1// SPDX-License-Identifier: GPL-2.0
2/* Copyright (c) 2023 Meta Platforms, Inc. and affiliates. */
3
4#include <stdbool.h>
5#include <linux/bpf.h>
6#include <bpf/bpf_helpers.h>
7#include "bpf_misc.h"
8#include "bpf_compiler.h"
9
10#define ARRAY_SIZE(x) (int)(sizeof(x) / sizeof((x)[0]))
11
12static volatile int zero = 0;
13
14int my_pid;
15int arr[256];
16int small_arr[16] SEC(".data.small_arr");
17
18struct {
19 __uint(type, BPF_MAP_TYPE_HASH);
20 __uint(max_entries, 10);
21 __type(key, int);
22 __type(value, int);
23} amap SEC(".maps");
24
25#ifdef REAL_TEST
26#define MY_PID_GUARD() if (my_pid != (bpf_get_current_pid_tgid() >> 32)) return 0
27#else
28#define MY_PID_GUARD() ({ })
29#endif
30
31SEC("?raw_tp")
32__failure __msg("math between map_value pointer and register with unbounded min value is not allowed")
33int iter_err_unsafe_c_loop(const void *ctx)
34{
35 struct bpf_iter_num it;
36 int *v, i = zero; /* obscure initial value of i */
37
38 MY_PID_GUARD();
39
40 bpf_iter_num_new(&it, 0, 1000);
41 while ((v = bpf_iter_num_next(&it))) {
42 i++;
43 }
44 bpf_iter_num_destroy(&it);
45
46 small_arr[i] = 123; /* invalid */
47
48 return 0;
49}
50
51SEC("?raw_tp")
52__failure __msg("unbounded memory access")
53int iter_err_unsafe_asm_loop(const void *ctx)
54{
55 struct bpf_iter_num it;
56
57 MY_PID_GUARD();
58
59 asm volatile (
60 "r6 = %[zero];" /* iteration counter */
61 "r1 = %[it];" /* iterator state */
62 "r2 = 0;"
63 "r3 = 1000;"
64 "r4 = 1;"
65 "call %[bpf_iter_num_new];"
66 "loop:"
67 "r1 = %[it];"
68 "call %[bpf_iter_num_next];"
69 "if r0 == 0 goto out;"
70 "r6 += 1;"
71 "goto loop;"
72 "out:"
73 "r1 = %[it];"
74 "call %[bpf_iter_num_destroy];"
75 "r1 = %[small_arr];"
76 "r2 = r6;"
77 "r2 <<= 2;"
78 "r1 += r2;"
79 "*(u32 *)(r1 + 0) = r6;" /* invalid */
80 :
81 : [it]"r"(&it),
82 [small_arr]"r"(small_arr),
83 [zero]"r"(zero),
84 __imm(bpf_iter_num_new),
85 __imm(bpf_iter_num_next),
86 __imm(bpf_iter_num_destroy)
87 : __clobber_common, "r6"
88 );
89
90 return 0;
91}
92
93SEC("raw_tp")
94__success
95int iter_while_loop(const void *ctx)
96{
97 struct bpf_iter_num it;
98 int *v;
99
100 MY_PID_GUARD();
101
102 bpf_iter_num_new(&it, 0, 3);
103 while ((v = bpf_iter_num_next(&it))) {
104 bpf_printk("ITER_BASIC: E1 VAL: v=%d", *v);
105 }
106 bpf_iter_num_destroy(&it);
107
108 return 0;
109}
110
111SEC("raw_tp")
112__success
113int iter_while_loop_auto_cleanup(const void *ctx)
114{
115 __attribute__((cleanup(bpf_iter_num_destroy))) struct bpf_iter_num it;
116 int *v;
117
118 MY_PID_GUARD();
119
120 bpf_iter_num_new(&it, 0, 3);
121 while ((v = bpf_iter_num_next(&it))) {
122 bpf_printk("ITER_BASIC: E1 VAL: v=%d", *v);
123 }
124 /* (!) no explicit bpf_iter_num_destroy() */
125
126 return 0;
127}
128
129SEC("raw_tp")
130__success
131int iter_for_loop(const void *ctx)
132{
133 struct bpf_iter_num it;
134 int *v;
135
136 MY_PID_GUARD();
137
138 bpf_iter_num_new(&it, 5, 10);
139 for (v = bpf_iter_num_next(&it); v; v = bpf_iter_num_next(&it)) {
140 bpf_printk("ITER_BASIC: E2 VAL: v=%d", *v);
141 }
142 bpf_iter_num_destroy(&it);
143
144 return 0;
145}
146
147SEC("raw_tp")
148__success
149int iter_bpf_for_each_macro(const void *ctx)
150{
151 int *v;
152
153 MY_PID_GUARD();
154
155 bpf_for_each(num, v, 5, 10) {
156 bpf_printk("ITER_BASIC: E2 VAL: v=%d", *v);
157 }
158
159 return 0;
160}
161
162SEC("raw_tp")
163__success
164int iter_bpf_for_macro(const void *ctx)
165{
166 int i;
167
168 MY_PID_GUARD();
169
170 bpf_for(i, 5, 10) {
171 bpf_printk("ITER_BASIC: E2 VAL: v=%d", i);
172 }
173
174 return 0;
175}
176
177SEC("raw_tp")
178__success
