->conn_bss_type))
3070 continue;
3071
3072 if (bss == cbss)
3073 continue;
3074
3075 if (!cmp_bss(a: &bss->pub, b: &cbss->pub, mode: BSS_CMP_REGULAR)) {
3076 new = bss;
3077 break;
3078 }
3079 }
3080
3081 if (new) {
3082 /* to save time, update IEs for transmitting bss only */
3083 if (cfg80211_update_known_bss(rdev, known: cbss, new, signal_valid: false)) {
3084 new->pub.proberesp_ies = NULL;
3085 new->pub.beacon_ies = NULL;
3086 }
3087
3088 list_for_each_entry_safe(nontrans_bss, tmp,
3089 &new->pub.nontrans_list,
3090 nontrans_list) {
3091 bss = bss_from_pub(pub: nontrans_bss);
3092 if (__cfg80211_unlink_bss(rdev, bss))
3093 rdev->bss_generation++;
3094 }
3095
3096 WARN_ON(atomic_read(&new->hold));
3097 if (!WARN_ON(!__cfg80211_unlink_bss(rdev, new)))
3098 rdev->bss_generation++;
3099 }
3100
3101 rb_erase(&cbss->rbn, &rdev->bss_tree);
3102 rb_insert_bss(rdev, bss: cbss);
3103 rdev->bss_generation++;
3104
3105 list_for_each_entry_safe(nontrans_bss, tmp,
3106 &cbss->pub.nontrans_list,
3107 nontrans_list) {
3108 bss = bss_from_pub(pub: nontrans_bss);
3109 bss->pub.channel = chan;
3110 rb_erase(&bss->rbn, &rdev->bss_tree);
3111 rb_insert_bss(rdev, bss);
3112 rdev->bss_generation++;
3113 }
3114
3115done:
3116 spin_unlock_bh(lock: &rdev->bss_lock);
3117}
3118
3119#ifdef CONFIG_CFG80211_WEXT
3120static struct cfg80211_registered_device *
3121cfg80211_get_dev_from_ifindex(struct net *net, int ifindex)
3122{
3123 struct cfg80211_registered_device *rdev;
3124 struct net_device *dev;
3125
3126 ASSERT_RTNL();
3127
3128 dev = dev_get_by_index(net, ifindex);
3129 if (!dev)
3130 return ERR_PTR(error: -ENODEV);
3131 if (dev->ieee80211_ptr)
3132 rdev = wiphy_to_rdev(wiphy: dev->ieee80211_ptr->wiphy);
3133 else
3134 rdev = ERR_PTR(error: -ENODEV);
3135 dev_put(dev);
3136 return rdev;
3137}
3138
3139int cfg80211_wext_siwscan(struct net_device *dev,
3140 struct iw_request_info *info,
3141 union iwreq_data *wrqu, char *extra)
3142{
3143 struct cfg80211_registered_device *rdev;
3144 struct wiphy *wiphy;
3145 struct iw_scan_req *wreq = NULL;
3146 struct cfg80211_scan_request *creq;
3147 int i, err, n_channels = 0;
3148 enum nl80211_band band;
3149
3150 if (!netif_running(dev))
3151 return -ENETDOWN;
3152
3153 if (wrqu->data.length == sizeof(struct iw_scan_req))
3154 wreq = (struct iw_scan_req *)extra;
3155
3156 rdev = cfg80211_get_dev_from_ifindex(net: dev_net(dev), ifindex: dev->ifindex);
3157
3158 if (IS_ERR(ptr: rdev))
3159 return PTR_ERR(ptr: rdev);
3160
3161 if (rdev->scan_req || rdev->scan_msg)
3162 return -EBUSY;
3163
3164 wiphy = &rdev->wiphy;
3165
3166 /* Determine number of channels, needed to allocate creq */
3167 if (wreq && wreq->num_channels)
3168 n_channels = wreq->num_channels;
3169 else
3170 n_channels = ieee80211_get_num_supported_channels(wiphy);
3171
3172 creq = kzalloc(size: sizeof(*creq) + sizeof(struct cfg80211_ssid) +
3173 n_channels * sizeof(void *),
3174 GFP_ATOMIC);
3175 if (!creq)
3176 return -ENOMEM;
3177
3178 creq->wiphy = wiphy;
