1//===- llvm/BinaryFormat/ELF.h - ELF constants and structures ---*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This header contains common, non-processor-specific data structures and
10// constants for the ELF file format.
11//
12// The details of the ELF32 bits in this file are largely based on the Tool
13// Interface Standard (TIS) Executable and Linking Format (ELF) Specification
14// Version 1.2, May 1995. The ELF64 stuff is based on ELF-64 Object File Format
15// Version 1.5, Draft 2, May 1998 as well as OpenBSD header files.
16//
17//===----------------------------------------------------------------------===//
18
19#ifndef LLVM_BINARYFORMAT_ELF_H
20#define LLVM_BINARYFORMAT_ELF_H
21
22#include "llvm/ADT/StringRef.h"
23#include <cstdint>
24#include <cstring>
25
26namespace llvm {
27namespace ELF {
28
29using Elf32_Addr = uint32_t; // Program address
30using Elf32_Off = uint32_t; // File offset
31using Elf32_Half = uint16_t;
32using Elf32_Word = uint32_t;
33using Elf32_Sword = int32_t;
34
35using Elf64_Addr = uint64_t;
36using Elf64_Off = uint64_t;
37using Elf64_Half = uint16_t;
38using Elf64_Word = uint32_t;
39using Elf64_Sword = int32_t;
40using Elf64_Xword = uint64_t;
41using Elf64_Sxword = int64_t;
42
43// Object file magic string.
44static const char ElfMagic[] = {0x7f, 'E', 'L', 'F', '\0'};
45
46// e_ident size and indices.
47enum {
48 EI_MAG0 = 0, // File identification index.
49 EI_MAG1 = 1, // File identification index.
50 EI_MAG2 = 2, // File identification index.
51 EI_MAG3 = 3, // File identification index.
52 EI_CLASS = 4, // File class.
53 EI_DATA = 5, // Data encoding.
54 EI_VERSION = 6, // File version.
55 EI_OSABI = 7, // OS/ABI identification.
56 EI_ABIVERSION = 8, // ABI version.
57 EI_PAD = 9, // Start of padding bytes.
58 EI_NIDENT = 16 // Number of bytes in e_ident.
59};
60
61struct Elf32_Ehdr {
62 unsigned char e_ident[EI_NIDENT]; // ELF Identification bytes
63 Elf32_Half e_type; // Type of file (see ET_* below)
64 Elf32_Half e_machine; // Required architecture for this file (see EM_*)
65 Elf32_Word e_version; // Must be equal to 1
66 Elf32_Addr e_entry; // Address to jump to in order to start program
67 Elf32_Off e_phoff; // Program header table's file offset, in bytes
68 Elf32_Off e_shoff; // Section header table's file offset, in bytes
69 Elf32_Word e_flags; // Processor-specific flags
70 Elf32_Half e_ehsize; // Size of ELF header, in bytes
71 Elf32_Half e_phentsize; // Size of an entry in the program header table
72 Elf32_Half e_phnum; // Number of entries in the program header table
73 Elf32_Half e_shentsize; // Size of an entry in the section header table
74 Elf32_Half e_shnum; // Number of entries in the section header table
75 Elf32_Half e_shstrndx; // Sect hdr table index of sect name string table
76
77 bool checkMagic() const {
78 return (memcmp(s1: e_ident, s2: ElfMagic, n: strlen(s: ElfMagic))) == 0;
79 }
80
81 unsigned char getFileClass() const { return e_ident[EI_CLASS]; }
82 unsigned char getDataEncoding() const { return e_ident[EI_DATA]; }
83};
84
85// 64-bit ELF header. Fields are the same as for ELF32, but with different
86// types (see above).
87struct Elf64_Ehdr {
88 unsigned char e_ident[EI_NIDENT];
89 Elf64_Half e_type;
90 Elf64_Half e_machine;
91 Elf64_Word e_version;
92 Elf64_Addr e_entry;
93 Elf64_Off e_phoff;
94 Elf64_Off e_shoff;
95 Elf64_Word e_flags;
96 Elf64_Half e_ehsize;
97 Elf64_Half e_phentsize;
98 Elf64_Half e_phnum;
99 Elf64_Half e_shentsize;
100 Elf64_Half e_shnum;
101 Elf64_Half e_shstrndx;
102
103 bool checkMagic() const {
104 return (memcmp(s1: e_ident, s2: ElfMagic, n: strlen(s: ElfMagic))) == 0;
105 }
106
107 unsigned char getFileClass() const { return e_ident[EI_CLASS]; }
108 unsigned char getDataEncoding() const { return e_ident[EI_DATA]; }
109};
110
111// File types.