179int iter_pragma_unroll_loop(const void *ctx)
180{
181 struct bpf_iter_num it;
182 int *v, i;
183
184 MY_PID_GUARD();
185
186 bpf_iter_num_new(&it, 0, 2);
187 __pragma_loop_no_unroll
188 for (i = 0; i < 3; i++) {
189 v = bpf_iter_num_next(&it);
190 bpf_printk("ITER_BASIC: E3 VAL: i=%d v=%d", i, v ? *v : -1);
191 }
192 bpf_iter_num_destroy(&it);
193
194 return 0;
195}
196
197SEC("raw_tp")
198__success
199int iter_manual_unroll_loop(const void *ctx)
200{
201 struct bpf_iter_num it;
202 int *v;
203
204 MY_PID_GUARD();
205
206 bpf_iter_num_new(&it, 100, 200);
207 v = bpf_iter_num_next(&it);
208 bpf_printk("ITER_BASIC: E4 VAL: v=%d", v ? *v : -1);
209 v = bpf_iter_num_next(&it);
210 bpf_printk("ITER_BASIC: E4 VAL: v=%d", v ? *v : -1);
211 v = bpf_iter_num_next(&it);
212 bpf_printk("ITER_BASIC: E4 VAL: v=%d", v ? *v : -1);
213 v = bpf_iter_num_next(&it);
214 bpf_printk("ITER_BASIC: E4 VAL: v=%d\n", v ? *v : -1);
215 bpf_iter_num_destroy(&it);
216
217 return 0;
218}
219
220SEC("raw_tp")
221__success
222int iter_multiple_sequential_loops(const void *ctx)
223{
224 struct bpf_iter_num it;
225 int *v, i;
226
227 MY_PID_GUARD();
228
229 bpf_iter_num_new(&it, 0, 3);
230 while ((v = bpf_iter_num_next(&it))) {
231 bpf_printk("ITER_BASIC: E1 VAL: v=%d", *v);
232 }
233 bpf_iter_num_destroy(&it);
234
235 bpf_iter_num_new(&it, 5, 10);
236 for (v = bpf_iter_num_next(&it); v; v = bpf_iter_num_next(&it)) {
237 bpf_printk("ITER_BASIC: E2 VAL: v=%d", *v);
238 }
239 bpf_iter_num_destroy(&it);
240
241 bpf_iter_num_new(&it, 0, 2);
242 __pragma_loop_no_unroll
243 for (i = 0; i < 3; i++) {
244 v = bpf_iter_num_next(&it);
245 bpf_printk("ITER_BASIC: E3 VAL: i=%d v=%d", i, v ? *v : -1);
246 }
247 bpf_iter_num_destroy(&it);
248
249 bpf_iter_num_new(&it, 100, 200);
250 v = bpf_iter_num_next(&it);
251 bpf_printk("ITER_BASIC: E4 VAL: v=%d", v ? *v : -1);
252 v = bpf_iter_num_next(&it);
253 bpf_printk("ITER_BASIC: E4 VAL: v=%d", v ? *v : -1);
254 v = bpf_iter_num_next(&it);
255 bpf_printk("ITER_BASIC: E4 VAL: v=%d", v ? *v : -1);
256 v = bpf_iter_num_next(&it);
257 bpf_printk("ITER_BASIC: E4 VAL: v=%d\n", v ? *v : -1);
258 bpf_iter_num_destroy(&it);
259
260 return 0;
261}
262
263SEC("raw_tp")
264__success
265int iter_limit_cond_break_loop(const void *ctx)
266{
267 struct bpf_iter_num it;
268 int *v, i = 0, sum = 0;
269
270 MY_PID_GUARD();
271
272 bpf_iter_num_new(&it, 0, 10);
273 while ((v = bpf_iter_num_next(&it))) {
274 bpf_printk("ITER_SIMPLE: i=%d v=%d", i, *v);
275 sum += *v;
276
277 i++;
278 if (i > 3)
279 break;
280 }
281 bpf_iter_num_destroy(&it);
282
283 bpf_printk("ITER_SIMPLE: sum=%d\n", sum);
284
285 return 0;
286}
287
288SEC("raw_tp")
289__success
290int iter_obfuscate_counter(const void *ctx)
291{
292 struct bpf_iter_num it;
293 int *v, sum = 0;
294 /* Make i's initial value unknowable for verifier to prevent it from
295 * pruning if/else branch inside the loop body and marking i as precise.
296 */
297 int i = zero;
298
299 MY_PID_GUARD();
300
301 bpf_iter_num_new(&it, 0, 10);
302 while ((v = bpf_iter_num_next(&it))) {
303 int x;
304
305 i += 1;
306
307 /* If we initialized i as `int i = 0;` above, verifier would
308 * track that i becomes 1 on first iteration after increment
309 * above, and here verifier would eagerly prune else branch
310 * and mark i as precise, ruining open-coded iterator logic
311 * completely, as each next iteration would have a different
312 * *precise* value of i, and thus there would be no
313 * convergence of state. This would result in reaching maximum
314 * instruction limit, no matter what the limit is.
