1// SPDX-License-Identifier: GPL-2.0
2//
3// Freescale S/PDIF ALSA SoC Digital Audio Interface (DAI) driver
4//
5// Copyright (C) 2013 Freescale Semiconductor, Inc.
6//
7// Based on stmp3xxx_spdif_dai.c
8// Vladimir Barinov <vbarinov@embeddedalley.com>
9// Copyright 2008 SigmaTel, Inc
10// Copyright 2008 Embedded Alley Solutions, Inc
11
12#include <linux/bitrev.h>
13#include <linux/clk.h>
14#include <linux/module.h>
15#include <linux/of.h>
16#include <linux/regmap.h>
17#include <linux/pm_runtime.h>
18
19#include <sound/asoundef.h>
20#include <sound/dmaengine_pcm.h>
21#include <sound/soc.h>
22
23#include "fsl_spdif.h"
24#include "fsl_utils.h"
25#include "imx-pcm.h"
26
27#define FSL_SPDIF_TXFIFO_WML 0x8
28#define FSL_SPDIF_RXFIFO_WML 0x8
29
30#define INTR_FOR_PLAYBACK (INT_TXFIFO_RESYNC)
31#define INTR_FOR_CAPTURE (INT_SYM_ERR | INT_BIT_ERR | INT_URX_FUL |\
32 INT_URX_OV | INT_QRX_FUL | INT_QRX_OV |\
33 INT_UQ_SYNC | INT_UQ_ERR | INT_RXFIFO_RESYNC |\
34 INT_LOSS_LOCK | INT_DPLL_LOCKED)
35
36#define SIE_INTR_FOR(tx) (tx ? INTR_FOR_PLAYBACK : INTR_FOR_CAPTURE)
37
38/* Index list for the values that has if (DPLL Locked) condition */
39static u8 srpc_dpll_locked[] = { 0x0, 0x1, 0x2, 0x3, 0x4, 0xa, 0xb };
40#define SRPC_NODPLL_START1 0x5
41#define SRPC_NODPLL_START2 0xc
42
43#define DEFAULT_RXCLK_SRC 1
44
45#define RX_SAMPLE_RATE_KCONTROL "RX Sample Rate"
46
47/**
48 * struct fsl_spdif_soc_data: soc specific data
49 *
50 * @imx: for imx platform
51 * @shared_root_clock: flag of sharing a clock source with others;
52 * so the driver shouldn't set root clock rate
53 * @raw_capture_mode: if raw capture mode support
54 * @cchannel_192b: if there are registers for 192bits C channel data
55 * @interrupts: interrupt number
56 * @tx_burst: tx maxburst size
57 * @rx_burst: rx maxburst size
58 * @tx_formats: tx supported data format
59 */
60struct fsl_spdif_soc_data {
61 bool imx;
62 bool shared_root_clock;
63 bool raw_capture_mode;
64 bool cchannel_192b;
65 u32 interrupts;
66 u32 tx_burst;
67 u32 rx_burst;
68 u64 tx_formats;
69};
70
71/*
72 * SPDIF control structure
73 * Defines channel status, subcode and Q sub
74 */
75struct spdif_mixer_control {
76 /* spinlock to access control data */
77 spinlock_t ctl_lock;
78
79 /* IEC958 channel tx status bit */
80 unsigned char ch_status[4];
81
82 /* User bits */
83 unsigned char subcode[2 * SPDIF_UBITS_SIZE];
84
85 /* Q subcode part of user bits */
86 unsigned char qsub[2 * SPDIF_QSUB_SIZE];
87
88 /* Buffer offset for U/Q */
89 u32 upos;
90 u32 qpos;
91
92 /* Ready buffer index of the two buffers */
93 u32 ready_buf;
94};
95
96/**
97 * struct fsl_spdif_priv - Freescale SPDIF private data
98 * @soc: SPDIF soc data
99 * @fsl_spdif_control: SPDIF control data
100 * @cpu_dai_drv: cpu dai driver
101 * @snd_card: sound card pointer
102 * @rxrate_kcontrol: kcontrol for RX Sample Rate
103 * @pdev: platform device pointer
104 * @regmap: regmap handler
105 * @dpll_locked: dpll lock flag
106 * @txrate: the best rates for playback
107 * @txclk_df: STC_TXCLK_DF dividers value for playback
108 * @sysclk_df: STC_SYSCLK_DF dividers value for playback
109 * @txclk_src: STC_TXCLK_SRC values for playback
110 * @rxclk_src: SRPC_CLKSRC_SEL values for capture
111 * @txclk: tx clock sources for playback
112 * @rxclk: rx clock sources for capture
113 * @coreclk: core clock for register access via DMA
114 * @sysclk: system clock for rx clock rate measurement
115 * @spbaclk: SPBA clock (optional, depending on SoC design)
116 * @dma_params_tx: DMA parameters for transmit channel
117 * @dma_params_rx: DMA parameters for receive channel
118 * @regcache_srpc: regcache for SRPC
119 * @bypass: status of bypass input to output
120 * @pll8k_clk: PLL clock for the rate of multiply of 8kHz
121 * @pll11k_clk: PLL clock for the rate of multiply of 11kHz
122 */
123struct fsl_spdif_priv {
124 const struct fsl_spdif_soc_data *soc;
125 struct spdif_mixer_control fsl_spdif_control;
126 struct snd_soc_dai_driver cpu_dai_drv;
127 struct snd_card *snd_card;
128 struct snd_kcontrol *rxrate_kcontrol;
129 struct platform_device *pdev;
130 struct regmap *regmap;
131 bool dpll_locked;
132 u32 txrate[SPDIF_TXRATE_MAX];
133 u8 txclk_df[SPDIF_TXRATE_MAX];
134 u16 sysclk_df[SPDIF_TXRATE_MAX];
135 u8 txclk_src[SPDIF_TXRATE_MAX];
136 u8 rxclk_src;
137 struct clk *txclk[STC_TXCLK_SRC_MAX];
138 struct clk *rxclk;
139 struct clk *coreclk;
140 struct clk *sysclk;
141 struct clk *spbaclk;
142 struct snd_dmaengine_dai_dma_data dma_params_tx;
143 struct snd_dmaengine_dai_dma_data dma_params_rx;
144 /* regcache for SRPC */
145 u32 regcache_srpc;
146 bool bypass;
147 struct clk *pll8k_clk;
148 struct clk *pll11k_clk;
149};
150
151static struct fsl_spdif_soc_data fsl_spdif_vf610 = {
152 .imx = false,
153 .shared_root_clock = false,
154 .raw_capture_mode = false,
155 .interrupts = 1,
156 .tx_burst = FSL_SPDIF_TXFIFO_WML,
157 .rx_burst = FSL_SPDIF_RXFIFO_WML,
158 .tx_formats = FSL_SPDIF_FORMATS_PLAYBACK,
159};
160
161static struct fsl_spdif_soc_data fsl_spdif_imx35 = {
162 .imx = true,
163 .shared_root_clock = false,
164 .raw_capture_mode = false,
165 .interrupts = 1,
166 .tx_burst = FSL_SPDIF_TXFIFO_WML,
167 .rx_burst = FSL_SPDIF_RXFIFO_WML,
168 .tx_formats = FSL_SPDIF_FORMATS_PLAYBACK,
169};
170
171static struct fsl_spdif_soc_data fsl_spdif_imx6sx = {
172 .imx = true,
173 .shared_root_clock = true,
174 .raw_capture_mode = false,
175 .interrupts = 1,
176 .tx_burst = FSL_SPDIF_TXFIFO_WML,
177 .rx_burst = FSL_SPDIF_RXFIFO_WML,
178 .tx_formats = FSL_SPDIF_FORMATS_PLAYBACK,
179
180};
181
182static struct fsl_spdif_soc_data fsl_spdif_imx8qm = {
183 .imx = true,
184 .shared_root_clock = true,
185 .raw_capture_mode = false,
186 .interrupts = 2,
187 .tx_burst = 2, /* Applied for EDMA */
188 .rx_burst = 2, /* Applied for EDMA */
189 .tx_formats = SNDRV_PCM_FMTBIT_S24_LE, /* Applied for EDMA */
190};
191
192static struct fsl_spdif_soc_data fsl_spdif_imx8mm = {
193 .imx = true,
194 .shared_root_clock = false,
195 .raw_capture_mode = true,
196 .interrupts = 1,
197 .tx_burst = FSL_SPDIF_TXFIFO_WML,
198 .rx_burst = FSL_SPDIF_RXFIFO_WML,
199 .tx_formats = FSL_SPDIF_FORMATS_PLAYBACK,
200};
201
202static struct fsl_spdif_soc_data fsl_spdif_imx8ulp = {
203 .imx = true,
204 .shared_root_clock = true,
205 .raw_capture_mode = false,
206 .interrupts = 1,
207 .tx_burst = 2, /* Applied for EDMA */
208 .rx_burst = 2, /* Applied for EDMA */
209 .tx_formats = SNDRV_PCM_FMTBIT_S24_LE, /* Applied for EDMA */
210 .cchannel_192b = true,
211};
212
213/* Check if clk is a root clock that does not share clock source with others */
214static inline bool fsl_spdif_can_set_clk_rate(struct fsl_spdif_priv *spdif, int clk)
215{
216 return (clk == STC_TXCLK_SPDIF_ROOT) && !spdif->soc->shared_root_clock;
217}
218
219/* DPLL locked and lock loss interrupt handler */
220static void spdif_irq_dpll_lock(struct fsl_spdif_priv *spdif_priv)
221{
222 struct regmap *regmap = spdif_priv->regmap;
223 struct platform_device *pdev = spdif_priv->pdev;
224 u32 locked;
225
226 regmap_read(map: regmap, REG_SPDIF_SRPC, val: &locked);
227 locked &= SRPC_DPLL_LOCKED;
228
229 dev_dbg(&pdev->dev, "isr: Rx dpll %s \n",
230 locked ? "locked" : "loss lock");
231
232 spdif_priv->dpll_locked = locked ? true : false;
233
