1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * intel_pt.c: Intel Processor Trace support
4 * Copyright (c) 2013-2015, Intel Corporation.
5 */
6
7#include <inttypes.h>
8#include <linux/perf_event.h>
9#include <stdio.h>
10#include <stdbool.h>
11#include <errno.h>
12#include <linux/kernel.h>
13#include <linux/string.h>
14#include <linux/types.h>
15#include <linux/zalloc.h>
16
17#include "session.h"
18#include "machine.h"
19#include "memswap.h"
20#include "sort.h"
21#include "tool.h"
22#include "event.h"
23#include "evlist.h"
24#include "evsel.h"
25#include "map.h"
26#include "color.h"
27#include "thread.h"
28#include "thread-stack.h"
29#include "symbol.h"
30#include "callchain.h"
31#include "dso.h"
32#include "debug.h"
33#include "auxtrace.h"
34#include "tsc.h"
35#include "intel-pt.h"
36#include "config.h"
37#include "util/perf_api_probe.h"
38#include "util/synthetic-events.h"
39#include "time-utils.h"
40
41#include "../arch/x86/include/uapi/asm/perf_regs.h"
42
43#include "intel-pt-decoder/intel-pt-log.h"
44#include "intel-pt-decoder/intel-pt-decoder.h"
45#include "intel-pt-decoder/intel-pt-insn-decoder.h"
46#include "intel-pt-decoder/intel-pt-pkt-decoder.h"
47
48#define MAX_TIMESTAMP (~0ULL)
49
50#define INTEL_PT_CFG_PASS_THRU BIT_ULL(0)
51#define INTEL_PT_CFG_PWR_EVT_EN BIT_ULL(4)
52#define INTEL_PT_CFG_BRANCH_EN BIT_ULL(13)
53#define INTEL_PT_CFG_EVT_EN BIT_ULL(31)
54#define INTEL_PT_CFG_TNT_DIS BIT_ULL(55)
55
56struct range {
57 u64 start;
58 u64 end;
59};
60
61struct intel_pt {
62 struct auxtrace auxtrace;
63 struct auxtrace_queues queues;
64 struct auxtrace_heap heap;
65 u32 auxtrace_type;
66 struct perf_session *session;
67 struct machine *machine;
68 struct evsel *switch_evsel;
69 struct thread *unknown_thread;
70 bool timeless_decoding;
71 bool sampling_mode;
72 bool snapshot_mode;
73 bool per_cpu_mmaps;
74 bool have_tsc;
75 bool data_queued;
76 bool est_tsc;
77 bool sync_switch;
78 bool sync_switch_not_supported;
79 bool mispred_all;
80 bool use_thread_stack;
81 bool callstack;
82 bool cap_event_trace;
83 bool have_guest_sideband;
84 unsigned int br_stack_sz;
85 unsigned int br_stack_sz_plus;
86 int have_sched_switch;
87 u32 pmu_type;
88 u64 kernel_start;
89 u64 switch_ip;
90 u64 ptss_ip;
91 u64 first_timestamp;
92
93 struct perf_tsc_conversion tc;
94 bool cap_user_time_zero;
95
96 struct itrace_synth_opts synth_opts;
97
98 bool sample_instructions;
99 u64 instructions_sample_type;
100 u64 instructions_id;
101
102 bool sample_cycles;
103 u64 cycles_sample_type;
104 u64 cycles_id;
105
106 bool sample_branches;
107 u32 branches_filter;
108 u64 branches_sample_type;
109 u64 branches_id;
110
111 bool sample_transactions;
112 u64 transactions_sample_type;
113 u64 transactions_id;
114
115 bool sample_ptwrites;
116 u64 ptwrites_sample_type;
117 u64 ptwrites_id;
118
119 bool sample_pwr_events;
120 u64 pwr_events_sample_type;
121 u64 mwait_id;
122 u64 pwre_id;
123 u64 exstop_id;
124 u64 pwrx_id;
125 u64 cbr_id;
126 u64 psb_id;
127
128 bool single_pebs;
129 bool sample_pebs;
130 struct evsel *pebs_evsel;
131
132 u64 evt_sample_type;
133 u64 evt_id;
134
135 u64 iflag_chg_sample_type;
136 u64 iflag_chg_id;
137
138 u64 tsc_bit;
139 u64 mtc_bit;
140 u64 mtc_freq_bits;
141 u32 tsc_ctc_ratio_n;
142 u32 tsc_ctc_ratio_d;
143 u64 cyc_bit;
144 u64 noretcomp_bit;
145 unsigned max_non_turbo_ratio;
146 unsigned cbr2khz;
147 int max_loops;
148
149 unsigned long num_events;
150
151 char *filter;
152 struct addr_filters filts;
153
154 struct range *time_ranges;
155 unsigned int range_cnt;
156
157 struct ip_callchain *chain;
158 struct branch_stack *br_stack;
159
160 u64 dflt_tsc_offset;
161 struct rb_root vmcs_info;
162};
163
164enum switch_state {
165 INTEL_PT_SS_NOT_TRACING,
166 INTEL_PT_SS_UNKNOWN,
167 INTEL_PT_SS_TRACING,
168 INTEL_PT_SS_EXPECTING_SWITCH_EVENT,
169 INTEL_PT_SS_EXPECTING_SWITCH_IP,
170};
171
172/* applicable_counters is 64-bits */
173#define INTEL_PT_MAX_PEBS 64
174
175struct intel_pt_pebs_event {
176 struct evsel *evsel;
177 u64 id;
178};
179
180struct intel_pt_queue {
181 struct intel_pt *pt;
182 unsigned int queue_nr;
183 struct auxtrace_buffer *buffer;
184 struct auxtrace_buffer *old_buffer;
185 void *decoder;
186 const struct intel_pt_state *state;
187 struct ip_callchain *chain;
188 struct branch_stack *last_branch;
189 union perf_event *event_buf;
190 bool on_heap;
191 bool stop;
192 bool step_through_buffers;
193 bool use_buffer_pid_tid;
194 bool sync_switch;
195 bool sample_ipc;
196 pid_t pid, tid;
197 int cpu;
198 int switch_state;
199 pid_t next_tid;
200 struct thread *thread;
201 struct machine *guest_machine;
202 struct thread *guest_thread;
203 struct thread *unknown_guest_thread;
204 pid_t guest_machine_pid;
205 pid_t guest_pid;
206 pid_t guest_tid;
207 int vcpu;
208 bool exclude_kernel;
209 bool have_sample;
210 u64 time;
211 u64 timestamp;
212 u64 sel_timestamp;
213 bool sel_start;
214 unsigned int sel_idx;
215 u32 flags;
216 u16 insn_len;
217 u64 last_insn_cnt;
218 u64 ipc_insn_cnt;
219 u64 ipc_cyc_cnt;
220 u64 last_in_insn_cnt;
221 u64 last_in_cyc_cnt;
222 u64 last_cy_insn_cnt;
223 u64 last_cy_cyc_cnt;
224 u64 last_br_insn_cnt;
225 u64 last_br_cyc_cnt;
226 unsigned int cbr_seen;
227 char insn[INTEL_PT_INSN_BUF_SZ];
228 struct intel_pt_pebs_event pebs[INTEL_PT_MAX_PEBS];
229};
230
231static void intel_pt_dump(struct intel_pt *pt __maybe_unused,
232 unsigned char *buf, size_t len)
233{
234 struct intel_pt_pkt packet;
235 size_t pos = 0;
236 int ret, pkt_len, i;
237 char desc[INTEL_PT_PKT_DESC_MAX];
238 const char *color = PERF_COLOR_BLUE;
239 enum intel_pt_pkt_ctx ctx = INTEL_PT_NO_CTX;
240
241 color_fprintf(stdout, color,
242 ". ... Intel Processor Trace data: size %zu bytes\n",
243 len);
244
245 while (len) {
246 ret = intel_pt_get_packet(buf, len, packet: &packet, ctx: &ctx);
247 if (ret > 0)
248 pkt_len = ret;
249 else
250 pkt_len = 1;
251 printf(".");
252 color_fprintf(stdout, color, " %08x: ", pos);
253 for (i = 0; i < pkt_len; i++)
254 color_fprintf(stdout, color, " %02x", buf[i]);
255 for (; i < 16; i++)
256 color_fprintf(stdout, color, " ");
257 if (ret > 0) {
258 ret = intel_pt_pkt_desc(packet: &packet, buf: desc,
259 INTEL_PT_PKT_DESC_MAX);
260 if (ret > 0)
261 color_fprintf(stdout, color, " %s\n", desc);
262 } else {
263 color_fprintf(stdout, color, " Bad packet!\n");
264 }
265 pos += pkt_len;
266 buf += pkt_len;
267 len -= pkt_len;
268 }
269}
270
271static void intel_pt_dump_event(struct intel_pt *pt, unsigned char *buf,
272 size_t len)
273{
274 printf(".\n");
275 intel_pt_dump(pt, buf, len);
276}
277
278static void intel_pt_log_event(union perf_event *event)
279{
280 FILE *f = intel_pt_log_fp();
281
282 if (!intel_pt_enable_logging || !f)
283 return;
284
285 perf_event__fprintf(event, NULL, f);
286}
287
288static void intel_pt_dump_sample(struct perf_session *session,
289 struct perf_sample *sample)
290{
291 struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
292 auxtrace);
293
294 printf("\n");
295 intel_pt_dump(pt, buf: sample->aux_sample.data, len: sample->aux_sample.size);
296}
297
298static bool intel_pt_log_events(struct intel_pt *pt, u64 tm)
299{
300 struct perf_time_interval *range = pt->synth_opts.ptime_range;
301 int n = pt->synth_opts.range_num;
302
303 if (pt->synth_opts.log_plus_flags & AUXTRACE_LOG_FLG_ALL_PERF_EVTS)
304 return true;
305
306 if (pt->synth_opts.log_minus_flags & AUXTRACE_LOG_FLG_ALL_PERF_EVTS)
307 return false;
308
309 /* perf_time__ranges_skip_sample does not work if time is zero */
310 if (!tm)
311 tm = 1;
312
313 return !n || !perf_time__ranges_skip_sample(ptime_buf: range, num: n, timestamp: tm);
314}
315
316static struct intel_pt_vmcs_info *intel_pt_findnew_vmcs(struct rb_root *rb_root,
317 u64 vmcs,
318 u64 dflt_tsc_offset)
319{
320 struct rb_node **p = &rb_root->rb_node;
321 struct rb_node *parent = NULL;
322 struct intel_pt_vmcs_info *v;
323
324 while (*p) {
325 parent = *p;
326 v = rb_entry(parent, struct intel_pt_vmcs_info, rb_node);
327
328 if (v->vmcs == vmcs)
329 return v;
330
331 if (vmcs < v->vmcs)
332 p = &(*p)->rb_left;
333 else
334 p = &(*p)->rb_right;
335 }
336
337 v = zalloc(sizeof(*v));
338 if (v) {
339 v->vmcs = vmcs;
340 v->tsc_offset = dflt_tsc_offset;
341 v->reliable = dflt_tsc_offset;
342
343 rb_link_node(node: &v->rb_node, parent, rb_link: p);
344 rb_insert_color(&v->rb_node, rb_root);
345 }
346
347 return v;
348}
349
350static struct intel_pt_vmcs_info *intel_pt_findnew_vmcs_info(void *data, uint64_t vmcs)
351{
352 struct intel_pt_queue *ptq = data;
353 struct intel_pt *pt = ptq->pt;
354
355 if (!vmcs && !pt->dflt_tsc_offset)
356 return NULL;
357
358 return intel_pt_findnew_vmcs(rb_root: &pt->vmcs_info, vmcs, dflt_tsc_offset: pt->dflt_tsc_offset);
359}
360
361static void intel_pt_free_vmcs_info(struct intel_pt *pt)
362{
363 struct intel_pt_vmcs_info *v;
364 struct rb_node *n;
365
366 n = rb_first(&pt->vmcs_info);
367 while (n) {
368 v = rb_entry(n, struct intel_pt_vmcs_info, rb_node);
369 n = rb_next(n);
370 rb_erase(&v->rb_node, &pt->vmcs_info);
371 free(v);
372 }
373}
374
375static int intel_pt_do_fix_overlap(struct intel_pt *pt, struct auxtrace_buffer *a,
376 struct auxtrace_buffer *b)
377{
378 bool consecutive = false;
379 void *start;
380
381 start = intel_pt_find_overlap(buf_a: a->data, len_a: a->size, buf_b: b->data, len_b: b->size,
382 have_tsc: pt->have_tsc, consecutive: &consecutive,
383 ooo_tsc: pt->synth_opts.vm_time_correlation);
384 if (!start)
385 return -EINVAL;
386 /*
387 * In the case of vm_time_correlation, the overlap might contain TSC
388 * packets that will not be fixed, and that will then no longer work for
389 * overlap detection. Avoid that by zeroing out the overlap.
390 */
391 if (pt->synth_opts.vm_time_correlation)
392 memset(b->data, 0, start - b->data);
393 b->use_size = b->data + b->size - start;
394 b->use_data = start;
395 if (b->use_size && consecutive)
396 b->consecutive = true;
397 return 0;
398}
399
400static int intel_pt_get_buffer(struct intel_pt_queue *ptq,
401 struct auxtrace_buffer *buffer,
402 struct auxtrace_buffer *old_buffer,
403 struct intel_pt_buffer *b)
404{
405 bool might_overlap;
406
407 if (!buffer->data) {
408 int fd = perf_data__fd(data: ptq->pt->session->data);
409
410 buffer->data = auxtrace_buffer__get_data(buffer, fd);
411 if (!buffer->data)
412 return -ENOMEM;
413 }
414
415 might_overlap = ptq->pt->snapshot_mode || ptq->pt->sampling_mode;
416 if (might_overlap && !buffer->consecutive && old_buffer &&
417 intel_pt_do_fix_overlap(pt: ptq->pt, a: old_buffer, b: buffer))
418 return -ENOMEM;
419
420 if (buffer->use_data) {
421 b->len = buffer->use_size;
422 b->buf = buffer->use_data;
423 } else {
424 b->len = buffer->size;
425 b->buf = buffer->data;
426 }
427 b->ref_timestamp = buffer->reference;
428
429 if (!old_buffer || (might_overlap && !buffer->consecutive)) {
430 b->consecutive = false;
431 b->trace_nr = buffer->buffer_nr + 1;
432 } else {
433 b->consecutive = true;
434 }
435
436 return 0;
437}
438
439/* Do not drop buffers with references - refer intel_pt_get_trace() */
440static void intel_pt_lookahead_drop_buffer(struct intel_pt_queue *ptq,
441 struct auxtrace_buffer *buffer)
442{
443 if (!buffer || buffer == ptq->buffer || buffer == ptq->old_buffer)
444 return;
445
446 auxtrace_buffer__drop_data(buffer);
447}
448
449/* Must be serialized with respect to intel_pt_get_trace() */
450static int intel_pt_lookahead(void *data, intel_pt_lookahead_cb_t cb,
451 void *cb_data)
452{
453 struct intel_pt_queue *ptq = data;
454 struct auxtrace_buffer *buffer = ptq->buffer;
455 struct auxtrace_buffer *old_buffer = ptq->old_buffer;
456 struct auxtrace_queue *queue;
457 int err = 0;
458
459 queue = &ptq->pt->queues.queue_array[ptq->queue_nr];
460
461 while (1) {
462 struct intel_pt_buffer b = { .len = 0 };
463
464 buffer = auxtrace_buffer__next(queue, buffer);
465 if (!buffer)
466 break;
467
468 err = intel_pt_get_buffer(ptq, buffer, old_buffer, b: &b);
469 if (err)
470 break;
471
472 if (b.len) {
473 intel_pt_lookahead_drop_buffer(ptq, buffer: old_buffer);
474 old_buffer = buffer;
475 } else {
476 intel_pt_lookahead_drop_buffer(ptq, buffer);
477 continue;
478 }
479
480 err = cb(&b, cb_data);
481 if (err)
482 break;
483 }
484
485 if (buffer != old_buffer)
486 intel_pt_lookahead_drop_buffer(ptq, buffer);
487 intel_pt_lookahead_drop_buffer(ptq, buffer: old_buffer);
488
489 return err;
490}
491
492/*
493 * This function assumes data is processed sequentially only.
494 * Must be serialized with respect to intel_pt_lookahead()
495 */
496static int intel_pt_get_trace(struct intel_pt_buffer *b, void *data)
497{
498 struct intel_pt_queue *ptq = data;
499 struct auxtrace_buffer *buffer = ptq->buffer;
500 struct auxtrace_buffer *old_buffer = ptq->old_buffer;
501 struct auxtrace_queue *queue;
502 int err;
503
504 if (ptq->stop) {
505 b->len = 0;
506 return 0;
507 }
508
509 queue = &ptq->pt->queues.queue_array[ptq->queue_nr];
510
511 buffer = auxtrace_buffer__next(queue, buffer);
512 if (!buffer) {
513 if (old_buffer)
514 auxtrace_buffer__drop_data(old_buffer);
515 b->len = 0;
516 return 0;
517 }
518
519 ptq->buffer = buffer;
520
521 err = intel_pt_get_buffer(ptq, buffer, old_buffer, b);
522 if (err)
523 return err;
524
525 if (ptq->step_through_buffers)
526 ptq->stop = true;
527
528 if (b->len) {
529 if (old_buffer)
530 auxtrace_buffer__drop_data(old_buffer);
531 ptq->old_buffer = buffer;
532 } else {
533 auxtrace_buffer__drop_data(buffer);
534 return intel_pt_get_trace(b, data);
535 }
536
537 return 0;
538}
539
540struct intel_pt_cache_entry {
541 struct auxtrace_cache_entry entry;
542 u64 insn_cnt;
543 u64 byte_cnt;
544 enum intel_pt_insn_op op;
545 enum intel_pt_insn_branch branch;
546 bool emulated_ptwrite;
547 int length;
548 int32_t rel;
549 char insn[INTEL_PT_INSN_BUF_SZ];
550};
551
552static int intel_pt_config_div(const char *var, const char *value, void *data)
553{
554 int *d = data;
555 long val;
556
557 if (!strcmp(var, "intel-pt.cache-divisor")) {
558 val = strtol(value, NULL, 0);
559 if (val > 0 && val <= INT_MAX)
560 *d = val;
561 }
562
563 return 0;
564}
565
566static int intel_pt_cache_divisor(void)
567{
568 static int d;
569
570 if (d)
571 return d;
572
573 perf_config(fn: intel_pt_config_div, &d);
574
575 if (!d)
576 d = 64;
577
578 return d;
579}
580
581static unsigned int intel_pt_cache_size(struct dso *dso,
582 struct machine *machine)
583{
584 off_t size;
585
586 size = dso__data_size(dso, machine);
587 size /= intel_pt_cache_divisor();
588 if (size < 1000)
589 return 10;
590 if (size > (1 << 21))
591 return 21;
592 return 32 - __builtin_clz(size);
593}
594
595static struct auxtrace_cache *intel_pt_cache(struct dso *dso,
596 struct machine *machine)
597{
598 struct auxtrace_cache *c;
599 unsigned int bits;
600
601 if (dso->auxtrace_cache)
602 return dso->auxtrace_cache;
603
604 bits = intel_pt_cache_size(dso, machine);
605
606 /* Ignoring cache creation failure */
607 c = auxtrace_cache__new(bits, sizeof(struct intel_pt_cache_entry), 200);
608
609 dso->auxtrace_cache = c;
610
611 return c;
612}
613
614static int intel_pt_cache_add(struct dso *dso, struct machine *machine,
615 u64 offset, u64 insn_cnt, u64 byte_cnt,
616 struct intel_pt_insn *intel_pt_insn)
617{
618 struct auxtrace_cache *c = intel_pt_cache(dso, machine);
619 struct intel_pt_cache_entry *e;
620 int err;
621
622 if (!c)
623 return -ENOMEM;
624
625 e = auxtrace_cache__alloc_entry(c);
626 if (!e)
627 return -ENOMEM;
628
629 e->insn_cnt = insn_cnt;
630 e->byte_cnt = byte_cnt;
631 e->op = intel_pt_insn->op;
632 e->branch = intel_pt_insn->branch;
633 e->emulated_ptwrite = intel_pt_insn->emulated_ptwrite;
634 e->length = intel_pt_insn->length;
635 e->rel = intel_pt_insn->rel;
636 memcpy(e->insn, intel_pt_insn->buf, INTEL_PT_INSN_BUF_SZ);
637
638 err = auxtrace_cache__add(c, offset, &e->entry);
639 if (err)
640 auxtrace_cache__free_entry(c, e);
641
642 return err;
643}
644
645static struct intel_pt_cache_entry *
646intel_pt_cache_lookup(struct dso *dso, struct machine *machine, u64 offset)
647{
648 struct auxtrace_cache *c = intel_pt_cache(dso, machine);
649
650 if (!c)
651 return NULL;
652
653 return auxtrace_cache__lookup(dso->auxtrace_cache, offset);
654}
655
656static void intel_pt_cache_invalidate(struct dso *dso, struct machine *machine,
657 u64 offset)
658{
659 struct auxtrace_cache *c = intel_pt_cache(dso, machine);
660
661 if (!c)
662 return;
663
664 auxtrace_cache__remove(dso->auxtrace_cache, offset);
665}
666
667static inline bool intel_pt_guest_kernel_ip(uint64_t ip)
668{
669 /* Assumes 64-bit kernel */
670 return ip & (1ULL << 63);
671}
672
673static inline u8 intel_pt_nr_cpumode(struct intel_pt_queue *ptq, uint64_t ip, bool nr)
674{
675 if (nr) {
676 return intel_pt_guest_kernel_ip(ip) ?