3179 creq->wdev = dev->ieee80211_ptr;
3180 /* SSIDs come after channels */
3181 creq->ssids = (void *)&creq->channels[n_channels];
3182 creq->n_channels = n_channels;
3183 creq->n_ssids = 1;
3184 creq->scan_start = jiffies;
3185
3186 /* translate "Scan on frequencies" request */
3187 i = 0;
3188 for (band = 0; band < NUM_NL80211_BANDS; band++) {
3189 int j;
3190
3191 if (!wiphy->bands[band])
3192 continue;
3193
3194 for (j = 0; j < wiphy->bands[band]->n_channels; j++) {
3195 /* ignore disabled channels */
3196 if (wiphy->bands[band]->channels[j].flags &
3197 IEEE80211_CHAN_DISABLED)
3198 continue;
3199
3200 /* If we have a wireless request structure and the
3201 * wireless request specifies frequencies, then search
3202 * for the matching hardware channel.
3203 */
3204 if (wreq && wreq->num_channels) {
3205 int k;
3206 int wiphy_freq = wiphy->bands[band]->channels[j].center_freq;
3207 for (k = 0; k < wreq->num_channels; k++) {
3208 struct iw_freq *freq =
3209 &wreq->channel_list[k];
3210 int wext_freq =
3211 cfg80211_wext_freq(freq);
3212
3213 if (wext_freq == wiphy_freq)
3214 goto wext_freq_found;
3215 }
3216 goto wext_freq_not_found;
3217 }
3218
3219 wext_freq_found:
3220 creq->channels[i] = &wiphy->bands[band]->channels[j];
3221 i++;
3222 wext_freq_not_found: ;
3223 }
3224 }
3225 /* No channels found? */
3226 if (!i) {
3227 err = -EINVAL;
3228 goto out;
3229 }
3230
3231 /* Set real number of channels specified in creq->channels[] */
3232 creq->n_channels = i;
3233
3234 /* translate "Scan for SSID" request */
3235 if (wreq) {
3236 if (wrqu->data.flags & IW_SCAN_THIS_ESSID) {
3237 if (wreq->essid_len > IEEE80211_MAX_SSID_LEN) {
3238 err = -EINVAL;
3239 goto out;
3240 }
3241 memcpy(creq->ssids[0].ssid, wreq->essid, wreq->essid_len);
3242 creq->ssids[0].ssid_len = wreq->essid_len;
3243 }
3244 if (wreq->scan_type == IW_SCAN_TYPE_PASSIVE)
3245 creq->n_ssids = 0;
3246 }
3247
3248 for (i = 0; i < NUM_NL80211_BANDS; i++)
3249 if (wiphy->bands[i])
3250 creq->rates[i] = (1 << wiphy->bands[i]->n_bitrates) - 1;
3251
3252 eth_broadcast_addr(addr: creq->bssid);
3253
3254 wiphy_lock(wiphy: &rdev->wiphy);
3255
3256 rdev->scan_req = creq;
3257 err = rdev_scan(rdev, request: creq);
3258 if (err) {
3259 rdev->scan_req = NULL;
3260 /* creq will be freed below */
3261 } else {
3262 nl80211_send_scan_start(rdev, wdev: dev->ieee80211_ptr);
3263 /* creq now owned by driver */
3264 creq = NULL;
3265 dev_hold(dev);
3266 }
3267 wiphy_unlock(wiphy: &rdev->wiphy);
3268 out:
3269 kfree(objp: creq);
3270 return err;
3271}
3272EXPORT_WEXT_HANDLER(cfg80211_wext_siwscan);
3273
3274static char *ieee80211_scan_add_ies(struct iw_request_info *info,
3275 const struct cfg80211_bss_ies *ies,
3276 char *current_ev, char *end_buf)
3277{
3278 const u8 *pos, *end, *next;
3279 struct iw_event iwe;
3280
3281 if (!ies)
3282 return current_ev;
3283
3284 /*
3285 * If needed, fragment the IEs buffer (at IE boundaries) into short
3286 * enough fragments to fit into IW_GENERIC_IE_MAX octet messages.