234 if (spdif_priv->snd_card && spdif_priv->rxrate_kcontrol) {
235 snd_ctl_notify(card: spdif_priv->snd_card,
236 SNDRV_CTL_EVENT_MASK_VALUE,
237 id: &spdif_priv->rxrate_kcontrol->id);
238 }
239}
240
241/* Receiver found illegal symbol interrupt handler */
242static void spdif_irq_sym_error(struct fsl_spdif_priv *spdif_priv)
243{
244 struct regmap *regmap = spdif_priv->regmap;
245 struct platform_device *pdev = spdif_priv->pdev;
246
247 dev_dbg(&pdev->dev, "isr: receiver found illegal symbol\n");
248
249 /* Clear illegal symbol if DPLL unlocked since no audio stream */
250 if (!spdif_priv->dpll_locked)
251 regmap_update_bits(map: regmap, REG_SPDIF_SIE, INT_SYM_ERR, val: 0);
252}
253
254/* U/Q Channel receive register full */
255static void spdif_irq_uqrx_full(struct fsl_spdif_priv *spdif_priv, char name)
256{
257 struct spdif_mixer_control *ctrl = &spdif_priv->fsl_spdif_control;
258 struct regmap *regmap = spdif_priv->regmap;
259 struct platform_device *pdev = spdif_priv->pdev;
260 u32 *pos, size, val, reg;
261
262 switch (name) {
263 case 'U':
264 pos = &ctrl->upos;
265 size = SPDIF_UBITS_SIZE;
266 reg = REG_SPDIF_SRU;
267 break;
268 case 'Q':
269 pos = &ctrl->qpos;
270 size = SPDIF_QSUB_SIZE;
271 reg = REG_SPDIF_SRQ;
272 break;
273 default:
274 dev_err(&pdev->dev, "unsupported channel name\n");
275 return;
276 }
277
278 dev_dbg(&pdev->dev, "isr: %c Channel receive register full\n", name);
279
280 if (*pos >= size * 2) {
281 *pos = 0;
282 } else if (unlikely((*pos % size) + 3 > size)) {
283 dev_err(&pdev->dev, "User bit receive buffer overflow\n");
284 return;
285 }
286
287 regmap_read(map: regmap, reg, val: &val);
288 ctrl->subcode[*pos++] = val >> 16;
289 ctrl->subcode[*pos++] = val >> 8;
290 ctrl->subcode[*pos++] = val;
291}
292
293/* U/Q Channel sync found */
294static void spdif_irq_uq_sync(struct fsl_spdif_priv *spdif_priv)
295{
296 struct spdif_mixer_control *ctrl = &spdif_priv->fsl_spdif_control;
297 struct platform_device *pdev = spdif_priv->pdev;
298
299 dev_dbg(&pdev->dev, "isr: U/Q Channel sync found\n");
300
301 /* U/Q buffer reset */
302 if (ctrl->qpos == 0)
303 return;
304
305 /* Set ready to this buffer */
306 ctrl->ready_buf = (ctrl->qpos - 1) / SPDIF_QSUB_SIZE + 1;
307}
308
309/* U/Q Channel framing error */
310static void spdif_irq_uq_err(struct fsl_spdif_priv *spdif_priv)
311{
312 struct spdif_mixer_control *ctrl = &spdif_priv->fsl_spdif_control;
313 struct regmap *regmap = spdif_priv->regmap;
314 struct platform_device *pdev = spdif_priv->pdev;
315 u32 val;
316
317 dev_dbg(&pdev->dev, "isr: U/Q Channel framing error\n");
318
319 /* Read U/Q data to clear the irq and do buffer reset */
320 regmap_read(map: regmap, REG_SPDIF_SRU, val: &val);
321 regmap_read(map: regmap, REG_SPDIF_SRQ, val: &val);
322
323 /* Drop this U/Q buffer */
324 ctrl->ready_buf = 0;
325 ctrl->upos = 0;
326 ctrl->qpos = 0;
327}
328
329/* Get spdif interrupt status and clear the interrupt */
330static u32 spdif_intr_status_clear(struct fsl_spdif_priv *spdif_priv)
331{
332 struct regmap *regmap = spdif_priv->regmap;
333 u32 val, val2;
334
335 regmap_read(map: regmap, REG_SPDIF_SIS, val: &val);
336 regmap_read(map: regmap, REG_SPDIF_SIE, val: &val2);
337
338 regmap_write(map: regmap, REG_SPDIF_SIC, val: val & val2);
339
340 return val;
341}
342
343static irqreturn_t spdif_isr(int irq, void *devid)
344{
345 struct fsl_spdif_priv *spdif_priv = (struct fsl_spdif_priv *)devid;
346 struct platform_device *pdev = spdif_priv->pdev;
347 u32 sis;
348
349 sis = spdif_intr_status_clear(spdif_priv);
350
351 if (sis & INT_DPLL_LOCKED)
352 spdif_irq_dpll_lock(spdif_priv);
353
354 if (sis & INT_TXFIFO_UNOV)
355 dev_dbg(&pdev->dev, "isr: Tx FIFO under/overrun\n");
356
357 if (sis & INT_TXFIFO_RESYNC)
358 dev_dbg(&pdev->dev, "isr: Tx FIFO resync\n");
359
360 if (sis & INT_CNEW)
361 dev_dbg(&pdev->dev, "isr: cstatus new\n");
362
363 if (sis & INT_VAL_NOGOOD)
364 dev_dbg(&pdev->dev, "isr: validity flag no good\n");
365
366 if (sis & INT_SYM_ERR)
367 spdif_irq_sym_error(spdif_priv);
368
369 if (sis & INT_BIT_ERR)
370 dev_dbg(&pdev->dev, "isr: receiver found parity bit error\n");
371
372 if (sis & INT_URX_FUL)
373 spdif_irq_uqrx_full(spdif_priv, name: 'U');
374
375 if (sis & INT_URX_OV)
376 dev_dbg(&pdev->dev, "isr: U Channel receive register overrun\n");
377
378 if (sis & INT_QRX_FUL)
379 spdif_irq_uqrx_full(spdif_priv, name: 'Q');
380
381 if (sis & INT_QRX_OV)
382 dev_dbg(&pdev->dev, "isr: Q Channel receive register overrun\n");
383
384 if (sis & INT_UQ_SYNC)
385 spdif_irq_uq_sync(spdif_priv);
386
387 if (sis & INT_UQ_ERR)
388 spdif_irq_uq_err(spdif_priv);
389
390 if (sis & INT_RXFIFO_UNOV)
391 dev_dbg(&pdev->dev, "isr: Rx FIFO under/overrun\n");
392
393 if (sis & INT_RXFIFO_RESYNC)
394 dev_dbg(&pdev->dev, "isr: Rx FIFO resync\n");
395
396 if (sis & INT_LOSS_LOCK)
397 spdif_irq_dpll_lock(spdif_priv);
398
399 /* FIXME: Write Tx FIFO to clear TxEm */
400 if (sis & INT_TX_EM)
401 dev_dbg(&pdev->dev, "isr: Tx FIFO empty\n");
402
403 /* FIXME: Read Rx FIFO to clear RxFIFOFul */
404 if (sis & INT_RXFIFO_FUL)
405 dev_dbg(&pdev->dev, "isr: Rx FIFO full\n");
406
407 return IRQ_HANDLED;
408}
409
410static int spdif_softreset(struct fsl_spdif_priv *spdif_priv)
411{
412 struct regmap *regmap = spdif_priv->regmap;
413 u32 val, cycle = 1000;
414
415 regcache_cache_bypass(map: regmap, enable: true);
416
417 regmap_write(map: regmap, REG_SPDIF_SCR, SCR_SOFT_RESET);
418
419 /*
420 * RESET bit would be cleared after finishing its reset procedure,
421 * which typically lasts 8 cycles. 1000 cycles will keep it safe.
422 */
423 do {
424 regmap_read(map: regmap, REG_SPDIF_SCR, val: &val);
425 } while ((val & SCR_SOFT_RESET) && cycle--);
426
427 regcache_cache_bypass(map: regmap, enable: false);
428 regcache_mark_dirty(map: regmap);
429 regcache_sync(map: regmap);
430
431 if (cycle)
432 return 0;
433 else
434 return -EBUSY;
435}
436
437static void spdif_set_cstatus(struct spdif_mixer_control *ctrl,
438 u8 mask, u8 cstatus)
439{
440 ctrl->ch_status[3] &= ~mask;
441 ctrl->ch_status[3] |= cstatus & mask;
442}
443
444static void spdif_write_channel_status(struct fsl_spdif_priv *spdif_priv)
445{
446 struct spdif_mixer_control *ctrl = &spdif_priv->fsl_spdif_control;
447 struct regmap *regmap = spdif_priv->regmap;
448 struct platform_device *pdev = spdif_priv->pdev;
449 u32 ch_status;
450
451 ch_status = (bitrev8(ctrl->ch_status[0]) << 16) |
452 (bitrev8(ctrl->ch_status[1]) << 8) |
453 bitrev8(ctrl->ch_status[2]);
454 regmap_write(map: regmap, REG_SPDIF_STCSCH, val: ch_status);
455
456 dev_dbg(&pdev->dev, "STCSCH: 0x%06x\n", ch_status);
457
458 ch_status = bitrev8(ctrl->ch_status[3]) << 16;
459 regmap_write(map: regmap, REG_SPDIF_STCSCL, val: ch_status);
460
461 dev_dbg(&pdev->dev, "STCSCL: 0x%06x\n", ch_status);
462
463 if (spdif_priv->soc->cchannel_192b) {
464 ch_status = (bitrev8(ctrl->ch_status[0]) << 24) |
465 (bitrev8(ctrl->ch_status[1]) << 16) |
466 (bitrev8(ctrl->ch_status[2]) << 8) |
467 bitrev8(ctrl->ch_status[3]);
468
469 regmap_update_bits(map: regmap, REG_SPDIF_SCR, mask: 0x1000000, val: 0x1000000);
470
471 /*
472 * The first 32bit should be in REG_SPDIF_STCCA_31_0 register,
473 * but here we need to set REG_SPDIF_STCCA_191_160 on 8ULP
474 * then can get correct result with HDMI analyzer capture.