677 PERF_RECORD_MISC_GUEST_KERNEL :
678 PERF_RECORD_MISC_GUEST_USER;
679 }
680
681 return ip >= ptq->pt->kernel_start ?
682 PERF_RECORD_MISC_KERNEL :
683 PERF_RECORD_MISC_USER;
684}
685
686static inline u8 intel_pt_cpumode(struct intel_pt_queue *ptq, uint64_t from_ip, uint64_t to_ip)
687{
688 /* No support for non-zero CS base */
689 if (from_ip)
690 return intel_pt_nr_cpumode(ptq, ip: from_ip, nr: ptq->state->from_nr);
691 return intel_pt_nr_cpumode(ptq, ip: to_ip, nr: ptq->state->to_nr);
692}
693
694static int intel_pt_get_guest(struct intel_pt_queue *ptq)
695{
696 struct machines *machines = &ptq->pt->session->machines;
697 struct machine *machine;
698 pid_t pid = ptq->pid <= 0 ? DEFAULT_GUEST_KERNEL_ID : ptq->pid;
699
700 if (ptq->guest_machine && pid == ptq->guest_machine->pid)
701 return 0;
702
703 ptq->guest_machine = NULL;
704 thread__zput(ptq->unknown_guest_thread);
705
706 if (symbol_conf.guest_code) {
707 thread__zput(ptq->guest_thread);
708 ptq->guest_thread = machines__findnew_guest_code(machines, pid);
709 }
710
711 machine = machines__find_guest(machines, pid);
712 if (!machine)
713 return -1;
714
715 ptq->unknown_guest_thread = machine__idle_thread(machine);
716 if (!ptq->unknown_guest_thread)
717 return -1;
718
719 ptq->guest_machine = machine;
720
721 return 0;
722}
723
724static inline bool intel_pt_jmp_16(struct intel_pt_insn *intel_pt_insn)
725{
726 return intel_pt_insn->rel == 16 && intel_pt_insn->branch == INTEL_PT_BR_UNCONDITIONAL;
727}
728
729#define PTWRITE_MAGIC "\x0f\x0bperf,ptwrite "
730#define PTWRITE_MAGIC_LEN 16
731
732static bool intel_pt_emulated_ptwrite(struct dso *dso, struct machine *machine, u64 offset)
733{
734 unsigned char buf[PTWRITE_MAGIC_LEN];
735 ssize_t len;
736
737 len = dso__data_read_offset(dso, machine, offset, data: buf, PTWRITE_MAGIC_LEN);
738 if (len == PTWRITE_MAGIC_LEN && !memcmp(p: buf, PTWRITE_MAGIC, PTWRITE_MAGIC_LEN)) {
739 intel_pt_log("Emulated ptwrite signature found\n");
740 return true;
741 }
742 intel_pt_log("Emulated ptwrite signature not found\n");
743 return false;
744}
745
746static int intel_pt_walk_next_insn(struct intel_pt_insn *intel_pt_insn,
747 uint64_t *insn_cnt_ptr, uint64_t *ip,
748 uint64_t to_ip, uint64_t max_insn_cnt,
749 void *data)
750{
751 struct intel_pt_queue *ptq = data;
752 struct machine *machine = ptq->pt->machine;
753 struct thread *thread;
754 struct addr_location al;
755 unsigned char buf[INTEL_PT_INSN_BUF_SZ];
756 ssize_t len;
757 int x86_64, ret = 0;
758 u8 cpumode;
759 u64 offset, start_offset, start_ip;
760 u64 insn_cnt = 0;
761 bool one_map = true;
762 bool nr;
763
764
765 addr_location__init(al: &al);
766 intel_pt_insn->length = 0;
767
768 if (to_ip && *ip == to_ip)
769 goto out_no_cache;
770
771 nr = ptq->state->to_nr;
772 cpumode = intel_pt_nr_cpumode(ptq, ip: *ip, nr);
773
774 if (nr) {
775 if (ptq->pt->have_guest_sideband) {
776 if (!ptq->guest_machine || ptq->guest_machine_pid != ptq->pid) {
777 intel_pt_log("ERROR: guest sideband but no guest machine\n");
778 ret = -EINVAL;
779 goto out_ret;
780 }
781 } else if ((!symbol_conf.guest_code && cpumode != PERF_RECORD_MISC_GUEST_KERNEL) ||
782 intel_pt_get_guest(ptq)) {
783 intel_pt_log("ERROR: no guest machine\n");
784 ret = -EINVAL;
785 goto out_ret;
786 }
787 machine = ptq->guest_machine;
788 thread = ptq->guest_thread;
789 if (!thread) {
790 if (cpumode != PERF_RECORD_MISC_GUEST_KERNEL) {
791 intel_pt_log("ERROR: no guest thread\n");
792 ret = -EINVAL;
793 goto out_ret;
794 }
795 thread = ptq->unknown_guest_thread;
796 }
797 } else {
798 thread = ptq->thread;
799 if (!thread) {
800 if (cpumode != PERF_RECORD_MISC_KERNEL) {
801 intel_pt_log("ERROR: no thread\n");
802 ret = -EINVAL;
803 goto out_ret;
804 }
805 thread = ptq->pt->unknown_thread;
806 }
807 }
808
809 while (1) {
810 struct dso *dso;
811
812 if (!thread__find_map(thread, cpumode, addr: *ip, al: &al) || !map__dso(map: al.map)) {
813 if (al.map)
814 intel_pt_log("ERROR: thread has no dso for %#" PRIx64 "\n", *ip);
815 else
816 intel_pt_log("ERROR: thread has no map for %#" PRIx64 "\n", *ip);
817 addr_location__exit(al: &al);
818 ret = -EINVAL;
819 goto out_ret;
820 }
821 dso = map__dso(map: al.map);
822
823 if (dso->data.status == DSO_DATA_STATUS_ERROR &&
824 dso__data_status_seen(dso, by: DSO_DATA_STATUS_SEEN_ITRACE)) {
825 ret = -ENOENT;
826 goto out_ret;
827 }
828
829 offset = map__map_ip(map: al.map, ip_or_rip: *ip);
830
831 if (!to_ip && one_map) {
832 struct intel_pt_cache_entry *e;
833
834 e = intel_pt_cache_lookup(dso, machine, offset);
835 if (e &&
836 (!max_insn_cnt || e->insn_cnt <= max_insn_cnt)) {
837 *insn_cnt_ptr = e->insn_cnt;
838 *ip += e->byte_cnt;
839 intel_pt_insn->op = e->op;
840 intel_pt_insn->branch = e->branch;
841 intel_pt_insn->emulated_ptwrite = e->emulated_ptwrite;
842 intel_pt_insn->length = e->length;
843 intel_pt_insn->rel = e->rel;
844 memcpy(intel_pt_insn->buf, e->insn, INTEL_PT_INSN_BUF_SZ);
845 intel_pt_log_insn_no_data(intel_pt_insn, *ip);
846 ret = 0;
847 goto out_ret;
848 }
849 }
850
851 start_offset = offset;
852 start_ip = *ip;
853
854 /* Load maps to ensure dso->is_64_bit has been updated */
855 map__load(map: al.map);
856
857 x86_64 = dso->is_64_bit;
858
859 while (1) {
860 len = dso__data_read_offset(dso, machine,
861 offset, data: buf,
862 INTEL_PT_INSN_BUF_SZ);
863 if (len <= 0) {
864 intel_pt_log("ERROR: failed to read at offset %#" PRIx64 " ",
865 offset);
866 if (intel_pt_enable_logging)
867 dso__fprintf(dso, intel_pt_log_fp());
868 ret = -EINVAL;
869 goto out_ret;
870 }
871
872 if (intel_pt_get_insn(buf, len, x86_64, intel_pt_insn)) {
873 ret = -EINVAL;
874 goto out_ret;
875 }
876
877 intel_pt_log_insn(intel_pt_insn, *ip);
878
879 insn_cnt += 1;
880
881 if (intel_pt_insn->branch != INTEL_PT_BR_NO_BRANCH) {
882 bool eptw;
883 u64 offs;
884
885 if (!intel_pt_jmp_16(intel_pt_insn))
886 goto out;
887 /* Check for emulated ptwrite */
888 offs = offset + intel_pt_insn->length;
889 eptw = intel_pt_emulated_ptwrite(dso, machine, offset: offs);
890 intel_pt_insn->emulated_ptwrite = eptw;
891 goto out;
892 }
893
894 if (max_insn_cnt && insn_cnt >= max_insn_cnt)
895 goto out_no_cache;
896
897 *ip += intel_pt_insn->length;
898
899 if (to_ip && *ip == to_ip) {
900 intel_pt_insn->length = 0;
901 goto out_no_cache;
902 }
903
904 if (*ip >= map__end(map: al.map))
905 break;
906
907 offset += intel_pt_insn->length;
908 }
909 one_map = false;
910 }
911out:
912 *insn_cnt_ptr = insn_cnt;
913
914 if (!one_map)
915 goto out_no_cache;
916
917 /*
918 * Didn't lookup in the 'to_ip' case, so do it now to prevent duplicate
919 * entries.
920 */
921 if (to_ip) {
922 struct intel_pt_cache_entry *e;
923
924 e = intel_pt_cache_lookup(dso: map__dso(map: al.map), machine, offset: start_offset);
925 if (e)
926 goto out_ret;
927 }
928
929 /* Ignore cache errors */
930 intel_pt_cache_add(dso: map__dso(map: al.map), machine, offset: start_offset, insn_cnt,
931 byte_cnt: *ip - start_ip, intel_pt_insn);
932
933out_ret:
934 addr_location__exit(al: &al);
935 return ret;
936
937out_no_cache:
938 *insn_cnt_ptr = insn_cnt;
939 addr_location__exit(al: &al);
940 return 0;
941}
942
943static bool intel_pt_match_pgd_ip(struct intel_pt *pt, uint64_t ip,
944 uint64_t offset, const char *filename)
945{
946 struct addr_filter *filt;
947 bool have_filter = false;
948 bool hit_tracestop = false;
949 bool hit_filter = false;
950
951 list_for_each_entry(filt, &pt->filts.head, list) {
952 if (filt->start)
953 have_filter = true;
954
955 if ((filename && !filt->filename) ||
956 (!filename && filt->filename) ||
957 (filename && strcmp(filename, filt->filename)))
958 continue;
959
960 if (!(offset >= filt->addr && offset < filt->addr + filt->size))
961 continue;
962
963 intel_pt_log("TIP.PGD ip %#"PRIx64" offset %#"PRIx64" in %s hit filter: %s offset %#"PRIx64" size %#"PRIx64"\n",
964 ip, offset, filename ? filename : "[kernel]",
965 filt->start ? "filter" : "stop",
966 filt->addr, filt->size);
967
968 if (filt->start)
969 hit_filter = true;
970 else
971 hit_tracestop = true;
972 }
973
974 if (!hit_tracestop && !hit_filter)
975 intel_pt_log("TIP.PGD ip %#"PRIx64" offset %#"PRIx64" in %s is not in a filter region\n",
976 ip, offset, filename ? filename : "[kernel]");
977
978 return hit_tracestop || (have_filter && !hit_filter);
979}
980
981static int __intel_pt_pgd_ip(uint64_t ip, void *data)
982{
983 struct intel_pt_queue *ptq = data;
984 struct thread *thread;
985 struct addr_location al;
986 u8 cpumode;
987 u64 offset;
988 int res;
989
990 if (ptq->state->to_nr) {
991 if (intel_pt_guest_kernel_ip(ip))
992 return intel_pt_match_pgd_ip(pt: ptq->pt, ip, offset: ip, NULL);
993 /* No support for decoding guest user space */
994 return -EINVAL;
995 } else if (ip >= ptq->pt->kernel_start) {
996 return intel_pt_match_pgd_ip(pt: ptq->pt, ip, offset: ip, NULL);
997 }
998
999 cpumode = PERF_RECORD_MISC_USER;
1000
1001 thread = ptq->thread;
1002 if (!thread)
1003 return -EINVAL;
1004
1005 addr_location__init(al: &al);
1006 if (!thread__find_map(thread, cpumode, addr: ip, al: &al) || !map__dso(map: al.map))
1007 return -EINVAL;
1008
1009 offset = map__map_ip(map: al.map, ip_or_rip: ip);
1010
1011 res = intel_pt_match_pgd_ip(pt: ptq->pt, ip, offset, filename: map__dso(map: al.map)->long_name);
1012 addr_location__exit(al: &al);
1013 return res;
1014}
1015
1016static bool intel_pt_pgd_ip(uint64_t ip, void *data)
1017{
1018 return __intel_pt_pgd_ip(ip, data) > 0;
1019}
1020
1021static bool intel_pt_get_config(struct intel_pt *pt,
1022 struct perf_event_attr *attr, u64 *config)
1023{
1024 if (attr->type == pt->pmu_type) {
1025 if (config)
1026 *config = attr->config;
1027 return true;
1028 }
1029
1030 return false;
1031}
1032
1033static bool intel_pt_exclude_kernel(struct intel_pt *pt)
1034{
1035 struct evsel *evsel;
1036
1037 evlist__for_each_entry(pt->session->evlist, evsel) {
1038 if (intel_pt_get_config(pt, attr: &evsel->core.attr, NULL) &&
1039 !evsel->core.attr.exclude_kernel)
1040 return false;
1041 }
1042 return true;
1043}
1044
1045static bool intel_pt_return_compression(struct intel_pt *pt)
1046{
1047 struct evsel *evsel;
1048 u64 config;
1049
1050 if (!pt->noretcomp_bit)
1051 return true;
1052
1053 evlist__for_each_entry(pt->session->evlist, evsel) {
1054 if (intel_pt_get_config(pt, attr: &evsel->core.attr, config: &config) &&
1055 (config & pt->noretcomp_bit))
1056 return false;
1057 }
1058 return true;
1059}
1060
1061static bool intel_pt_branch_enable(struct intel_pt *pt)
1062{
1063 struct evsel *evsel;
1064 u64 config;
1065
1066 evlist__for_each_entry(pt->session->evlist, evsel) {
1067 if (intel_pt_get_config(pt, attr: &evsel->core.attr, config: &config) &&
1068 (config & INTEL_PT_CFG_PASS_THRU) &&
1069 !(config & INTEL_PT_CFG_BRANCH_EN))
1070 return false;
1071 }
1072 return true;
1073}
1074
1075static bool intel_pt_disabled_tnt(struct intel_pt *pt)
1076{
1077 struct evsel *evsel;
1078 u64 config;
1079
1080 evlist__for_each_entry(pt->session->evlist, evsel) {
1081 if (intel_pt_get_config(pt, attr: &evsel->core.attr, config: &config) &&
1082 config & INTEL_PT_CFG_TNT_DIS)
1083 return true;
1084 }
1085 return false;
1086}
1087
1088static unsigned int intel_pt_mtc_period(struct intel_pt *pt)
1089{
1090 struct evsel *evsel;
1091 unsigned int shift;
1092 u64 config;
1093
1094 if (!pt->mtc_freq_bits)
1095 return 0;
1096
1097 for (shift = 0, config = pt->mtc_freq_bits; !(config & 1); shift++)
1098 config >>= 1;
1099
1100 evlist__for_each_entry(pt->session->evlist, evsel) {
1101 if (intel_pt_get_config(pt, attr: &evsel->core.attr, config: &config))
1102 return (config & pt->mtc_freq_bits) >> shift;
1103 }
1104 return 0;
1105}
1106
1107static bool intel_pt_timeless_decoding(struct intel_pt *pt)
1108{
1109 struct evsel *evsel;
1110 bool timeless_decoding = true;
1111 u64 config;
1112
1113 if (!pt->tsc_bit || !pt->cap_user_time_zero || pt->synth_opts.timeless_decoding)
1114 return true;
1115
1116 evlist__for_each_entry(pt->session->evlist, evsel) {
1117 if (!(evsel->core.attr.sample_type & PERF_SAMPLE_TIME))
1118 return true;
1119 if (intel_pt_get_config(pt, attr: &evsel->core.attr, config: &config)) {
1120 if (config & pt->tsc_bit)
1121 timeless_decoding = false;
1122 else
1123 return true;
1124 }
1125 }
1126 return timeless_decoding;
1127}
1128
1129static bool intel_pt_tracing_kernel(struct intel_pt *pt)
1130{
1131 struct evsel *evsel;
1132
1133 evlist__for_each_entry(pt->session->evlist, evsel) {
1134 if (intel_pt_get_config(pt, attr: &evsel->core.attr, NULL) &&
1135 !evsel->core.attr.exclude_kernel)
1136 return true;
1137 }
1138 return false;
1139}
1140
1141static bool intel_pt_have_tsc(struct intel_pt *pt)
1142{
1143 struct evsel *evsel;
1144 bool have_tsc = false;
1145 u64 config;
1146
1147 if (!pt->tsc_bit)
1148 return false;
1149
1150 evlist__for_each_entry(pt->session->evlist, evsel) {
1151 if (intel_pt_get_config(pt, attr: &evsel->core.attr, config: &config)) {
1152 if (config & pt->tsc_bit)
1153 have_tsc = true;
1154 else
1155 return false;
1156 }
1157 }
1158 return have_tsc;
1159}
1160
1161static bool intel_pt_have_mtc(struct intel_pt *pt)
1162{
1163 struct evsel *evsel;
1164 u64 config;
1165
1166 evlist__for_each_entry(pt->session->evlist, evsel) {
1167 if (intel_pt_get_config(pt, attr: &evsel->core.attr, config: &config) &&
1168 (config & pt->mtc_bit))
1169 return true;
1170 }
1171 return false;
1172}
1173
1174static bool intel_pt_sampling_mode(struct intel_pt *pt)
1175{
1176 struct evsel *evsel;
1177
1178 evlist__for_each_entry(pt->session->evlist, evsel) {
1179 if ((evsel->core.attr.sample_type & PERF_SAMPLE_AUX) &&
1180 evsel->core.attr.aux_sample_size)
1181 return true;
1182 }
1183 return false;
1184}
1185
1186static u64 intel_pt_ctl(struct intel_pt *pt)
1187{
1188 struct evsel *evsel;
1189 u64 config;
1190
1191 evlist__for_each_entry(pt->session->evlist, evsel) {
1192 if (intel_pt_get_config(pt, attr: &evsel->core.attr, config: &config))
1193 return config;
1194 }
1195 return 0;
1196}
1197
1198static u64 intel_pt_ns_to_ticks(const struct intel_pt *pt, u64 ns)
1199{
1200 u64 quot, rem;
1201
1202 quot = ns / pt->tc.time_mult;
1203 rem = ns % pt->tc.time_mult;
1204 return (quot << pt->tc.time_shift) + (rem << pt->tc.time_shift) /
1205 pt->tc.time_mult;
1206}
1207
1208static struct ip_callchain *intel_pt_alloc_chain(struct intel_pt *pt)
1209{
1210 size_t sz = sizeof(struct ip_callchain);
1211
1212 /* Add 1 to callchain_sz for callchain context */
1213 sz += (pt->synth_opts.callchain_sz + 1) * sizeof(u64);
1214 return zalloc(sz);
1215}
1216
1217static int intel_pt_callchain_init(struct intel_pt *pt)
1218{
1219 struct evsel *evsel;
1220
1221 evlist__for_each_entry(pt->session->evlist, evsel) {
1222 if (!(evsel->core.attr.sample_type & PERF_SAMPLE_CALLCHAIN))
1223 evsel->synth_sample_type |= PERF_SAMPLE_CALLCHAIN;
1224 }
1225
1226 pt->chain = intel_pt_alloc_chain(pt);
1227 if (!pt->chain)
1228 return -ENOMEM;
1229
1230 return 0;
1231}
1232
1233static void intel_pt_add_callchain(struct intel_pt *pt,
1234 struct perf_sample *sample)
1235{
1236 struct thread *thread = machine__findnew_thread(machine: pt->machine,
1237 pid: sample->pid,
1238 tid: sample->tid);
1239
1240 thread_stack__sample_late(thread, cpu: sample->cpu, chain: pt->chain,
1241 sz: pt->synth_opts.callchain_sz + 1, ip: sample->ip,
1242 kernel_start: pt->kernel_start);
1243
1244 sample->callchain = pt->chain;
1245}
1246
1247static struct branch_stack *intel_pt_alloc_br_stack(unsigned int entry_cnt)
1248{
1249 size_t sz = sizeof(struct branch_stack);
1250
1251 sz += entry_cnt * sizeof(struct branch_entry);
1252 return zalloc(sz);
1253}
1254
1255static int intel_pt_br_stack_init(struct intel_pt *pt)
1256{