3287 */
3288 pos = ies->data;
3289 end = pos + ies->len;
3290
3291 while (end - pos > IW_GENERIC_IE_MAX) {
3292 next = pos + 2 + pos[1];
3293 while (next + 2 + next[1] - pos < IW_GENERIC_IE_MAX)
3294 next = next + 2 + next[1];
3295
3296 memset(&iwe, 0, sizeof(iwe));
3297 iwe.cmd = IWEVGENIE;
3298 iwe.u.data.length = next - pos;
3299 current_ev = iwe_stream_add_point_check(info, stream: current_ev,
3300 ends: end_buf, iwe: &iwe,
3301 extra: (void *)pos);
3302 if (IS_ERR(ptr: current_ev))
3303 return current_ev;
3304 pos = next;
3305 }
3306
3307 if (end > pos) {
3308 memset(&iwe, 0, sizeof(iwe));
3309 iwe.cmd = IWEVGENIE;
3310 iwe.u.data.length = end - pos;
3311 current_ev = iwe_stream_add_point_check(info, stream: current_ev,
3312 ends: end_buf, iwe: &iwe,
3313 extra: (void *)pos);
3314 if (IS_ERR(ptr: current_ev))
3315 return current_ev;
3316 }
3317
3318 return current_ev;
3319}
3320
3321static char *
3322ieee80211_bss(struct wiphy *wiphy, struct iw_request_info *info,
3323 struct cfg80211_internal_bss *bss, char *current_ev,
3324 char *end_buf)
3325{
3326 const struct cfg80211_bss_ies *ies;
3327 struct iw_event iwe;
3328 const u8 *ie;
3329 u8 buf[50];
3330 u8 *cfg, *p, *tmp;
3331 int rem, i, sig;
3332 bool ismesh = false;
3333
3334 memset(&iwe, 0, sizeof(iwe));
3335 iwe.cmd = SIOCGIWAP;
3336 iwe.u.ap_addr.sa_family = ARPHRD_ETHER;
3337 memcpy(iwe.u.ap_addr.sa_data, bss->pub.bssid, ETH_ALEN);
3338 current_ev = iwe_stream_add_event_check(info, stream: current_ev, ends: end_buf, iwe: &iwe,
3339 IW_EV_ADDR_LEN);
3340 if (IS_ERR(ptr: current_ev))
3341 return current_ev;
3342
3343 memset(&iwe, 0, sizeof(iwe));
3344 iwe.cmd = SIOCGIWFREQ;
3345 iwe.u.freq.m = ieee80211_frequency_to_channel(freq: bss->pub.channel->center_freq);
3346 iwe.u.freq.e = 0;
3347 current_ev = iwe_stream_add_event_check(info, stream: current_ev, ends: end_buf, iwe: &iwe,
3348 IW_EV_FREQ_LEN);
3349 if (IS_ERR(ptr: current_ev))
3350 return current_ev;
3351
3352 memset(&iwe, 0, sizeof(iwe));
3353 iwe.cmd = SIOCGIWFREQ;
3354 iwe.u.freq.m = bss->pub.channel->center_freq;
3355 iwe.u.freq.e = 6;
3356 current_ev = iwe_stream_add_event_check(info, stream: current_ev, ends: end_buf, iwe: &iwe,
3357 IW_EV_FREQ_LEN);
3358 if (IS_ERR(ptr: current_ev))
3359 return current_ev;
3360
3361 if (wiphy->signal_type != CFG80211_SIGNAL_TYPE_NONE) {
3362 memset(&iwe, 0, sizeof(iwe));
3363 iwe.cmd = IWEVQUAL;
3364 iwe.u.qual.updated = IW_QUAL_LEVEL_UPDATED |
3365 IW_QUAL_NOISE_INVALID |
3366 IW_QUAL_QUAL_UPDATED;
3367 switch (wiphy->signal_type) {
3368 case CFG80211_SIGNAL_TYPE_MBM:
3369 sig = bss->pub.signal / 100;
3370 iwe.u.qual.level = sig;