475 * There is a hardware bug here.
476 */
477 regmap_write(map: regmap, REG_SPDIF_STCCA_191_160, val: ch_status);
478 }
479}
480
481/* Set SPDIF PhaseConfig register for rx clock */
482static int spdif_set_rx_clksrc(struct fsl_spdif_priv *spdif_priv,
483 enum spdif_gainsel gainsel, int dpll_locked)
484{
485 struct regmap *regmap = spdif_priv->regmap;
486 u8 clksrc = spdif_priv->rxclk_src;
487
488 if (clksrc >= SRPC_CLKSRC_MAX || gainsel >= GAINSEL_MULTI_MAX)
489 return -EINVAL;
490
491 regmap_update_bits(map: regmap, REG_SPDIF_SRPC,
492 SRPC_CLKSRC_SEL_MASK | SRPC_GAINSEL_MASK,
493 SRPC_CLKSRC_SEL_SET(clksrc) | SRPC_GAINSEL_SET(gainsel));
494
495 return 0;
496}
497
498static int fsl_spdif_probe_txclk(struct fsl_spdif_priv *spdif_priv, enum spdif_txrate index);
499
500static int spdif_set_sample_rate(struct snd_pcm_substream *substream,
501 int sample_rate)
502{
503 struct snd_soc_pcm_runtime *rtd = snd_soc_substream_to_rtd(substream);
504 struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(snd_soc_rtd_to_cpu(rtd, 0));
505 struct spdif_mixer_control *ctrl = &spdif_priv->fsl_spdif_control;
506 struct regmap *regmap = spdif_priv->regmap;
507 struct platform_device *pdev = spdif_priv->pdev;
508 unsigned long csfs = 0;
509 u32 stc, mask, rate;
510 u16 sysclk_df;
511 u8 clk, txclk_df;
512 int ret;
513
514 switch (sample_rate) {
515 case 22050:
516 rate = SPDIF_TXRATE_22050;
517 csfs = IEC958_AES3_CON_FS_22050;
518 break;
519 case 32000:
520 rate = SPDIF_TXRATE_32000;
521 csfs = IEC958_AES3_CON_FS_32000;
522 break;
523 case 44100:
524 rate = SPDIF_TXRATE_44100;
525 csfs = IEC958_AES3_CON_FS_44100;
526 break;
527 case 48000:
528 rate = SPDIF_TXRATE_48000;
529 csfs = IEC958_AES3_CON_FS_48000;
530 break;
531 case 88200:
532 rate = SPDIF_TXRATE_88200;
533 csfs = IEC958_AES3_CON_FS_88200;
534 break;
535 case 96000:
536 rate = SPDIF_TXRATE_96000;
537 csfs = IEC958_AES3_CON_FS_96000;
538 break;
539 case 176400:
540 rate = SPDIF_TXRATE_176400;
541 csfs = IEC958_AES3_CON_FS_176400;
542 break;
543 case 192000:
544 rate = SPDIF_TXRATE_192000;
545 csfs = IEC958_AES3_CON_FS_192000;
546 break;
547 default:
548 dev_err(&pdev->dev, "unsupported sample rate %d\n", sample_rate);
549 return -EINVAL;
550 }
551
552 ret = fsl_spdif_probe_txclk(spdif_priv, index: rate);
553 if (ret)
554 return ret;
555
556 clk = spdif_priv->txclk_src[rate];
557 if (clk >= STC_TXCLK_SRC_MAX) {
558 dev_err(&pdev->dev, "tx clock source is out of range\n");
559 return -EINVAL;
560 }
561
562 txclk_df = spdif_priv->txclk_df[rate];
563 if (txclk_df == 0) {
564 dev_err(&pdev->dev, "the txclk_df can't be zero\n");
565 return -EINVAL;
566 }
567
568 sysclk_df = spdif_priv->sysclk_df[rate];
569
570 if (!fsl_spdif_can_set_clk_rate(spdif: spdif_priv, clk))
571 goto clk_set_bypass;
572
573 /* The S/PDIF block needs a clock of 64 * fs * txclk_df */
574 ret = clk_set_rate(clk: spdif_priv->txclk[clk],
575 rate: 64 * sample_rate * txclk_df);
576 if (ret) {
577 dev_err(&pdev->dev, "failed to set tx clock rate\n");
578 return ret;
579 }
580
581clk_set_bypass:
582 dev_dbg(&pdev->dev, "expected clock rate = %d\n",
583 (64 * sample_rate * txclk_df * sysclk_df));
584 dev_dbg(&pdev->dev, "actual clock rate = %ld\n",
585 clk_get_rate(spdif_priv->txclk[clk]));
586
587 /* set fs field in consumer channel status */
588 spdif_set_cstatus(ctrl, IEC958_AES3_CON_FS, cstatus: csfs);
589
590 /* select clock source and divisor */
591 stc = STC_TXCLK_ALL_EN | STC_TXCLK_SRC_SET(clk) |
592 STC_TXCLK_DF(txclk_df) | STC_SYSCLK_DF(sysclk_df);
593 mask = STC_TXCLK_ALL_EN_MASK | STC_TXCLK_SRC_MASK |
594 STC_TXCLK_DF_MASK | STC_SYSCLK_DF_MASK;
595 regmap_update_bits(map: regmap, REG_SPDIF_STC, mask, val: stc);
596
597 dev_dbg(&pdev->dev, "set sample rate to %dHz for %dHz playback\n",
598 spdif_priv->txrate[rate], sample_rate);
599
600 return 0;
601}
602
603static int fsl_spdif_startup(struct snd_pcm_substream *substream,
604 struct snd_soc_dai *cpu_dai)
605{
606 struct snd_soc_pcm_runtime *rtd = snd_soc_substream_to_rtd(substream);
607 struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(snd_soc_rtd_to_cpu(rtd, 0));
608 struct platform_device *pdev = spdif_priv->pdev;
609 struct regmap *regmap = spdif_priv->regmap;
610 u32 scr, mask;
611 int ret;
612
613 /* Reset module and interrupts only for first initialization */
614 if (!snd_soc_dai_active(dai: cpu_dai)) {
615 ret = spdif_softreset(spdif_priv);
616 if (ret) {
617 dev_err(&pdev->dev, "failed to soft reset\n");
618 return ret;
619 }
620
621 /* Disable all the interrupts */
622 regmap_update_bits(map: regmap, REG_SPDIF_SIE, mask: 0xffffff, val: 0);
623 }
624
625 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
626 scr = SCR_TXFIFO_AUTOSYNC | SCR_TXFIFO_CTRL_NORMAL |
627 SCR_TXSEL_NORMAL | SCR_USRC_SEL_CHIP |
628 SCR_TXFIFO_FSEL_IF8;
629 mask = SCR_TXFIFO_AUTOSYNC_MASK | SCR_TXFIFO_CTRL_MASK |
630 SCR_TXSEL_MASK | SCR_USRC_SEL_MASK |
631 SCR_TXFIFO_FSEL_MASK;
632 } else {
633 scr = SCR_RXFIFO_FSEL_IF8 | SCR_RXFIFO_AUTOSYNC;
634 mask = SCR_RXFIFO_FSEL_MASK | SCR_RXFIFO_AUTOSYNC_MASK|
635 SCR_RXFIFO_CTL_MASK | SCR_RXFIFO_OFF_MASK;
636 }
637 regmap_update_bits(map: regmap, REG_SPDIF_SCR, mask, val: scr);
638
639 /* Power up SPDIF module */
640 regmap_update_bits(map: regmap, REG_SPDIF_SCR, SCR_LOW_POWER, val: 0);
641
642 return 0;
643}
644
645static void fsl_spdif_shutdown(struct snd_pcm_substream *substream,
646 struct snd_soc_dai *cpu_dai)
647{
648 struct snd_soc_pcm_runtime *rtd = snd_soc_substream_to_rtd(substream);
649 struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(snd_soc_rtd_to_cpu(rtd, 0));
650 struct regmap *regmap = spdif_priv->regmap;
651 u32 scr, mask;
652
653 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
654 scr = 0;
655 mask = SCR_TXFIFO_AUTOSYNC_MASK | SCR_TXFIFO_CTRL_MASK |
656 SCR_TXSEL_MASK | SCR_USRC_SEL_MASK |
657 SCR_TXFIFO_FSEL_MASK;
658 /* Disable TX clock */
659 regmap_update_bits(map: regmap, REG_SPDIF_STC, STC_TXCLK_ALL_EN_MASK, val: 0);
660 } else {
661 scr = SCR_RXFIFO_OFF | SCR_RXFIFO_CTL_ZERO;
662 mask = SCR_RXFIFO_FSEL_MASK | SCR_RXFIFO_AUTOSYNC_MASK|
663 SCR_RXFIFO_CTL_MASK | SCR_RXFIFO_OFF_MASK;
664 }
665 regmap_update_bits(map: regmap, REG_SPDIF_SCR, mask, val: scr);
666
667 /* Power down SPDIF module only if tx&rx are both inactive */