315 */
316 if (i == 1)
317 x = 123;
318 else
319 x = i * 3 + 1;
320
321 bpf_printk("ITER_OBFUSCATE_COUNTER: i=%d v=%d x=%d", i, *v, x);
322
323 sum += x;
324 }
325 bpf_iter_num_destroy(&it);
326
327 bpf_printk("ITER_OBFUSCATE_COUNTER: sum=%d\n", sum);
328
329 return 0;
330}
331
332SEC("raw_tp")
333__success
334int iter_search_loop(const void *ctx)
335{
336 struct bpf_iter_num it;
337 int *v, *elem = NULL;
338 bool found = false;
339
340 MY_PID_GUARD();
341
342 bpf_iter_num_new(&it, 0, 10);
343
344 while ((v = bpf_iter_num_next(&it))) {
345 bpf_printk("ITER_SEARCH_LOOP: v=%d", *v);
346
347 if (*v == 2) {
348 found = true;
349 elem = v;
350 barrier_var(elem);
351 }
352 }
353
354 /* should fail to verify if bpf_iter_num_destroy() is here */
355
356 if (found)
357 /* here found element will be wrong, we should have copied
358 * value to a variable, but here we want to make sure we can
359 * access memory after the loop anyways
360 */
361 bpf_printk("ITER_SEARCH_LOOP: FOUND IT = %d!\n", *elem);
362 else
363 bpf_printk("ITER_SEARCH_LOOP: NOT FOUND IT!\n");
364
365 bpf_iter_num_destroy(&it);
366
367 return 0;
368}
369
370SEC("raw_tp")
371__success
372int iter_array_fill(const void *ctx)
373{
374 int sum, i;
375
376 MY_PID_GUARD();
377
378 bpf_for(i, 0, ARRAY_SIZE(arr)) {
379 arr[i] = i * 2;
380 }
381
382 sum = 0;
383 bpf_for(i, 0, ARRAY_SIZE(arr)) {
384 sum += arr[i];
385 }
386
387 bpf_printk("ITER_ARRAY_FILL: sum=%d (should be %d)\n", sum, 255 * 256);
388
389 return 0;
390}
391
392static int arr2d[4][5];
393static int arr2d_row_sums[4];
394static int arr2d_col_sums[5];
395
396SEC("raw_tp")
397__success
398int iter_nested_iters(const void *ctx)
399{
400 int sum, row, col;
401
402 MY_PID_GUARD();
403
404 bpf_for(row, 0, ARRAY_SIZE(arr2d)) {
405 bpf_for( col, 0, ARRAY_SIZE(arr2d[0])) {
406 arr2d[row][col] = row * col;
407 }
408 }
409
410 /* zero-initialize sums */
411 sum = 0;
412 bpf_for(row, 0, ARRAY_SIZE(arr2d)) {
413 arr2d_row_sums[row] = 0;
414 }
415 bpf_for(col, 0, ARRAY_SIZE(arr2d[0])) {
416 arr2d_col_sums[col] = 0;
417 }
418
419 /* calculate sums */
420 bpf_for(row, 0, ARRAY_SIZE(arr2d)) {
421 bpf_for(col, 0, ARRAY_SIZE(arr2d[0])) {
422 sum += arr2d[row][col];
423 arr2d_row_sums[row] += arr2d[row][col];
424 arr2d_col_sums[col] += arr2d[row][col];
425 }
426 }
427
428 bpf_printk("ITER_NESTED_ITERS: total sum=%d", sum);
429 bpf_for(row, 0, ARRAY_SIZE(arr2d)) {
430 bpf_printk("ITER_NESTED_ITERS: row #%d sum=%d", row, arr2d_row_sums[row]);
431 }
432 bpf_for(col, 0, ARRAY_SIZE(arr2d[0])) {
433 bpf_printk("ITER_NESTED_ITERS: col #%d sum=%d%s",
434 col, arr2d_col_sums[col],
435 col == ARRAY_SIZE(arr2d[0]) - 1 ? "\n" : "");
436 }
437
438 return 0;
439}
440
441SEC("raw_tp")
442__success
443int iter_nested_deeply_iters(const void *ctx)
444{
445 int sum = 0;
446
447 MY_PID_GUARD();
448
449 bpf_repeat(10) {
450 bpf_repeat(10) {
451 bpf_repeat(10) {
452 bpf_repeat(10) {
453 bpf_repeat(10) {
454 sum += 1;
455 }
456 }
457 }
458 }
459 /* validate that we can break from inside bpf_repeat() */
460 break;
461 }
462
463 return sum;
464}
465
466static __noinline void fill_inner_dimension(int row)
467{
468 int col;
469
470 bpf_for(col, 0, ARRAY_SIZE(arr2d[0])) {
471 arr2d[row][col] = row * col;
472 }
473}
474
475static __noinline int sum_inner_dimension(int row)
476{
477 int sum = 0, col;
478
479 bpf_for(col, 0, ARRAY_SIZE(arr2d[0])) {
480 sum += arr2d[row][col];
481 arr2d_row_sums[row] += arr2d[row][col];
482 arr2d_col_sums[col] += arr2d[row][col];
483 }
484
485 return sum;
486}
487
488SEC("raw_tp")
489__success
490int iter_subprog_iters(const void *ctx)
491{
492 int sum, row, col;
493
494 MY_PID_GUARD();
495
496 bpf_for(row, 0, ARRAY_SIZE(arr2d)) {
497 fill_inner_dimension(row);
498 }
499
500 /* zero-initialize sums */
501 sum = 0;
502 bpf_for(row, 0, ARRAY_SIZE(arr2d)) {
503 arr2d_row_sums[row] = 0;
504 }
505 bpf_for(col, 0, ARRAY_SIZE(arr2d[0])) {
506 arr2d_col_sums[col] = 0;
507 }
508
509 /* calculate sums */
510 bpf_for(row, 0, ARRAY_SIZE(arr2d)) {
511 sum += sum_inner_dimension(row);
512 }
513
514 bpf_printk("ITER_SUBPROG_ITERS: total sum=%d", sum);
515 bpf_for(row, 0, ARRAY_SIZE(arr2d)) {
516 bpf_printk("ITER_SUBPROG_ITERS: row #%d sum=%d",
517 row, arr2d_row_sums[row]);
518 }
519 bpf_for(col, 0, ARRAY_SIZE(arr2d[0])) {
520 bpf_printk("ITER_SUBPROG_ITERS: col #%d sum=%d%s",
521 col, arr2d_col_sums[col],
522 col == ARRAY_SIZE(arr2d[0]) - 1 ? "\n" : "");
523 }
524
525 return 0;
526}
527
528struct {
529 __uint(type, BPF_MAP_TYPE_ARRAY);
530 __type(key, int);
531 __type(value, int);
532 __uint(max_entries, 1000);
533} arr_map SEC(".maps");
534
535SEC("?raw_tp")
536__failure __msg("invalid mem access 'scalar'")
537int iter_err_too_permissive1(const void *ctx)
538{
539 int *map_val = NULL;
540 int key = 0;
541
542 MY_PID_GUARD();
543
544 map_val = bpf_map_lookup_elem(&arr_map, &key);
545 if (!map_val)
546 return 0;
547
548 bpf_repeat(1000000) {
549 map_val = NULL;
550 }
551
552 *map_val = 123;
553
554 return 0;
555}
556
557SEC("?raw_tp")
558__failure __msg("invalid mem access 'map_value_or_null'")
559int iter_err_too_permissive2(const void *ctx)
560{
561 int *map_val = NULL;
562 int key = 0;
563
564 MY_PID_GUARD();
565
566 map_val = bpf_map_lookup_elem(&arr_map, &key);