1257 struct evsel *evsel;
1258
1259 evlist__for_each_entry(pt->session->evlist, evsel) {
1260 if (!(evsel->core.attr.sample_type & PERF_SAMPLE_BRANCH_STACK))
1261 evsel->synth_sample_type |= PERF_SAMPLE_BRANCH_STACK;
1262 }
1263
1264 pt->br_stack = intel_pt_alloc_br_stack(entry_cnt: pt->br_stack_sz);
1265 if (!pt->br_stack)
1266 return -ENOMEM;
1267
1268 return 0;
1269}
1270
1271static void intel_pt_add_br_stack(struct intel_pt *pt,
1272 struct perf_sample *sample)
1273{
1274 struct thread *thread = machine__findnew_thread(machine: pt->machine,
1275 pid: sample->pid,
1276 tid: sample->tid);
1277
1278 thread_stack__br_sample_late(thread, cpu: sample->cpu, dst: pt->br_stack,
1279 sz: pt->br_stack_sz, sample_ip: sample->ip,
1280 kernel_start: pt->kernel_start);
1281
1282 sample->branch_stack = pt->br_stack;
1283 thread__put(thread);
1284}
1285
1286/* INTEL_PT_LBR_0, INTEL_PT_LBR_1 and INTEL_PT_LBR_2 */
1287#define LBRS_MAX (INTEL_PT_BLK_ITEM_ID_CNT * 3U)
1288
1289static struct intel_pt_queue *intel_pt_alloc_queue(struct intel_pt *pt,
1290 unsigned int queue_nr)
1291{
1292 struct intel_pt_params params = { .get_trace = 0, };
1293 struct perf_env *env = pt->machine->env;
1294 struct intel_pt_queue *ptq;
1295
1296 ptq = zalloc(sizeof(struct intel_pt_queue));
1297 if (!ptq)
1298 return NULL;
1299
1300 if (pt->synth_opts.callchain) {
1301 ptq->chain = intel_pt_alloc_chain(pt);
1302 if (!ptq->chain)
1303 goto out_free;
1304 }
1305
1306 if (pt->synth_opts.last_branch || pt->synth_opts.other_events) {
1307 unsigned int entry_cnt = max(LBRS_MAX, pt->br_stack_sz);
1308
1309 ptq->last_branch = intel_pt_alloc_br_stack(entry_cnt);
1310 if (!ptq->last_branch)
1311 goto out_free;
1312 }
1313
1314 ptq->event_buf = malloc(PERF_SAMPLE_MAX_SIZE);
1315 if (!ptq->event_buf)
1316 goto out_free;
1317
1318 ptq->pt = pt;
1319 ptq->queue_nr = queue_nr;
1320 ptq->exclude_kernel = intel_pt_exclude_kernel(pt);
1321 ptq->pid = -1;
1322 ptq->tid = -1;
1323 ptq->cpu = -1;
1324 ptq->next_tid = -1;
1325
1326 params.get_trace = intel_pt_get_trace;
1327 params.walk_insn = intel_pt_walk_next_insn;
1328 params.lookahead = intel_pt_lookahead;
1329 params.findnew_vmcs_info = intel_pt_findnew_vmcs_info;
1330 params.data = ptq;
1331 params.return_compression = intel_pt_return_compression(pt);
1332 params.branch_enable = intel_pt_branch_enable(pt);
1333 params.ctl = intel_pt_ctl(pt);
1334 params.max_non_turbo_ratio = pt->max_non_turbo_ratio;
1335 params.mtc_period = intel_pt_mtc_period(pt);
1336 params.tsc_ctc_ratio_n = pt->tsc_ctc_ratio_n;
1337 params.tsc_ctc_ratio_d = pt->tsc_ctc_ratio_d;
1338 params.quick = pt->synth_opts.quick;
1339 params.vm_time_correlation = pt->synth_opts.vm_time_correlation;
1340 params.vm_tm_corr_dry_run = pt->synth_opts.vm_tm_corr_dry_run;
1341 params.first_timestamp = pt->first_timestamp;
1342 params.max_loops = pt->max_loops;
1343
1344 /* Cannot walk code without TNT, so force 'quick' mode */
1345 if (params.branch_enable && intel_pt_disabled_tnt(pt) && !params.quick)
1346 params.quick = 1;
1347
1348 if (pt->filts.cnt > 0)
1349 params.pgd_ip = intel_pt_pgd_ip;
1350
1351 if (pt->synth_opts.instructions || pt->synth_opts.cycles) {
1352 if (pt->synth_opts.period) {
1353 switch (pt->synth_opts.period_type) {
1354 case PERF_ITRACE_PERIOD_INSTRUCTIONS:
1355 params.period_type =
1356 INTEL_PT_PERIOD_INSTRUCTIONS;
1357 params.period = pt->synth_opts.period;
1358 break;
1359 case PERF_ITRACE_PERIOD_TICKS:
1360 params.period_type = INTEL_PT_PERIOD_TICKS;
1361 params.period = pt->synth_opts.period;
1362 break;
1363 case PERF_ITRACE_PERIOD_NANOSECS:
1364 params.period_type = INTEL_PT_PERIOD_TICKS;
1365 params.period = intel_pt_ns_to_ticks(pt,
1366 ns: pt->synth_opts.period);
1367 break;
1368 default:
1369 break;
1370 }
1371 }
1372
1373 if (!params.period) {
1374 params.period_type = INTEL_PT_PERIOD_INSTRUCTIONS;
1375 params.period = 1;
1376 }
1377 }
1378
1379 if (env->cpuid && !strncmp(env->cpuid, "GenuineIntel,6,92,", 18))
1380 params.flags |= INTEL_PT_FUP_WITH_NLIP;
1381
1382 ptq->decoder = intel_pt_decoder_new(params: &params);
1383 if (!ptq->decoder)
1384 goto out_free;
1385
1386 return ptq;
1387
1388out_free:
1389 zfree(&ptq->event_buf);
1390 zfree(&ptq->last_branch);
1391 zfree(&ptq->chain);
1392 free(ptq);
1393 return NULL;
1394}
1395
1396static void intel_pt_free_queue(void *priv)
1397{
1398 struct intel_pt_queue *ptq = priv;
1399
1400 if (!ptq)
1401 return;
1402 thread__zput(ptq->thread);
1403 thread__zput(ptq->guest_thread);
1404 thread__zput(ptq->unknown_guest_thread);
1405 intel_pt_decoder_free(decoder: ptq->decoder);
1406 zfree(&ptq->event_buf);
1407 zfree(&ptq->last_branch);
1408 zfree(&ptq->chain);
1409 free(ptq);
1410}
1411
1412static void intel_pt_first_timestamp(struct intel_pt *pt, u64 timestamp)
1413{
1414 unsigned int i;
1415
1416 pt->first_timestamp = timestamp;
1417
1418 for (i = 0; i < pt->queues.nr_queues; i++) {
1419 struct auxtrace_queue *queue = &pt->queues.queue_array[i];
1420 struct intel_pt_queue *ptq = queue->priv;
1421
1422 if (ptq && ptq->decoder)
1423 intel_pt_set_first_timestamp(decoder: ptq->decoder, first_timestamp: timestamp);
1424 }
1425}
1426
1427static int intel_pt_get_guest_from_sideband(struct intel_pt_queue *ptq)
1428{
1429 struct machines *machines = &ptq->pt->session->machines;
1430 struct machine *machine;
1431 pid_t machine_pid = ptq->pid;
1432 pid_t tid;
1433 int vcpu;
1434
1435 if (machine_pid <= 0)
1436 return 0; /* Not a guest machine */
1437
1438 machine = machines__find(machines, pid: machine_pid);
1439 if (!machine)
1440 return 0; /* Not a guest machine */
1441
1442 if (ptq->guest_machine != machine) {
1443 ptq->guest_machine = NULL;
1444 thread__zput(ptq->guest_thread);
1445 thread__zput(ptq->unknown_guest_thread);
1446
1447 ptq->unknown_guest_thread = machine__find_thread(machine, pid: 0, tid: 0);
1448 if (!ptq->unknown_guest_thread)
1449 return -1;
1450 ptq->guest_machine = machine;
1451 }
1452
1453 vcpu = ptq->thread ? thread__guest_cpu(thread: ptq->thread) : -1;
1454 if (vcpu < 0)
1455 return -1;
1456
1457 tid = machine__get_current_tid(machine, cpu: vcpu);
1458
1459 if (ptq->guest_thread && thread__tid(thread: ptq->guest_thread) != tid)
1460 thread__zput(ptq->guest_thread);
1461
1462 if (!ptq->guest_thread) {
1463 ptq->guest_thread = machine__find_thread(machine, pid: -1, tid);
1464 if (!ptq->guest_thread)
1465 return -1;
1466 }
1467
1468 ptq->guest_machine_pid = machine_pid;
1469 ptq->guest_pid = thread__pid(thread: ptq->guest_thread);
1470 ptq->guest_tid = tid;
1471 ptq->vcpu = vcpu;
1472
1473 return 0;
1474}
1475
1476static void intel_pt_set_pid_tid_cpu(struct intel_pt *pt,
1477 struct auxtrace_queue *queue)
1478{
1479 struct intel_pt_queue *ptq = queue->priv;
1480
1481 if (queue->tid == -1 || pt->have_sched_switch) {
1482 ptq->tid = machine__get_current_tid(machine: pt->machine, cpu: ptq->cpu);
1483 if (ptq->tid == -1)
1484 ptq->pid = -1;
1485 thread__zput(ptq->thread);
1486 }
1487
1488 if (!ptq->thread && ptq->tid != -1)
1489 ptq->thread = machine__find_thread(machine: pt->machine, pid: -1, tid: ptq->tid);
1490
1491 if (ptq->thread) {
1492 ptq->pid = thread__pid(thread: ptq->thread);
1493 if (queue->cpu == -1)
1494 ptq->cpu = thread__cpu(thread: ptq->thread);
1495 }
1496
1497 if (pt->have_guest_sideband && intel_pt_get_guest_from_sideband(ptq)) {
1498 ptq->guest_machine_pid = 0;
1499 ptq->guest_pid = -1;
1500 ptq->guest_tid = -1;
1501 ptq->vcpu = -1;
1502 }
1503}
1504
1505static void intel_pt_sample_flags(struct intel_pt_queue *ptq)
1506{
1507 struct intel_pt *pt = ptq->pt;
1508
1509 ptq->insn_len = 0;
1510 if (ptq->state->flags & INTEL_PT_ABORT_TX) {
1511 ptq->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_TX_ABORT;
1512 } else if (ptq->state->flags & INTEL_PT_ASYNC) {
1513 if (!ptq->state->to_ip)
1514 ptq->flags = PERF_IP_FLAG_BRANCH |
1515 PERF_IP_FLAG_ASYNC |
1516 PERF_IP_FLAG_TRACE_END;
1517 else if (ptq->state->from_nr && !ptq->state->to_nr)
1518 ptq->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_CALL |
1519 PERF_IP_FLAG_ASYNC |
1520 PERF_IP_FLAG_VMEXIT;
1521 else
1522 ptq->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_CALL |
1523 PERF_IP_FLAG_ASYNC |
1524 PERF_IP_FLAG_INTERRUPT;
1525 } else {
1526 if (ptq->state->from_ip)
1527 ptq->flags = intel_pt_insn_type(op: ptq->state->insn_op);
1528 else
1529 ptq->flags = PERF_IP_FLAG_BRANCH |
1530 PERF_IP_FLAG_TRACE_BEGIN;
1531 if (ptq->state->flags & INTEL_PT_IN_TX)
1532 ptq->flags |= PERF_IP_FLAG_IN_TX;
1533 ptq->insn_len = ptq->state->insn_len;
1534 memcpy(ptq->insn, ptq->state->insn, INTEL_PT_INSN_BUF_SZ);
1535 }
1536
1537 if (ptq->state->type & INTEL_PT_TRACE_BEGIN)
1538 ptq->flags |= PERF_IP_FLAG_TRACE_BEGIN;
1539 if (ptq->state->type & INTEL_PT_TRACE_END)
1540 ptq->flags |= PERF_IP_FLAG_TRACE_END;
1541
1542 if (pt->cap_event_trace) {
1543 if (ptq->state->type & INTEL_PT_IFLAG_CHG) {
1544 if (!ptq->state->from_iflag)
1545 ptq->flags |= PERF_IP_FLAG_INTR_DISABLE;
1546 if (ptq->state->from_iflag != ptq->state->to_iflag)
1547 ptq->flags |= PERF_IP_FLAG_INTR_TOGGLE;
1548 } else if (!ptq->state->to_iflag) {
1549 ptq->flags |= PERF_IP_FLAG_INTR_DISABLE;
1550 }
1551 }
1552}
1553
1554static void intel_pt_setup_time_range(struct intel_pt *pt,
1555 struct intel_pt_queue *ptq)
1556{
1557 if (!pt->range_cnt)
1558 return;
1559
1560 ptq->sel_timestamp = pt->time_ranges[0].start;
1561 ptq->sel_idx = 0;
1562
1563 if (ptq->sel_timestamp) {
1564 ptq->sel_start = true;
1565 } else {
1566 ptq->sel_timestamp = pt->time_ranges[0].end;
1567 ptq->sel_start = false;
1568 }
1569}
1570
1571static int intel_pt_setup_queue(struct intel_pt *pt,
1572 struct auxtrace_queue *queue,
1573 unsigned int queue_nr)
1574{
1575 struct intel_pt_queue *ptq = queue->priv;
1576
1577 if (list_empty(head: &queue->head))
1578 return 0;
1579
1580 if (!ptq) {
1581 ptq = intel_pt_alloc_queue(pt, queue_nr);
1582 if (!ptq)
1583 return -ENOMEM;
1584 queue->priv = ptq;
1585
1586 if (queue->cpu != -1)
1587 ptq->cpu = queue->cpu;
1588 ptq->tid = queue->tid;
1589
1590 ptq->cbr_seen = UINT_MAX;
1591
1592 if (pt->sampling_mode && !pt->snapshot_mode &&
1593 pt->timeless_decoding)
1594 ptq->step_through_buffers = true;
1595
1596 ptq->sync_switch = pt->sync_switch;
1597
1598 intel_pt_setup_time_range(pt, ptq);
1599 }
1600
1601 if (!ptq->on_heap &&
1602 (!ptq->sync_switch ||
1603 ptq->switch_state != INTEL_PT_SS_EXPECTING_SWITCH_EVENT)) {
1604 const struct intel_pt_state *state;
1605 int ret;
1606
1607 if (pt->timeless_decoding)
1608 return 0;
1609
1610 intel_pt_log("queue %u getting timestamp\n", queue_nr);
1611 intel_pt_log("queue %u decoding cpu %d pid %d tid %d\n",
1612 queue_nr, ptq->cpu, ptq->pid, ptq->tid);
1613
1614 if (ptq->sel_start && ptq->sel_timestamp) {
1615 ret = intel_pt_fast_forward(decoder: ptq->decoder,
1616 timestamp: ptq->sel_timestamp);
1617 if (ret)
1618 return ret;
1619 }
1620
1621 while (1) {
1622 state = intel_pt_decode(decoder: ptq->decoder);
1623 if (state->err) {
1624 if (state->err == INTEL_PT_ERR_NODATA) {
1625 intel_pt_log("queue %u has no timestamp\n",
1626 queue_nr);
1627 return 0;
1628 }
1629 continue;
1630 }
1631 if (state->timestamp)
1632 break;
1633 }
1634
1635 ptq->timestamp = state->timestamp;
1636 intel_pt_log("queue %u timestamp 0x%" PRIx64 "\n",
1637 queue_nr, ptq->timestamp);
1638 ptq->state = state;
1639 ptq->have_sample = true;
1640 if (ptq->sel_start && ptq->sel_timestamp &&
1641 ptq->timestamp < ptq->sel_timestamp)
1642 ptq->have_sample = false;
1643 intel_pt_sample_flags(ptq);
1644 ret = auxtrace_heap__add(&pt->heap, queue_nr, ptq->timestamp);
1645 if (ret)
1646 return ret;
1647 ptq->on_heap = true;
1648 }
1649
1650 return 0;
1651}
1652
1653static int intel_pt_setup_queues(struct intel_pt *pt)
1654{
1655 unsigned int i;
1656 int ret;
1657
1658 for (i = 0; i < pt->queues.nr_queues; i++) {
1659 ret = intel_pt_setup_queue(pt, queue: &pt->queues.queue_array[i], queue_nr: i);
1660 if (ret)
1661 return ret;
1662 }
1663 return 0;
1664}
1665
1666static inline bool intel_pt_skip_event(struct intel_pt *pt)
1667{
1668 return pt->synth_opts.initial_skip &&
1669 pt->num_events++ < pt->synth_opts.initial_skip;
1670}
1671
1672/*
1673 * Cannot count CBR as skipped because it won't go away until cbr == cbr_seen.
1674 * Also ensure CBR is first non-skipped event by allowing for 4 more samples
1675 * from this decoder state.
1676 */
1677static inline bool intel_pt_skip_cbr_event(struct intel_pt *pt)
1678{
1679 return pt->synth_opts.initial_skip &&
1680 pt->num_events + 4 < pt->synth_opts.initial_skip;
1681}
1682
1683static void intel_pt_prep_a_sample(struct intel_pt_queue *ptq,
1684 union perf_event *event,
1685 struct perf_sample *sample)
1686{
1687 event->sample.header.type = PERF_RECORD_SAMPLE;
1688 event->sample.header.size = sizeof(struct perf_event_header);
1689
1690 sample->pid = ptq->pid;
1691 sample->tid = ptq->tid;
1692
1693 if (ptq->pt->have_guest_sideband) {
1694 if ((ptq->state->from_ip && ptq->state->from_nr) ||
1695 (ptq->state->to_ip && ptq->state->to_nr)) {
1696 sample->pid = ptq->guest_pid;
1697 sample->tid = ptq->guest_tid;
1698 sample->machine_pid = ptq->guest_machine_pid;
1699 sample->vcpu = ptq->vcpu;
1700 }
1701 }
1702
1703 sample->cpu = ptq->cpu;
1704 sample->insn_len = ptq->insn_len;
1705 memcpy(sample->insn, ptq->insn, INTEL_PT_INSN_BUF_SZ);
1706}
1707
1708static void intel_pt_prep_b_sample(struct intel_pt *pt,
1709 struct intel_pt_queue *ptq,
1710 union perf_event *event,
1711 struct perf_sample *sample)
1712{
1713 intel_pt_prep_a_sample(ptq, event, sample);
1714
1715 if (!pt->timeless_decoding)
1716 sample->time = tsc_to_perf_time(cyc: ptq->timestamp, tc: &pt->tc);
1717
1718 sample->ip = ptq->state->from_ip;
1719 sample->addr = ptq->state->to_ip;
1720 sample->cpumode = intel_pt_cpumode(ptq, from_ip: sample->ip, to_ip: sample->addr);
1721 sample->period = 1;
1722 sample->flags = ptq->flags;
1723
1724 event->sample.header.misc = sample->cpumode;
1725}
1726
1727static int intel_pt_inject_event(union perf_event *event,
1728 struct perf_sample *sample, u64 type)
1729{
1730 event->header.size = perf_event__sample_event_size(sample, type, 0);
1731 return perf_event__synthesize_sample(event, type, 0, sample);
1732}
1733
1734static inline int intel_pt_opt_inject(struct intel_pt *pt,
1735 union perf_event *event,
1736 struct perf_sample *sample, u64 type)
1737{
1738 if (!pt->synth_opts.inject)
1739 return 0;
1740
1741 return intel_pt_inject_event(event, sample, type);
1742}
1743
1744static int intel_pt_deliver_synth_event(struct intel_pt *pt,
1745 union perf_event *event,
1746 struct perf_sample *sample, u64 type)
1747{
1748 int ret;
1749
1750 ret = intel_pt_opt_inject(pt, event, sample, type);
1751 if (ret)
1752 return ret;
1753
1754 ret = perf_session__deliver_synth_event(session: pt->session, event, sample);
1755 if (ret)
1756 pr_err("Intel PT: failed to deliver event, error %d\n", ret);
1757
1758 return ret;
1759}
1760
1761static int intel_pt_synth_branch_sample(struct intel_pt_queue *ptq)
1762{
1763 struct intel_pt *pt = ptq->pt;
1764 union perf_event *event = ptq->event_buf;
1765 struct perf_sample sample = { .ip = 0, };
1766 struct dummy_branch_stack {
1767 u64 nr;
1768 u64 hw_idx;
1769 struct branch_entry entries;
1770 } dummy_bs;
1771
1772 if (pt->branches_filter && !(pt->branches_filter & ptq->flags))
1773 return 0;
1774
1775 if (intel_pt_skip_event(pt))
1776 return 0;
1777
1778 intel_pt_prep_b_sample(pt, ptq, event, sample: &sample);
1779
1780 sample.id = ptq->pt->branches_id;
1781 sample.stream_id = ptq->pt->branches_id;
1782
1783 /*
1784 * perf report cannot handle events without a branch stack when using
1785 * SORT_MODE__BRANCH so make a dummy one.