112// See current registered ELF types at:
113// http://www.sco.com/developers/gabi/latest/ch4.eheader.html
114enum {
115 ET_NONE = 0, // No file type
116 ET_REL = 1, // Relocatable file
117 ET_EXEC = 2, // Executable file
118 ET_DYN = 3, // Shared object file
119 ET_CORE = 4, // Core file
120 ET_LOOS = 0xfe00, // Beginning of operating system-specific codes
121 ET_HIOS = 0xfeff, // Operating system-specific
122 ET_LOPROC = 0xff00, // Beginning of processor-specific codes
123 ET_HIPROC = 0xffff // Processor-specific
124};
125
126// Versioning
127enum { EV_NONE = 0, EV_CURRENT = 1 };
128
129// Machine architectures
130// See current registered ELF machine architectures at:
131// http://www.uxsglobal.com/developers/gabi/latest/ch4.eheader.html
132enum {
133 EM_NONE = 0, // No machine
134 EM_M32 = 1, // AT&T WE 32100
135 EM_SPARC = 2, // SPARC
136 EM_386 = 3, // Intel 386
137 EM_68K = 4, // Motorola 68000
138 EM_88K = 5, // Motorola 88000
139 EM_IAMCU = 6, // Intel MCU
140 EM_860 = 7, // Intel 80860
141 EM_MIPS = 8, // MIPS R3000
142 EM_S370 = 9, // IBM System/370
143 EM_MIPS_RS3_LE = 10, // MIPS RS3000 Little-endian
144 EM_PARISC = 15, // Hewlett-Packard PA-RISC
145 EM_VPP500 = 17, // Fujitsu VPP500
146 EM_SPARC32PLUS = 18, // Enhanced instruction set SPARC
147 EM_960 = 19, // Intel 80960
148 EM_PPC = 20, // PowerPC
149 EM_PPC64 = 21, // PowerPC64
150 EM_S390 = 22, // IBM System/390
151 EM_SPU = 23, // IBM SPU/SPC
152 EM_V800 = 36, // NEC V800
153 EM_FR20 = 37, // Fujitsu FR20
154 EM_RH32 = 38, // TRW RH-32
155 EM_RCE = 39, // Motorola RCE
156 EM_ARM = 40, // ARM
157 EM_ALPHA = 41, // DEC Alpha
158 EM_SH = 42, // Hitachi SH
159 EM_SPARCV9 = 43, // SPARC V9
160 EM_TRICORE = 44, // Siemens TriCore
161 EM_ARC = 45, // Argonaut RISC Core
162 EM_H8_300 = 46, // Hitachi H8/300
163 EM_H8_300H = 47, // Hitachi H8/300H
164 EM_H8S = 48, // Hitachi H8S
165 EM_H8_500 = 49, // Hitachi H8/500
166 EM_IA_64 = 50, // Intel IA-64 processor architecture
167 EM_MIPS_X = 51, // Stanford MIPS-X
168 EM_COLDFIRE = 52, // Motorola ColdFire
169 EM_68HC12 = 53, // Motorola M68HC12
170 EM_MMA = 54, // Fujitsu MMA Multimedia Accelerator
171 EM_PCP = 55, // Siemens PCP
172 EM_NCPU = 56, // Sony nCPU embedded RISC processor
173 EM_NDR1 = 57, // Denso NDR1 microprocessor
174 EM_STARCORE = 58, // Motorola Star*Core processor
175 EM_ME16 = 59, // Toyota ME16 processor
176 EM_ST100 = 60, // STMicroelectronics ST100 processor
177 EM_TINYJ = 61, // Advanced Logic Corp. TinyJ embedded processor family
178 EM_X86_64 = 62, // AMD x86-64 architecture
179 EM_PDSP = 63, // Sony DSP Processor
180 EM_PDP10 = 64, // Digital Equipment Corp. PDP-10
181 EM_PDP11 = 65, // Digital Equipment Corp. PDP-11
182 EM_FX66 = 66, // Siemens FX66 microcontroller
183 EM_ST9PLUS = 67, // STMicroelectronics ST9+ 8/16 bit microcontroller
184 EM_ST7 = 68, // STMicroelectronics ST7 8-bit microcontroller
185 EM_68HC16 = 69, // Motorola MC68HC16 Microcontroller
186 EM_68HC11 = 70, // Motorola MC68HC11 Microcontroller
187 EM_68HC08 = 71, // Motorola MC68HC08 Microcontroller
188 EM_68HC05 = 72, // Motorola MC68HC05 Microcontroller
189 EM_SVX = 73, // Silicon Graphics SVx
190 EM_ST19 = 74, // STMicroelectronics ST19 8-bit microcontroller
191 EM_VAX = 75, // Digital VAX
192 EM_CRIS = 76, // Axis Communications 32-bit embedded processor
193 EM_JAVELIN = 77, // Infineon Technologies 32-bit embedded processor
194 EM_FIREPATH = 78, // Element 14 64-bit DSP Processor
195 EM_ZSP = 79, // LSI Logic 16-bit DSP Processor
196 EM_MMIX = 80, // Donald Knuth's educational 64-bit processor