567 if (!map_val)
568 return 0;
569
570 bpf_repeat(1000000) {
571 map_val = bpf_map_lookup_elem(&arr_map, &key);
572 }
573
574 *map_val = 123;
575
576 return 0;
577}
578
579SEC("?raw_tp")
580__failure __msg("invalid mem access 'map_value_or_null'")
581int iter_err_too_permissive3(const void *ctx)
582{
583 int *map_val = NULL;
584 int key = 0;
585 bool found = false;
586
587 MY_PID_GUARD();
588
589 bpf_repeat(1000000) {
590 map_val = bpf_map_lookup_elem(&arr_map, &key);
591 found = true;
592 }
593
594 if (found)
595 *map_val = 123;
596
597 return 0;
598}
599
600SEC("raw_tp")
601__success
602int iter_tricky_but_fine(const void *ctx)
603{
604 int *map_val = NULL;
605 int key = 0;
606 bool found = false;
607
608 MY_PID_GUARD();
609
610 bpf_repeat(1000000) {
611 map_val = bpf_map_lookup_elem(&arr_map, &key);
612 if (map_val) {
613 found = true;
614 break;
615 }
616 }
617
618 if (found)
619 *map_val = 123;
620
621 return 0;
622}
623
624#define __bpf_memzero(p, sz) bpf_probe_read_kernel((p), (sz), 0)
625
626SEC("raw_tp")
627__success
628int iter_stack_array_loop(const void *ctx)
629{
630 long arr1[16], arr2[16], sum = 0;
631 int i;
632
633 MY_PID_GUARD();
634
635 /* zero-init arr1 and arr2 in such a way that verifier doesn't know
636 * it's all zeros; if we don't do that, we'll make BPF verifier track
637 * all combination of zero/non-zero stack slots for arr1/arr2, which
638 * will lead to O(2^(ARRAY_SIZE(arr1)+ARRAY_SIZE(arr2))) different
639 * states
640 */
641 __bpf_memzero(arr1, sizeof(arr1));
642 __bpf_memzero(arr2, sizeof(arr1));
643
644 /* validate that we can break and continue when using bpf_for() */
645 bpf_for(i, 0, ARRAY_SIZE(arr1)) {
646 if (i & 1) {
647 arr1[i] = i;
648 continue;
649 } else {
650 arr2[i] = i;
651 break;
652 }
653 }
654
655 bpf_for(i, 0, ARRAY_SIZE(arr1)) {
656 sum += arr1[i] + arr2[i];
657 }
658
659 return sum;
660}
661
662static __noinline void fill(struct bpf_iter_num *it, int *arr, __u32 n, int mul)
663{
664 int *t, i;
665
666 while ((t = bpf_iter_num_next(it))) {
667 i = *t;
668 if (i >= n)
669 break;
670 arr[i] = i * mul;
671 }
672}
673
674static __noinline int sum(struct bpf_iter_num *it, int *arr, __u32 n)
675{
676 int *t, i, sum = 0;;
677
678 while ((t = bpf_iter_num_next(it))) {
679 i = *t;
680 if ((__u32)i >= n)
681 break;
682 sum += arr[i];
683 }
684
685 return sum;
686}
687
688SEC("raw_tp")
689__success
690int iter_pass_iter_ptr_to_subprog(const void *ctx)
691{
692 int arr1[16], arr2[32];
693 struct bpf_iter_num it;
694 int n, sum1, sum2;
695
696 MY_PID_GUARD();
697
698 /* fill arr1 */
699 n = ARRAY_SIZE(arr1);
700 bpf_iter_num_new(&it, 0, n);
701 fill(&it, arr1, n, 2);
702 bpf_iter_num_destroy(&it);
703
704 /* fill arr2 */
705 n = ARRAY_SIZE(arr2);
706 bpf_iter_num_new(&it, 0, n);
707 fill(&it, arr2, n, 10);
708 bpf_iter_num_destroy(&it);
709
710 /* sum arr1 */
711 n = ARRAY_SIZE(arr1);
712 bpf_iter_num_new(&it, 0, n);
713 sum1 = sum(&it, arr1, n);
714 bpf_iter_num_destroy(&it);
715
716 /* sum arr2 */
717 n = ARRAY_SIZE(arr2);
718 bpf_iter_num_new(&it, 0, n);
719 sum2 = sum(&it, arr2, n);
720 bpf_iter_num_destroy(&it);
721
722 bpf_printk("sum1=%d, sum2=%d", sum1, sum2);
723
724 return 0;
725}
726
727SEC("?raw_tp")
728__failure
729__msg("R1 type=scalar expected=fp")
730__naked int delayed_read_mark(void)
731{
732 /* This is equivalent to C program below.
733 * The call to bpf_iter_num_next() is reachable with r7 values &fp[-16] and 0xdead.
734 * State with r7=&fp[-16] is visited first and follows r6 != 42 ... continue branch.
735 * At this point iterator next() call is reached with r7 that has no read mark.
736 * Loop body with r7=0xdead would only be visited if verifier would decide to continue
737 * with second loop iteration. Absence of read mark on r7 might affect state
738 * equivalent logic used for iterator convergence tracking.
739 *
740 * r7 = &fp[-16]
741 * fp[-16] = 0
742 * r6 = bpf_get_prandom_u32()
743 * bpf_iter_num_new(&fp[-8], 0, 10)
744 * while (bpf_iter_num_next(&fp[-8])) {
745 * r6++
746 * if (r6 != 42) {
747 * r7 = 0xdead
748 * continue;
749 * }
750 * bpf_probe_read_user(r7, 8, 0xdeadbeef); // this is not safe
751 * }
752 * bpf_iter_num_destroy(&fp[-8])
753 * return 0
754 */
755 asm volatile (
756 "r7 = r10;"
757 "r7 += -16;"
758 "r0 = 0;"
759 "*(u64 *)(r7 + 0) = r0;"
760 "call %[bpf_get_prandom_u32];"
761 "r6 = r0;"
762 "r1 = r10;"
763 "r1 += -8;"
764 "r2 = 0;"
765 "r3 = 10;"
766 "call %[bpf_iter_num_new];"
767 "1:"
768 "r1 = r10;"
769 "r1 += -8;"
770 "call %[bpf_iter_num_next];"
771 "if r0 == 0 goto 2f;"
772 "r6 += 1;"
773 "if r6 != 42 goto 3f;"
774 "r7 = 0xdead;"
775 "goto 1b;"
776 "3:"
777 "r1 = r7;"
778 "r2 = 8;"
779 "r3 = 0xdeadbeef;"
780 "call %[bpf_probe_read_user];"
781 "goto 1b;"
782 "2:"
783 "r1 = r10;"
784 "r1 += -8;"
785 "call %[bpf_iter_num_destroy];"
786 "r0 = 0;"
787 "exit;"
788 :
789 : __imm(bpf_get_prandom_u32),
790 __imm(bpf_iter_num_new),
791 __imm(bpf_iter_num_next),
792 __imm(bpf_iter_num_destroy),
793 __imm(bpf_probe_read_user)
794 : __clobber_all
795 );
796}
797
798SEC("?raw_tp")
799__failure
800__msg("math between fp pointer and register with unbounded")
801__naked int delayed_precision_mark(void)
802{
803 /* This is equivalent to C program below.