668 if (!snd_soc_dai_active(dai: cpu_dai)) {
669 spdif_intr_status_clear(spdif_priv);
670 regmap_update_bits(map: regmap, REG_SPDIF_SCR,
671 SCR_LOW_POWER, SCR_LOW_POWER);
672 }
673}
674
675static int spdif_reparent_rootclk(struct fsl_spdif_priv *spdif_priv, unsigned int sample_rate)
676{
677 struct platform_device *pdev = spdif_priv->pdev;
678 struct clk *clk;
679 int ret;
680
681 /* Reparent clock if required condition is true */
682 if (!fsl_spdif_can_set_clk_rate(spdif: spdif_priv, STC_TXCLK_SPDIF_ROOT))
683 return 0;
684
685 /* Get root clock */
686 clk = spdif_priv->txclk[STC_TXCLK_SPDIF_ROOT];
687
688 /* Disable clock first, for it was enabled by pm_runtime */
689 clk_disable_unprepare(clk);
690 fsl_asoc_reparent_pll_clocks(dev: &pdev->dev, clk, pll8k_clk: spdif_priv->pll8k_clk,
691 pll11k_clk: spdif_priv->pll11k_clk, ratio: sample_rate);
692 ret = clk_prepare_enable(clk);
693 if (ret)
694 return ret;
695
696 return 0;
697}
698static int fsl_spdif_hw_params(struct snd_pcm_substream *substream,
699 struct snd_pcm_hw_params *params,
700 struct snd_soc_dai *dai)
701{
702 struct snd_soc_pcm_runtime *rtd = snd_soc_substream_to_rtd(substream);
703 struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(snd_soc_rtd_to_cpu(rtd, 0));
704 struct spdif_mixer_control *ctrl = &spdif_priv->fsl_spdif_control;
705 struct platform_device *pdev = spdif_priv->pdev;
706 u32 sample_rate = params_rate(p: params);
707 int ret = 0;
708
709 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
710 ret = spdif_reparent_rootclk(spdif_priv, sample_rate);
711 if (ret) {
712 dev_err(&pdev->dev, "%s: reparent root clk failed: %d\n",
713 __func__, sample_rate);
714 return ret;
715 }
716
717 ret = spdif_set_sample_rate(substream, sample_rate);
718 if (ret) {
719 dev_err(&pdev->dev, "%s: set sample rate failed: %d\n",
720 __func__, sample_rate);
721 return ret;
722 }
723 spdif_set_cstatus(ctrl, IEC958_AES3_CON_CLOCK,
724 IEC958_AES3_CON_CLOCK_1000PPM);
725 spdif_write_channel_status(spdif_priv);
726 } else {
727 /* Setup rx clock source */
728 ret = spdif_set_rx_clksrc(spdif_priv, SPDIF_DEFAULT_GAINSEL, dpll_locked: 1);
729 }
730
731 return ret;
732}
733
734static int fsl_spdif_trigger(struct snd_pcm_substream *substream,
735 int cmd, struct snd_soc_dai *dai)
736{
737 struct snd_soc_pcm_runtime *rtd = snd_soc_substream_to_rtd(substream);
738 struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(snd_soc_rtd_to_cpu(rtd, 0));
739 struct regmap *regmap = spdif_priv->regmap;
740 bool tx = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
741 u32 intr = SIE_INTR_FOR(tx);
742 u32 dmaen = SCR_DMA_xX_EN(tx);
743
744 switch (cmd) {
745 case SNDRV_PCM_TRIGGER_START:
746 case SNDRV_PCM_TRIGGER_RESUME:
747 case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
748 regmap_update_bits(map: regmap, REG_SPDIF_SIE, mask: intr, val: intr);
749 regmap_update_bits(map: regmap, REG_SPDIF_SCR, mask: dmaen, val: dmaen);
750 break;
751 case SNDRV_PCM_TRIGGER_STOP:
752 case SNDRV_PCM_TRIGGER_SUSPEND:
753 case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
754 regmap_update_bits(map: regmap, REG_SPDIF_SCR, mask: dmaen, val: 0);
755 regmap_update_bits(map: regmap, REG_SPDIF_SIE, mask: intr, val: 0);
756 regmap_write(map: regmap, REG_SPDIF_STL, val: 0x0);
757 regmap_write(map: regmap, REG_SPDIF_STR, val: 0x0);
758 break;
759 default:
760 return -EINVAL;
761 }
762
763 return 0;
764}
765
766/*
767 * FSL SPDIF IEC958 controller(mixer) functions
768 *
769 * Channel status get/put control
770 * User bit value get/put control
771 * Valid bit value get control
772 * DPLL lock status get control
773 * User bit sync mode selection control
774 */
775
776static int fsl_spdif_info(struct snd_kcontrol *kcontrol,
777 struct snd_ctl_elem_info *uinfo)
778{
779 uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
780 uinfo->count = 1;
781
782 return 0;
783}
784
785static int fsl_spdif_pb_get(struct snd_kcontrol *kcontrol,
786 struct snd_ctl_elem_value *uvalue)
787{
788 struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol);
789 struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(dai: cpu_dai);
790 struct spdif_mixer_control *ctrl = &spdif_priv->fsl_spdif_control;
791
792 uvalue->value.iec958.status[0] = ctrl->ch_status[0];
793 uvalue->value.iec958.status[1] = ctrl->ch_status[1];
794 uvalue->value.iec958.status[2] = ctrl->ch_status[2];
795 uvalue->value.iec958.status[3] = ctrl->ch_status[3];
796
797 return 0;
798}
799
800static int fsl_spdif_pb_put(struct snd_kcontrol *kcontrol,
801 struct snd_ctl_elem_value *uvalue)
802{
803 struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol);
804 struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(dai: cpu_dai);
805 struct spdif_mixer_control *ctrl = &spdif_priv->fsl_spdif_control;
806
807 ctrl->ch_status[0] = uvalue->value.iec958.status[0];
808 ctrl->ch_status[1] = uvalue->value.iec958.status[1];
809 ctrl->ch_status[2] = uvalue->value.iec958.status[2];
810 ctrl->ch_status[3] = uvalue->value.iec958.status[3];
811
812 spdif_write_channel_status(spdif_priv);
813
814 return 0;
815}
816
817/* Get channel status from SPDIF_RX_CCHAN register */
818static int fsl_spdif_capture_get(struct snd_kcontrol *kcontrol,
819 struct snd_ctl_elem_value *ucontrol)
820{
821 struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol);
822 struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(dai: cpu_dai);
823 struct regmap *regmap = spdif_priv->regmap;
824 u32 cstatus, val;
825
826 regmap_read(map: regmap, REG_SPDIF_SIS, val: &val);
827 if (!(val & INT_CNEW))
828 return -EAGAIN;
829
830 regmap_read(map: regmap, REG_SPDIF_SRCSH, val: &cstatus);
831 ucontrol->value.iec958.status[0] = (cstatus >> 16) & 0xFF;
832 ucontrol->value.iec958.status[1] = (cstatus >> 8) & 0xFF;
833 ucontrol->value.iec958.status[2] = cstatus & 0xFF;
834
835 regmap_read(map: regmap, REG_SPDIF_SRCSL, val: &cstatus);
836 ucontrol->value.iec958.status[3] = (cstatus >> 16) & 0xFF;
837 ucontrol->value.iec958.status[4] = (cstatus >> 8) & 0xFF;
838 ucontrol->value.iec958.status[5] = cstatus & 0xFF;
839
840 /* Clear intr */
841 regmap_write(map: regmap, REG_SPDIF_SIC, INT_CNEW);
842
843 return 0;
844}
845
846/*
847 * Get User bits (subcode) from chip value which readed out
848 * in UChannel register.