197 EM_HUANY = 81, // Harvard University machine-independent object files
198 EM_PRISM = 82, // SiTera Prism
199 EM_AVR = 83, // Atmel AVR 8-bit microcontroller
200 EM_FR30 = 84, // Fujitsu FR30
201 EM_D10V = 85, // Mitsubishi D10V
202 EM_D30V = 86, // Mitsubishi D30V
203 EM_V850 = 87, // NEC v850
204 EM_M32R = 88, // Mitsubishi M32R
205 EM_MN10300 = 89, // Matsushita MN10300
206 EM_MN10200 = 90, // Matsushita MN10200
207 EM_PJ = 91, // picoJava
208 EM_OPENRISC = 92, // OpenRISC 32-bit embedded processor
209 EM_ARC_COMPACT = 93, // ARC International ARCompact processor (old
210 // spelling/synonym: EM_ARC_A5)
211 EM_XTENSA = 94, // Tensilica Xtensa Architecture
212 EM_VIDEOCORE = 95, // Alphamosaic VideoCore processor
213 EM_TMM_GPP = 96, // Thompson Multimedia General Purpose Processor
214 EM_NS32K = 97, // National Semiconductor 32000 series
215 EM_TPC = 98, // Tenor Network TPC processor
216 EM_SNP1K = 99, // Trebia SNP 1000 processor
217 EM_ST200 = 100, // STMicroelectronics (www.st.com) ST200
218 EM_IP2K = 101, // Ubicom IP2xxx microcontroller family
219 EM_MAX = 102, // MAX Processor
220 EM_CR = 103, // National Semiconductor CompactRISC microprocessor
221 EM_F2MC16 = 104, // Fujitsu F2MC16
222 EM_MSP430 = 105, // Texas Instruments embedded microcontroller msp430
223 EM_BLACKFIN = 106, // Analog Devices Blackfin (DSP) processor
224 EM_SE_C33 = 107, // S1C33 Family of Seiko Epson processors
225 EM_SEP = 108, // Sharp embedded microprocessor
226 EM_ARCA = 109, // Arca RISC Microprocessor
227 EM_UNICORE = 110, // Microprocessor series from PKU-Unity Ltd. and MPRC
228 // of Peking University
229 EM_EXCESS = 111, // eXcess: 16/32/64-bit configurable embedded CPU
230 EM_DXP = 112, // Icera Semiconductor Inc. Deep Execution Processor
231 EM_ALTERA_NIOS2 = 113, // Altera Nios II soft-core processor
232 EM_CRX = 114, // National Semiconductor CompactRISC CRX
233 EM_XGATE = 115, // Motorola XGATE embedded processor
234 EM_C166 = 116, // Infineon C16x/XC16x processor
235 EM_M16C = 117, // Renesas M16C series microprocessors
236 EM_DSPIC30F = 118, // Microchip Technology dsPIC30F Digital Signal
237 // Controller
238 EM_CE = 119, // Freescale Communication Engine RISC core
239 EM_M32C = 120, // Renesas M32C series microprocessors
240 EM_TSK3000 = 131, // Altium TSK3000 core
241 EM_RS08 = 132, // Freescale RS08 embedded processor
242 EM_SHARC = 133, // Analog Devices SHARC family of 32-bit DSP
243 // processors
244 EM_ECOG2 = 134, // Cyan Technology eCOG2 microprocessor
245 EM_SCORE7 = 135, // Sunplus S+core7 RISC processor
246 EM_DSP24 = 136, // New Japan Radio (NJR) 24-bit DSP Processor
247 EM_VIDEOCORE3 = 137, // Broadcom VideoCore III processor
248 EM_LATTICEMICO32 = 138, // RISC processor for Lattice FPGA architecture
249 EM_SE_C17 = 139, // Seiko Epson C17 family
250 EM_TI_C6000 = 140, // The Texas Instruments TMS320C6000 DSP family
251 EM_TI_C2000 = 141, // The Texas Instruments TMS320C2000 DSP family
252 EM_TI_C5500 = 142, // The Texas Instruments TMS320C55x DSP family
253 EM_MMDSP_PLUS = 160, // STMicroelectronics 64bit VLIW Data Signal Processor
254 EM_CYPRESS_M8C = 161, // Cypress M8C microprocessor
255 EM_R32C = 162, // Renesas R32C series microprocessors
256 EM_TRIMEDIA = 163, // NXP Semiconductors TriMedia architecture family
257 EM_HEXAGON = 164, // Qualcomm Hexagon processor
258 EM_8051 = 165, // Intel 8051 and variants
259 EM_STXP7X = 166, // STMicroelectronics STxP7x family of configurable
260 // and extensible RISC processors
261 EM_NDS32 = 167, // Andes Technology compact code size embedded RISC
262 // processor family