804 * The test is similar to delayed_iter_mark but verifies that incomplete
805 * precision don't fool verifier.
806 * The call to bpf_iter_num_next() is reachable with r7 values -16 and -32.
807 * State with r7=-16 is visited first and follows r6 != 42 ... continue branch.
808 * At this point iterator next() call is reached with r7 that has no read
809 * and precision marks.
810 * Loop body with r7=-32 would only be visited if verifier would decide to continue
811 * with second loop iteration. Absence of precision mark on r7 might affect state
812 * equivalent logic used for iterator convergence tracking.
813 *
814 * r8 = 0
815 * fp[-16] = 0
816 * r7 = -16
817 * r6 = bpf_get_prandom_u32()
818 * bpf_iter_num_new(&fp[-8], 0, 10)
819 * while (bpf_iter_num_next(&fp[-8])) {
820 * if (r6 != 42) {
821 * r7 = -32
822 * r6 = bpf_get_prandom_u32()
823 * continue;
824 * }
825 * r0 = r10
826 * r0 += r7
827 * r8 = *(u64 *)(r0 + 0) // this is not safe
828 * r6 = bpf_get_prandom_u32()
829 * }
830 * bpf_iter_num_destroy(&fp[-8])
831 * return r8
832 */
833 asm volatile (
834 "r8 = 0;"
835 "*(u64 *)(r10 - 16) = r8;"
836 "r7 = -16;"
837 "call %[bpf_get_prandom_u32];"
838 "r6 = r0;"
839 "r1 = r10;"
840 "r1 += -8;"
841 "r2 = 0;"
842 "r3 = 10;"
843 "call %[bpf_iter_num_new];"
844 "1:"
845 "r1 = r10;"
846 "r1 += -8;\n"
847 "call %[bpf_iter_num_next];"
848 "if r0 == 0 goto 2f;"
849 "if r6 != 42 goto 3f;"
850 "r7 = -33;"
851 "call %[bpf_get_prandom_u32];"
852 "r6 = r0;"
853 "goto 1b;\n"
854 "3:"
855 "r0 = r10;"
856 "r0 += r7;"
857 "r8 = *(u64 *)(r0 + 0);"
858 "call %[bpf_get_prandom_u32];"
859 "r6 = r0;"
860 "goto 1b;\n"
861 "2:"
862 "r1 = r10;"
863 "r1 += -8;"
864 "call %[bpf_iter_num_destroy];"
865 "r0 = r8;"
866 "exit;"
867 :
868 : __imm(bpf_get_prandom_u32),
869 __imm(bpf_iter_num_new),
870 __imm(bpf_iter_num_next),
871 __imm(bpf_iter_num_destroy),
872 __imm(bpf_probe_read_user)
873 : __clobber_all
874 );
875}
876
877SEC("?raw_tp")
878__failure
879__msg("math between fp pointer and register with unbounded")
880__flag(BPF_F_TEST_STATE_FREQ)
881__naked int loop_state_deps1(void)
882{
883 /* This is equivalent to C program below.
884 *
885 * The case turns out to be tricky in a sense that:
886 * - states with c=-25 are explored only on a second iteration
887 * of the outer loop;
888 * - states with read+precise mark on c are explored only on
889 * second iteration of the inner loop and in a state which
890 * is pushed to states stack first.
891 *
892 * Depending on the details of iterator convergence logic
893 * verifier might stop states traversal too early and miss
894 * unsafe c=-25 memory access.