849 */
850static int fsl_spdif_subcode_get(struct snd_kcontrol *kcontrol,
851 struct snd_ctl_elem_value *ucontrol)
852{
853 struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol);
854 struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(dai: cpu_dai);
855 struct spdif_mixer_control *ctrl = &spdif_priv->fsl_spdif_control;
856 unsigned long flags;
857 int ret = -EAGAIN;
858
859 spin_lock_irqsave(&ctrl->ctl_lock, flags);
860 if (ctrl->ready_buf) {
861 int idx = (ctrl->ready_buf - 1) * SPDIF_UBITS_SIZE;
862 memcpy(&ucontrol->value.iec958.subcode[0],
863 &ctrl->subcode[idx], SPDIF_UBITS_SIZE);
864 ret = 0;
865 }
866 spin_unlock_irqrestore(lock: &ctrl->ctl_lock, flags);
867
868 return ret;
869}
870
871/* Q-subcode information. The byte size is SPDIF_UBITS_SIZE/8 */
872static int fsl_spdif_qinfo(struct snd_kcontrol *kcontrol,
873 struct snd_ctl_elem_info *uinfo)
874{
875 uinfo->type = SNDRV_CTL_ELEM_TYPE_BYTES;
876 uinfo->count = SPDIF_QSUB_SIZE;
877
878 return 0;
879}
880
881/* Get Q subcode from chip value which readed out in QChannel register */
882static int fsl_spdif_qget(struct snd_kcontrol *kcontrol,
883 struct snd_ctl_elem_value *ucontrol)
884{
885 struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol);
886 struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(dai: cpu_dai);
887 struct spdif_mixer_control *ctrl = &spdif_priv->fsl_spdif_control;
888 unsigned long flags;
889 int ret = -EAGAIN;
890
891 spin_lock_irqsave(&ctrl->ctl_lock, flags);
892 if (ctrl->ready_buf) {
893 int idx = (ctrl->ready_buf - 1) * SPDIF_QSUB_SIZE;
894 memcpy(&ucontrol->value.bytes.data[0],
895 &ctrl->qsub[idx], SPDIF_QSUB_SIZE);
896 ret = 0;
897 }
898 spin_unlock_irqrestore(lock: &ctrl->ctl_lock, flags);
899
900 return ret;
901}
902
903/* Get valid good bit from interrupt status register */
904static int fsl_spdif_rx_vbit_get(struct snd_kcontrol *kcontrol,
905 struct snd_ctl_elem_value *ucontrol)
906{
907 struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol);
908 struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(dai: cpu_dai);
909 struct regmap *regmap = spdif_priv->regmap;
910 u32 val;
911
912 regmap_read(map: regmap, REG_SPDIF_SIS, val: &val);
913 ucontrol->value.integer.value[0] = (val & INT_VAL_NOGOOD) != 0;
914 regmap_write(map: regmap, REG_SPDIF_SIC, INT_VAL_NOGOOD);
915
916 return 0;
917}
918
919static int fsl_spdif_tx_vbit_get(struct snd_kcontrol *kcontrol,
920 struct snd_ctl_elem_value *ucontrol)
921{
922 struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol);
923 struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(dai: cpu_dai);
924 struct regmap *regmap = spdif_priv->regmap;
925 u32 val;
926
927 regmap_read(map: regmap, REG_SPDIF_SCR, val: &val);
928 val = (val & SCR_VAL_MASK) >> SCR_VAL_OFFSET;
929 val = 1 - val;
930 ucontrol->value.integer.value[0] = val;
931
932 return 0;
933}
934
935static int fsl_spdif_tx_vbit_put(struct snd_kcontrol *kcontrol,
936 struct snd_ctl_elem_value *ucontrol)
937{
938 struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol);
939 struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(dai: cpu_dai);
940 struct regmap *regmap = spdif_priv->regmap;
941 u32 val = (1 - ucontrol->value.integer.value[0]) << SCR_VAL_OFFSET;
942
943 regmap_update_bits(map: regmap, REG_SPDIF_SCR, SCR_VAL_MASK, val);
944
945 return 0;
946}
947
948static int fsl_spdif_rx_rcm_get(struct snd_kcontrol *kcontrol,
949 struct snd_ctl_elem_value *ucontrol)
950{
951 struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol);
952 struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(dai: cpu_dai);
953 struct regmap *regmap = spdif_priv->regmap;
954 u32 val;
955
956 regmap_read(map: regmap, REG_SPDIF_SCR, val: &val);
957 val = (val & SCR_RAW_CAPTURE_MODE) ? 1 : 0;
958 ucontrol->value.integer.value[0] = val;
959
960 return 0;
961}
962
963static int fsl_spdif_rx_rcm_put(struct snd_kcontrol *kcontrol,
964 struct snd_ctl_elem_value *ucontrol)
965{
966 struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol);
967 struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(dai: cpu_dai);
968 struct regmap *regmap = spdif_priv->regmap;
969 u32 val = (ucontrol->value.integer.value[0] ? SCR_RAW_CAPTURE_MODE : 0);
970
971 if (val)
972 cpu_dai->driver->capture.formats |= SNDRV_PCM_FMTBIT_S32_LE;
973 else
974 cpu_dai->driver->capture.formats &= ~SNDRV_PCM_FMTBIT_S32_LE;
975
976 regmap_update_bits(map: regmap, REG_SPDIF_SCR, SCR_RAW_CAPTURE_MODE, val);
977
978 return 0;
979}
980
981static int fsl_spdif_bypass_get(struct snd_kcontrol *kcontrol,
982 struct snd_ctl_elem_value *ucontrol)
983{
984 struct snd_soc_dai *dai = snd_kcontrol_chip(kcontrol);
985 struct fsl_spdif_priv *priv = snd_soc_dai_get_drvdata(dai);
986
987 ucontrol->value.integer.value[0] = priv->bypass ? 1 : 0;
988
989 return 0;
990}
991
992static int fsl_spdif_bypass_put(struct snd_kcontrol *kcontrol,
993 struct snd_ctl_elem_value *ucontrol)
994{
995 struct snd_soc_dai *dai = snd_kcontrol_chip(kcontrol);
996 struct fsl_spdif_priv *priv = snd_soc_dai_get_drvdata(dai);
997 struct snd_soc_card *card = dai->component->card;
998 bool set = (ucontrol->value.integer.value[0] != 0);
999 struct regmap *regmap = priv->regmap;
1000 struct snd_soc_pcm_runtime *rtd;
1001 u32 scr, mask;
1002 int stream;
1003
1004 rtd = snd_soc_get_pcm_runtime(card, dai_link: card->dai_link);
1005
1006 if (priv->bypass == set)
1007 return 0; /* nothing to do */
1008
1009 if (snd_soc_dai_active(dai)) {
1010 dev_err(dai->dev, "Cannot change BYPASS mode while stream is running.\n");
1011 return -EBUSY;
1012 }
1013
1014 pm_runtime_get_sync(dev: dai->dev);
1015
1016 if (set) {
1017 /* Disable interrupts */
1018 regmap_update_bits(map: regmap, REG_SPDIF_SIE, mask: 0xffffff, val: 0);
1019
1020 /* Configure BYPASS mode */
1021 scr = SCR_TXSEL_RX | SCR_RXFIFO_OFF;
1022 mask = SCR_RXFIFO_FSEL_MASK | SCR_RXFIFO_AUTOSYNC_MASK |
1023 SCR_RXFIFO_CTL_MASK | SCR_RXFIFO_OFF_MASK | SCR_TXSEL_MASK;
1024 /* Power up SPDIF module */
1025 mask |= SCR_LOW_POWER;
1026 } else {
1027 /* Power down SPDIF module, disable TX */
1028 scr = SCR_LOW_POWER | SCR_TXSEL_OFF;
1029 mask = SCR_LOW_POWER | SCR_TXSEL_MASK;
1030 }
1031
1032 regmap_update_bits(map: regmap, REG_SPDIF_SCR, mask, val: scr);
1033
1034 /* Disable playback & capture if BYPASS mode is enabled, enable otherwise */
1035 for_each_pcm_streams(stream)
1036 rtd->pcm->streams[stream].substream_count = (set ? 0 : 1);
1037
1038 priv->bypass = set;
1039 pm_runtime_put_sync(dev: dai->dev);
1040
1041 return 0;
1042}
1043
1044/* DPLL lock information */
1045static int fsl_spdif_rxrate_info(struct snd_kcontrol *kcontrol,
1046 struct snd_ctl_elem_info *uinfo)
1047{
1048 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
1049 uinfo->count = 1;
1050 uinfo->value.integer.min = 16000;
1051 uinfo->value.integer.max = 192000;
1052
1053 return 0;
1054}
1055
1056static u32 gainsel_multi[GAINSEL_MULTI_MAX] = {
1057 24, 16, 12, 8, 6, 4, 3,
1058};
1059
1060/* Get RX data clock rate given the SPDIF bus_clk */
1061static int spdif_get_rxclk_rate(struct fsl_spdif_priv *spdif_priv,
1062 enum spdif_gainsel gainsel)
1063{
1064 struct regmap *regmap = spdif_priv->regmap;
1065 struct platform_device *pdev = spdif_priv->pdev;
1066 u64 tmpval64, busclk_freq = 0;
1067 u32 freqmeas, phaseconf;
1068 u8 clksrc;
1069
1070 regmap_read(map: regmap, REG_SPDIF_SRFM, val: &freqmeas);
1071 regmap_read(map: regmap, REG_SPDIF_SRPC, val: &phaseconf);
1072
1073 clksrc = (phaseconf >> SRPC_CLKSRC_SEL_OFFSET) & 0xf;
1074
1075 /* Get bus clock from system */
1076 if (srpc_dpll_locked[clksrc] && (phaseconf & SRPC_DPLL_LOCKED))
1077 busclk_freq = clk_get_rate(clk: spdif_priv->sysclk);
1078
1079 /* FreqMeas_CLK = (BUS_CLK * FreqMeas) / 2 ^ 10 / GAINSEL / 128 */
1080 tmpval64 = (u64) busclk_freq * freqmeas;
1081 do_div(tmpval64, gainsel_multi[gainsel] * 1024);
1082 do_div(tmpval64, 128 * 1024);
1083
1084 dev_dbg(&pdev->dev, "FreqMeas: %d\n", freqmeas);
1085 dev_dbg(&pdev->dev, "BusclkFreq: %lld\n", busclk_freq);
1086 dev_dbg(&pdev->dev, "RxRate: %lld\n", tmpval64);
1087
1088 return (int)tmpval64;
1089}
1090
1091/*
1092 * Get DPLL lock or not info from stable interrupt status register.