1786 */
1787 if (pt->synth_opts.last_branch && sort__mode == SORT_MODE__BRANCH) {
1788 dummy_bs = (struct dummy_branch_stack){
1789 .nr = 1,
1790 .hw_idx = -1ULL,
1791 .entries = {
1792 .from = sample.ip,
1793 .to = sample.addr,
1794 },
1795 };
1796 sample.branch_stack = (struct branch_stack *)&dummy_bs;
1797 }
1798
1799 if (ptq->sample_ipc)
1800 sample.cyc_cnt = ptq->ipc_cyc_cnt - ptq->last_br_cyc_cnt;
1801 if (sample.cyc_cnt) {
1802 sample.insn_cnt = ptq->ipc_insn_cnt - ptq->last_br_insn_cnt;
1803 ptq->last_br_insn_cnt = ptq->ipc_insn_cnt;
1804 ptq->last_br_cyc_cnt = ptq->ipc_cyc_cnt;
1805 }
1806
1807 return intel_pt_deliver_synth_event(pt, event, sample: &sample,
1808 type: pt->branches_sample_type);
1809}
1810
1811static void intel_pt_prep_sample(struct intel_pt *pt,
1812 struct intel_pt_queue *ptq,
1813 union perf_event *event,
1814 struct perf_sample *sample)
1815{
1816 intel_pt_prep_b_sample(pt, ptq, event, sample);
1817
1818 if (pt->synth_opts.callchain) {
1819 thread_stack__sample(thread: ptq->thread, cpu: ptq->cpu, chain: ptq->chain,
1820 sz: pt->synth_opts.callchain_sz + 1,
1821 ip: sample->ip, kernel_start: pt->kernel_start);
1822 sample->callchain = ptq->chain;
1823 }
1824
1825 if (pt->synth_opts.last_branch) {
1826 thread_stack__br_sample(thread: ptq->thread, cpu: ptq->cpu, dst: ptq->last_branch,
1827 sz: pt->br_stack_sz);
1828 sample->branch_stack = ptq->last_branch;
1829 }
1830}
1831
1832static int intel_pt_synth_instruction_sample(struct intel_pt_queue *ptq)
1833{
1834 struct intel_pt *pt = ptq->pt;
1835 union perf_event *event = ptq->event_buf;
1836 struct perf_sample sample = { .ip = 0, };
1837
1838 if (intel_pt_skip_event(pt))
1839 return 0;
1840
1841 intel_pt_prep_sample(pt, ptq, event, sample: &sample);
1842
1843 sample.id = ptq->pt->instructions_id;
1844 sample.stream_id = ptq->pt->instructions_id;
1845 if (pt->synth_opts.quick)
1846 sample.period = 1;
1847 else
1848 sample.period = ptq->state->tot_insn_cnt - ptq->last_insn_cnt;
1849
1850 if (ptq->sample_ipc)
1851 sample.cyc_cnt = ptq->ipc_cyc_cnt - ptq->last_in_cyc_cnt;
1852 if (sample.cyc_cnt) {
1853 sample.insn_cnt = ptq->ipc_insn_cnt - ptq->last_in_insn_cnt;
1854 ptq->last_in_insn_cnt = ptq->ipc_insn_cnt;
1855 ptq->last_in_cyc_cnt = ptq->ipc_cyc_cnt;
1856 }
1857
1858 ptq->last_insn_cnt = ptq->state->tot_insn_cnt;
1859
1860 return intel_pt_deliver_synth_event(pt, event, sample: &sample,
1861 type: pt->instructions_sample_type);
1862}
1863
1864static int intel_pt_synth_cycle_sample(struct intel_pt_queue *ptq)
1865{
1866 struct intel_pt *pt = ptq->pt;
1867 union perf_event *event = ptq->event_buf;
1868 struct perf_sample sample = { .ip = 0, };
1869 u64 period = 0;
1870
1871 if (ptq->sample_ipc)
1872 period = ptq->ipc_cyc_cnt - ptq->last_cy_cyc_cnt;
1873
1874 if (!period || intel_pt_skip_event(pt))
1875 return 0;
1876
1877 intel_pt_prep_sample(pt, ptq, event, sample: &sample);
1878
1879 sample.id = ptq->pt->cycles_id;
1880 sample.stream_id = ptq->pt->cycles_id;
1881 sample.period = period;
1882
1883 sample.cyc_cnt = period;
1884 sample.insn_cnt = ptq->ipc_insn_cnt - ptq->last_cy_insn_cnt;
1885 ptq->last_cy_insn_cnt = ptq->ipc_insn_cnt;
1886 ptq->last_cy_cyc_cnt = ptq->ipc_cyc_cnt;
1887
1888 return intel_pt_deliver_synth_event(pt, event, sample: &sample, type: pt->cycles_sample_type);
1889}
1890
1891static int intel_pt_synth_transaction_sample(struct intel_pt_queue *ptq)
1892{
1893 struct intel_pt *pt = ptq->pt;
1894 union perf_event *event = ptq->event_buf;
1895 struct perf_sample sample = { .ip = 0, };
1896
1897 if (intel_pt_skip_event(pt))
1898 return 0;
1899
1900 intel_pt_prep_sample(pt, ptq, event, sample: &sample);
1901
1902 sample.id = ptq->pt->transactions_id;
1903 sample.stream_id = ptq->pt->transactions_id;
1904
1905 return intel_pt_deliver_synth_event(pt, event, sample: &sample,
1906 type: pt->transactions_sample_type);
1907}
1908
1909static void intel_pt_prep_p_sample(struct intel_pt *pt,
1910 struct intel_pt_queue *ptq,
1911 union perf_event *event,
1912 struct perf_sample *sample)
1913{
1914 intel_pt_prep_sample(pt, ptq, event, sample);
1915
1916 /*
1917 * Zero IP is used to mean "trace start" but that is not the case for
1918 * power or PTWRITE events with no IP, so clear the flags.
1919 */
1920 if (!sample->ip)
1921 sample->flags = 0;
1922}
1923
1924static int intel_pt_synth_ptwrite_sample(struct intel_pt_queue *ptq)
1925{
1926 struct intel_pt *pt = ptq->pt;
1927 union perf_event *event = ptq->event_buf;
1928 struct perf_sample sample = { .ip = 0, };
1929 struct perf_synth_intel_ptwrite raw;
1930
1931 if (intel_pt_skip_event(pt))
1932 return 0;
1933
1934 intel_pt_prep_p_sample(pt, ptq, event, sample: &sample);
1935
1936 sample.id = ptq->pt->ptwrites_id;
1937 sample.stream_id = ptq->pt->ptwrites_id;
1938
1939 raw.flags = 0;
1940 raw.ip = !!(ptq->state->flags & INTEL_PT_FUP_IP);
1941 raw.payload = cpu_to_le64(ptq->state->ptw_payload);
1942
1943 sample.raw_size = perf_synth__raw_size(raw);
1944 sample.raw_data = perf_synth__raw_data(p: &raw);
1945
1946 return intel_pt_deliver_synth_event(pt, event, sample: &sample,
1947 type: pt->ptwrites_sample_type);
1948}
1949
1950static int intel_pt_synth_cbr_sample(struct intel_pt_queue *ptq)
1951{
1952 struct intel_pt *pt = ptq->pt;
1953 union perf_event *event = ptq->event_buf;
1954 struct perf_sample sample = { .ip = 0, };
1955 struct perf_synth_intel_cbr raw;
1956 u32 flags;
1957
1958 if (intel_pt_skip_cbr_event(pt))
1959 return 0;
1960
1961 ptq->cbr_seen = ptq->state->cbr;
1962
1963 intel_pt_prep_p_sample(pt, ptq, event, sample: &sample);
1964
1965 sample.id = ptq->pt->cbr_id;
1966 sample.stream_id = ptq->pt->cbr_id;
1967
1968 flags = (u16)ptq->state->cbr_payload | (pt->max_non_turbo_ratio << 16);
1969 raw.flags = cpu_to_le32(flags);
1970 raw.freq = cpu_to_le32(raw.cbr * pt->cbr2khz);
1971 raw.reserved3 = 0;
1972
1973 sample.raw_size = perf_synth__raw_size(raw);
1974 sample.raw_data = perf_synth__raw_data(p: &raw);
1975
1976 return intel_pt_deliver_synth_event(pt, event, sample: &sample,
1977 type: pt->pwr_events_sample_type);
1978}
1979
1980static int intel_pt_synth_psb_sample(struct intel_pt_queue *ptq)
1981{
1982 struct intel_pt *pt = ptq->pt;
1983 union perf_event *event = ptq->event_buf;
1984 struct perf_sample sample = { .ip = 0, };
1985 struct perf_synth_intel_psb raw;
1986
1987 if (intel_pt_skip_event(pt))
1988 return 0;
1989
1990 intel_pt_prep_p_sample(pt, ptq, event, sample: &sample);
1991
1992 sample.id = ptq->pt->psb_id;
1993 sample.stream_id = ptq->pt->psb_id;
1994 sample.flags = 0;
1995
1996 raw.reserved = 0;
1997 raw.offset = ptq->state->psb_offset;
1998
1999 sample.raw_size = perf_synth__raw_size(raw);
2000 sample.raw_data = perf_synth__raw_data(p: &raw);
2001
2002 return intel_pt_deliver_synth_event(pt, event, sample: &sample,
2003 type: pt->pwr_events_sample_type);
2004}
2005
2006static int intel_pt_synth_mwait_sample(struct intel_pt_queue *ptq)
2007{
2008 struct intel_pt *pt = ptq->pt;
2009 union perf_event *event = ptq->event_buf;
2010 struct perf_sample sample = { .ip = 0, };
2011 struct perf_synth_intel_mwait raw;
2012
2013 if (intel_pt_skip_event(pt))
2014 return 0;
2015
2016 intel_pt_prep_p_sample(pt, ptq, event, sample: &sample);
2017
2018 sample.id = ptq->pt->mwait_id;
2019 sample.stream_id = ptq->pt->mwait_id;
2020
2021 raw.reserved = 0;
2022 raw.payload = cpu_to_le64(ptq->state->mwait_payload);
2023
2024 sample.raw_size = perf_synth__raw_size(raw);
2025 sample.raw_data = perf_synth__raw_data(p: &raw);
2026
2027 return intel_pt_deliver_synth_event(pt, event, sample: &sample,
2028 type: pt->pwr_events_sample_type);
2029}
2030
2031static int intel_pt_synth_pwre_sample(struct intel_pt_queue *ptq)
2032{
2033 struct intel_pt *pt = ptq->pt;
2034 union perf_event *event = ptq->event_buf;
2035 struct perf_sample sample = { .ip = 0, };
2036 struct perf_synth_intel_pwre raw;
2037
2038 if (intel_pt_skip_event(pt))
2039 return 0;
2040
2041 intel_pt_prep_p_sample(pt, ptq, event, sample: &sample);
2042
2043 sample.id = ptq->pt->pwre_id;
2044 sample.stream_id = ptq->pt->pwre_id;
2045
2046 raw.reserved = 0;
2047 raw.payload = cpu_to_le64(ptq->state->pwre_payload);
2048
2049 sample.raw_size = perf_synth__raw_size(raw);
2050 sample.raw_data = perf_synth__raw_data(p: &raw);
2051
2052 return intel_pt_deliver_synth_event(pt, event, sample: &sample,
2053 type: pt->pwr_events_sample_type);
2054}
2055
2056static int intel_pt_synth_exstop_sample(struct intel_pt_queue *ptq)
2057{
2058 struct intel_pt *pt = ptq->pt;
2059 union perf_event *event = ptq->event_buf;
2060 struct perf_sample sample = { .ip = 0, };
2061 struct perf_synth_intel_exstop raw;
2062
2063 if (intel_pt_skip_event(pt))
2064 return 0;
2065
2066 intel_pt_prep_p_sample(pt, ptq, event, sample: &sample);
2067
2068 sample.id = ptq->pt->exstop_id;
2069 sample.stream_id = ptq->pt->exstop_id;
2070
2071 raw.flags = 0;
2072 raw.ip = !!(ptq->state->flags & INTEL_PT_FUP_IP);
2073
2074 sample.raw_size = perf_synth__raw_size(raw);
2075 sample.raw_data = perf_synth__raw_data(p: &raw);
2076
2077 return intel_pt_deliver_synth_event(pt, event, sample: &sample,
2078 type: pt->pwr_events_sample_type);
2079}
2080
2081static int intel_pt_synth_pwrx_sample(struct intel_pt_queue *ptq)
2082{
2083 struct intel_pt *pt = ptq->pt;
2084 union perf_event *event = ptq->event_buf;
2085 struct perf_sample sample = { .ip = 0, };
2086 struct perf_synth_intel_pwrx raw;
2087
2088 if (intel_pt_skip_event(pt))
2089 return 0;
2090
2091 intel_pt_prep_p_sample(pt, ptq, event, sample: &sample);
2092
2093 sample.id = ptq->pt->pwrx_id;
2094 sample.stream_id = ptq->pt->pwrx_id;
2095
2096 raw.reserved = 0;
2097 raw.payload = cpu_to_le64(ptq->state->pwrx_payload);
2098
2099 sample.raw_size = perf_synth__raw_size(raw);
2100 sample.raw_data = perf_synth__raw_data(p: &raw);
2101
2102 return intel_pt_deliver_synth_event(pt, event, sample: &sample,
2103 type: pt->pwr_events_sample_type);
2104}
2105
2106/*
2107 * PEBS gp_regs array indexes plus 1 so that 0 means not present. Refer
2108 * intel_pt_add_gp_regs().
2109 */
2110static const int pebs_gp_regs[] = {
2111 [PERF_REG_X86_FLAGS] = 1,
2112 [PERF_REG_X86_IP] = 2,
2113 [PERF_REG_X86_AX] = 3,
2114 [PERF_REG_X86_CX] = 4,
2115 [PERF_REG_X86_DX] = 5,
2116 [PERF_REG_X86_BX] = 6,
2117 [PERF_REG_X86_SP] = 7,
2118 [PERF_REG_X86_BP] = 8,
2119 [PERF_REG_X86_SI] = 9,
2120 [PERF_REG_X86_DI] = 10,
2121 [PERF_REG_X86_R8] = 11,
2122 [PERF_REG_X86_R9] = 12,
2123 [PERF_REG_X86_R10] = 13,
2124 [PERF_REG_X86_R11] = 14,
2125 [PERF_REG_X86_R12] = 15,
2126 [PERF_REG_X86_R13] = 16,
2127 [PERF_REG_X86_R14] = 17,
2128 [PERF_REG_X86_R15] = 18,
2129};
2130
2131static u64 *intel_pt_add_gp_regs(struct regs_dump *intr_regs, u64 *pos,
2132 const struct intel_pt_blk_items *items,
2133 u64 regs_mask)
2134{
2135 const u64 *gp_regs = items->val[INTEL_PT_GP_REGS_POS];
2136 u32 mask = items->mask[INTEL_PT_GP_REGS_POS];
2137 u32 bit;
2138 int i;
2139
2140 for (i = 0, bit = 1; i < PERF_REG_X86_64_MAX; i++, bit <<= 1) {
2141 /* Get the PEBS gp_regs array index */
2142 int n = pebs_gp_regs[i] - 1;
2143
2144 if (n < 0)
2145 continue;
2146 /*
2147 * Add only registers that were requested (i.e. 'regs_mask') and
2148 * that were provided (i.e. 'mask'), and update the resulting
2149 * mask (i.e. 'intr_regs->mask') accordingly.
2150 */
2151 if (mask & 1 << n && regs_mask & bit) {
2152 intr_regs->mask |= bit;
2153 *pos++ = gp_regs[n];
2154 }
2155 }
2156
2157 return pos;
2158}
2159
2160#ifndef PERF_REG_X86_XMM0
2161#define PERF_REG_X86_XMM0 32
2162#endif
2163
2164static void intel_pt_add_xmm(struct regs_dump *intr_regs, u64 *pos,
2165 const struct intel_pt_blk_items *items,
2166 u64 regs_mask)
2167{
2168 u32 mask = items->has_xmm & (regs_mask >> PERF_REG_X86_XMM0);
2169 const u64 *xmm = items->xmm;
2170
2171 /*
2172 * If there are any XMM registers, then there should be all of them.
2173 * Nevertheless, follow the logic to add only registers that were
2174 * requested (i.e. 'regs_mask') and that were provided (i.e. 'mask'),
2175 * and update the resulting mask (i.e. 'intr_regs->mask') accordingly.
2176 */
2177 intr_regs->mask |= (u64)mask << PERF_REG_X86_XMM0;
2178
2179 for (; mask; mask >>= 1, xmm++) {
2180 if (mask & 1)
2181 *pos++ = *xmm;
2182 }
2183}
2184
2185#define LBR_INFO_MISPRED (1ULL << 63)
2186#define LBR_INFO_IN_TX (1ULL << 62)
2187#define LBR_INFO_ABORT (1ULL << 61)
2188#define LBR_INFO_CYCLES 0xffff
2189
2190/* Refer kernel's intel_pmu_store_pebs_lbrs() */
2191static u64 intel_pt_lbr_flags(u64 info)
2192{
2193 union {
2194 struct branch_flags flags;
2195 u64 result;
2196 } u;
2197
2198 u.result = 0;
2199 u.flags.mispred = !!(info & LBR_INFO_MISPRED);
2200 u.flags.predicted = !(info & LBR_INFO_MISPRED);
2201 u.flags.in_tx = !!(info & LBR_INFO_IN_TX);
2202 u.flags.abort = !!(info & LBR_INFO_ABORT);
2203 u.flags.cycles = info & LBR_INFO_CYCLES;
2204
2205 return u.result;
2206}
2207
2208static void intel_pt_add_lbrs(struct branch_stack *br_stack,
2209 const struct intel_pt_blk_items *items)
2210{
2211 u64 *to;
2212 int i;
2213
2214 br_stack->nr = 0;
2215
2216 to = &br_stack->entries[0].from;
2217
2218 for (i = INTEL_PT_LBR_0_POS; i <= INTEL_PT_LBR_2_POS; i++) {
2219 u32 mask = items->mask[i];
2220 const u64 *from = items->val[i];
2221
2222 for (; mask; mask >>= 3, from += 3) {
2223 if ((mask & 7) == 7) {
2224 *to++ = from[0];
2225 *to++ = from[1];
2226 *to++ = intel_pt_lbr_flags(info: from[2]);
2227 br_stack->nr += 1;
2228 }
2229 }
2230 }
2231}
2232
2233static int intel_pt_do_synth_pebs_sample(struct intel_pt_queue *ptq, struct evsel *evsel, u64 id)
2234{
2235 const struct intel_pt_blk_items *items = &ptq->state->items;
2236 struct perf_sample sample = { .ip = 0, };
2237 union perf_event *event = ptq->event_buf;
2238 struct intel_pt *pt = ptq->pt;
2239 u64 sample_type = evsel->core.attr.sample_type;
2240 u8 cpumode;
2241 u64 regs[8 * sizeof(sample.intr_regs.mask)];
2242
2243 if (intel_pt_skip_event(pt))
2244 return 0;
2245
2246 intel_pt_prep_a_sample(ptq, event, sample: &sample);
2247
2248 sample.id = id;
2249 sample.stream_id = id;
2250
2251 if (!evsel->core.attr.freq)
2252 sample.period = evsel->core.attr.sample_period;
2253
2254 /* No support for non-zero CS base */
2255 if (items->has_ip)
2256 sample.ip = items->ip;
2257 else if (items->has_rip)
2258 sample.ip = items->rip;
2259 else
2260 sample.ip = ptq->state->from_ip;
2261
2262 cpumode = intel_pt_cpumode(ptq, from_ip: sample.ip, to_ip: 0);
2263
2264 event->sample.header.misc = cpumode | PERF_RECORD_MISC_EXACT_IP;
2265
2266 sample.cpumode = cpumode;
2267
2268 if (sample_type & PERF_SAMPLE_TIME) {
2269 u64 timestamp = 0;
2270
2271 if (items->has_timestamp)
2272 timestamp = items->timestamp;
2273 else if (!pt->timeless_decoding)
2274 timestamp = ptq->timestamp;
2275 if (timestamp)
2276 sample.time = tsc_to_perf_time(cyc: timestamp, tc: &pt->tc);
2277 }
2278
2279 if (sample_type & PERF_SAMPLE_CALLCHAIN &&
2280 pt->synth_opts.callchain) {
2281 thread_stack__sample(thread: ptq->thread, cpu: ptq->cpu, chain: ptq->chain,
2282 sz: pt->synth_opts.callchain_sz, ip: sample.ip,
2283 kernel_start: pt->kernel_start);
2284 sample.callchain = ptq->chain;
2285 }
2286
2287 if (sample_type & PERF_SAMPLE_REGS_INTR &&
2288 (items->mask[INTEL_PT_GP_REGS_POS] ||
2289 items->mask[INTEL_PT_XMM_POS])) {
2290 u64 regs_mask = evsel->core.attr.sample_regs_intr;
2291 u64 *pos;
2292
2293 sample.intr_regs.abi = items->is_32_bit ?
2294 PERF_SAMPLE_REGS_ABI_32 :
2295 PERF_SAMPLE_REGS_ABI_64;
2296 sample.intr_regs.regs = regs;
2297
2298 pos = intel_pt_add_gp_regs(intr_regs: &sample.intr_regs, pos: regs, items, regs_mask);
2299
2300 intel_pt_add_xmm(intr_regs: &sample.intr_regs, pos, items, regs_mask);
2301 }
2302
2303 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
2304 if (items->mask[INTEL_PT_LBR_0_POS] ||
2305 items->mask[INTEL_PT_LBR_1_POS] ||
2306 items->mask[INTEL_PT_LBR_2_POS]) {
2307 intel_pt_add_lbrs(br_stack: ptq->last_branch, items);
2308 } else if (pt->synth_opts.last_branch) {
2309 thread_stack__br_sample(thread: ptq->thread, cpu: ptq->cpu,
2310 dst: ptq->last_branch,
2311 sz: pt->br_stack_sz);
2312 } else {
2313 ptq->last_branch->nr = 0;
2314 }
2315 sample.branch_stack = ptq->last_branch;
2316 }
2317
2318 if (sample_type & PERF_SAMPLE_ADDR && items->has_mem_access_address)
2319 sample.addr = items->mem_access_address;
2320
2321 if (sample_type & PERF_SAMPLE_WEIGHT_TYPE) {
2322 /*
2323 * Refer kernel's setup_pebs_adaptive_sample_data() and
2324 * intel_hsw_weight().