895 *
896 * j = iter_new(); // fp[-16]
897 * a = 0; // r6
898 * b = 0; // r7
899 * c = -24; // r8
900 * while (iter_next(j)) {
901 * i = iter_new(); // fp[-8]
902 * a = 0; // r6
903 * b = 0; // r7
904 * while (iter_next(i)) {
905 * if (a == 1) {
906 * a = 0;
907 * b = 1;
908 * } else if (a == 0) {
909 * a = 1;
910 * if (random() == 42)
911 * continue;
912 * if (b == 1) {
913 * *(r10 + c) = 7; // this is not safe
914 * iter_destroy(i);
915 * iter_destroy(j);
916 * return;
917 * }
918 * }
919 * }
920 * iter_destroy(i);
921 * a = 0;
922 * b = 0;
923 * c = -25;
924 * }
925 * iter_destroy(j);
926 * return;
927 */
928 asm volatile (
929 "r1 = r10;"
930 "r1 += -16;"
931 "r2 = 0;"
932 "r3 = 10;"
933 "call %[bpf_iter_num_new];"
934 "r6 = 0;"
935 "r7 = 0;"
936 "r8 = -24;"
937 "j_loop_%=:"
938 "r1 = r10;"
939 "r1 += -16;"
940 "call %[bpf_iter_num_next];"
941 "if r0 == 0 goto j_loop_end_%=;"
942 "r1 = r10;"
943 "r1 += -8;"
944 "r2 = 0;"
945 "r3 = 10;"
946 "call %[bpf_iter_num_new];"
947 "r6 = 0;"
948 "r7 = 0;"
949 "i_loop_%=:"
950 "r1 = r10;"
951 "r1 += -8;"
952 "call %[bpf_iter_num_next];"
953 "if r0 == 0 goto i_loop_end_%=;"
954 "check_one_r6_%=:"
955 "if r6 != 1 goto check_zero_r6_%=;"
956 "r6 = 0;"
957 "r7 = 1;"
958 "goto i_loop_%=;"
959 "check_zero_r6_%=:"
960 "if r6 != 0 goto i_loop_%=;"
961 "r6 = 1;"
962 "call %[bpf_get_prandom_u32];"
963 "if r0 != 42 goto check_one_r7_%=;"
964 "goto i_loop_%=;"
965 "check_one_r7_%=:"
966 "if r7 != 1 goto i_loop_%=;"
967 "r0 = r10;"
968 "r0 += r8;"
969 "r1 = 7;"
970 "*(u64 *)(r0 + 0) = r1;"
971 "r1 = r10;"
972 "r1 += -8;"
973 "call %[bpf_iter_num_destroy];"
974 "r1 = r10;"
975 "r1 += -16;"
976 "call %[bpf_iter_num_destroy];"
977 "r0 = 0;"
978 "exit;"
979 "i_loop_end_%=:"
980 "r1 = r10;"
981 "r1 += -8;"
982 "call %[bpf_iter_num_destroy];"
983 "r6 = 0;"
984 "r7 = 0;"
985 "r8 = -25;"
986 "goto j_loop_%=;"
987 "j_loop_end_%=:"
988 "r1 = r10;"
989 "r1 += -16;"
990 "call %[bpf_iter_num_destroy];"
991 "r0 = 0;"
992 "exit;"
993 :
994 : __imm(bpf_get_prandom_u32),
995 __imm(bpf_iter_num_new),
996 __imm(bpf_iter_num_next),
997 __imm(bpf_iter_num_destroy)
998 : __clobber_all
999 );
1000}
1001
1002SEC("?raw_tp")
1003__failure
1004__msg("math between fp pointer and register with unbounded")
1005__flag(BPF_F_TEST_STATE_FREQ)
1006__naked int loop_state_deps2(void)
1007{
1008 /* This is equivalent to C program below.
1009 *
1010 * The case turns out to be tricky in a sense that:
1011 * - states with read+precise mark on c are explored only on a second
1012 * iteration of the first inner loop and in a state which is pushed to
1013 * states stack first.
1014 * - states with c=-25 are explored only on a second iteration of the
1015 * second inner loop and in a state which is pushed to states stack
1016 * first.
1017 *
1018 * Depending on the details of iterator convergence logic
1019 * verifier might stop states traversal too early and miss
1020 * unsafe c=-25 memory access.
1021 *
1022 * j = iter_new(); // fp[-16]
1023 * a = 0; // r6
1024 * b = 0; // r7
1025 * c = -24; // r8
1026 * while (iter_next(j)) {
1027 * i = iter_new(); // fp[-8]
1028 * a = 0; // r6
1029 * b = 0; // r7
1030 * while (iter_next(i)) {
1031 * if (a == 1) {
1032 * a = 0;
1033 * b = 1;
1034 * } else if (a == 0) {
1035 * a = 1;
1036 * if (random() == 42)
1037 * continue;
1038 * if (b == 1) {
1039 * *(r10 + c) = 7; // this is not safe
1040 * iter_destroy(i);
1041 * iter_destroy(j);
1042 * return;
1043 * }
1044 * }
1045 * }
1046 * iter_destroy(i);
1047 * i = iter_new(); // fp[-8]
1048 * a = 0; // r6
1049 * b = 0; // r7
1050 * while (iter_next(i)) {
1051 * if (a == 1) {
1052 * a = 0;
1053 * b = 1;
1054 * } else if (a == 0) {
1055 * a = 1;
1056 * if (random() == 42)
1057 * continue;
1058 * if (b == 1) {
1059 * a = 0;
1060 * c = -25;
1061 * }
1062 * }
1063 * }
1064 * iter_destroy(i);
1065 * }
1066 * iter_destroy(j);
1067 * return;
1068 */
1069 asm volatile (
1070 "r1 = r10;"
1071 "r1 += -16;"
1072 "r2 = 0;"
1073 "r3 = 10;"
1074 "call %[bpf_iter_num_new];"
1075 "r6 = 0;"
1076 "r7 = 0;"
1077 "r8 = -24;"
1078 "j_loop_%=:"
1079 "r1 = r10;"
1080 "r1 += -16;"
1081 "call %[bpf_iter_num_next];"
1082 "if r0 == 0 goto j_loop_end_%=;"
1083
1084 /* first inner loop */
1085 "r1 = r10;"
1086 "r1 += -8;"
1087 "r2 = 0;"
1088 "r3 = 10;"
1089 "call %[bpf_iter_num_new];"
1090 "r6 = 0;"
1091 "r7 = 0;"
1092 "i_loop_%=:"
1093 "r1 = r10;"
1094 "r1 += -8;"
1095 "call %[bpf_iter_num_next];"
1096 "if r0 == 0 goto i_loop_end_%=;"
1097 "check_one_r6_%=:"
1098 "if r6 != 1 goto check_zero_r6_%=;"