1093 * User application must use this control to get locked,
1094 * then can do next PCM operation
1095 */
1096static int fsl_spdif_rxrate_get(struct snd_kcontrol *kcontrol,
1097 struct snd_ctl_elem_value *ucontrol)
1098{
1099 struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol);
1100 struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(dai: cpu_dai);
1101 int rate = 0;
1102
1103 if (spdif_priv->dpll_locked)
1104 rate = spdif_get_rxclk_rate(spdif_priv, SPDIF_DEFAULT_GAINSEL);
1105
1106 ucontrol->value.integer.value[0] = rate;
1107
1108 return 0;
1109}
1110
1111/*
1112 * User bit sync mode:
1113 * 1 CD User channel subcode
1114 * 0 Non-CD data
1115 */
1116static int fsl_spdif_usync_get(struct snd_kcontrol *kcontrol,
1117 struct snd_ctl_elem_value *ucontrol)
1118{
1119 struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol);
1120 struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(dai: cpu_dai);
1121 struct regmap *regmap = spdif_priv->regmap;
1122 u32 val;
1123
1124 regmap_read(map: regmap, REG_SPDIF_SRCD, val: &val);
1125 ucontrol->value.integer.value[0] = (val & SRCD_CD_USER) != 0;
1126
1127 return 0;
1128}
1129
1130/*
1131 * User bit sync mode:
1132 * 1 CD User channel subcode
1133 * 0 Non-CD data
1134 */
1135static int fsl_spdif_usync_put(struct snd_kcontrol *kcontrol,
1136 struct snd_ctl_elem_value *ucontrol)
1137{
1138 struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol);
1139 struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(dai: cpu_dai);
1140 struct regmap *regmap = spdif_priv->regmap;
1141 u32 val = ucontrol->value.integer.value[0] << SRCD_CD_USER_OFFSET;
1142
1143 regmap_update_bits(map: regmap, REG_SPDIF_SRCD, SRCD_CD_USER, val);
1144
1145 return 0;
1146}
1147
1148/* FSL SPDIF IEC958 controller defines */
1149static struct snd_kcontrol_new fsl_spdif_ctrls[] = {
1150 /* Status cchanel controller */
1151 {
1152 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1153 .name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, DEFAULT),
1154 .access = SNDRV_CTL_ELEM_ACCESS_READ |
1155 SNDRV_CTL_ELEM_ACCESS_WRITE |
1156 SNDRV_CTL_ELEM_ACCESS_VOLATILE,
1157 .info = fsl_spdif_info,
1158 .get = fsl_spdif_pb_get,
1159 .put = fsl_spdif_pb_put,
1160 },
1161 {
1162 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
1163 .name = SNDRV_CTL_NAME_IEC958("", CAPTURE, DEFAULT),
1164 .access = SNDRV_CTL_ELEM_ACCESS_READ |
1165 SNDRV_CTL_ELEM_ACCESS_VOLATILE,
1166 .info = fsl_spdif_info,
1167 .get = fsl_spdif_capture_get,
1168 },
1169 /* User bits controller */
1170 {
1171 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
1172 .name = "IEC958 Subcode Capture Default",
1173 .access = SNDRV_CTL_ELEM_ACCESS_READ |
1174 SNDRV_CTL_ELEM_ACCESS_VOLATILE,
1175 .info = fsl_spdif_info,
1176 .get = fsl_spdif_subcode_get,
1177 },
1178 {
1179 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
1180 .name = "IEC958 Q-subcode Capture Default",
1181 .access = SNDRV_CTL_ELEM_ACCESS_READ |
1182 SNDRV_CTL_ELEM_ACCESS_VOLATILE,
1183 .info = fsl_spdif_qinfo,
1184 .get = fsl_spdif_qget,
1185 },
1186 /* Valid bit error controller */
1187 {
1188 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
1189 .name = "IEC958 RX V-Bit Errors",
1190 .access = SNDRV_CTL_ELEM_ACCESS_READ |
1191 SNDRV_CTL_ELEM_ACCESS_VOLATILE,
1192 .info = snd_ctl_boolean_mono_info,
1193 .get = fsl_spdif_rx_vbit_get,
1194 },
1195 {
1196 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
1197 .name = "IEC958 TX V-Bit",
1198 .access = SNDRV_CTL_ELEM_ACCESS_READ |
1199 SNDRV_CTL_ELEM_ACCESS_WRITE |
1200 SNDRV_CTL_ELEM_ACCESS_VOLATILE,
1201 .info = snd_ctl_boolean_mono_info,
1202 .get = fsl_spdif_tx_vbit_get,
1203 .put = fsl_spdif_tx_vbit_put,
1204 },
1205 /* DPLL lock info get controller */
1206 {
1207 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
1208 .name = RX_SAMPLE_RATE_KCONTROL,
1209 .access = SNDRV_CTL_ELEM_ACCESS_READ |
1210 SNDRV_CTL_ELEM_ACCESS_VOLATILE,
1211 .info = fsl_spdif_rxrate_info,
1212 .get = fsl_spdif_rxrate_get,
1213 },
1214 /* RX bypass controller */
1215 {
1216 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
1217 .name = "Bypass Mode",
1218 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
1219 .info = snd_ctl_boolean_mono_info,
1220 .get = fsl_spdif_bypass_get,
1221 .put = fsl_spdif_bypass_put,
1222 },
1223 /* User bit sync mode set/get controller */
1224 {
1225 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
1226 .name = "IEC958 USyncMode CDText",
1227 .access = SNDRV_CTL_ELEM_ACCESS_READ |
1228 SNDRV_CTL_ELEM_ACCESS_WRITE |
1229 SNDRV_CTL_ELEM_ACCESS_VOLATILE,
1230 .info = snd_ctl_boolean_mono_info,
1231 .get = fsl_spdif_usync_get,
1232 .put = fsl_spdif_usync_put,
1233 },
1234};
1235
1236static struct snd_kcontrol_new fsl_spdif_ctrls_rcm[] = {
1237 {
1238 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
1239 .name = "IEC958 Raw Capture Mode",
1240 .access = SNDRV_CTL_ELEM_ACCESS_READ |
1241 SNDRV_CTL_ELEM_ACCESS_WRITE |
1242 SNDRV_CTL_ELEM_ACCESS_VOLATILE,
1243 .info = snd_ctl_boolean_mono_info,
1244 .get = fsl_spdif_rx_rcm_get,
1245 .put = fsl_spdif_rx_rcm_put,
1246 },
1247};
1248
1249static int fsl_spdif_dai_probe(struct snd_soc_dai *dai)
1250{
1251 struct fsl_spdif_priv *spdif_private = snd_soc_dai_get_drvdata(dai);
1252
1253 snd_soc_dai_init_dma_data(dai, playback: &spdif_private->dma_params_tx,
1254 capture: &spdif_private->dma_params_rx);
1255
1256 snd_soc_add_dai_controls(dai, controls: fsl_spdif_ctrls, ARRAY_SIZE(fsl_spdif_ctrls));
1257
1258 if (spdif_private->soc->raw_capture_mode)
1259 snd_soc_add_dai_controls(dai, controls: fsl_spdif_ctrls_rcm,
1260 ARRAY_SIZE(fsl_spdif_ctrls_rcm));
1261
1262 spdif_private->snd_card = dai->component->card->snd_card;
1263 spdif_private->rxrate_kcontrol = snd_soc_card_get_kcontrol(soc_card: dai->component->card,
1264 RX_SAMPLE_RATE_KCONTROL);
1265 if (!spdif_private->rxrate_kcontrol)
1266 dev_err(&spdif_private->pdev->dev, "failed to get %s kcontrol\n",
1267 RX_SAMPLE_RATE_KCONTROL);
1268
1269 /*Clear the val bit for Tx*/
1270 regmap_update_bits(map: spdif_private->regmap, REG_SPDIF_SCR,
1271 SCR_VAL_MASK, SCR_VAL_CLEAR);
1272
1273 return 0;
1274}
1275
1276static const struct snd_soc_dai_ops fsl_spdif_dai_ops = {
1277 .probe = fsl_spdif_dai_probe,
1278 .startup = fsl_spdif_startup,
1279 .hw_params = fsl_spdif_hw_params,
1280 .trigger = fsl_spdif_trigger,
1281 .shutdown = fsl_spdif_shutdown,
1282};
1283
1284static struct snd_soc_dai_driver fsl_spdif_dai = {
1285 .playback = {
1286 .stream_name = "CPU-Playback",
1287 .channels_min = 2,
1288 .channels_max = 2,
1289 .rates = FSL_SPDIF_RATES_PLAYBACK,
1290 .formats = FSL_SPDIF_FORMATS_PLAYBACK,
1291 },
1292 .capture = {
1293 .stream_name = "CPU-Capture",
1294 .channels_min = 2,
1295 .channels_max = 2,
1296 .rates = FSL_SPDIF_RATES_CAPTURE,
1297 .formats = FSL_SPDIF_FORMATS_CAPTURE,
1298 },
1299 .ops = &fsl_spdif_dai_ops,
1300};
1301
1302static const struct snd_soc_component_driver fsl_spdif_component = {
1303 .name = "fsl-spdif",
1304 .legacy_dai_naming = 1,
1305};
1306
1307/* FSL SPDIF REGMAP */
1308static const struct reg_default fsl_spdif_reg_defaults[] = {
1309 {REG_SPDIF_SCR, 0x00000400},
1310 {REG_SPDIF_SRCD, 0x00000000},
1311 {REG_SPDIF_SIE, 0x00000000},
1312 {REG_SPDIF_STL, 0x00000000},
1313 {REG_SPDIF_STR, 0x00000000},
1314 {REG_SPDIF_STCSCH, 0x00000000},
1315 {REG_SPDIF_STCSCL, 0x00000000},
1316 {REG_SPDIF_STCSPH, 0x00000000},