2325 */
2326 if (items->has_mem_access_latency) {
2327 u64 weight = items->mem_access_latency >> 32;
2328
2329 /*
2330 * Starts from SPR, the mem access latency field
2331 * contains both cache latency [47:32] and instruction
2332 * latency [15:0]. The cache latency is the same as the
2333 * mem access latency on previous platforms.
2334 *
2335 * In practice, no memory access could last than 4G
2336 * cycles. Use latency >> 32 to distinguish the
2337 * different format of the mem access latency field.
2338 */
2339 if (weight > 0) {
2340 sample.weight = weight & 0xffff;
2341 sample.ins_lat = items->mem_access_latency & 0xffff;
2342 } else
2343 sample.weight = items->mem_access_latency;
2344 }
2345 if (!sample.weight && items->has_tsx_aux_info) {
2346 /* Cycles last block */
2347 sample.weight = (u32)items->tsx_aux_info;
2348 }
2349 }
2350
2351 if (sample_type & PERF_SAMPLE_TRANSACTION && items->has_tsx_aux_info) {
2352 u64 ax = items->has_rax ? items->rax : 0;
2353 /* Refer kernel's intel_hsw_transaction() */
2354 u64 txn = (u8)(items->tsx_aux_info >> 32);
2355
2356 /* For RTM XABORTs also log the abort code from AX */
2357 if (txn & PERF_TXN_TRANSACTION && ax & 1)
2358 txn |= ((ax >> 24) & 0xff) << PERF_TXN_ABORT_SHIFT;
2359 sample.transaction = txn;
2360 }
2361
2362 return intel_pt_deliver_synth_event(pt, event, sample: &sample, type: sample_type);
2363}
2364
2365static int intel_pt_synth_single_pebs_sample(struct intel_pt_queue *ptq)
2366{
2367 struct intel_pt *pt = ptq->pt;
2368 struct evsel *evsel = pt->pebs_evsel;
2369 u64 id = evsel->core.id[0];
2370
2371 return intel_pt_do_synth_pebs_sample(ptq, evsel, id);
2372}
2373
2374static int intel_pt_synth_pebs_sample(struct intel_pt_queue *ptq)
2375{
2376 const struct intel_pt_blk_items *items = &ptq->state->items;
2377 struct intel_pt_pebs_event *pe;
2378 struct intel_pt *pt = ptq->pt;
2379 int err = -EINVAL;
2380 int hw_id;
2381
2382 if (!items->has_applicable_counters || !items->applicable_counters) {
2383 if (!pt->single_pebs)
2384 pr_err("PEBS-via-PT record with no applicable_counters\n");
2385 return intel_pt_synth_single_pebs_sample(ptq);
2386 }
2387
2388 for_each_set_bit(hw_id, (unsigned long *)&items->applicable_counters, INTEL_PT_MAX_PEBS) {
2389 pe = &ptq->pebs[hw_id];
2390 if (!pe->evsel) {
2391 if (!pt->single_pebs)
2392 pr_err("PEBS-via-PT record with no matching event, hw_id %d\n",
2393 hw_id);
2394 return intel_pt_synth_single_pebs_sample(ptq);
2395 }
2396 err = intel_pt_do_synth_pebs_sample(ptq, evsel: pe->evsel, id: pe->id);
2397 if (err)
2398 return err;
2399 }
2400
2401 return err;
2402}
2403
2404static int intel_pt_synth_events_sample(struct intel_pt_queue *ptq)
2405{
2406 struct intel_pt *pt = ptq->pt;
2407 union perf_event *event = ptq->event_buf;
2408 struct perf_sample sample = { .ip = 0, };
2409 struct {
2410 struct perf_synth_intel_evt cfe;
2411 struct perf_synth_intel_evd evd[INTEL_PT_MAX_EVDS];
2412 } raw;
2413 int i;
2414
2415 if (intel_pt_skip_event(pt))
2416 return 0;
2417
2418 intel_pt_prep_p_sample(pt, ptq, event, sample: &sample);
2419
2420 sample.id = ptq->pt->evt_id;
2421 sample.stream_id = ptq->pt->evt_id;
2422
2423 raw.cfe.type = ptq->state->cfe_type;
2424 raw.cfe.reserved = 0;
2425 raw.cfe.ip = !!(ptq->state->flags & INTEL_PT_FUP_IP);
2426 raw.cfe.vector = ptq->state->cfe_vector;
2427 raw.cfe.evd_cnt = ptq->state->evd_cnt;
2428
2429 for (i = 0; i < ptq->state->evd_cnt; i++) {
2430 raw.evd[i].et = 0;
2431 raw.evd[i].evd_type = ptq->state->evd[i].type;
2432 raw.evd[i].payload = ptq->state->evd[i].payload;
2433 }
2434
2435 sample.raw_size = perf_synth__raw_size(raw) +
2436 ptq->state->evd_cnt * sizeof(struct perf_synth_intel_evd);
2437 sample.raw_data = perf_synth__raw_data(p: &raw);
2438
2439 return intel_pt_deliver_synth_event(pt, event, sample: &sample,
2440 type: pt->evt_sample_type);
2441}
2442
2443static int intel_pt_synth_iflag_chg_sample(struct intel_pt_queue *ptq)
2444{
2445 struct intel_pt *pt = ptq->pt;
2446 union perf_event *event = ptq->event_buf;
2447 struct perf_sample sample = { .ip = 0, };
2448 struct perf_synth_intel_iflag_chg raw;
2449
2450 if (intel_pt_skip_event(pt))
2451 return 0;
2452
2453 intel_pt_prep_p_sample(pt, ptq, event, sample: &sample);
2454
2455 sample.id = ptq->pt->iflag_chg_id;
2456 sample.stream_id = ptq->pt->iflag_chg_id;
2457
2458 raw.flags = 0;
2459 raw.iflag = ptq->state->to_iflag;
2460
2461 if (ptq->state->type & INTEL_PT_BRANCH) {
2462 raw.via_branch = 1;
2463 raw.branch_ip = ptq->state->to_ip;
2464 } else {
2465 sample.addr = 0;
2466 }
2467 sample.flags = ptq->flags;
2468
2469 sample.raw_size = perf_synth__raw_size(raw);
2470 sample.raw_data = perf_synth__raw_data(p: &raw);
2471
2472 return intel_pt_deliver_synth_event(pt, event, sample: &sample,
2473 type: pt->iflag_chg_sample_type);
2474}
2475
2476static int intel_pt_synth_error(struct intel_pt *pt, int code, int cpu,
2477 pid_t pid, pid_t tid, u64 ip, u64 timestamp,
2478 pid_t machine_pid, int vcpu)
2479{
2480 bool dump_log_on_error = pt->synth_opts.log_plus_flags & AUXTRACE_LOG_FLG_ON_ERROR;
2481 bool log_on_stdout = pt->synth_opts.log_plus_flags & AUXTRACE_LOG_FLG_USE_STDOUT;
2482 union perf_event event;
2483 char msg[MAX_AUXTRACE_ERROR_MSG];
2484 int err;
2485
2486 if (pt->synth_opts.error_minus_flags) {
2487 if (code == INTEL_PT_ERR_OVR &&
2488 pt->synth_opts.error_minus_flags & AUXTRACE_ERR_FLG_OVERFLOW)
2489 return 0;
2490 if (code == INTEL_PT_ERR_LOST &&
2491 pt->synth_opts.error_minus_flags & AUXTRACE_ERR_FLG_DATA_LOST)
2492 return 0;
2493 }
2494
2495 intel_pt__strerror(code, msg, MAX_AUXTRACE_ERROR_MSG);
2496
2497 auxtrace_synth_guest_error(&event.auxtrace_error, PERF_AUXTRACE_ERROR_ITRACE,
2498 code, cpu, pid, tid, ip, msg, timestamp,
2499 machine_pid, vcpu);
2500
2501 if (intel_pt_enable_logging && !log_on_stdout) {
2502 FILE *fp = intel_pt_log_fp();
2503
2504 if (fp)
2505 perf_event__fprintf_auxtrace_error(&event, fp);
2506 }
2507
2508 if (code != INTEL_PT_ERR_LOST && dump_log_on_error)
2509 intel_pt_log_dump_buf();
2510
2511 err = perf_session__deliver_synth_event(session: pt->session, event: &event, NULL);
2512 if (err)
2513 pr_err("Intel Processor Trace: failed to deliver error event, error %d\n",
2514 err);
2515
2516 return err;
2517}
2518
2519static int intel_ptq_synth_error(struct intel_pt_queue *ptq,
2520 const struct intel_pt_state *state)
2521{
2522 struct intel_pt *pt = ptq->pt;
2523 u64 tm = ptq->timestamp;
2524 pid_t machine_pid = 0;
2525 pid_t pid = ptq->pid;
2526 pid_t tid = ptq->tid;
2527 int vcpu = -1;
2528
2529 tm = pt->timeless_decoding ? 0 : tsc_to_perf_time(cyc: tm, tc: &pt->tc);
2530
2531 if (pt->have_guest_sideband && state->from_nr) {
2532 machine_pid = ptq->guest_machine_pid;
2533 vcpu = ptq->vcpu;
2534 pid = ptq->guest_pid;
2535 tid = ptq->guest_tid;
2536 }
2537
2538 return intel_pt_synth_error(pt, code: state->err, cpu: ptq->cpu, pid, tid,
2539 ip: state->from_ip, timestamp: tm, machine_pid, vcpu);
2540}
2541
2542static int intel_pt_next_tid(struct intel_pt *pt, struct intel_pt_queue *ptq)
2543{
2544 struct auxtrace_queue *queue;
2545 pid_t tid = ptq->next_tid;
2546 int err;
2547
2548 if (tid == -1)
2549 return 0;
2550
2551 intel_pt_log("switch: cpu %d tid %d\n", ptq->cpu, tid);
2552
2553 err = machine__set_current_tid(machine: pt->machine, cpu: ptq->cpu, pid: -1, tid);
2554
2555 queue = &pt->queues.queue_array[ptq->queue_nr];
2556 intel_pt_set_pid_tid_cpu(pt, queue);
2557
2558 ptq->next_tid = -1;
2559
2560 return err;
2561}
2562
2563static inline bool intel_pt_is_switch_ip(struct intel_pt_queue *ptq, u64 ip)
2564{
2565 struct intel_pt *pt = ptq->pt;
2566
2567 return ip == pt->switch_ip &&
2568 (ptq->flags & PERF_IP_FLAG_BRANCH) &&
2569 !(ptq->flags & (PERF_IP_FLAG_CONDITIONAL | PERF_IP_FLAG_ASYNC |
2570 PERF_IP_FLAG_INTERRUPT | PERF_IP_FLAG_TX_ABORT));
2571}
2572
2573#define INTEL_PT_PWR_EVT (INTEL_PT_MWAIT_OP | INTEL_PT_PWR_ENTRY | \
2574 INTEL_PT_EX_STOP | INTEL_PT_PWR_EXIT)
2575
2576static int intel_pt_sample(struct intel_pt_queue *ptq)
2577{
2578 const struct intel_pt_state *state = ptq->state;
2579 struct intel_pt *pt = ptq->pt;
2580 int err;
2581
2582 if (!ptq->have_sample)
2583 return 0;
2584
2585 ptq->have_sample = false;
2586
2587 if (pt->synth_opts.approx_ipc) {
2588 ptq->ipc_insn_cnt = ptq->state->tot_insn_cnt;
2589 ptq->ipc_cyc_cnt = ptq->state->cycles;
2590 ptq->sample_ipc = true;
2591 } else {
2592 ptq->ipc_insn_cnt = ptq->state->tot_insn_cnt;
2593 ptq->ipc_cyc_cnt = ptq->state->tot_cyc_cnt;
2594 ptq->sample_ipc = ptq->state->flags & INTEL_PT_SAMPLE_IPC;
2595 }
2596
2597 /* Ensure guest code maps are set up */
2598 if (symbol_conf.guest_code && (state->from_nr || state->to_nr))
2599 intel_pt_get_guest(ptq);
2600
2601 /*
2602 * Do PEBS first to allow for the possibility that the PEBS timestamp
2603 * precedes the current timestamp.
2604 */
2605 if (pt->sample_pebs && state->type & INTEL_PT_BLK_ITEMS) {
2606 err = intel_pt_synth_pebs_sample(ptq);
2607 if (err)
2608 return err;
2609 }
2610
2611 if (pt->synth_opts.intr_events) {
2612 if (state->type & INTEL_PT_EVT) {
2613 err = intel_pt_synth_events_sample(ptq);
2614 if (err)
2615 return err;
2616 }
2617 if (state->type & INTEL_PT_IFLAG_CHG) {
2618 err = intel_pt_synth_iflag_chg_sample(ptq);
2619 if (err)
2620 return err;
2621 }
2622 }
2623
2624 if (pt->sample_pwr_events) {
2625 if (state->type & INTEL_PT_PSB_EVT) {
2626 err = intel_pt_synth_psb_sample(ptq);
2627 if (err)
2628 return err;
2629 }
2630 if (ptq->state->cbr != ptq->cbr_seen) {
2631 err = intel_pt_synth_cbr_sample(ptq);
2632 if (err)
2633 return err;
2634 }
2635 if (state->type & INTEL_PT_PWR_EVT) {
2636 if (state->type & INTEL_PT_MWAIT_OP) {
2637 err = intel_pt_synth_mwait_sample(ptq);
2638 if (err)
2639 return err;
2640 }
2641 if (state->type & INTEL_PT_PWR_ENTRY) {
2642 err = intel_pt_synth_pwre_sample(ptq);
2643 if (err)
2644 return err;
2645 }
2646 if (state->type & INTEL_PT_EX_STOP) {
2647 err = intel_pt_synth_exstop_sample(ptq);
2648 if (err)
2649 return err;
2650 }
2651 if (state->type & INTEL_PT_PWR_EXIT) {
2652 err = intel_pt_synth_pwrx_sample(ptq);
2653 if (err)
2654 return err;
2655 }
2656 }
2657 }
2658
2659 if (state->type & INTEL_PT_INSTRUCTION) {
2660 if (pt->sample_instructions) {
2661 err = intel_pt_synth_instruction_sample(ptq);
2662 if (err)
2663 return err;
2664 }
2665 if (pt->sample_cycles) {
2666 err = intel_pt_synth_cycle_sample(ptq);
2667 if (err)
2668 return err;
2669 }
2670 }
2671
2672 if (pt->sample_transactions && (state->type & INTEL_PT_TRANSACTION)) {
2673 err = intel_pt_synth_transaction_sample(ptq);
2674 if (err)
2675 return err;
2676 }
2677
2678 if (pt->sample_ptwrites && (state->type & INTEL_PT_PTW)) {
2679 err = intel_pt_synth_ptwrite_sample(ptq);
2680 if (err)
2681 return err;
2682 }
2683
2684 if (!(state->type & INTEL_PT_BRANCH))
2685 return 0;
2686
2687 if (pt->use_thread_stack) {
2688 thread_stack__event(thread: ptq->thread, cpu: ptq->cpu, flags: ptq->flags,
2689 from_ip: state->from_ip, to_ip: state->to_ip, insn_len: ptq->insn_len,
2690 trace_nr: state->trace_nr, callstack: pt->callstack,
2691 br_stack_sz: pt->br_stack_sz_plus,
2692 mispred_all: pt->mispred_all);
2693 } else {
2694 thread_stack__set_trace_nr(thread: ptq->thread, cpu: ptq->cpu, trace_nr: state->trace_nr);
2695 }
2696
2697 if (pt->sample_branches) {
2698 if (state->from_nr != state->to_nr &&
2699 state->from_ip && state->to_ip) {
2700 struct intel_pt_state *st = (struct intel_pt_state *)state;
2701 u64 to_ip = st->to_ip;
2702 u64 from_ip = st->from_ip;
2703
2704 /*
2705 * perf cannot handle having different machines for ip
2706 * and addr, so create 2 branches.
2707 */
2708 st->to_ip = 0;
2709 err = intel_pt_synth_branch_sample(ptq);
2710 if (err)
2711 return err;
2712 st->from_ip = 0;
2713 st->to_ip = to_ip;
2714 err = intel_pt_synth_branch_sample(ptq);
2715 st->from_ip = from_ip;
2716 } else {
2717 err = intel_pt_synth_branch_sample(ptq);
2718 }
2719 if (err)
2720 return err;
2721 }
2722
2723 if (!ptq->sync_switch)
2724 return 0;
2725
2726 if (intel_pt_is_switch_ip(ptq, ip: state->to_ip)) {
2727 switch (ptq->switch_state) {
2728 case INTEL_PT_SS_NOT_TRACING:
2729 case INTEL_PT_SS_UNKNOWN:
2730 case INTEL_PT_SS_EXPECTING_SWITCH_IP:
2731 err = intel_pt_next_tid(pt, ptq);
2732 if (err)
2733 return err;
2734 ptq->switch_state = INTEL_PT_SS_TRACING;
2735 break;
2736 default:
2737 ptq->switch_state = INTEL_PT_SS_EXPECTING_SWITCH_EVENT;
2738 return 1;
2739 }
2740 } else if (!state->to_ip) {
2741 ptq->switch_state = INTEL_PT_SS_NOT_TRACING;
2742 } else if (ptq->switch_state == INTEL_PT_SS_NOT_TRACING) {
2743 ptq->switch_state = INTEL_PT_SS_UNKNOWN;
2744 } else if (ptq->switch_state == INTEL_PT_SS_UNKNOWN &&
2745 state->to_ip == pt->ptss_ip &&
2746 (ptq->flags & PERF_IP_FLAG_CALL)) {
2747 ptq->switch_state = INTEL_PT_SS_TRACING;
2748 }
2749
2750 return 0;
2751}
2752
2753static u64 intel_pt_switch_ip(struct intel_pt *pt, u64 *ptss_ip)
2754{
2755 struct machine *machine = pt->machine;
2756 struct map *map;
2757 struct symbol *sym, *start;
2758 u64 ip, switch_ip = 0;
2759 const char *ptss;
2760
2761 if (ptss_ip)
2762 *ptss_ip = 0;
2763
2764 map = machine__kernel_map(machine);
2765 if (!map)
2766 return 0;
2767
2768 if (map__load(map))
2769 return 0;
2770
2771 start = dso__first_symbol(dso: map__dso(map));
2772
2773 for (sym = start; sym; sym = dso__next_symbol(sym)) {
2774 if (sym->binding == STB_GLOBAL &&
2775 !strcmp(sym->name, "__switch_to")) {
2776 ip = map__unmap_ip(map, ip_or_rip: sym->start);
2777 if (ip >= map__start(map) && ip < map__end(map)) {
2778 switch_ip = ip;
2779 break;
2780 }
2781 }
2782 }
2783
2784 if (!switch_ip || !ptss_ip)
2785 return 0;
2786
2787 if (pt->have_sched_switch == 1)
2788 ptss = "perf_trace_sched_switch";
2789 else
2790 ptss = "__perf_event_task_sched_out";
2791
2792 for (sym = start; sym; sym = dso__next_symbol(sym)) {
2793 if (!strcmp(sym->name, ptss)) {
2794 ip = map__unmap_ip(map, ip_or_rip: sym->start);
2795 if (ip >= map__start(map) && ip < map__end(map)) {
2796 *ptss_ip = ip;
2797 break;
2798 }
2799 }
2800 }
2801
2802 return switch_ip;
2803}
2804
2805static void intel_pt_enable_sync_switch(struct intel_pt *pt)
2806{
2807 unsigned int i;
2808
2809 if (pt->sync_switch_not_supported)
2810 return;
2811
2812 pt->sync_switch = true;
2813
2814 for (i = 0; i < pt->queues.nr_queues; i++) {
2815 struct auxtrace_queue *queue = &pt->queues.queue_array[i];
2816 struct intel_pt_queue *ptq = queue->priv;
2817
2818 if (ptq)
2819 ptq->sync_switch = true;
2820 }
2821}
2822
2823static void intel_pt_disable_sync_switch(struct intel_pt *pt)
2824{
2825 unsigned int i;
2826
2827 pt->sync_switch = false;
2828
2829 for (i = 0; i < pt->queues.nr_queues; i++) {
2830 struct auxtrace_queue *queue = &pt->queues.queue_array[i];
2831 struct intel_pt_queue *ptq = queue->priv;
2832
2833 if (ptq) {
2834 ptq->sync_switch = false;
2835 intel_pt_next_tid(pt, ptq);
2836 }
2837 }
2838}
2839
2840/*
2841 * To filter against time ranges, it is only necessary to look at the next start
2842 * or end time.