1099 "r6 = 0;"
1100 "r7 = 1;"
1101 "goto i_loop_%=;"
1102 "check_zero_r6_%=:"
1103 "if r6 != 0 goto i_loop_%=;"
1104 "r6 = 1;"
1105 "call %[bpf_get_prandom_u32];"
1106 "if r0 != 42 goto check_one_r7_%=;"
1107 "goto i_loop_%=;"
1108 "check_one_r7_%=:"
1109 "if r7 != 1 goto i_loop_%=;"
1110 "r0 = r10;"
1111 "r0 += r8;"
1112 "r1 = 7;"
1113 "*(u64 *)(r0 + 0) = r1;"
1114 "r1 = r10;"
1115 "r1 += -8;"
1116 "call %[bpf_iter_num_destroy];"
1117 "r1 = r10;"
1118 "r1 += -16;"
1119 "call %[bpf_iter_num_destroy];"
1120 "r0 = 0;"
1121 "exit;"
1122 "i_loop_end_%=:"
1123 "r1 = r10;"
1124 "r1 += -8;"
1125 "call %[bpf_iter_num_destroy];"
1126
1127 /* second inner loop */
1128 "r1 = r10;"
1129 "r1 += -8;"
1130 "r2 = 0;"
1131 "r3 = 10;"
1132 "call %[bpf_iter_num_new];"
1133 "r6 = 0;"
1134 "r7 = 0;"
1135 "i2_loop_%=:"
1136 "r1 = r10;"
1137 "r1 += -8;"
1138 "call %[bpf_iter_num_next];"
1139 "if r0 == 0 goto i2_loop_end_%=;"
1140 "check2_one_r6_%=:"
1141 "if r6 != 1 goto check2_zero_r6_%=;"
1142 "r6 = 0;"
1143 "r7 = 1;"
1144 "goto i2_loop_%=;"
1145 "check2_zero_r6_%=:"
1146 "if r6 != 0 goto i2_loop_%=;"
1147 "r6 = 1;"
1148 "call %[bpf_get_prandom_u32];"
1149 "if r0 != 42 goto check2_one_r7_%=;"
1150 "goto i2_loop_%=;"
1151 "check2_one_r7_%=:"
1152 "if r7 != 1 goto i2_loop_%=;"
1153 "r6 = 0;"
1154 "r8 = -25;"
1155 "goto i2_loop_%=;"
1156 "i2_loop_end_%=:"
1157 "r1 = r10;"
1158 "r1 += -8;"
1159 "call %[bpf_iter_num_destroy];"
1160
1161 "r6 = 0;"
1162 "r7 = 0;"
1163 "goto j_loop_%=;"
1164 "j_loop_end_%=:"
1165 "r1 = r10;"
1166 "r1 += -16;"
1167 "call %[bpf_iter_num_destroy];"
1168 "r0 = 0;"
1169 "exit;"
1170 :
1171 : __imm(bpf_get_prandom_u32),
1172 __imm(bpf_iter_num_new),
1173 __imm(bpf_iter_num_next),
1174 __imm(bpf_iter_num_destroy)
1175 : __clobber_all
1176 );
1177}
1178
1179SEC("?raw_tp")
1180__success
1181__naked int triple_continue(void)
1182{
1183 /* This is equivalent to C program below.
1184 * High branching factor of the loop body turned out to be
1185 * problematic for one of the iterator convergence tracking
1186 * algorithms explored.
1187 *
1188 * r6 = bpf_get_prandom_u32()
1189 * bpf_iter_num_new(&fp[-8], 0, 10)
1190 * while (bpf_iter_num_next(&fp[-8])) {
1191 * if (bpf_get_prandom_u32() != 42)
1192 * continue;
1193 * if (bpf_get_prandom_u32() != 42)
1194 * continue;
1195 * if (bpf_get_prandom_u32() != 42)
1196 * continue;
1197 * r0 += 0;
1198 * }
1199 * bpf_iter_num_destroy(&fp[-8])
1200 * return 0
1201 */
1202 asm volatile (
1203 "r1 = r10;"
1204 "r1 += -8;"
1205 "r2 = 0;"
1206 "r3 = 10;"
1207 "call %[bpf_iter_num_new];"
1208 "loop_%=:"
1209 "r1 = r10;"
1210 "r1 += -8;"
1211 "call %[bpf_iter_num_next];"
1212 "if r0 == 0 goto loop_end_%=;"
1213 "call %[bpf_get_prandom_u32];"
1214 "if r0 != 42 goto loop_%=;"
1215 "call %[bpf_get_prandom_u32];"
1216 "if r0 != 42 goto loop_%=;"
1217 "call %[bpf_get_prandom_u32];"
1218 "if r0 != 42 goto loop_%=;"
1219 "r0 += 0;"
1220 "goto loop_%=;"
1221 "loop_end_%=:"
1222 "r1 = r10;"
1223 "r1 += -8;"
1224 "call %[bpf_iter_num_destroy];"
1225 "r0 = 0;"
1226 "exit;"
1227 :
1228 : __imm(bpf_get_prandom_u32),
1229 __imm(bpf_iter_num_new),
1230 __imm(bpf_iter_num_next),
1231 __imm(bpf_iter_num_destroy)
1232 : __clobber_all
1233 );
1234}
1235
1236SEC("?raw_tp")
1237__success
1238__naked int widen_spill(void)
1239{
1240 /* This is equivalent to C program below.
1241 * The counter is stored in fp[-16], if this counter is not widened
1242 * verifier states representing loop iterations would never converge.
1243 *
1244 * fp[-16] = 0
1245 * bpf_iter_num_new(&fp[-8], 0, 10)
1246 * while (bpf_iter_num_next(&fp[-8])) {
1247 * r0 = fp[-16];
1248 * r0 += 1;
1249 * fp[-16] = r0;
1250 * }
1251 * bpf_iter_num_destroy(&fp[-8])
1252 * return 0
1253 */
1254 asm volatile (
1255 "r0 = 0;"
1256 "*(u64 *)(r10 - 16) = r0;"
1257 "r1 = r10;"
1258 "r1 += -8;"
1259 "r2 = 0;"
1260 "r3 = 10;"
1261 "call %[bpf_iter_num_new];"
1262 "loop_%=:"
1263 "r1 = r10;"
1264 "r1 += -8;"
1265 "call %[bpf_iter_num_next];"
1266 "if r0 == 0 goto loop_end_%=;"
1267 "r0 = *(u64 *)(r10 - 16);"
1268 "r0 += 1;"
1269 "*(u64 *)(r10 - 16) = r0;"
1270 "goto loop_%=;"
1271 "loop_end_%=:"
1272 "r1 = r10;"
1273 "r1 += -8;"
1274 "call %[bpf_iter_num_destroy];"
1275 "r0 = 0;"
1276 "exit;"
1277 :
1278 : __imm(bpf_iter_num_new),
1279 __imm(bpf_iter_num_next),
1280 __imm(bpf_iter_num_destroy)
1281 : __clobber_all
1282 );
1283}
1284
1285SEC("raw_tp")
1286__success
1287__naked int checkpoint_states_deletion(void)
1288{
1289 /* This is equivalent to C program below.