263 EM_ECOG1 = 168, // Cyan Technology eCOG1X family
264 EM_ECOG1X = 168, // Cyan Technology eCOG1X family
265 EM_MAXQ30 = 169, // Dallas Semiconductor MAXQ30 Core Micro-controllers
266 EM_XIMO16 = 170, // New Japan Radio (NJR) 16-bit DSP Processor
267 EM_MANIK = 171, // M2000 Reconfigurable RISC Microprocessor
268 EM_CRAYNV2 = 172, // Cray Inc. NV2 vector architecture
269 EM_RX = 173, // Renesas RX family
270 EM_METAG = 174, // Imagination Technologies META processor
271 // architecture
272 EM_MCST_ELBRUS = 175, // MCST Elbrus general purpose hardware architecture
273 EM_ECOG16 = 176, // Cyan Technology eCOG16 family
274 EM_CR16 = 177, // National Semiconductor CompactRISC CR16 16-bit
275 // microprocessor
276 EM_ETPU = 178, // Freescale Extended Time Processing Unit
277 EM_SLE9X = 179, // Infineon Technologies SLE9X core
278 EM_L10M = 180, // Intel L10M
279 EM_K10M = 181, // Intel K10M
280 EM_AARCH64 = 183, // ARM AArch64
281 EM_AVR32 = 185, // Atmel Corporation 32-bit microprocessor family
282 EM_STM8 = 186, // STMicroeletronics STM8 8-bit microcontroller
283 EM_TILE64 = 187, // Tilera TILE64 multicore architecture family
284 EM_TILEPRO = 188, // Tilera TILEPro multicore architecture family
285 EM_MICROBLAZE = 189, // Xilinx MicroBlaze 32-bit RISC soft processor core
286 EM_CUDA = 190, // NVIDIA CUDA architecture
287 EM_TILEGX = 191, // Tilera TILE-Gx multicore architecture family
288 EM_CLOUDSHIELD = 192, // CloudShield architecture family
289 EM_COREA_1ST = 193, // KIPO-KAIST Core-A 1st generation processor family
290 EM_COREA_2ND = 194, // KIPO-KAIST Core-A 2nd generation processor family
291 EM_ARC_COMPACT2 = 195, // Synopsys ARCompact V2
292 EM_OPEN8 = 196, // Open8 8-bit RISC soft processor core
293 EM_RL78 = 197, // Renesas RL78 family
294 EM_VIDEOCORE5 = 198, // Broadcom VideoCore V processor
295 EM_78KOR = 199, // Renesas 78KOR family
296 EM_56800EX = 200, // Freescale 56800EX Digital Signal Controller (DSC)
297 EM_BA1 = 201, // Beyond BA1 CPU architecture
298 EM_BA2 = 202, // Beyond BA2 CPU architecture
299 EM_XCORE = 203, // XMOS xCORE processor family
300 EM_MCHP_PIC = 204, // Microchip 8-bit PIC(r) family
301 EM_INTEL205 = 205, // Reserved by Intel
302 EM_INTEL206 = 206, // Reserved by Intel
303 EM_INTEL207 = 207, // Reserved by Intel
304 EM_INTEL208 = 208, // Reserved by Intel
305 EM_INTEL209 = 209, // Reserved by Intel
306 EM_KM32 = 210, // KM211 KM32 32-bit processor
307 EM_KMX32 = 211, // KM211 KMX32 32-bit processor
308 EM_KMX16 = 212, // KM211 KMX16 16-bit processor
309 EM_KMX8 = 213, // KM211 KMX8 8-bit processor
310 EM_KVARC = 214, // KM211 KVARC processor
311 EM_CDP = 215, // Paneve CDP architecture family
312 EM_COGE = 216, // Cognitive Smart Memory Processor
313 EM_COOL = 217, // iCelero CoolEngine
314 EM_NORC = 218, // Nanoradio Optimized RISC
315 EM_CSR_KALIMBA = 219, // CSR Kalimba architecture family
316 EM_AMDGPU = 224, // AMD GPU architecture
317 EM_RISCV = 243, // RISC-V
318 EM_LANAI = 244, // Lanai 32-bit processor
319 EM_BPF = 247, // Linux kernel bpf virtual machine
320 EM_VE = 251, // NEC SX-Aurora VE
321 EM_CSKY = 252, // C-SKY 32-bit processor
322 EM_LOONGARCH = 258, // LoongArch
323};
324
325// Object file classes.
326enum {
327 ELFCLASSNONE = 0,
328 ELFCLASS32 = 1, // 32-bit object file
329 ELFCLASS64 = 2 // 64-bit object file
330};
331
332// Object file byte orderings.
333enum {
334 ELFDATANONE = 0, // Invalid data encoding.
335 ELFDATA2LSB = 1, // Little-endian object file
336 ELFDATA2MSB = 2 // Big-endian object file
337};
338
339// OS ABI identification.