2843 */
2844static bool intel_pt_next_time(struct intel_pt_queue *ptq)
2845{
2846 struct intel_pt *pt = ptq->pt;
2847
2848 if (ptq->sel_start) {
2849 /* Next time is an end time */
2850 ptq->sel_start = false;
2851 ptq->sel_timestamp = pt->time_ranges[ptq->sel_idx].end;
2852 return true;
2853 } else if (ptq->sel_idx + 1 < pt->range_cnt) {
2854 /* Next time is a start time */
2855 ptq->sel_start = true;
2856 ptq->sel_idx += 1;
2857 ptq->sel_timestamp = pt->time_ranges[ptq->sel_idx].start;
2858 return true;
2859 }
2860
2861 /* No next time */
2862 return false;
2863}
2864
2865static int intel_pt_time_filter(struct intel_pt_queue *ptq, u64 *ff_timestamp)
2866{
2867 int err;
2868
2869 while (1) {
2870 if (ptq->sel_start) {
2871 if (ptq->timestamp >= ptq->sel_timestamp) {
2872 /* After start time, so consider next time */
2873 intel_pt_next_time(ptq);
2874 if (!ptq->sel_timestamp) {
2875 /* No end time */
2876 return 0;
2877 }
2878 /* Check against end time */
2879 continue;
2880 }
2881 /* Before start time, so fast forward */
2882 ptq->have_sample = false;
2883 if (ptq->sel_timestamp > *ff_timestamp) {
2884 if (ptq->sync_switch) {
2885 intel_pt_next_tid(pt: ptq->pt, ptq);
2886 ptq->switch_state = INTEL_PT_SS_UNKNOWN;
2887 }
2888 *ff_timestamp = ptq->sel_timestamp;
2889 err = intel_pt_fast_forward(decoder: ptq->decoder,
2890 timestamp: ptq->sel_timestamp);
2891 if (err)
2892 return err;
2893 }
2894 return 0;
2895 } else if (ptq->timestamp > ptq->sel_timestamp) {
2896 /* After end time, so consider next time */
2897 if (!intel_pt_next_time(ptq)) {
2898 /* No next time range, so stop decoding */
2899 ptq->have_sample = false;
2900 ptq->switch_state = INTEL_PT_SS_NOT_TRACING;
2901 return 1;
2902 }
2903 /* Check against next start time */
2904 continue;
2905 } else {
2906 /* Before end time */
2907 return 0;
2908 }
2909 }
2910}
2911
2912static int intel_pt_run_decoder(struct intel_pt_queue *ptq, u64 *timestamp)
2913{
2914 const struct intel_pt_state *state = ptq->state;
2915 struct intel_pt *pt = ptq->pt;
2916 u64 ff_timestamp = 0;
2917 int err;
2918
2919 if (!pt->kernel_start) {
2920 pt->kernel_start = machine__kernel_start(machine: pt->machine);
2921 if (pt->per_cpu_mmaps &&
2922 (pt->have_sched_switch == 1 || pt->have_sched_switch == 3) &&
2923 !pt->timeless_decoding && intel_pt_tracing_kernel(pt) &&
2924 !pt->sampling_mode && !pt->synth_opts.vm_time_correlation) {
2925 pt->switch_ip = intel_pt_switch_ip(pt, ptss_ip: &pt->ptss_ip);
2926 if (pt->switch_ip) {
2927 intel_pt_log("switch_ip: %"PRIx64" ptss_ip: %"PRIx64"\n",
2928 pt->switch_ip, pt->ptss_ip);
2929 intel_pt_enable_sync_switch(pt);
2930 }
2931 }
2932 }
2933
2934 intel_pt_log("queue %u decoding cpu %d pid %d tid %d\n",
2935 ptq->queue_nr, ptq->cpu, ptq->pid, ptq->tid);
2936 while (1) {
2937 err = intel_pt_sample(ptq);
2938 if (err)
2939 return err;
2940
2941 state = intel_pt_decode(decoder: ptq->decoder);
2942 if (state->err) {
2943 if (state->err == INTEL_PT_ERR_NODATA)
2944 return 1;
2945 if (ptq->sync_switch &&
2946 state->from_ip >= pt->kernel_start) {
2947 ptq->sync_switch = false;
2948 intel_pt_next_tid(pt, ptq);
2949 }
2950 ptq->timestamp = state->est_timestamp;
2951 if (pt->synth_opts.errors) {
2952 err = intel_ptq_synth_error(ptq, state);
2953 if (err)
2954 return err;
2955 }
2956 continue;
2957 }
2958
2959 ptq->state = state;
2960 ptq->have_sample = true;
2961 intel_pt_sample_flags(ptq);
2962
2963 /* Use estimated TSC upon return to user space */
2964 if (pt->est_tsc &&
2965 (state->from_ip >= pt->kernel_start || !state->from_ip) &&
2966 state->to_ip && state->to_ip < pt->kernel_start) {
2967 intel_pt_log("TSC %"PRIx64" est. TSC %"PRIx64"\n",
2968 state->timestamp, state->est_timestamp);
2969 ptq->timestamp = state->est_timestamp;
2970 /* Use estimated TSC in unknown switch state */
2971 } else if (ptq->sync_switch &&
2972 ptq->switch_state == INTEL_PT_SS_UNKNOWN &&
2973 intel_pt_is_switch_ip(ptq, ip: state->to_ip) &&
2974 ptq->next_tid == -1) {
2975 intel_pt_log("TSC %"PRIx64" est. TSC %"PRIx64"\n",
2976 state->timestamp, state->est_timestamp);
2977 ptq->timestamp = state->est_timestamp;
2978 } else if (state->timestamp > ptq->timestamp) {
2979 ptq->timestamp = state->timestamp;
2980 }
2981
2982 if (ptq->sel_timestamp) {
2983 err = intel_pt_time_filter(ptq, ff_timestamp: &ff_timestamp);
2984 if (err)
2985 return err;
2986 }
2987
2988 if (!pt->timeless_decoding && ptq->timestamp >= *timestamp) {
2989 *timestamp = ptq->timestamp;
2990 return 0;
2991 }
2992 }
2993 return 0;
2994}
2995
2996static inline int intel_pt_update_queues(struct intel_pt *pt)
2997{
2998 if (pt->queues.new_data) {
2999 pt->queues.new_data = false;
3000 return intel_pt_setup_queues(pt);
3001 }
3002 return 0;
3003}
3004
3005static int intel_pt_process_queues(struct intel_pt *pt, u64 timestamp)
3006{
3007 unsigned int queue_nr;
3008 u64 ts;
3009 int ret;
3010
3011 while (1) {
3012 struct auxtrace_queue *queue;
3013 struct intel_pt_queue *ptq;
3014
3015 if (!pt->heap.heap_cnt)
3016 return 0;
3017
3018 if (pt->heap.heap_array[0].ordinal >= timestamp)
3019 return 0;
3020
3021 queue_nr = pt->heap.heap_array[0].queue_nr;
3022 queue = &pt->queues.queue_array[queue_nr];
3023 ptq = queue->priv;
3024
3025 intel_pt_log("queue %u processing 0x%" PRIx64 " to 0x%" PRIx64 "\n",
3026 queue_nr, pt->heap.heap_array[0].ordinal,
3027 timestamp);
3028
3029 auxtrace_heap__pop(&pt->heap);
3030
3031 if (pt->heap.heap_cnt) {
3032 ts = pt->heap.heap_array[0].ordinal + 1;
3033 if (ts > timestamp)
3034 ts = timestamp;
3035 } else {
3036 ts = timestamp;
3037 }
3038
3039 intel_pt_set_pid_tid_cpu(pt, queue);
3040
3041 ret = intel_pt_run_decoder(ptq, timestamp: &ts);
3042
3043 if (ret < 0) {
3044 auxtrace_heap__add(&pt->heap, queue_nr, ts);
3045 return ret;
3046 }
3047
3048 if (!ret) {
3049 ret = auxtrace_heap__add(&pt->heap, queue_nr, ts);
3050 if (ret < 0)
3051 return ret;
3052 } else {
3053 ptq->on_heap = false;
3054 }
3055 }
3056
3057 return 0;
3058}
3059
3060static int intel_pt_process_timeless_queues(struct intel_pt *pt, pid_t tid,
3061 u64 time_)
3062{
3063 struct auxtrace_queues *queues = &pt->queues;
3064 unsigned int i;
3065 u64 ts = 0;
3066
3067 for (i = 0; i < queues->nr_queues; i++) {
3068 struct auxtrace_queue *queue = &pt->queues.queue_array[i];
3069 struct intel_pt_queue *ptq = queue->priv;
3070
3071 if (ptq && (tid == -1 || ptq->tid == tid)) {
3072 ptq->time = time_;
3073 intel_pt_set_pid_tid_cpu(pt, queue);
3074 intel_pt_run_decoder(ptq, timestamp: &ts);
3075 }
3076 }
3077 return 0;
3078}
3079
3080static void intel_pt_sample_set_pid_tid_cpu(struct intel_pt_queue *ptq,
3081 struct auxtrace_queue *queue,
3082 struct perf_sample *sample)
3083{
3084 struct machine *m = ptq->pt->machine;
3085
3086 ptq->pid = sample->pid;
3087 ptq->tid = sample->tid;
3088 ptq->cpu = queue->cpu;
3089
3090 intel_pt_log("queue %u cpu %d pid %d tid %d\n",
3091 ptq->queue_nr, ptq->cpu, ptq->pid, ptq->tid);
3092
3093 thread__zput(ptq->thread);
3094
3095 if (ptq->tid == -1)
3096 return;
3097
3098 if (ptq->pid == -1) {
3099 ptq->thread = machine__find_thread(machine: m, pid: -1, tid: ptq->tid);
3100 if (ptq->thread)
3101 ptq->pid = thread__pid(thread: ptq->thread);
3102 return;
3103 }
3104
3105 ptq->thread = machine__findnew_thread(machine: m, pid: ptq->pid, tid: ptq->tid);
3106}
3107
3108static int intel_pt_process_timeless_sample(struct intel_pt *pt,
3109 struct perf_sample *sample)
3110{
3111 struct auxtrace_queue *queue;
3112 struct intel_pt_queue *ptq;
3113 u64 ts = 0;
3114
3115 queue = auxtrace_queues__sample_queue(&pt->queues, sample, pt->session);
3116 if (!queue)
3117 return -EINVAL;
3118
3119 ptq = queue->priv;
3120 if (!ptq)
3121 return 0;
3122
3123 ptq->stop = false;
3124 ptq->time = sample->time;
3125 intel_pt_sample_set_pid_tid_cpu(ptq, queue, sample);
3126 intel_pt_run_decoder(ptq, timestamp: &ts);
3127 return 0;
3128}
3129
3130static int intel_pt_lost(struct intel_pt *pt, struct perf_sample *sample)
3131{
3132 return intel_pt_synth_error(pt, code: INTEL_PT_ERR_LOST, cpu: sample->cpu,
3133 pid: sample->pid, tid: sample->tid, ip: 0, timestamp: sample->time,
3134 machine_pid: sample->machine_pid, vcpu: sample->vcpu);
3135}
3136
3137static struct intel_pt_queue *intel_pt_cpu_to_ptq(struct intel_pt *pt, int cpu)
3138{
3139 unsigned i, j;
3140
3141 if (cpu < 0 || !pt->queues.nr_queues)
3142 return NULL;
3143
3144 if ((unsigned)cpu >= pt->queues.nr_queues)
3145 i = pt->queues.nr_queues - 1;
3146 else
3147 i = cpu;
3148
3149 if (pt->queues.queue_array[i].cpu == cpu)
3150 return pt->queues.queue_array[i].priv;
3151
3152 for (j = 0; i > 0; j++) {
3153 if (pt->queues.queue_array[--i].cpu == cpu)
3154 return pt->queues.queue_array[i].priv;
3155 }
3156
3157 for (; j < pt->queues.nr_queues; j++) {
3158 if (pt->queues.queue_array[j].cpu == cpu)
3159 return pt->queues.queue_array[j].priv;
3160 }
3161
3162 return NULL;
3163}
3164
3165static int intel_pt_sync_switch(struct intel_pt *pt, int cpu, pid_t tid,
3166 u64 timestamp)
3167{
3168 struct intel_pt_queue *ptq;
3169 int err;
3170
3171 if (!pt->sync_switch)
3172 return 1;
3173
3174 ptq = intel_pt_cpu_to_ptq(pt, cpu);
3175 if (!ptq || !ptq->sync_switch)
3176 return 1;
3177
3178 switch (ptq->switch_state) {
3179 case INTEL_PT_SS_NOT_TRACING:
3180 break;
3181 case INTEL_PT_SS_UNKNOWN:
3182 case INTEL_PT_SS_TRACING:
3183 ptq->next_tid = tid;
3184 ptq->switch_state = INTEL_PT_SS_EXPECTING_SWITCH_IP;
3185 return 0;
3186 case INTEL_PT_SS_EXPECTING_SWITCH_EVENT:
3187 if (!ptq->on_heap) {
3188 ptq->timestamp = perf_time_to_tsc(ns: timestamp,
3189 tc: &pt->tc);
3190 err = auxtrace_heap__add(&pt->heap, ptq->queue_nr,
3191 ptq->timestamp);
3192 if (err)
3193 return err;
3194 ptq->on_heap = true;
3195 }
3196 ptq->switch_state = INTEL_PT_SS_TRACING;
3197 break;
3198 case INTEL_PT_SS_EXPECTING_SWITCH_IP:
3199 intel_pt_log("ERROR: cpu %d expecting switch ip\n", cpu);
3200 break;
3201 default:
3202 break;
3203 }
3204
3205 ptq->next_tid = -1;
3206
3207 return 1;
3208}
3209
3210#ifdef HAVE_LIBTRACEEVENT
3211static int intel_pt_process_switch(struct intel_pt *pt,
3212 struct perf_sample *sample)
3213{
3214 pid_t tid;
3215 int cpu, ret;
3216 struct evsel *evsel = evlist__id2evsel(pt->session->evlist, sample->id);
3217
3218 if (evsel != pt->switch_evsel)
3219 return 0;
3220
3221 tid = evsel__intval(evsel, sample, "next_pid");
3222 cpu = sample->cpu;
3223
3224 intel_pt_log("sched_switch: cpu %d tid %d time %"PRIu64" tsc %#"PRIx64"\n",
3225 cpu, tid, sample->time, perf_time_to_tsc(sample->time,
3226 &pt->tc));
3227
3228 ret = intel_pt_sync_switch(pt, cpu, tid, sample->time);
3229 if (ret <= 0)
3230 return ret;
3231
3232 return machine__set_current_tid(pt->machine, cpu, -1, tid);
3233}
3234#endif /* HAVE_LIBTRACEEVENT */
3235
3236static int intel_pt_context_switch_in(struct intel_pt *pt,
3237 struct perf_sample *sample)
3238{
3239 pid_t pid = sample->pid;
3240 pid_t tid = sample->tid;
3241 int cpu = sample->cpu;
3242
3243 if (pt->sync_switch) {
3244 struct intel_pt_queue *ptq;
3245
3246 ptq = intel_pt_cpu_to_ptq(pt, cpu);
3247 if (ptq && ptq->sync_switch) {
3248 ptq->next_tid = -1;
3249 switch (ptq->switch_state) {
3250 case INTEL_PT_SS_NOT_TRACING:
3251 case INTEL_PT_SS_UNKNOWN:
3252 case INTEL_PT_SS_TRACING:
3253 break;
3254 case INTEL_PT_SS_EXPECTING_SWITCH_EVENT:
3255 case INTEL_PT_SS_EXPECTING_SWITCH_IP:
3256 ptq->switch_state = INTEL_PT_SS_TRACING;
3257 break;
3258 default:
3259 break;
3260 }
3261 }
3262 }
3263
3264 /*
3265 * If the current tid has not been updated yet, ensure it is now that
3266 * a "switch in" event has occurred.
3267 */
3268 if (machine__get_current_tid(machine: pt->machine, cpu) == tid)
3269 return 0;
3270
3271 return machine__set_current_tid(machine: pt->machine, cpu, pid, tid);
3272}
3273
3274static int intel_pt_guest_context_switch(struct intel_pt *pt,
3275 union perf_event *event,
3276 struct perf_sample *sample)
3277{
3278 bool out = event->header.misc & PERF_RECORD_MISC_SWITCH_OUT;
3279 struct machines *machines = &pt->session->machines;
3280 struct machine *machine = machines__find(machines, pid: sample->machine_pid);
3281
3282 pt->have_guest_sideband = true;
3283
3284 /*
3285 * sync_switch cannot handle guest machines at present, so just disable
3286 * it.
3287 */
3288 pt->sync_switch_not_supported = true;
3289 if (pt->sync_switch)
3290 intel_pt_disable_sync_switch(pt);
3291
3292 if (out)
3293 return 0;
3294
3295 if (!machine)
3296 return -EINVAL;
3297
3298 return machine__set_current_tid(machine, cpu: sample->vcpu, pid: sample->pid, tid: sample->tid);
3299}
3300
3301static int intel_pt_context_switch(struct intel_pt *pt, union perf_event *event,
3302 struct perf_sample *sample)
3303{
3304 bool out = event->header.misc & PERF_RECORD_MISC_SWITCH_OUT;
3305 pid_t pid, tid;
3306 int cpu, ret;
3307
3308 if (perf_event__is_guest(event))
3309 return intel_pt_guest_context_switch(pt, event, sample);
3310
3311 cpu = sample->cpu;
3312
3313 if (pt->have_sched_switch == 3) {
3314 if (!out)
3315 return intel_pt_context_switch_in(pt, sample);
3316 if (event->header.type != PERF_RECORD_SWITCH_CPU_WIDE) {
3317 pr_err("Expecting CPU-wide context switch event\n");
3318 return -EINVAL;
3319 }
3320 pid = event->context_switch.next_prev_pid;
3321 tid = event->context_switch.next_prev_tid;
3322 } else {
3323 if (out)
3324 return 0;
3325 pid = sample->pid;
3326 tid = sample->tid;
3327 }
3328
3329 if (tid == -1)
3330 intel_pt_log("context_switch event has no tid\n");
3331
3332 ret = intel_pt_sync_switch(pt, cpu, tid, timestamp: sample->time);
3333 if (ret <= 0)
3334 return ret;
3335
3336 return machine__set_current_tid(machine: pt->machine, cpu, pid, tid);
3337}
3338
3339static int intel_pt_process_itrace_start(struct intel_pt *pt,
3340 union perf_event *event,
3341 struct perf_sample *sample)
3342{
3343 if (!pt->per_cpu_mmaps)
3344 return 0;
3345
3346 intel_pt_log("itrace_start: cpu %d pid %d tid %d time %"PRIu64" tsc %#"PRIx64"\n",
3347 sample->cpu, event->itrace_start.pid,
3348 event->itrace_start.tid, sample->time,
3349 perf_time_to_tsc(sample->time, &pt->tc));
3350
3351 return machine__set_current_tid(machine: pt->machine, cpu: sample->cpu,
3352 pid: event->itrace_start.pid,
3353 tid: event->itrace_start.tid);
3354}
3355
3356static int intel_pt_process_aux_output_hw_id(struct intel_pt *pt,
3357 union perf_event *event,
3358 struct perf_sample *sample)
3359{
3360 u64 hw_id = event->aux_output_hw_id.hw_id;
3361 struct auxtrace_queue *queue;
3362 struct intel_pt_queue *ptq;
3363 struct evsel *evsel;
3364
3365 queue = auxtrace_queues__sample_queue(&pt->queues, sample, pt->session);
3366 evsel = evlist__id2evsel_strict(evlist: pt->session->evlist, id: sample->id);
3367 if (!queue || !queue->priv || !evsel || hw_id > INTEL_PT_MAX_PEBS) {
3368 pr_err("Bad AUX output hardware ID\n");
3369 return -EINVAL;
3370 }
3371
3372 ptq = queue->priv;
3373
3374 ptq->pebs[hw_id].evsel = evsel;
3375 ptq->pebs[hw_id].id = sample->id;
3376
3377 return 0;
3378}
3379
3380static int intel_pt_find_map(struct thread *thread, u8 cpumode, u64 addr,
3381 struct addr_location *al)
3382{
3383 if (!al->map || addr < map__start(map: al->map) || addr >= map__end(map: al->map)) {
3384 if (!thread__find_map(thread, cpumode, addr, al))
3385 return -1;
3386 }
3387
3388 return 0;
3389}
3390
3391/* Invalidate all instruction cache entries that overlap the text poke */
3392static int intel_pt_text_poke(struct intel_pt *pt, union perf_event *event)
3393{
3394 u8 cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
3395 u64 addr = event->text_poke.addr + event->text_poke.new_len - 1;
3396 /* Assume text poke begins in a basic block no more than 4096 bytes */
3397 int cnt = 4096 + event->text_poke.new_len;
3398 struct thread *thread = pt->unknown_thread;
3399 struct addr_location al;
3400 struct machine *machine = pt->machine;
3401 struct intel_pt_cache_entry *e;
3402 u64 offset;
3403 int ret = 0;
3404
3405 addr_location__init(al: &al);
3406 if (!event->text_poke.new_len)
3407 goto out;
3408
3409 for (; cnt; cnt--, addr--) {
3410 struct dso *dso;
3411
3412 if (intel_pt_find_map(thread, cpumode, addr, al: &al)) {
3413 if (addr < event->text_poke.addr)
3414 goto out;
3415 continue;
3416 }
3417
3418 dso = map__dso(map: al.map);
3419 if (!dso || !dso->auxtrace_cache)
3420 continue;
3421
3422 offset = map__map_ip(map: al.map, ip_or_rip: addr);
3423
3424 e = intel_pt_cache_lookup(dso, machine, offset);
3425 if (!e)
3426 continue;
3427
3428 if (addr + e->byte_cnt + e->length <= event->text_poke.addr) {
3429 /*
3430 * No overlap. Working backwards there cannot be another
3431 * basic block that overlaps the text poke if there is a
3432 * branch instruction before the text poke address.