1290 *
1291 * int *a, *b, *c, *d, *e, *f;
1292 * int i, sum = 0;
1293 * bpf_for(i, 0, 10) {
1294 * a = bpf_map_lookup_elem(&amap, &i);
1295 * b = bpf_map_lookup_elem(&amap, &i);
1296 * c = bpf_map_lookup_elem(&amap, &i);
1297 * d = bpf_map_lookup_elem(&amap, &i);
1298 * e = bpf_map_lookup_elem(&amap, &i);
1299 * f = bpf_map_lookup_elem(&amap, &i);
1300 * if (a) sum += 1;
1301 * if (b) sum += 1;
1302 * if (c) sum += 1;
1303 * if (d) sum += 1;
1304 * if (e) sum += 1;
1305 * if (f) sum += 1;
1306 * }
1307 * return 0;
1308 *
1309 * The body of the loop spawns multiple simulation paths
1310 * with different combination of NULL/non-NULL information for a/b/c/d/e/f.
1311 * Each combination is unique from states_equal() point of view.
1312 * Explored states checkpoint is created after each iterator next call.
1313 * Iterator convergence logic expects that eventually current state
1314 * would get equal to one of the explored states and thus loop
1315 * exploration would be finished (at-least for a specific path).
1316 * Verifier evicts explored states with high miss to hit ratio
1317 * to to avoid comparing current state with too many explored
1318 * states per instruction.
1319 * This test is designed to "stress test" eviction policy defined using formula:
1320 *
1321 * sl->miss_cnt > sl->hit_cnt * N + N // if true sl->state is evicted
1322 *
1323 * Currently N is set to 64, which allows for 6 variables in this test.
1324 */
1325 asm volatile (
1326 "r6 = 0;" /* a */
1327 "r7 = 0;" /* b */
1328 "r8 = 0;" /* c */
1329 "*(u64 *)(r10 - 24) = r6;" /* d */
1330 "*(u64 *)(r10 - 32) = r6;" /* e */
1331 "*(u64 *)(r10 - 40) = r6;" /* f */
1332 "r9 = 0;" /* sum */
1333 "r1 = r10;"
1334 "r1 += -8;"
1335 "r2 = 0;"
1336 "r3 = 10;"
1337 "call %[bpf_iter_num_new];"
1338 "loop_%=:"
1339 "r1 = r10;"
1340 "r1 += -8;"
1341 "call %[bpf_iter_num_next];"
1342 "if r0 == 0 goto loop_end_%=;"
1343
1344 "*(u64 *)(r10 - 16) = r0;"
1345
1346 "r1 = %[amap] ll;"
1347 "r2 = r10;"
1348 "r2 += -16;"
1349 "call %[bpf_map_lookup_elem];"
1350 "r6 = r0;"
1351
1352 "r1 = %[amap] ll;"
1353 "r2 = r10;"
1354 "r2 += -16;"
1355 "call %[bpf_map_lookup_elem];"
1356 "r7 = r0;"
1357
1358 "r1 = %[amap] ll;"
1359 "r2 = r10;"
1360 "r2 += -16;"
1361 "call %[bpf_map_lookup_elem];"
1362 "r8 = r0;"
1363
1364 "r1 = %[amap] ll;"
1365 "r2 = r10;"
1366 "r2 += -16;"
1367 "call %[bpf_map_lookup_elem];"
1368 "*(u64 *)(r10 - 24) = r0;"
1369
1370 "r1 = %[amap] ll;"
1371 "r2 = r10;"
1372 "r2 += -16;"
1373 "call %[bpf_map_lookup_elem];"
1374 "*(u64 *)(r10 - 32) = r0;"
1375
1376 "r1 = %[amap] ll;"
1377 "r2 = r10;"
1378 "r2 += -16;"
1379 "call %[bpf_map_lookup_elem];"
1380 "*(u64 *)(r10 - 40) = r0;"
1381
1382 "if r6 == 0 goto +1;"
1383 "r9 += 1;"
1384 "if r7 == 0 goto +1;"
1385 "r9 += 1;"
1386 "if r8 == 0 goto +1;"
1387 "r9 += 1;"
1388 "r0 = *(u64 *)(r10 - 24);"
1389 "if r0 == 0 goto +1;"
1390 "r9 += 1;"
1391 "r0 = *(u64 *)(r10 - 32);"
1392 "if r0 == 0 goto +1;"
1393 "r9 += 1;"
1394 "r0 = *(u64 *)(r10 - 40);"
1395 "if r0 == 0 goto +1;"
1396 "r9 += 1;"
1397
1398 "goto loop_%=;"
1399 "loop_end_%=:"
1400 "r1 = r10;"
1401 "r1 += -8;"
1402 "call %[bpf_iter_num_destroy];"
1403 "r0 = 0;"
1404 "exit;"
1405 :
1406 : __imm(bpf_map_lookup_elem),
1407 __imm(bpf_iter_num_new),
1408 __imm(bpf_iter_num_next),
1409 __imm(bpf_iter_num_destroy),
1410 __imm_addr(amap)
1411 : __clobber_all
1412 );
1413}
1414
1415struct {
1416 int data[32];
1417 int n;
1418} loop_data;
1419
1420SEC("raw_tp")
1421__success
1422int iter_arr_with_actual_elem_count(const void *ctx)
1423{
1424 int i, n = loop_data.n, sum = 0;
1425
1426 if (n > ARRAY_SIZE(loop_data.data))
1427 return 0;
1428
1429 bpf_for(i, 0, n) {
1430 /* no rechecking of i against ARRAY_SIZE(loop_data.n) */
1431 sum += loop_data.data[i];
1432 }
1433
1434 return sum;
1435}
1436
1437char _license[] SEC("license") = "GPL";
1438

source code of linux/tools/testing/selftests/bpf/progs/iters.c