340enum {
341 ELFOSABI_NONE = 0, // UNIX System V ABI
342 ELFOSABI_HPUX = 1, // HP-UX operating system
343 ELFOSABI_NETBSD = 2, // NetBSD
344 ELFOSABI_GNU = 3, // GNU/Linux
345 ELFOSABI_LINUX = 3, // Historical alias for ELFOSABI_GNU.
346 ELFOSABI_HURD = 4, // GNU/Hurd
347 ELFOSABI_SOLARIS = 6, // Solaris
348 ELFOSABI_AIX = 7, // AIX
349 ELFOSABI_IRIX = 8, // IRIX
350 ELFOSABI_FREEBSD = 9, // FreeBSD
351 ELFOSABI_TRU64 = 10, // TRU64 UNIX
352 ELFOSABI_MODESTO = 11, // Novell Modesto
353 ELFOSABI_OPENBSD = 12, // OpenBSD
354 ELFOSABI_OPENVMS = 13, // OpenVMS
355 ELFOSABI_NSK = 14, // Hewlett-Packard Non-Stop Kernel
356 ELFOSABI_AROS = 15, // AROS
357 ELFOSABI_FENIXOS = 16, // FenixOS
358 ELFOSABI_CLOUDABI = 17, // Nuxi CloudABI
359 ELFOSABI_CUDA = 51, // NVIDIA CUDA architecture.
360 ELFOSABI_FIRST_ARCH = 64, // First architecture-specific OS ABI
361 ELFOSABI_AMDGPU_HSA = 64, // AMD HSA runtime
362 ELFOSABI_AMDGPU_PAL = 65, // AMD PAL runtime
363 ELFOSABI_AMDGPU_MESA3D = 66, // AMD GCN GPUs (GFX6+) for MESA runtime
364 ELFOSABI_ARM = 97, // ARM
365 ELFOSABI_C6000_ELFABI = 64, // Bare-metal TMS320C6000
366 ELFOSABI_C6000_LINUX = 65, // Linux TMS320C6000
367 ELFOSABI_STANDALONE = 255, // Standalone (embedded) application
368 ELFOSABI_LAST_ARCH = 255 // Last Architecture-specific OS ABI
369};
370
371// AMDGPU OS ABI Version identification.
372enum {
373 // ELFABIVERSION_AMDGPU_HSA_V1 does not exist because OS ABI identification
374 // was never defined for V1.
375 ELFABIVERSION_AMDGPU_HSA_V2 = 0,
376 ELFABIVERSION_AMDGPU_HSA_V3 = 1,
377 ELFABIVERSION_AMDGPU_HSA_V4 = 2,
378 ELFABIVERSION_AMDGPU_HSA_V5 = 3,
379 ELFABIVERSION_AMDGPU_HSA_V6 = 4,
380};
381
382#define ELF_RELOC(name, value) name = value,
383
384// X86_64 relocations.
385enum {
386#include "ELFRelocs/x86_64.def"
387};
388
389// i386 relocations.
390enum {
391#include "ELFRelocs/i386.def"
392};
393
394// ELF Relocation types for PPC32
395enum {
396#include "ELFRelocs/PowerPC.def"
397};
398
399// Specific e_flags for PPC64
400enum {
401 // e_flags bits specifying ABI:
402 // 1 for original ABI using function descriptors,
403 // 2 for revised ABI without function descriptors,
404 // 0 for unspecified or not using any features affected by the differences.
405 EF_PPC64_ABI = 3
406};
407
408// Special values for the st_other field in the symbol table entry for PPC64.
409enum {
410 STO_PPC64_LOCAL_BIT = 5,
411 STO_PPC64_LOCAL_MASK = (7 << STO_PPC64_LOCAL_BIT)
412};
413static inline int64_t decodePPC64LocalEntryOffset(unsigned Other) {
414 unsigned Val = (Other & STO_PPC64_LOCAL_MASK) >> STO_PPC64_LOCAL_BIT;
415 return ((1 << Val) >> 2) << 2;
416}
417
418// ELF Relocation types for PPC64
419enum {
420#include "ELFRelocs/PowerPC64.def"
421};
422
423// ELF Relocation types for AArch64
424enum {
425#include "ELFRelocs/AArch64.def"
426};
427
428// Special values for the st_other field in the symbol table entry for AArch64.
429enum {
430 // Symbol may follow different calling convention than base PCS.