3433 */
3434 if (e->branch != INTEL_PT_BR_NO_BRANCH)
3435 goto out;
3436 } else {
3437 intel_pt_cache_invalidate(dso, machine, offset);
3438 intel_pt_log("Invalidated instruction cache for %s at %#"PRIx64"\n",
3439 dso->long_name, addr);
3440 }
3441 }
3442out:
3443 addr_location__exit(al: &al);
3444 return ret;
3445}
3446
3447static int intel_pt_process_event(struct perf_session *session,
3448 union perf_event *event,
3449 struct perf_sample *sample,
3450 struct perf_tool *tool)
3451{
3452 struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
3453 auxtrace);
3454 u64 timestamp;
3455 int err = 0;
3456
3457 if (dump_trace)
3458 return 0;
3459
3460 if (!tool->ordered_events) {
3461 pr_err("Intel Processor Trace requires ordered events\n");
3462 return -EINVAL;
3463 }
3464
3465 if (sample->time && sample->time != (u64)-1)
3466 timestamp = perf_time_to_tsc(ns: sample->time, tc: &pt->tc);
3467 else
3468 timestamp = 0;
3469
3470 if (timestamp || pt->timeless_decoding) {
3471 err = intel_pt_update_queues(pt);
3472 if (err)
3473 return err;
3474 }
3475
3476 if (pt->timeless_decoding) {
3477 if (pt->sampling_mode) {
3478 if (sample->aux_sample.size)
3479 err = intel_pt_process_timeless_sample(pt,
3480 sample);
3481 } else if (event->header.type == PERF_RECORD_EXIT) {
3482 err = intel_pt_process_timeless_queues(pt,
3483 tid: event->fork.tid,
3484 time_: sample->time);
3485 }
3486 } else if (timestamp) {
3487 if (!pt->first_timestamp)
3488 intel_pt_first_timestamp(pt, timestamp);
3489 err = intel_pt_process_queues(pt, timestamp);
3490 }
3491 if (err)
3492 return err;
3493
3494 if (event->header.type == PERF_RECORD_SAMPLE) {
3495 if (pt->synth_opts.add_callchain && !sample->callchain)
3496 intel_pt_add_callchain(pt, sample);
3497 if (pt->synth_opts.add_last_branch && !sample->branch_stack)
3498 intel_pt_add_br_stack(pt, sample);
3499 }
3500
3501 if (event->header.type == PERF_RECORD_AUX &&
3502 (event->aux.flags & PERF_AUX_FLAG_TRUNCATED) &&
3503 pt->synth_opts.errors) {
3504 err = intel_pt_lost(pt, sample);
3505 if (err)
3506 return err;
3507 }
3508
3509#ifdef HAVE_LIBTRACEEVENT
3510 if (pt->switch_evsel && event->header.type == PERF_RECORD_SAMPLE)
3511 err = intel_pt_process_switch(pt, sample);
3512 else
3513#endif
3514 if (event->header.type == PERF_RECORD_ITRACE_START)
3515 err = intel_pt_process_itrace_start(pt, event, sample);
3516 else if (event->header.type == PERF_RECORD_AUX_OUTPUT_HW_ID)
3517 err = intel_pt_process_aux_output_hw_id(pt, event, sample);
3518 else if (event->header.type == PERF_RECORD_SWITCH ||
3519 event->header.type == PERF_RECORD_SWITCH_CPU_WIDE)
3520 err = intel_pt_context_switch(pt, event, sample);
3521
3522 if (!err && event->header.type == PERF_RECORD_TEXT_POKE)
3523 err = intel_pt_text_poke(pt, event);
3524
3525 if (intel_pt_enable_logging && intel_pt_log_events(pt, tm: sample->time)) {
3526 intel_pt_log("event %u: cpu %d time %"PRIu64" tsc %#"PRIx64" ",
3527 event->header.type, sample->cpu, sample->time, timestamp);
3528 intel_pt_log_event(event);
3529 }
3530
3531 return err;
3532}
3533
3534static int intel_pt_flush(struct perf_session *session, struct perf_tool *tool)
3535{
3536 struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
3537 auxtrace);
3538 int ret;
3539
3540 if (dump_trace)
3541 return 0;
3542
3543 if (!tool->ordered_events)
3544 return -EINVAL;
3545
3546 ret = intel_pt_update_queues(pt);
3547 if (ret < 0)
3548 return ret;
3549
3550 if (pt->timeless_decoding)
3551 return intel_pt_process_timeless_queues(pt, tid: -1,
3552 MAX_TIMESTAMP - 1);
3553
3554 return intel_pt_process_queues(pt, MAX_TIMESTAMP);
3555}
3556
3557static void intel_pt_free_events(struct perf_session *session)
3558{
3559 struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
3560 auxtrace);
3561 struct auxtrace_queues *queues = &pt->queues;
3562 unsigned int i;
3563
3564 for (i = 0; i < queues->nr_queues; i++) {
3565 intel_pt_free_queue(priv: queues->queue_array[i].priv);
3566 queues->queue_array[i].priv = NULL;
3567 }
3568 intel_pt_log_disable();
3569 auxtrace_queues__free(queues);
3570}
3571
3572static void intel_pt_free(struct perf_session *session)
3573{
3574 struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
3575 auxtrace);
3576
3577 auxtrace_heap__free(&pt->heap);
3578 intel_pt_free_events(session);
3579 session->auxtrace = NULL;
3580 intel_pt_free_vmcs_info(pt);
3581 thread__put(thread: pt->unknown_thread);
3582 addr_filters__exit(&pt->filts);
3583 zfree(&pt->chain);
3584 zfree(&pt->filter);
3585 zfree(&pt->time_ranges);
3586 zfree(&pt->br_stack);
3587 free(pt);
3588}
3589
3590static bool intel_pt_evsel_is_auxtrace(struct perf_session *session,
3591 struct evsel *evsel)
3592{
3593 struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
3594 auxtrace);
3595
3596 return evsel->core.attr.type == pt->pmu_type;
3597}
3598
3599static int intel_pt_process_auxtrace_event(struct perf_session *session,
3600 union perf_event *event,
3601 struct perf_tool *tool __maybe_unused)
3602{
3603 struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
3604 auxtrace);
3605
3606 if (!pt->data_queued) {
3607 struct auxtrace_buffer *buffer;
3608 off_t data_offset;
3609 int fd = perf_data__fd(data: session->data);
3610 int err;
3611
3612 if (perf_data__is_pipe(data: session->data)) {
3613 data_offset = 0;
3614 } else {
3615 data_offset = lseek(fd, 0, SEEK_CUR);
3616 if (data_offset == -1)
3617 return -errno;
3618 }
3619
3620 err = auxtrace_queues__add_event(&pt->queues, session, event,
3621 data_offset, &buffer);
3622 if (err)
3623 return err;
3624
3625 /* Dump here now we have copied a piped trace out of the pipe */
3626 if (dump_trace) {
3627 if (auxtrace_buffer__get_data(buffer, fd)) {
3628 intel_pt_dump_event(pt, buf: buffer->data,
3629 len: buffer->size);
3630 auxtrace_buffer__put_data(buffer);
3631 }
3632 }
3633 }
3634
3635 return 0;
3636}
3637
3638static int intel_pt_queue_data(struct perf_session *session,
3639 struct perf_sample *sample,
3640 union perf_event *event, u64 data_offset)
3641{
3642 struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
3643 auxtrace);
3644 u64 timestamp;
3645
3646 if (event) {
3647 return auxtrace_queues__add_event(&pt->queues, session, event,
3648 data_offset, NULL);
3649 }
3650
3651 if (sample->time && sample->time != (u64)-1)
3652 timestamp = perf_time_to_tsc(ns: sample->time, tc: &pt->tc);
3653 else
3654 timestamp = 0;
3655
3656 return auxtrace_queues__add_sample(&pt->queues, session, sample,
3657 data_offset, timestamp);
3658}
3659
3660struct intel_pt_synth {
3661 struct perf_tool dummy_tool;
3662 struct perf_session *session;
3663};
3664
3665static int intel_pt_event_synth(struct perf_tool *tool,
3666 union perf_event *event,
3667 struct perf_sample *sample __maybe_unused,
3668 struct machine *machine __maybe_unused)
3669{
3670 struct intel_pt_synth *intel_pt_synth =
3671 container_of(tool, struct intel_pt_synth, dummy_tool);
3672
3673 return perf_session__deliver_synth_event(session: intel_pt_synth->session, event,
3674 NULL);
3675}
3676
3677static int intel_pt_synth_event(struct perf_session *session, const char *name,
3678 struct perf_event_attr *attr, u64 id)
3679{
3680 struct intel_pt_synth intel_pt_synth;
3681 int err;
3682
3683 pr_debug("Synthesizing '%s' event with id %" PRIu64 " sample type %#" PRIx64 "\n",
3684 name, id, (u64)attr->sample_type);
3685
3686 memset(&intel_pt_synth, 0, sizeof(struct intel_pt_synth));
3687 intel_pt_synth.session = session;
3688
3689 err = perf_event__synthesize_attr(&intel_pt_synth.dummy_tool, attr, 1,
3690 &id, intel_pt_event_synth);
3691 if (err)
3692 pr_err("%s: failed to synthesize '%s' event type\n",
3693 __func__, name);
3694
3695 return err;
3696}
3697
3698static void intel_pt_set_event_name(struct evlist *evlist, u64 id,
3699 const char *name)
3700{
3701 struct evsel *evsel;
3702
3703 evlist__for_each_entry(evlist, evsel) {
3704 if (evsel->core.id && evsel->core.id[0] == id) {
3705 if (evsel->name)
3706 zfree(&evsel->name);
3707 evsel->name = strdup(name);
3708 break;
3709 }
3710 }
3711}
3712
3713static struct evsel *intel_pt_evsel(struct intel_pt *pt,
3714 struct evlist *evlist)
3715{
3716 struct evsel *evsel;
3717
3718 evlist__for_each_entry(evlist, evsel) {
3719 if (evsel->core.attr.type == pt->pmu_type && evsel->core.ids)
3720 return evsel;
3721 }
3722
3723 return NULL;
3724}
3725
3726static int intel_pt_synth_events(struct intel_pt *pt,
3727 struct perf_session *session)
3728{
3729 struct evlist *evlist = session->evlist;
3730 struct evsel *evsel = intel_pt_evsel(pt, evlist);
3731 struct perf_event_attr attr;
3732 u64 id;
3733 int err;
3734
3735 if (!evsel) {
3736 pr_debug("There are no selected events with Intel Processor Trace data\n");
3737 return 0;
3738 }
3739
3740 memset(&attr, 0, sizeof(struct perf_event_attr));
3741 attr.size = sizeof(struct perf_event_attr);
3742 attr.type = PERF_TYPE_HARDWARE;
3743 attr.sample_type = evsel->core.attr.sample_type & PERF_SAMPLE_MASK;
3744 attr.sample_type |= PERF_SAMPLE_IP | PERF_SAMPLE_TID |
3745 PERF_SAMPLE_PERIOD;
3746 if (pt->timeless_decoding)
3747 attr.sample_type &= ~(u64)PERF_SAMPLE_TIME;
3748 else
3749 attr.sample_type |= PERF_SAMPLE_TIME;
3750 if (!pt->per_cpu_mmaps)
3751 attr.sample_type &= ~(u64)PERF_SAMPLE_CPU;
3752 attr.exclude_user = evsel->core.attr.exclude_user;
3753 attr.exclude_kernel = evsel->core.attr.exclude_kernel;
3754 attr.exclude_hv = evsel->core.attr.exclude_hv;
3755 attr.exclude_host = evsel->core.attr.exclude_host;
3756 attr.exclude_guest = evsel->core.attr.exclude_guest;
3757 attr.sample_id_all = evsel->core.attr.sample_id_all;
3758 attr.read_format = evsel->core.attr.read_format;
3759
3760 id = evsel->core.id[0] + 1000000000;
3761 if (!id)
3762 id = 1;
3763
3764 if (pt->synth_opts.branches) {
3765 attr.config = PERF_COUNT_HW_BRANCH_INSTRUCTIONS;
3766 attr.sample_period = 1;
3767 attr.sample_type |= PERF_SAMPLE_ADDR;
3768 err = intel_pt_synth_event(session, name: "branches", attr: &attr, id);
3769 if (err)
3770 return err;
3771 pt->sample_branches = true;
3772 pt->branches_sample_type = attr.sample_type;
3773 pt->branches_id = id;
3774 id += 1;
3775 attr.sample_type &= ~(u64)PERF_SAMPLE_ADDR;
3776 }
3777
3778 if (pt->synth_opts.callchain)
3779 attr.sample_type |= PERF_SAMPLE_CALLCHAIN;
3780 if (pt->synth_opts.last_branch) {
3781 attr.sample_type |= PERF_SAMPLE_BRANCH_STACK;
3782 /*
3783 * We don't use the hardware index, but the sample generation
3784 * code uses the new format branch_stack with this field,
3785 * so the event attributes must indicate that it's present.
3786 */
3787 attr.branch_sample_type |= PERF_SAMPLE_BRANCH_HW_INDEX;
3788 }
3789
3790 if (pt->synth_opts.instructions) {
3791 attr.config = PERF_COUNT_HW_INSTRUCTIONS;
3792 if (pt->synth_opts.period_type == PERF_ITRACE_PERIOD_NANOSECS)
3793 attr.sample_period =
3794 intel_pt_ns_to_ticks(pt, ns: pt->synth_opts.period);
3795 else
3796 attr.sample_period = pt->synth_opts.period;
3797 err = intel_pt_synth_event(session, name: "instructions", attr: &attr, id);
3798 if (err)
3799 return err;
3800 pt->sample_instructions = true;
3801 pt->instructions_sample_type = attr.sample_type;
3802 pt->instructions_id = id;
3803 id += 1;
3804 }
3805
3806 if (pt->synth_opts.cycles) {
3807 attr.config = PERF_COUNT_HW_CPU_CYCLES;
3808 if (pt->synth_opts.period_type == PERF_ITRACE_PERIOD_NANOSECS)
3809 attr.sample_period =
3810 intel_pt_ns_to_ticks(pt, ns: pt->synth_opts.period);
3811 else
3812 attr.sample_period = pt->synth_opts.period;
3813 err = intel_pt_synth_event(session, name: "cycles", attr: &attr, id);
3814 if (err)
3815 return err;
3816 pt->sample_cycles = true;
3817 pt->cycles_sample_type = attr.sample_type;
3818 pt->cycles_id = id;
3819 id += 1;
3820 }
3821
3822 attr.sample_type &= ~(u64)PERF_SAMPLE_PERIOD;
3823 attr.sample_period = 1;
3824
3825 if (pt->synth_opts.transactions) {
3826 attr.config = PERF_COUNT_HW_INSTRUCTIONS;
3827 err = intel_pt_synth_event(session, name: "transactions", attr: &attr, id);
3828 if (err)
3829 return err;
3830 pt->sample_transactions = true;
3831 pt->transactions_sample_type = attr.sample_type;
3832 pt->transactions_id = id;
3833 intel_pt_set_event_name(evlist, id, name: "transactions");
3834 id += 1;
3835 }
3836
3837 attr.type = PERF_TYPE_SYNTH;
3838 attr.sample_type |= PERF_SAMPLE_RAW;
3839
3840 if (pt->synth_opts.ptwrites) {
3841 attr.config = PERF_SYNTH_INTEL_PTWRITE;
3842 err = intel_pt_synth_event(session, name: "ptwrite", attr: &attr, id);
3843 if (err)
3844 return err;
3845 pt->sample_ptwrites = true;
3846 pt->ptwrites_sample_type = attr.sample_type;
3847 pt->ptwrites_id = id;
3848 intel_pt_set_event_name(evlist, id, name: "ptwrite");
3849 id += 1;
3850 }
3851
3852 if (pt->synth_opts.pwr_events) {
3853 pt->sample_pwr_events = true;
3854 pt->pwr_events_sample_type = attr.sample_type;
3855
3856 attr.config = PERF_SYNTH_INTEL_CBR;
3857 err = intel_pt_synth_event(session, name: "cbr", attr: &attr, id);
3858 if (err)
3859 return err;
3860 pt->cbr_id = id;
3861 intel_pt_set_event_name(evlist, id, name: "cbr");
3862 id += 1;
3863
3864 attr.config = PERF_SYNTH_INTEL_PSB;
3865 err = intel_pt_synth_event(session, name: "psb", attr: &attr, id);
3866 if (err)
3867 return err;
3868 pt->psb_id = id;
3869 intel_pt_set_event_name(evlist, id, name: "psb");
3870 id += 1;
3871 }
3872
3873 if (pt->synth_opts.pwr_events && (evsel->core.attr.config & INTEL_PT_CFG_PWR_EVT_EN)) {
3874 attr.config = PERF_SYNTH_INTEL_MWAIT;
3875 err = intel_pt_synth_event(session, name: "mwait", attr: &attr, id);
3876 if (err)
3877 return err;
3878 pt->mwait_id = id;
3879 intel_pt_set_event_name(evlist, id, name: "mwait");
3880 id += 1;
3881
3882 attr.config = PERF_SYNTH_INTEL_PWRE;
3883 err = intel_pt_synth_event(session, name: "pwre", attr: &attr, id);
3884 if (err)
3885 return err;
3886 pt->pwre_id = id;
3887 intel_pt_set_event_name(evlist, id, name: "pwre");
3888 id += 1;
3889
3890 attr.config = PERF_SYNTH_INTEL_EXSTOP;
3891 err = intel_pt_synth_event(session, name: "exstop", attr: &attr, id);
3892 if (err)
3893 return err;
3894 pt->exstop_id = id;
3895 intel_pt_set_event_name(evlist, id, name: "exstop");
3896 id += 1;
3897
3898 attr.config = PERF_SYNTH_INTEL_PWRX;
3899 err = intel_pt_synth_event(session, name: "pwrx", attr: &attr, id);
3900 if (err)
3901 return err;
3902 pt->pwrx_id = id;
3903 intel_pt_set_event_name(evlist, id, name: "pwrx");
3904 id += 1;
3905 }
3906
3907 if (pt->synth_opts.intr_events && (evsel->core.attr.config & INTEL_PT_CFG_EVT_EN)) {
3908 attr.config = PERF_SYNTH_INTEL_EVT;
3909 err = intel_pt_synth_event(session, name: "evt", attr: &attr, id);
3910 if (err)
3911 return err;
3912 pt->evt_sample_type = attr.sample_type;
3913 pt->evt_id = id;
3914 intel_pt_set_event_name(evlist, id, name: "evt");
3915 id += 1;
3916 }
3917
3918 if (pt->synth_opts.intr_events && pt->cap_event_trace) {
3919 attr.config = PERF_SYNTH_INTEL_IFLAG_CHG;
3920 err = intel_pt_synth_event(session, name: "iflag", attr: &attr, id);
3921 if (err)
3922 return err;
3923 pt->iflag_chg_sample_type = attr.sample_type;
3924 pt->iflag_chg_id = id;
3925 intel_pt_set_event_name(evlist, id, name: "iflag");
3926 id += 1;
3927 }
3928
3929 return 0;
3930}
3931
3932static void intel_pt_setup_pebs_events(struct intel_pt *pt)
3933{
3934 struct evsel *evsel;
3935
3936 if (!pt->synth_opts.other_events)
3937 return;
3938
3939 evlist__for_each_entry(pt->session->evlist, evsel) {
3940 if (evsel->core.attr.aux_output && evsel->core.id) {
3941 if (pt->single_pebs) {
3942 pt->single_pebs = false;
3943 return;
3944 }
3945 pt->single_pebs = true;
3946 pt->sample_pebs = true;
3947 pt->pebs_evsel = evsel;
3948 }
3949 }
3950}
3951
3952static struct evsel *intel_pt_find_sched_switch(struct evlist *evlist)
3953{
3954 struct evsel *evsel;
3955
3956 evlist__for_each_entry_reverse(evlist, evsel) {
3957 const char *name = evsel__name(evsel);
3958
3959 if (!strcmp(name, "sched:sched_switch"))
3960 return evsel;
3961 }
3962
3963 return NULL;
3964}
3965
3966static bool intel_pt_find_switch(struct evlist *evlist)
3967{
3968 struct evsel *evsel;
3969
3970 evlist__for_each_entry(evlist, evsel) {
3971 if (evsel->core.attr.context_switch)
3972 return true;
3973 }
3974
3975 return false;
3976}
3977
3978static int intel_pt_perf_config(const char *var, const char *value, void *data)
3979{
3980 struct intel_pt *pt = data;
3981
3982 if (!strcmp(var, "intel-pt.mispred-all"))
3983 pt->mispred_all = perf_config_bool(var, value);
3984
3985 if (!strcmp(var, "intel-pt.max-loops"))
3986 perf_config_int(dest: &pt->max_loops, var, value);
3987
3988 return 0;
3989}
3990
3991/* Find least TSC which converts to ns or later */
3992static u64 intel_pt_tsc_start(u64 ns, struct intel_pt *pt)
3993{
3994 u64 tsc, tm;
3995
3996 tsc = perf_time_to_tsc(ns, tc: &pt->tc);
3997
3998 while (1) {
3999 tm = tsc_to_perf_time(cyc: tsc, tc: &pt->tc);
4000 if (tm < ns)
4001 break;
4002 tsc -= 1;
4003 }
4004
4005 while (tm < ns)
4006 tm = tsc_to_perf_time(cyc: ++tsc, tc: &pt->tc);
4007
4008 return tsc;
4009}
4010
4011/* Find greatest TSC which converts to ns or earlier */
4012static u64 intel_pt_tsc_end(u64 ns, struct intel_pt *pt)
4013{
4014 u64 tsc, tm;
4015
4016 tsc = perf_time_to_tsc(ns, tc: &pt->tc);
4017
4018 while (1) {
4019 tm = tsc_to_perf_time(cyc: tsc, tc: &pt->tc);
4020 if (tm > ns)
4021 break;
4022 tsc += 1;
4023 }
4024
4025 while (tm > ns)
4026 tm = tsc_to_perf_time(cyc: --tsc, tc: &pt->tc);
4027
4028 return tsc;
4029}
4030
4031static int intel_pt_setup_time_ranges(struct intel_pt *pt,
4032 struct itrace_synth_opts *opts)
4033{
4034 struct perf_time_interval *p = opts->ptime_range;
4035 int n = opts->range_num;
4036 int i;
4037
4038 if (!n || !p || pt->timeless_decoding)
4039 return 0;
4040
4041 pt->time_ranges = calloc(n, sizeof(struct range));
4042 if (!pt->time_ranges)
4043 return -ENOMEM;
4044
4045 pt->range_cnt = n;
4046
4047 intel_pt_log("%s: %u range(s)\n", __func__, n);
4048
4049 for (i = 0; i < n; i++) {
4050 struct range *r = &pt->time_ranges[i];
4051 u64 ts = p[i].start;
4052 u64 te = p[i].end;
4053
4054 /*
4055 * Take care to ensure the TSC range matches the perf-time range
4056 * when converted back to perf-time.