1317 {REG_SPDIF_STCSPL, 0x00000000},
1318 {REG_SPDIF_STC, 0x00020f00},
1319};
1320
1321static bool fsl_spdif_readable_reg(struct device *dev, unsigned int reg)
1322{
1323 switch (reg) {
1324 case REG_SPDIF_SCR:
1325 case REG_SPDIF_SRCD:
1326 case REG_SPDIF_SRPC:
1327 case REG_SPDIF_SIE:
1328 case REG_SPDIF_SIS:
1329 case REG_SPDIF_SRL:
1330 case REG_SPDIF_SRR:
1331 case REG_SPDIF_SRCSH:
1332 case REG_SPDIF_SRCSL:
1333 case REG_SPDIF_SRU:
1334 case REG_SPDIF_SRQ:
1335 case REG_SPDIF_STCSCH:
1336 case REG_SPDIF_STCSCL:
1337 case REG_SPDIF_STCSPH:
1338 case REG_SPDIF_STCSPL:
1339 case REG_SPDIF_SRFM:
1340 case REG_SPDIF_STC:
1341 case REG_SPDIF_SRCCA_31_0:
1342 case REG_SPDIF_SRCCA_63_32:
1343 case REG_SPDIF_SRCCA_95_64:
1344 case REG_SPDIF_SRCCA_127_96:
1345 case REG_SPDIF_SRCCA_159_128:
1346 case REG_SPDIF_SRCCA_191_160:
1347 case REG_SPDIF_STCCA_31_0:
1348 case REG_SPDIF_STCCA_63_32:
1349 case REG_SPDIF_STCCA_95_64:
1350 case REG_SPDIF_STCCA_127_96:
1351 case REG_SPDIF_STCCA_159_128:
1352 case REG_SPDIF_STCCA_191_160:
1353 return true;
1354 default:
1355 return false;
1356 }
1357}
1358
1359static bool fsl_spdif_volatile_reg(struct device *dev, unsigned int reg)
1360{
1361 switch (reg) {
1362 case REG_SPDIF_SRPC:
1363 case REG_SPDIF_SIS:
1364 case REG_SPDIF_SRL:
1365 case REG_SPDIF_SRR:
1366 case REG_SPDIF_SRCSH:
1367 case REG_SPDIF_SRCSL:
1368 case REG_SPDIF_SRU:
1369 case REG_SPDIF_SRQ:
1370 case REG_SPDIF_SRFM:
1371 case REG_SPDIF_SRCCA_31_0:
1372 case REG_SPDIF_SRCCA_63_32:
1373 case REG_SPDIF_SRCCA_95_64:
1374 case REG_SPDIF_SRCCA_127_96:
1375 case REG_SPDIF_SRCCA_159_128:
1376 case REG_SPDIF_SRCCA_191_160:
1377 return true;
1378 default:
1379 return false;
1380 }
1381}
1382
1383static bool fsl_spdif_writeable_reg(struct device *dev, unsigned int reg)
1384{
1385 switch (reg) {
1386 case REG_SPDIF_SCR:
1387 case REG_SPDIF_SRCD:
1388 case REG_SPDIF_SRPC:
1389 case REG_SPDIF_SIE:
1390 case REG_SPDIF_SIC:
1391 case REG_SPDIF_STL:
1392 case REG_SPDIF_STR:
1393 case REG_SPDIF_STCSCH:
1394 case REG_SPDIF_STCSCL:
1395 case REG_SPDIF_STCSPH:
1396 case REG_SPDIF_STCSPL:
1397 case REG_SPDIF_STC:
1398 case REG_SPDIF_STCCA_31_0:
1399 case REG_SPDIF_STCCA_63_32:
1400 case REG_SPDIF_STCCA_95_64:
1401 case REG_SPDIF_STCCA_127_96:
1402 case REG_SPDIF_STCCA_159_128:
1403 case REG_SPDIF_STCCA_191_160:
1404 return true;
1405 default:
1406 return false;
1407 }
1408}
1409
1410static const struct regmap_config fsl_spdif_regmap_config = {
1411 .reg_bits = 32,
1412 .reg_stride = 4,
1413 .val_bits = 32,
1414
1415 .max_register = REG_SPDIF_STCCA_191_160,
1416 .reg_defaults = fsl_spdif_reg_defaults,
1417 .num_reg_defaults = ARRAY_SIZE(fsl_spdif_reg_defaults),
1418 .readable_reg = fsl_spdif_readable_reg,
1419 .volatile_reg = fsl_spdif_volatile_reg,
1420 .writeable_reg = fsl_spdif_writeable_reg,
1421 .cache_type = REGCACHE_FLAT,
1422};
1423
1424static u32 fsl_spdif_txclk_caldiv(struct fsl_spdif_priv *spdif_priv,
1425 struct clk *clk, u64 savesub,
1426 enum spdif_txrate index, bool round)
1427{
1428 static const u32 rate[] = { 22050, 32000, 44100, 48000, 88200, 96000, 176400,
1429 192000, };
1430 bool is_sysclk = clk_is_match(p: clk, q: spdif_priv->sysclk);
1431 u64 rate_ideal, rate_actual, sub;
1432 u32 arate;
1433 u16 sysclk_dfmin, sysclk_dfmax, sysclk_df;
1434 u8 txclk_df;
1435
1436 /* The sysclk has an extra divisor [2, 512] */
1437 sysclk_dfmin = is_sysclk ? 2 : 1;
1438 sysclk_dfmax = is_sysclk ? 512 : 1;
1439
1440 for (sysclk_df = sysclk_dfmin; sysclk_df <= sysclk_dfmax; sysclk_df++) {
1441 for (txclk_df = 1; txclk_df <= 128; txclk_df++) {
1442 rate_ideal = rate[index] * txclk_df * 64ULL;
1443 if (round)
1444 rate_actual = clk_round_rate(clk, rate: rate_ideal);
1445 else
1446 rate_actual = clk_get_rate(clk);
1447
1448 arate = rate_actual / 64;
1449 arate /= txclk_df * sysclk_df;
1450
1451 if (arate == rate[index]) {
1452 /* We are lucky */
1453 savesub = 0;
1454 spdif_priv->txclk_df[index] = txclk_df;
1455 spdif_priv->sysclk_df[index] = sysclk_df;
1456 spdif_priv->txrate[index] = arate;
1457 goto out;
1458 } else if (arate / rate[index] == 1) {
1459 /* A little bigger than expect */
1460 sub = (u64)(arate - rate[index]) * 100000;
1461 do_div(sub, rate[index]);
1462 if (sub >= savesub)
1463 continue;
1464 savesub = sub;
1465 spdif_priv->txclk_df[index] = txclk_df;
1466 spdif_priv->sysclk_df[index] = sysclk_df;
1467 spdif_priv->txrate[index] = arate;
1468 } else if (rate[index] / arate == 1) {
1469 /* A little smaller than expect */
1470 sub = (u64)(rate[index] - arate) * 100000;
1471 do_div(sub, rate[index]);
1472 if (sub >= savesub)
1473 continue;
1474 savesub = sub;
1475 spdif_priv->txclk_df[index] = txclk_df;
1476 spdif_priv->sysclk_df[index] = sysclk_df;
1477 spdif_priv->txrate[index] = arate;
1478 }
1479 }
1480 }
1481
1482out:
1483 return savesub;
1484}
1485
1486static int fsl_spdif_probe_txclk(struct fsl_spdif_priv *spdif_priv,
1487 enum spdif_txrate index)
1488{
1489 static const u32 rate[] = { 22050, 32000, 44100, 48000, 88200, 96000, 176400,
1490 192000, };
1491 struct platform_device *pdev = spdif_priv->pdev;
1492 struct device *dev = &pdev->dev;
1493 u64 savesub = 100000, ret;
1494 struct clk *clk;
1495 int i;
1496
1497 for (i = 0; i < STC_TXCLK_SRC_MAX; i++) {
1498 clk = spdif_priv->txclk[i];
1499 if (IS_ERR(ptr: clk)) {
1500 dev_err(dev, "no rxtx%d clock in devicetree\n", i);
1501 return PTR_ERR(ptr: clk);
1502 }
1503 if (!clk_get_rate(clk))
1504 continue;
1505
1506 ret = fsl_spdif_txclk_caldiv(spdif_priv, clk, savesub, index,
1507 round: fsl_spdif_can_set_clk_rate(spdif: spdif_priv, clk: i));
1508 if (savesub == ret)
1509 continue;
1510
1511 savesub = ret;
1512 spdif_priv->txclk_src[index] = i;
1513
1514 /* To quick catch a divisor, we allow a 0.1% deviation */
1515 if (savesub < 100)
1516 break;
1517 }
1518
1519 dev_dbg(dev, "use rxtx%d as tx clock source for %dHz sample rate\n",
1520 spdif_priv->txclk_src[index], rate[index]);
1521 dev_dbg(dev, "use txclk df %d for %dHz sample rate\n",
1522 spdif_priv->txclk_df[index], rate[index]);
1523 if (clk_is_match(p: spdif_priv->txclk[spdif_priv->txclk_src[index]], q: spdif_priv->sysclk))
1524 dev_dbg(dev, "use sysclk df %d for %dHz sample rate\n",
1525 spdif_priv->sysclk_df[index], rate[index]);
1526 dev_dbg(dev, "the best rate for %dHz sample rate is %dHz\n",
1527 rate[index], spdif_priv->txrate[index]);
1528
1529 return 0;
1530}
1531
1532static int fsl_spdif_probe(struct platform_device *pdev)
1533{
1534 struct fsl_spdif_priv *spdif_priv;
1535 struct spdif_mixer_control *ctrl;
1536 struct resource *res;
1537 void __iomem *regs;
1538 int irq, ret, i;
1539 char tmp[16];
1540
1541 spdif_priv = devm_kzalloc(dev: &pdev->dev, size: sizeof(*spdif_priv), GFP_KERNEL);
1542 if (!spdif_priv)
1543 return -ENOMEM;
1544
1545 spdif_priv->pdev = pdev;
1546
1547 spdif_priv->soc = of_device_get_match_data(dev: &pdev->dev);
1548
1549 /* Initialize this copy of the CPU DAI driver structure */
1550 memcpy(&spdif_priv->cpu_dai_drv, &fsl_spdif_dai, sizeof(fsl_spdif_dai));
1551 spdif_priv->cpu_dai_drv.name = dev_name(dev: &pdev->dev);
1552 spdif_priv->cpu_dai_drv.playback.formats =
1553 spdif_priv->soc->tx_formats;
1554
1555 /* Get the addresses and IRQ */
1556 regs = devm_platform_get_and_ioremap_resource(pdev, index: 0, res: &res);
1557 if (IS_ERR(ptr: regs))
1558 return PTR_ERR(ptr: regs);
1559
1560 spdif_priv->regmap = devm_regmap_init_mmio(&pdev->dev, regs, &fsl_spdif_regmap_config);