3371 iwe.u.qual.updated |= IW_QUAL_DBM;
3372 if (sig < -110) /* rather bad */
3373 sig = -110;
3374 else if (sig > -40) /* perfect */
3375 sig = -40;
3376 /* will give a range of 0 .. 70 */
3377 iwe.u.qual.qual = sig + 110;
3378 break;
3379 case CFG80211_SIGNAL_TYPE_UNSPEC:
3380 iwe.u.qual.level = bss->pub.signal;
3381 /* will give range 0 .. 100 */
3382 iwe.u.qual.qual = bss->pub.signal;
3383 break;
3384 default:
3385 /* not reached */
3386 break;
3387 }
3388 current_ev = iwe_stream_add_event_check(info, stream: current_ev,
3389 ends: end_buf, iwe: &iwe,
3390 IW_EV_QUAL_LEN);
3391 if (IS_ERR(ptr: current_ev))
3392 return current_ev;
3393 }
3394
3395 memset(&iwe, 0, sizeof(iwe));
3396 iwe.cmd = SIOCGIWENCODE;
3397 if (bss->pub.capability & WLAN_CAPABILITY_PRIVACY)
3398 iwe.u.data.flags = IW_ENCODE_ENABLED | IW_ENCODE_NOKEY;
3399 else
3400 iwe.u.data.flags = IW_ENCODE_DISABLED;
3401 iwe.u.data.length = 0;
3402 current_ev = iwe_stream_add_point_check(info, stream: current_ev, ends: end_buf,
3403 iwe: &iwe, extra: "");
3404 if (IS_ERR(ptr: current_ev))
3405 return current_ev;
3406
3407 rcu_read_lock();
3408 ies = rcu_dereference(bss->pub.ies);
3409 rem = ies->len;
3410 ie = ies->data;
3411
3412 while (rem >= 2) {
3413 /* invalid data */
3414 if (ie[1] > rem - 2)
3415 break;
3416
3417 switch (ie[0]) {
3418 case WLAN_EID_SSID:
3419 memset(&iwe, 0, sizeof(iwe));
3420 iwe.cmd = SIOCGIWESSID;
3421 iwe.u.data.length = ie[1];
3422 iwe.u.data.flags = 1;
3423 current_ev = iwe_stream_add_point_check(info,
3424 stream: current_ev,
3425 ends: end_buf, iwe: &iwe,
3426 extra: (u8 *)ie + 2);
3427 if (IS_ERR(ptr: current_ev))
3428 goto unlock;
3429 break;
3430 case WLAN_EID_MESH_ID:
3431 memset(&iwe, 0, sizeof(iwe));
3432 iwe.cmd = SIOCGIWESSID;
3433 iwe.u.data.length = ie[1];
3434 iwe.u.data.flags = 1;
3435 current_ev = iwe_stream_add_point_check(info,
3436 stream: current_ev,
3437 ends: end_buf, iwe: &iwe,
3438 extra: (u8 *)ie + 2);
3439 if (IS_ERR(ptr: current_ev))
3440 goto unlock;
3441 break;
3442 case WLAN_EID_MESH_CONFIG:
3443 ismesh = true;
3444 if (ie[1] != sizeof(struct ieee80211_meshconf_ie))
3445 break;
3446 cfg = (u8 *)ie + 2;
3447 memset(&iwe, 0, sizeof(iwe));
3448 iwe.cmd = IWEVCUSTOM;
3449 iwe.u.data.length = sprintf(buf,
3450 fmt: "Mesh Network Path Selection Protocol ID: 0x%02X",
3451 cfg[0]);
3452 current_ev = iwe_stream_add_point_check(info,
3453 stream: current_ev,
3454 ends: end_buf,
3455 iwe: &iwe, extra: buf);
3456 if (IS_ERR(ptr: current_ev))
3457 goto unlock;
3458 iwe.u.data.length = sprintf(buf,
3459 fmt: "Path Selection Metric ID: 0x%02X",
3460 cfg[1]);
3461 current_ev = iwe_stream_add_point_check(info,