4057 */
4058 r->start = ts ? intel_pt_tsc_start(ns: ts, pt) : 0;
4059 r->end = te ? intel_pt_tsc_end(ns: te, pt) : 0;
4060
4061 intel_pt_log("range %d: perf time interval: %"PRIu64" to %"PRIu64"\n",
4062 i, ts, te);
4063 intel_pt_log("range %d: TSC time interval: %#"PRIx64" to %#"PRIx64"\n",
4064 i, r->start, r->end);
4065 }
4066
4067 return 0;
4068}
4069
4070static int intel_pt_parse_vm_tm_corr_arg(struct intel_pt *pt, char **args)
4071{
4072 struct intel_pt_vmcs_info *vmcs_info;
4073 u64 tsc_offset, vmcs;
4074 char *p = *args;
4075
4076 errno = 0;
4077
4078 p = skip_spaces(p);
4079 if (!*p)
4080 return 1;
4081
4082 tsc_offset = strtoull(p, &p, 0);
4083 if (errno)
4084 return -errno;
4085 p = skip_spaces(p);
4086 if (*p != ':') {
4087 pt->dflt_tsc_offset = tsc_offset;
4088 *args = p;
4089 return 0;
4090 }
4091 p += 1;
4092 while (1) {
4093 vmcs = strtoull(p, &p, 0);
4094 if (errno)
4095 return -errno;
4096 if (!vmcs)
4097 return -EINVAL;
4098 vmcs_info = intel_pt_findnew_vmcs(rb_root: &pt->vmcs_info, vmcs, dflt_tsc_offset: tsc_offset);
4099 if (!vmcs_info)
4100 return -ENOMEM;
4101 p = skip_spaces(p);
4102 if (*p != ',')
4103 break;
4104 p += 1;
4105 }
4106 *args = p;
4107 return 0;
4108}
4109
4110static int intel_pt_parse_vm_tm_corr_args(struct intel_pt *pt)
4111{
4112 char *args = pt->synth_opts.vm_tm_corr_args;
4113 int ret;
4114
4115 if (!args)
4116 return 0;
4117
4118 do {
4119 ret = intel_pt_parse_vm_tm_corr_arg(pt, args: &args);
4120 } while (!ret);
4121
4122 if (ret < 0) {
4123 pr_err("Failed to parse VM Time Correlation options\n");
4124 return ret;
4125 }
4126
4127 return 0;
4128}
4129
4130static const char * const intel_pt_info_fmts[] = {
4131 [INTEL_PT_PMU_TYPE] = " PMU Type %"PRId64"\n",
4132 [INTEL_PT_TIME_SHIFT] = " Time Shift %"PRIu64"\n",
4133 [INTEL_PT_TIME_MULT] = " Time Muliplier %"PRIu64"\n",
4134 [INTEL_PT_TIME_ZERO] = " Time Zero %"PRIu64"\n",
4135 [INTEL_PT_CAP_USER_TIME_ZERO] = " Cap Time Zero %"PRId64"\n",
4136 [INTEL_PT_TSC_BIT] = " TSC bit %#"PRIx64"\n",
4137 [INTEL_PT_NORETCOMP_BIT] = " NoRETComp bit %#"PRIx64"\n",
4138 [INTEL_PT_HAVE_SCHED_SWITCH] = " Have sched_switch %"PRId64"\n",
4139 [INTEL_PT_SNAPSHOT_MODE] = " Snapshot mode %"PRId64"\n",
4140 [INTEL_PT_PER_CPU_MMAPS] = " Per-cpu maps %"PRId64"\n",
4141 [INTEL_PT_MTC_BIT] = " MTC bit %#"PRIx64"\n",
4142 [INTEL_PT_MTC_FREQ_BITS] = " MTC freq bits %#"PRIx64"\n",
4143 [INTEL_PT_TSC_CTC_N] = " TSC:CTC numerator %"PRIu64"\n",
4144 [INTEL_PT_TSC_CTC_D] = " TSC:CTC denominator %"PRIu64"\n",
4145 [INTEL_PT_CYC_BIT] = " CYC bit %#"PRIx64"\n",
4146 [INTEL_PT_MAX_NONTURBO_RATIO] = " Max non-turbo ratio %"PRIu64"\n",
4147 [INTEL_PT_FILTER_STR_LEN] = " Filter string len. %"PRIu64"\n",
4148};
4149
4150static void intel_pt_print_info(__u64 *arr, int start, int finish)
4151{
4152 int i;
4153
4154 if (!dump_trace)
4155 return;
4156
4157 for (i = start; i <= finish; i++) {
4158 const char *fmt = intel_pt_info_fmts[i];
4159
4160 if (fmt)
4161 fprintf(stdout, fmt, arr[i]);
4162 }
4163}
4164
4165static void intel_pt_print_info_str(const char *name, const char *str)
4166{
4167 if (!dump_trace)
4168 return;
4169
4170 fprintf(stdout, " %-20s%s\n", name, str ? str : "");
4171}
4172
4173static bool intel_pt_has(struct perf_record_auxtrace_info *auxtrace_info, int pos)
4174{
4175 return auxtrace_info->header.size >=
4176 sizeof(struct perf_record_auxtrace_info) + (sizeof(u64) * (pos + 1));
4177}
4178
4179int intel_pt_process_auxtrace_info(union perf_event *event,
4180 struct perf_session *session)
4181{
4182 struct perf_record_auxtrace_info *auxtrace_info = &event->auxtrace_info;
4183 size_t min_sz = sizeof(u64) * INTEL_PT_PER_CPU_MMAPS;
4184 struct intel_pt *pt;
4185 void *info_end;
4186 __u64 *info;
4187 int err;
4188
4189 if (auxtrace_info->header.size < sizeof(struct perf_record_auxtrace_info) +
4190 min_sz)
4191 return -EINVAL;
4192
4193 pt = zalloc(sizeof(struct intel_pt));
4194 if (!pt)
4195 return -ENOMEM;
4196
4197 pt->vmcs_info = RB_ROOT;
4198
4199 addr_filters__init(&pt->filts);
4200
4201 err = perf_config(fn: intel_pt_perf_config, pt);
4202 if (err)
4203 goto err_free;
4204
4205 err = auxtrace_queues__init(&pt->queues);
4206 if (err)
4207 goto err_free;
4208
4209 if (session->itrace_synth_opts->set) {
4210 pt->synth_opts = *session->itrace_synth_opts;
4211 } else {
4212 struct itrace_synth_opts *opts = session->itrace_synth_opts;
4213
4214 itrace_synth_opts__set_default(&pt->synth_opts, opts->default_no_sample);
4215 if (!opts->default_no_sample && !opts->inject) {
4216 pt->synth_opts.branches = false;
4217 pt->synth_opts.callchain = true;
4218 pt->synth_opts.add_callchain = true;
4219 }
4220 pt->synth_opts.thread_stack = opts->thread_stack;
4221 }
4222
4223 if (!(pt->synth_opts.log_plus_flags & AUXTRACE_LOG_FLG_USE_STDOUT))
4224 intel_pt_log_set_name(INTEL_PT_PMU_NAME);
4225
4226 pt->session = session;
4227 pt->machine = &session->machines.host; /* No kvm support */
4228 pt->auxtrace_type = auxtrace_info->type;
4229 pt->pmu_type = auxtrace_info->priv[INTEL_PT_PMU_TYPE];
4230 pt->tc.time_shift = auxtrace_info->priv[INTEL_PT_TIME_SHIFT];
4231 pt->tc.time_mult = auxtrace_info->priv[INTEL_PT_TIME_MULT];
4232 pt->tc.time_zero = auxtrace_info->priv[INTEL_PT_TIME_ZERO];
4233 pt->cap_user_time_zero = auxtrace_info->priv[INTEL_PT_CAP_USER_TIME_ZERO];
4234 pt->tsc_bit = auxtrace_info->priv[INTEL_PT_TSC_BIT];
4235 pt->noretcomp_bit = auxtrace_info->priv[INTEL_PT_NORETCOMP_BIT];
4236 pt->have_sched_switch = auxtrace_info->priv[INTEL_PT_HAVE_SCHED_SWITCH];
4237 pt->snapshot_mode = auxtrace_info->priv[INTEL_PT_SNAPSHOT_MODE];
4238 pt->per_cpu_mmaps = auxtrace_info->priv[INTEL_PT_PER_CPU_MMAPS];
4239 intel_pt_print_info(arr: &auxtrace_info->priv[0], start: INTEL_PT_PMU_TYPE,
4240 finish: INTEL_PT_PER_CPU_MMAPS);
4241
4242 if (intel_pt_has(auxtrace_info, pos: INTEL_PT_CYC_BIT)) {
4243 pt->mtc_bit = auxtrace_info->priv[INTEL_PT_MTC_BIT];
4244 pt->mtc_freq_bits = auxtrace_info->priv[INTEL_PT_MTC_FREQ_BITS];
4245 pt->tsc_ctc_ratio_n = auxtrace_info->priv[INTEL_PT_TSC_CTC_N];
4246 pt->tsc_ctc_ratio_d = auxtrace_info->priv[INTEL_PT_TSC_CTC_D];
4247 pt->cyc_bit = auxtrace_info->priv[INTEL_PT_CYC_BIT];
4248 intel_pt_print_info(arr: &auxtrace_info->priv[0], start: INTEL_PT_MTC_BIT,
4249 finish: INTEL_PT_CYC_BIT);
4250 }
4251
4252 if (intel_pt_has(auxtrace_info, pos: INTEL_PT_MAX_NONTURBO_RATIO)) {
4253 pt->max_non_turbo_ratio =
4254 auxtrace_info->priv[INTEL_PT_MAX_NONTURBO_RATIO];
4255 intel_pt_print_info(arr: &auxtrace_info->priv[0],
4256 start: INTEL_PT_MAX_NONTURBO_RATIO,
4257 finish: INTEL_PT_MAX_NONTURBO_RATIO);
4258 }
4259
4260 info = &auxtrace_info->priv[INTEL_PT_FILTER_STR_LEN] + 1;
4261 info_end = (void *)auxtrace_info + auxtrace_info->header.size;
4262
4263 if (intel_pt_has(auxtrace_info, pos: INTEL_PT_FILTER_STR_LEN)) {
4264 size_t len;
4265
4266 len = auxtrace_info->priv[INTEL_PT_FILTER_STR_LEN];
4267 intel_pt_print_info(arr: &auxtrace_info->priv[0],
4268 start: INTEL_PT_FILTER_STR_LEN,
4269 finish: INTEL_PT_FILTER_STR_LEN);
4270 if (len) {
4271 const char *filter = (const char *)info;
4272
4273 len = roundup(len + 1, 8);
4274 info += len >> 3;
4275 if ((void *)info > info_end) {
4276 pr_err("%s: bad filter string length\n", __func__);
4277 err = -EINVAL;
4278 goto err_free_queues;
4279 }
4280 pt->filter = memdup(filter, len);
4281 if (!pt->filter) {
4282 err = -ENOMEM;
4283 goto err_free_queues;
4284 }
4285 if (session->header.needs_swap)
4286 mem_bswap_64(src: pt->filter, byte_size: len);
4287 if (pt->filter[len - 1]) {
4288 pr_err("%s: filter string not null terminated\n", __func__);
4289 err = -EINVAL;
4290 goto err_free_queues;
4291 }
4292 err = addr_filters__parse_bare_filter(&pt->filts,
4293 filter);
4294 if (err)
4295 goto err_free_queues;
4296 }
4297 intel_pt_print_info_str(name: "Filter string", str: pt->filter);
4298 }
4299
4300 if ((void *)info < info_end) {
4301 pt->cap_event_trace = *info++;
4302 if (dump_trace)
4303 fprintf(stdout, " Cap Event Trace %d\n",
4304 pt->cap_event_trace);
4305 }
4306
4307 pt->timeless_decoding = intel_pt_timeless_decoding(pt);
4308 if (pt->timeless_decoding && !pt->tc.time_mult)
4309 pt->tc.time_mult = 1;
4310 pt->have_tsc = intel_pt_have_tsc(pt);
4311 pt->sampling_mode = intel_pt_sampling_mode(pt);
4312 pt->est_tsc = !pt->timeless_decoding;
4313
4314 if (pt->synth_opts.vm_time_correlation) {
4315 if (pt->timeless_decoding) {
4316 pr_err("Intel PT has no time information for VM Time Correlation\n");
4317 err = -EINVAL;
4318 goto err_free_queues;
4319 }
4320 if (session->itrace_synth_opts->ptime_range) {
4321 pr_err("Time ranges cannot be specified with VM Time Correlation\n");
4322 err = -EINVAL;
4323 goto err_free_queues;
4324 }
4325 /* Currently TSC Offset is calculated using MTC packets */
4326 if (!intel_pt_have_mtc(pt)) {
4327 pr_err("MTC packets must have been enabled for VM Time Correlation\n");
4328 err = -EINVAL;
4329 goto err_free_queues;
4330 }
4331 err = intel_pt_parse_vm_tm_corr_args(pt);
4332 if (err)
4333 goto err_free_queues;
4334 }
4335
4336 pt->unknown_thread = thread__new(pid: 999999999, tid: 999999999);
4337 if (!pt->unknown_thread) {
4338 err = -ENOMEM;
4339 goto err_free_queues;
4340 }
4341
4342 err = thread__set_comm(thread: pt->unknown_thread, comm: "unknown", timestamp: 0);
4343 if (err)
4344 goto err_delete_thread;
4345 if (thread__init_maps(thread: pt->unknown_thread, machine: pt->machine)) {
4346 err = -ENOMEM;
4347 goto err_delete_thread;
4348 }
4349
4350 pt->auxtrace.process_event = intel_pt_process_event;
4351 pt->auxtrace.process_auxtrace_event = intel_pt_process_auxtrace_event;
4352 pt->auxtrace.queue_data = intel_pt_queue_data;
4353 pt->auxtrace.dump_auxtrace_sample = intel_pt_dump_sample;
4354 pt->auxtrace.flush_events = intel_pt_flush;
4355 pt->auxtrace.free_events = intel_pt_free_events;
4356 pt->auxtrace.free = intel_pt_free;
4357 pt->auxtrace.evsel_is_auxtrace = intel_pt_evsel_is_auxtrace;
4358 session->auxtrace = &pt->auxtrace;
4359
4360 if (dump_trace)
4361 return 0;
4362
4363 if (pt->have_sched_switch == 1) {
4364 pt->switch_evsel = intel_pt_find_sched_switch(evlist: session->evlist);
4365 if (!pt->switch_evsel) {
4366 pr_err("%s: missing sched_switch event\n", __func__);
4367 err = -EINVAL;
4368 goto err_delete_thread;
4369 }
4370 } else if (pt->have_sched_switch == 2 &&
4371 !intel_pt_find_switch(evlist: session->evlist)) {
4372 pr_err("%s: missing context_switch attribute flag\n", __func__);
4373 err = -EINVAL;
4374 goto err_delete_thread;
4375 }
4376
4377 if (pt->synth_opts.log) {
4378 bool log_on_error = pt->synth_opts.log_plus_flags & AUXTRACE_LOG_FLG_ON_ERROR;
4379 unsigned int log_on_error_size = pt->synth_opts.log_on_error_size;
4380
4381 intel_pt_log_enable(dump_log_on_error: log_on_error, log_on_error_size);
4382 }
4383
4384 /* Maximum non-turbo ratio is TSC freq / 100 MHz */
4385 if (pt->tc.time_mult) {
4386 u64 tsc_freq = intel_pt_ns_to_ticks(pt, ns: 1000000000);
4387
4388 if (!pt->max_non_turbo_ratio)
4389 pt->max_non_turbo_ratio =
4390 (tsc_freq + 50000000) / 100000000;
4391 intel_pt_log("TSC frequency %"PRIu64"\n", tsc_freq);
4392 intel_pt_log("Maximum non-turbo ratio %u\n",
4393 pt->max_non_turbo_ratio);
4394 pt->cbr2khz = tsc_freq / pt->max_non_turbo_ratio / 1000;
4395 }
4396
4397 err = intel_pt_setup_time_ranges(pt, opts: session->itrace_synth_opts);
4398 if (err)
4399 goto err_delete_thread;
4400
4401 if (pt->synth_opts.calls)
4402 pt->branches_filter |= PERF_IP_FLAG_CALL | PERF_IP_FLAG_ASYNC |
4403 PERF_IP_FLAG_TRACE_END;
4404 if (pt->synth_opts.returns)
4405 pt->branches_filter |= PERF_IP_FLAG_RETURN |
4406 PERF_IP_FLAG_TRACE_BEGIN;
4407
4408 if ((pt->synth_opts.callchain || pt->synth_opts.add_callchain) &&
4409 !symbol_conf.use_callchain) {
4410 symbol_conf.use_callchain = true;
4411 if (callchain_register_param(param: &callchain_param) < 0) {
4412 symbol_conf.use_callchain = false;
4413 pt->synth_opts.callchain = false;
4414 pt->synth_opts.add_callchain = false;
4415 }
4416 }
4417
4418 if (pt->synth_opts.add_callchain) {
4419 err = intel_pt_callchain_init(pt);
4420 if (err)
4421 goto err_delete_thread;
4422 }
4423
4424 if (pt->synth_opts.last_branch || pt->synth_opts.add_last_branch) {
4425 pt->br_stack_sz = pt->synth_opts.last_branch_sz;
4426 pt->br_stack_sz_plus = pt->br_stack_sz;
4427 }
4428
4429 if (pt->synth_opts.add_last_branch) {
4430 err = intel_pt_br_stack_init(pt);
4431 if (err)
4432 goto err_delete_thread;
4433 /*
4434 * Additional branch stack size to cater for tracing from the
4435 * actual sample ip to where the sample time is recorded.
4436 * Measured at about 200 branches, but generously set to 1024.
4437 * If kernel space is not being traced, then add just 1 for the
4438 * branch to kernel space.
4439 */
4440 if (intel_pt_tracing_kernel(pt))
4441 pt->br_stack_sz_plus += 1024;
4442 else
4443 pt->br_stack_sz_plus += 1;
4444 }
4445
4446 pt->use_thread_stack = pt->synth_opts.callchain ||
4447 pt->synth_opts.add_callchain ||
4448 pt->synth_opts.thread_stack ||
4449 pt->synth_opts.last_branch ||
4450 pt->synth_opts.add_last_branch;
4451
4452 pt->callstack = pt->synth_opts.callchain ||
4453 pt->synth_opts.add_callchain ||
4454 pt->synth_opts.thread_stack;
4455
4456 err = intel_pt_synth_events(pt, session);
4457 if (err)
4458 goto err_delete_thread;
4459
4460 intel_pt_setup_pebs_events(pt);
4461
4462 if (perf_data__is_pipe(data: session->data)) {
4463 pr_warning("WARNING: Intel PT with pipe mode is not recommended.\n"
4464 " The output cannot relied upon. In particular,\n"
4465 " timestamps and the order of events may be incorrect.\n");
4466 }
4467
4468 if (pt->sampling_mode || list_empty(head: &session->auxtrace_index))
4469 err = auxtrace_queue_data(session, true, true);
4470 else
4471 err = auxtrace_queues__process_index(&pt->queues, session);
4472 if (err)
4473 goto err_delete_thread;
4474
4475 if (pt->queues.populated)
4476 pt->data_queued = true;
4477
4478 if (pt->timeless_decoding)
4479 pr_debug2("Intel PT decoding without timestamps\n");
4480
4481 return 0;
4482
4483err_delete_thread:
4484 zfree(&pt->chain);
4485 thread__zput(pt->unknown_thread);
4486err_free_queues:
4487 intel_pt_log_disable();
4488 auxtrace_queues__free(&pt->queues);
4489 session->auxtrace = NULL;
4490err_free:
4491 addr_filters__exit(&pt->filts);
4492 zfree(&pt->filter);
4493 zfree(&pt->time_ranges);
4494 free(pt);
4495 return err;
4496}
4497

source code of linux/tools/perf/util/intel-pt.c