1561 if (IS_ERR(ptr: spdif_priv->regmap)) {
1562 dev_err(&pdev->dev, "regmap init failed\n");
1563 return PTR_ERR(ptr: spdif_priv->regmap);
1564 }
1565
1566 for (i = 0; i < spdif_priv->soc->interrupts; i++) {
1567 irq = platform_get_irq(pdev, i);
1568 if (irq < 0)
1569 return irq;
1570
1571 ret = devm_request_irq(dev: &pdev->dev, irq, handler: spdif_isr, irqflags: 0,
1572 devname: dev_name(dev: &pdev->dev), dev_id: spdif_priv);
1573 if (ret) {
1574 dev_err(&pdev->dev, "could not claim irq %u\n", irq);
1575 return ret;
1576 }
1577 }
1578
1579 for (i = 0; i < STC_TXCLK_SRC_MAX; i++) {
1580 sprintf(buf: tmp, fmt: "rxtx%d", i);
1581 spdif_priv->txclk[i] = devm_clk_get(dev: &pdev->dev, id: tmp);
1582 if (IS_ERR(ptr: spdif_priv->txclk[i])) {
1583 dev_err(&pdev->dev, "no rxtx%d clock in devicetree\n", i);
1584 return PTR_ERR(ptr: spdif_priv->txclk[i]);
1585 }
1586 }
1587
1588 /* Get system clock for rx clock rate calculation */
1589 spdif_priv->sysclk = spdif_priv->txclk[5];
1590 if (IS_ERR(ptr: spdif_priv->sysclk)) {
1591 dev_err(&pdev->dev, "no sys clock (rxtx5) in devicetree\n");
1592 return PTR_ERR(ptr: spdif_priv->sysclk);
1593 }
1594
1595 /* Get core clock for data register access via DMA */
1596 spdif_priv->coreclk = devm_clk_get(dev: &pdev->dev, id: "core");
1597 if (IS_ERR(ptr: spdif_priv->coreclk)) {
1598 dev_err(&pdev->dev, "no core clock in devicetree\n");
1599 return PTR_ERR(ptr: spdif_priv->coreclk);
1600 }
1601
1602 spdif_priv->spbaclk = devm_clk_get(dev: &pdev->dev, id: "spba");
1603 if (IS_ERR(ptr: spdif_priv->spbaclk))
1604 dev_warn(&pdev->dev, "no spba clock in devicetree\n");
1605
1606 /* Select clock source for rx/tx clock */
1607 spdif_priv->rxclk = spdif_priv->txclk[1];
1608 if (IS_ERR(ptr: spdif_priv->rxclk)) {
1609 dev_err(&pdev->dev, "no rxtx1 clock in devicetree\n");
1610 return PTR_ERR(ptr: spdif_priv->rxclk);
1611 }
1612 spdif_priv->rxclk_src = DEFAULT_RXCLK_SRC;
1613
1614 fsl_asoc_get_pll_clocks(dev: &pdev->dev, pll8k_clk: &spdif_priv->pll8k_clk,
1615 pll11k_clk: &spdif_priv->pll11k_clk);
1616
1617 /* Initial spinlock for control data */
1618 ctrl = &spdif_priv->fsl_spdif_control;
1619 spin_lock_init(&ctrl->ctl_lock);
1620
1621 /* Init tx channel status default value */
1622 ctrl->ch_status[0] = IEC958_AES0_CON_NOT_COPYRIGHT |
1623 IEC958_AES0_CON_EMPHASIS_5015;
1624 ctrl->ch_status[1] = IEC958_AES1_CON_DIGDIGCONV_ID;
1625 ctrl->ch_status[2] = 0x00;
1626 ctrl->ch_status[3] = IEC958_AES3_CON_FS_44100 |
1627 IEC958_AES3_CON_CLOCK_1000PPM;
1628
1629 spdif_priv->dpll_locked = false;
1630
1631 spdif_priv->dma_params_tx.maxburst = spdif_priv->soc->tx_burst;
1632 spdif_priv->dma_params_rx.maxburst = spdif_priv->soc->rx_burst;
1633 spdif_priv->dma_params_tx.addr = res->start + REG_SPDIF_STL;
1634 spdif_priv->dma_params_rx.addr = res->start + REG_SPDIF_SRL;
1635
1636 /* Register with ASoC */
1637 dev_set_drvdata(dev: &pdev->dev, data: spdif_priv);
1638 pm_runtime_enable(dev: &pdev->dev);
1639 regcache_cache_only(map: spdif_priv->regmap, enable: true);
1640
1641 /*
1642 * Register platform component before registering cpu dai for there
1643 * is not defer probe for platform component in snd_soc_add_pcm_runtime().
1644 */
1645 ret = imx_pcm_dma_init(pdev);
1646 if (ret) {
1647 dev_err_probe(dev: &pdev->dev, err: ret, fmt: "imx_pcm_dma_init failed\n");
1648 goto err_pm_disable;
1649 }
1650
1651 ret = devm_snd_soc_register_component(dev: &pdev->dev, component_driver: &fsl_spdif_component,
1652 dai_drv: &spdif_priv->cpu_dai_drv, num_dai: 1);
1653 if (ret) {
1654 dev_err(&pdev->dev, "failed to register DAI: %d\n", ret);
1655 goto err_pm_disable;
1656 }
1657
1658 return ret;
1659
1660err_pm_disable:
1661 pm_runtime_disable(dev: &pdev->dev);
1662 return ret;
1663}
1664
1665static void fsl_spdif_remove(struct platform_device *pdev)
1666{
1667 pm_runtime_disable(dev: &pdev->dev);
1668}
1669
1670#ifdef CONFIG_PM
1671static int fsl_spdif_runtime_suspend(struct device *dev)
1672{
1673 struct fsl_spdif_priv *spdif_priv = dev_get_drvdata(dev);
1674 int i;
1675
1676 /* Disable all the interrupts */
1677 regmap_update_bits(map: spdif_priv->regmap, REG_SPDIF_SIE, mask: 0xffffff, val: 0);
1678
1679 regmap_read(map: spdif_priv->regmap, REG_SPDIF_SRPC,
1680 val: &spdif_priv->regcache_srpc);
1681 regcache_cache_only(map: spdif_priv->regmap, enable: true);
1682
1683 for (i = 0; i < STC_TXCLK_SRC_MAX; i++)
1684 clk_disable_unprepare(clk: spdif_priv->txclk[i]);
1685
1686 if (!IS_ERR(ptr: spdif_priv->spbaclk))
1687 clk_disable_unprepare(clk: spdif_priv->spbaclk);
1688 clk_disable_unprepare(clk: spdif_priv->coreclk);
1689
1690 return 0;
1691}
1692
1693static int fsl_spdif_runtime_resume(struct device *dev)
1694{
1695 struct fsl_spdif_priv *spdif_priv = dev_get_drvdata(dev);
1696 int ret;
1697 int i;
1698
1699 ret = clk_prepare_enable(clk: spdif_priv->coreclk);
1700 if (ret) {
1701 dev_err(dev, "failed to enable core clock\n");
1702 return ret;
1703 }
1704
1705 if (!IS_ERR(ptr: spdif_priv->spbaclk)) {
1706 ret = clk_prepare_enable(clk: spdif_priv->spbaclk);
1707 if (ret) {
1708 dev_err(dev, "failed to enable spba clock\n");
1709 goto disable_core_clk;
1710 }
1711 }
1712
1713 for (i = 0; i < STC_TXCLK_SRC_MAX; i++) {
1714 ret = clk_prepare_enable(clk: spdif_priv->txclk[i]);
1715 if (ret)
1716 goto disable_tx_clk;
1717 }
1718
1719 regcache_cache_only(map: spdif_priv->regmap, enable: false);
1720 regcache_mark_dirty(map: spdif_priv->regmap);
1721
1722 regmap_update_bits(map: spdif_priv->regmap, REG_SPDIF_SRPC,
1723 SRPC_CLKSRC_SEL_MASK | SRPC_GAINSEL_MASK,
1724 val: spdif_priv->regcache_srpc);
1725
1726 ret = regcache_sync(map: spdif_priv->regmap);
1727 if (ret)
1728 goto disable_tx_clk;
1729
1730 return 0;
1731
1732disable_tx_clk:
1733 for (i--; i >= 0; i--)
1734 clk_disable_unprepare(clk: spdif_priv->txclk[i]);
1735 if (!IS_ERR(ptr: spdif_priv->spbaclk))
1736 clk_disable_unprepare(clk: spdif_priv->spbaclk);
1737disable_core_clk:
1738 clk_disable_unprepare(clk: spdif_priv->coreclk);
1739
1740 return ret;
1741}
1742#endif /* CONFIG_PM */
1743
1744static const struct dev_pm_ops fsl_spdif_pm = {
1745 SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
1746 pm_runtime_force_resume)
1747 SET_RUNTIME_PM_OPS(fsl_spdif_runtime_suspend, fsl_spdif_runtime_resume,
1748 NULL)
1749};
1750
1751static const struct of_device_id fsl_spdif_dt_ids[] = {
1752 { .compatible = "fsl,imx35-spdif", .data = &fsl_spdif_imx35, },
1753 { .compatible = "fsl,vf610-spdif", .data = &fsl_spdif_vf610, },
1754 { .compatible = "fsl,imx6sx-spdif", .data = &fsl_spdif_imx6sx, },
1755 { .compatible = "fsl,imx8qm-spdif", .data = &fsl_spdif_imx8qm, },
1756 { .compatible = "fsl,imx8mm-spdif", .data = &fsl_spdif_imx8mm, },
1757 { .compatible = "fsl,imx8ulp-spdif", .data = &fsl_spdif_imx8ulp, },
1758 {}
1759};
1760MODULE_DEVICE_TABLE(of, fsl_spdif_dt_ids);
1761
1762static struct platform_driver fsl_spdif_driver = {
1763 .driver = {
1764 .name = "fsl-spdif-dai",
1765 .of_match_table = fsl_spdif_dt_ids,
1766 .pm = &fsl_spdif_pm,
1767 },
1768 .probe = fsl_spdif_probe,
1769 .remove_new = fsl_spdif_remove,
1770};
1771
1772module_platform_driver(fsl_spdif_driver);
1773
1774MODULE_AUTHOR("Freescale Semiconductor, Inc.");
1775MODULE_DESCRIPTION("Freescale S/PDIF CPU DAI Driver");
1776MODULE_LICENSE("GPL v2");
1777MODULE_ALIAS("platform:fsl-spdif-dai");
1778

source code of linux/sound/soc/fsl/fsl_spdif.c