431 STO_AARCH64_VARIANT_PCS = 0x80
432};
433
434// ARM Specific e_flags
435enum : unsigned {
436 EF_ARM_SOFT_FLOAT = 0x00000200U, // Legacy pre EABI_VER5
437 EF_ARM_ABI_FLOAT_SOFT = 0x00000200U, // EABI_VER5
438 EF_ARM_VFP_FLOAT = 0x00000400U, // Legacy pre EABI_VER5
439 EF_ARM_ABI_FLOAT_HARD = 0x00000400U, // EABI_VER5
440 EF_ARM_BE8 = 0x00800000U,
441 EF_ARM_EABI_UNKNOWN = 0x00000000U,
442 EF_ARM_EABI_VER1 = 0x01000000U,
443 EF_ARM_EABI_VER2 = 0x02000000U,
444 EF_ARM_EABI_VER3 = 0x03000000U,
445 EF_ARM_EABI_VER4 = 0x04000000U,
446 EF_ARM_EABI_VER5 = 0x05000000U,
447 EF_ARM_EABIMASK = 0xFF000000U
448};
449
450// ELF Relocation types for ARM
451enum {
452#include "ELFRelocs/ARM.def"
453};
454
455// ARC Specific e_flags
456enum : unsigned {
457 EF_ARC_MACH_MSK = 0x000000ff,
458 EF_ARC_OSABI_MSK = 0x00000f00,
459 E_ARC_MACH_ARC600 = 0x00000002,
460 E_ARC_MACH_ARC601 = 0x00000004,
461 E_ARC_MACH_ARC700 = 0x00000003,
462 EF_ARC_CPU_ARCV2EM = 0x00000005,
463 EF_ARC_CPU_ARCV2HS = 0x00000006,
464 E_ARC_OSABI_ORIG = 0x00000000,
465 E_ARC_OSABI_V2 = 0x00000200,
466 E_ARC_OSABI_V3 = 0x00000300,
467 E_ARC_OSABI_V4 = 0x00000400,
468 EF_ARC_PIC = 0x00000100
469};
470
471// ELF Relocation types for ARC
472enum {
473#include "ELFRelocs/ARC.def"
474};
475
476// AVR specific e_flags
477enum : unsigned {
478 EF_AVR_ARCH_AVR1 = 1,
479 EF_AVR_ARCH_AVR2 = 2,
480 EF_AVR_ARCH_AVR25 = 25,
481 EF_AVR_ARCH_AVR3 = 3,
482 EF_AVR_ARCH_AVR31 = 31,
483 EF_AVR_ARCH_AVR35 = 35,
484 EF_AVR_ARCH_AVR4 = 4,
485 EF_AVR_ARCH_AVR5 = 5,
486 EF_AVR_ARCH_AVR51 = 51,
487 EF_AVR_ARCH_AVR6 = 6,
488 EF_AVR_ARCH_AVRTINY = 100,
489 EF_AVR_ARCH_XMEGA1 = 101,
490 EF_AVR_ARCH_XMEGA2 = 102,
491 EF_AVR_ARCH_XMEGA3 = 103,
492 EF_AVR_ARCH_XMEGA4 = 104,
493 EF_AVR_ARCH_XMEGA5 = 105,
494 EF_AVR_ARCH_XMEGA6 = 106,
495 EF_AVR_ARCH_XMEGA7 = 107,
496
497 EF_AVR_ARCH_MASK = 0x7f, // EF_AVR_ARCH_xxx selection mask
498
499 EF_AVR_LINKRELAX_PREPARED = 0x80, // The file is prepared for linker
500 // relaxation to be applied
501};
502
503// ELF Relocation types for AVR
504enum {
505#include "ELFRelocs/AVR.def"
506};