3462 stream: current_ev,
3463 ends: end_buf,
3464 iwe: &iwe, extra: buf);
3465 if (IS_ERR(ptr: current_ev))
3466 goto unlock;
3467 iwe.u.data.length = sprintf(buf,
3468 fmt: "Congestion Control Mode ID: 0x%02X",
3469 cfg[2]);
3470 current_ev = iwe_stream_add_point_check(info,
3471 stream: current_ev,
3472 ends: end_buf,
3473 iwe: &iwe, extra: buf);
3474 if (IS_ERR(ptr: current_ev))
3475 goto unlock;
3476 iwe.u.data.length = sprintf(buf,
3477 fmt: "Synchronization ID: 0x%02X",
3478 cfg[3]);
3479 current_ev = iwe_stream_add_point_check(info,
3480 stream: current_ev,
3481 ends: end_buf,
3482 iwe: &iwe, extra: buf);
3483 if (IS_ERR(ptr: current_ev))
3484 goto unlock;
3485 iwe.u.data.length = sprintf(buf,
3486 fmt: "Authentication ID: 0x%02X",
3487 cfg[4]);
3488 current_ev = iwe_stream_add_point_check(info,
3489 stream: current_ev,
3490 ends: end_buf,
3491 iwe: &iwe, extra: buf);
3492 if (IS_ERR(ptr: current_ev))
3493 goto unlock;
3494 iwe.u.data.length = sprintf(buf,
3495 fmt: "Formation Info: 0x%02X",
3496 cfg[5]);
3497 current_ev = iwe_stream_add_point_check(info,
3498 stream: current_ev,
3499 ends: end_buf,
3500 iwe: &iwe, extra: buf);
3501 if (IS_ERR(ptr: current_ev))
3502 goto unlock;
3503 iwe.u.data.length = sprintf(buf,
3504 fmt: "Capabilities: 0x%02X",
3505 cfg[6]);
3506 current_ev = iwe_stream_add_point_check(info,
3507 stream: current_ev,
3508 ends: end_buf,
3509 iwe: &iwe, extra: buf);
3510 if (IS_ERR(ptr: current_ev))
3511 goto unlock;
3512 break;
3513 case WLAN_EID_SUPP_RATES:
3514 case WLAN_EID_EXT_SUPP_RATES:
3515 /* display all supported rates in readable format */
3516 p = current_ev + iwe_stream_lcp_len(info);
3517
3518 memset(&iwe, 0, sizeof(iwe));
3519 iwe.cmd = SIOCGIWRATE;
3520 /* Those two flags are ignored... */
3521 iwe.u.bitrate.fixed = iwe.u.bitrate.disabled = 0;
3522
3523 for (i = 0; i < ie[1]; i++) {
3524 iwe.u.bitrate.value =
3525 ((ie[i + 2] & 0x7f) * 500000);
3526 tmp = p;
3527 p = iwe_stream_add_value(info, event: current_ev, value: p,
3528 ends: end_buf, iwe: &iwe,
3529 IW_EV_PARAM_LEN);
3530 if (p == tmp) {
3531 current_ev = ERR_PTR(error: -E2BIG);
3532 goto unlock;
3533 }
3534 }
3535 current_ev = p;
3536 break;
3537 }
3538 rem -= ie[1] + 2;
3539 ie += ie[1] + 2;
3540 }
3541
3542 if (bss->pub.capability & (WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS) ||
3543 ismesh) {
3544 memset(&iwe, 0, sizeof(iwe));
3545 iwe.cmd = SIOCGIWMODE;
3546 if (ismesh)
3547 iwe.u.mode = IW_MODE_MESH;
3548 else if (bss->pub.capability & WLAN_CAPABILITY_ESS)
3549 iwe.u.mode = IW_MODE_MASTER;
3550 else
3551 iwe.u.mode = IW_MODE_ADHOC;