507
508// Mips Specific e_flags
509enum : unsigned {
510 EF_MIPS_NOREORDER = 0x00000001, // Don't reorder instructions
511 EF_MIPS_PIC = 0x00000002, // Position independent code
512 EF_MIPS_CPIC = 0x00000004, // Call object with Position independent code
513 EF_MIPS_ABI2 = 0x00000020, // File uses N32 ABI
514 EF_MIPS_32BITMODE = 0x00000100, // Code compiled for a 64-bit machine
515 // in 32-bit mode
516 EF_MIPS_FP64 = 0x00000200, // Code compiled for a 32-bit machine
517 // but uses 64-bit FP registers
518 EF_MIPS_NAN2008 = 0x00000400, // Uses IEE 754-2008 NaN encoding
519
520 // ABI flags
521 EF_MIPS_ABI_O32 = 0x00001000, // This file follows the first MIPS 32 bit ABI
522 EF_MIPS_ABI_O64 = 0x00002000, // O32 ABI extended for 64-bit architecture.
523 EF_MIPS_ABI_EABI32 = 0x00003000, // EABI in 32 bit mode.
524 EF_MIPS_ABI_EABI64 = 0x00004000, // EABI in 64 bit mode.
525 EF_MIPS_ABI = 0x0000f000, // Mask for selecting EF_MIPS_ABI_ variant.
526
527 // MIPS machine variant
528 EF_MIPS_MACH_NONE = 0x00000000, // A standard MIPS implementation.
529 EF_MIPS_MACH_3900 = 0x00810000, // Toshiba R3900
530 EF_MIPS_MACH_4010 = 0x00820000, // LSI R4010
531 EF_MIPS_MACH_4100 = 0x00830000, // NEC VR4100
532 EF_MIPS_MACH_4650 = 0x00850000, // MIPS R4650
533 EF_MIPS_MACH_4120 = 0x00870000, // NEC VR4120
534 EF_MIPS_MACH_4111 = 0x00880000, // NEC VR4111/VR4181
535 EF_MIPS_MACH_SB1 = 0x008a0000, // Broadcom SB-1
536 EF_MIPS_MACH_OCTEON = 0x008b0000, // Cavium Networks Octeon
537 EF_MIPS_MACH_XLR = 0x008c0000, // RMI Xlr
538 EF_MIPS_MACH_OCTEON2 = 0x008d0000, // Cavium Networks Octeon2
539 EF_MIPS_MACH_OCTEON3 = 0x008e0000, // Cavium Networks Octeon3
540 EF_MIPS_MACH_5400 = 0x00910000, // NEC VR5400
541 EF_MIPS_MACH_5900 = 0x00920000, // MIPS R5900
542 EF_MIPS_MACH_5500 = 0x00980000, // NEC VR5500
543 EF_MIPS_MACH_9000 = 0x00990000, // Unknown
544 EF_MIPS_MACH_LS2E = 0x00a00000, // ST Microelectronics Loongson 2E
545 EF_MIPS_MACH_LS2F = 0x00a10000, // ST Microelectronics Loongson 2F
546 EF_MIPS_MACH_LS3A = 0x00a20000, // Loongson 3A
547 EF_MIPS_MACH = 0x00ff0000, // EF_MIPS_MACH_xxx selection mask
548
549 // ARCH_ASE
550 EF_MIPS_MICROMIPS = 0x02000000, // microMIPS
551 EF_MIPS_ARCH_ASE_M16 = 0x04000000, // Has Mips-16 ISA extensions
552 EF_MIPS_ARCH_ASE_MDMX = 0x08000000, // Has MDMX multimedia extensions
553 EF_MIPS_ARCH_ASE = 0x0f000000, // Mask for EF_MIPS_ARCH_ASE_xxx flags
554
555 // ARCH
556 EF_MIPS_ARCH_1 = 0x00000000, // MIPS1 instruction set
557 EF_MIPS_ARCH_2 = 0x10000000, // MIPS2 instruction set
558 EF_MIPS_ARCH_3 = 0x20000000, // MIPS3 instruction set
559 EF_MIPS_ARCH_4 = 0x30000000, // MIPS4 instruction set
560 EF_MIPS_ARCH_5 = 0x40000000, // MIPS5 instruction set
561 EF_MIPS_ARCH_32 = 0x50000000, // MIPS32 instruction set per linux not elf.h
562 EF_MIPS_ARCH_64 = 0x60000000, // MIPS64 instruction set per linux not elf.h
563 EF_MIPS_ARCH_32R2 = 0x70000000, // mips32r2, mips32r3, mips32r5
564 EF_MIPS_ARCH_64R2 = 0x80000000, // mips64r2, mips64r3, mips64r5
565 EF_MIPS_ARCH_32R6 = 0x90000000, // mips32r6
566 EF_MIPS_ARCH_64R6 = 0xa0000000, // mips64r6
567 EF_MIPS_ARCH = 0xf0000000 // Mask for applying EF_MIPS_ARCH_ variant
568};
569
570// MIPS-specific section indexes
571enum {
572 SHN_MIPS_ACOMMON = 0xff00, // Common symbols which are defined and allocated
573 SHN_MIPS_TEXT = 0xff01, // Not ABI compliant
574 SHN_MIPS_DATA = 0xff02, // Not ABI compliant
575 SHN_MIPS_SCOMMON = 0xff03, // Common symbols for global data area
576 SHN_MIPS_SUNDEFINED = 0xff04 // Undefined symbols for global data area
577};
578
579// ELF Relocation types for Mips
580enum {
581#include "ELFRelocs/Mips.def"
582};
583
584// Special values for the st_other field in the symbol table entry for MIPS.
585enum {
586 STO_MIPS_OPTIONAL = 0x04, // Symbol whose definition is optional
587 STO_MIPS_PLT = 0x08, // PLT entry related dynamic table record
588 STO_MIPS_PIC = 0x20, // PIC func in an object mixes PIC/non-PIC
589 STO_MIPS_MICROMIPS = 0x80, // MIPS Specific ISA for MicroMips
590 STO_MIPS_MIPS16 = 0xf0 // MIPS Specific ISA for Mips16
591};
592
593// .MIPS.options section descriptor kinds
594enum {
595 ODK_NULL = 0, // Undefined
596 ODK_REGINFO = 1, // Register usage information
597 ODK_EXCEPTIONS = 2, // Exception processing options
598 ODK_PAD = 3, // Section padding options
599 ODK_HWPATCH = 4, // Hardware patches applied
600 ODK_FILL = 5, // Linker fill value
601 ODK_TAGS = 6, // Space for tool identification
602 ODK_HWAND = 7, // Hardware AND patches applied
603 ODK_HWOR = 8, // Hardware OR patches applied
604 ODK_GP_GROUP = 9, // GP group to use for text/data sections
605 ODK_IDENT = 10, // ID information
606 ODK_PAGESIZE = 11 // Page size information
607};
608
609// Hexagon-specific e_flags
610enum {
611 // Object processor version flags, bits[11:0]