3552 current_ev = iwe_stream_add_event_check(info, stream: current_ev,
3553 ends: end_buf, iwe: &iwe,
3554 IW_EV_UINT_LEN);
3555 if (IS_ERR(ptr: current_ev))
3556 goto unlock;
3557 }
3558
3559 memset(&iwe, 0, sizeof(iwe));
3560 iwe.cmd = IWEVCUSTOM;
3561 iwe.u.data.length = sprintf(buf, fmt: "tsf=%016llx",
3562 (unsigned long long)(ies->tsf));
3563 current_ev = iwe_stream_add_point_check(info, stream: current_ev, ends: end_buf,
3564 iwe: &iwe, extra: buf);
3565 if (IS_ERR(ptr: current_ev))
3566 goto unlock;
3567 memset(&iwe, 0, sizeof(iwe));
3568 iwe.cmd = IWEVCUSTOM;
3569 iwe.u.data.length = sprintf(buf, fmt: " Last beacon: %ums ago",
3570 elapsed_jiffies_msecs(start: bss->ts));
3571 current_ev = iwe_stream_add_point_check(info, stream: current_ev,
3572 ends: end_buf, iwe: &iwe, extra: buf);
3573 if (IS_ERR(ptr: current_ev))
3574 goto unlock;
3575
3576 current_ev = ieee80211_scan_add_ies(info, ies, current_ev, end_buf);
3577
3578 unlock:
3579 rcu_read_unlock();
3580 return current_ev;
3581}
3582
3583
3584static int ieee80211_scan_results(struct cfg80211_registered_device *rdev,
3585 struct iw_request_info *info,
3586 char *buf, size_t len)
3587{
3588 char *current_ev = buf;
3589 char *end_buf = buf + len;
3590 struct cfg80211_internal_bss *bss;
3591 int err = 0;
3592
3593 spin_lock_bh(lock: &rdev->bss_lock);
3594 cfg80211_bss_expire(rdev);
3595
3596 list_for_each_entry(bss, &rdev->bss_list, list) {
3597 if (buf + len - current_ev <= IW_EV_ADDR_LEN) {
3598 err = -E2BIG;
3599 break;
3600 }
3601 current_ev = ieee80211_bss(wiphy: &rdev->wiphy, info, bss,
3602 current_ev, end_buf);
3603 if (IS_ERR(ptr: current_ev)) {
3604 err = PTR_ERR(ptr: current_ev);
3605 break;
3606 }
3607 }
3608 spin_unlock_bh(lock: &rdev->bss_lock);
3609
3610 if (err)
3611 return err;
3612 return current_ev - buf;
3613}
3614
3615
3616int cfg80211_wext_giwscan(struct net_device *dev,
3617 struct iw_request_info *info,
3618 union iwreq_data *wrqu, char *extra)
3619{
3620 struct iw_point *data = &wrqu->data;
3621 struct cfg80211_registered_device *rdev;
3622 int res;
3623
3624 if (!netif_running(dev))
3625 return -ENETDOWN;
3626
3627 rdev = cfg80211_get_dev_from_ifindex(net: dev_net(dev), ifindex: dev->ifindex);
3628
3629 if (IS_ERR(ptr: rdev))
3630 return PTR_ERR(ptr: rdev);
3631
3632 if (rdev->scan_req || rdev->scan_msg)
3633 return -EAGAIN;
3634
3635 res = ieee80211_scan_results(rdev, info, buf: extra, len: data->length);
3636 data->length = 0;
3637 if (res >= 0) {
3638 data->length = res;
3639 res = 0;
3640 }
3641
3642 return res;
3643}
3644EXPORT_WEXT_HANDLER(cfg80211_wext_giwscan);
3645#endif
3646

source code of linux/net/wireless/scan.c