612 EF_HEXAGON_MACH_V2 = 0x00000001, // Hexagon V2
613 EF_HEXAGON_MACH_V3 = 0x00000002, // Hexagon V3
614 EF_HEXAGON_MACH_V4 = 0x00000003, // Hexagon V4
615 EF_HEXAGON_MACH_V5 = 0x00000004, // Hexagon V5
616 EF_HEXAGON_MACH_V55 = 0x00000005, // Hexagon V55
617 EF_HEXAGON_MACH_V60 = 0x00000060, // Hexagon V60
618 EF_HEXAGON_MACH_V62 = 0x00000062, // Hexagon V62
619 EF_HEXAGON_MACH_V65 = 0x00000065, // Hexagon V65
620 EF_HEXAGON_MACH_V66 = 0x00000066, // Hexagon V66
621 EF_HEXAGON_MACH_V67 = 0x00000067, // Hexagon V67
622 EF_HEXAGON_MACH_V67T = 0x00008067, // Hexagon V67T
623 EF_HEXAGON_MACH_V68 = 0x00000068, // Hexagon V68
624 EF_HEXAGON_MACH_V69 = 0x00000069, // Hexagon V69
625 EF_HEXAGON_MACH_V71 = 0x00000071, // Hexagon V71
626 EF_HEXAGON_MACH_V71T = 0x00008071, // Hexagon V71T
627 EF_HEXAGON_MACH_V73 = 0x00000073, // Hexagon V73
628 EF_HEXAGON_MACH = 0x000003ff, // Hexagon V..
629
630 // Highest ISA version flags
631 EF_HEXAGON_ISA_MACH = 0x00000000, // Same as specified in bits[11:0]
632 // of e_flags
633 EF_HEXAGON_ISA_V2 = 0x00000010, // Hexagon V2 ISA
634 EF_HEXAGON_ISA_V3 = 0x00000020, // Hexagon V3 ISA
635 EF_HEXAGON_ISA_V4 = 0x00000030, // Hexagon V4 ISA
636 EF_HEXAGON_ISA_V5 = 0x00000040, // Hexagon V5 ISA
637 EF_HEXAGON_ISA_V55 = 0x00000050, // Hexagon V55 ISA
638 EF_HEXAGON_ISA_V60 = 0x00000060, // Hexagon V60 ISA
639 EF_HEXAGON_ISA_V62 = 0x00000062, // Hexagon V62 ISA
640 EF_HEXAGON_ISA_V65 = 0x00000065, // Hexagon V65 ISA
641 EF_HEXAGON_ISA_V66 = 0x00000066, // Hexagon V66 ISA
642 EF_HEXAGON_ISA_V67 = 0x00000067, // Hexagon V67 ISA
643 EF_HEXAGON_ISA_V68 = 0x00000068, // Hexagon V68 ISA
644 EF_HEXAGON_ISA_V69 = 0x00000069, // Hexagon V69 ISA
645 EF_HEXAGON_ISA_V71 = 0x00000071, // Hexagon V71 ISA
646 EF_HEXAGON_ISA_V73 = 0x00000073, // Hexagon V73 ISA
647 EF_HEXAGON_ISA_V75 = 0x00000075, // Hexagon V75 ISA
648 EF_HEXAGON_ISA = 0x000003ff, // Hexagon V.. ISA
649};
650
651// Hexagon-specific section indexes for common small data
652enum {
653 SHN_HEXAGON_SCOMMON = 0xff00, // Other access sizes
654 SHN_HEXAGON_SCOMMON_1 = 0xff01, // Byte-sized access
655 SHN_HEXAGON_SCOMMON_2 = 0xff02, // Half-word-sized access
656 SHN_HEXAGON_SCOMMON_4 = 0xff03, // Word-sized access
657 SHN_HEXAGON_SCOMMON_8 = 0xff04 // Double-word-size access
658};
659
660// ELF Relocation types for Hexagon
661enum {
662#include "ELFRelocs/Hexagon.def"
663};
664
665// ELF Relocation type for Lanai.
666enum {
667#include "ELFRelocs/Lanai.def"
668};
669
670// RISCV Specific e_flags
671enum : unsigned {
672 EF_RISCV_RVC = 0x0001,
673 EF_RISCV_FLOAT_ABI = 0x0006,
674 EF_RISCV_FLOAT_ABI_SOFT = 0x0000,
675 EF_RISCV_FLOAT_ABI_SINGLE = 0x0002,
676 EF_RISCV_FLOAT_ABI_DOUBLE = 0x0004,
677 EF_RISCV_FLOAT_ABI_QUAD = 0x0006,
678 EF_RISCV_RVE = 0x0008,
679 EF_RISCV_TSO = 0x0010,
680};
681
682// ELF Relocation types for RISC-V
683enum {
684#include "ELFRelocs/RISCV.def"
685};
686
687enum {
688 // Symbol may follow different calling convention than the standard calling
689 // convention.
690 STO_RISCV_VARIANT_CC = 0x80
691};
692
693// ELF Relocation types for S390/zSeries
694enum {
695#include "ELFRelocs/SystemZ.def"
696};
697
698// ELF Relocation type for Sparc.
699enum {
700#include "ELFRelocs/Sparc.def"
701};
702
703// AMDGPU specific e_flags.
704enum : unsigned {
705 // Processor selection mask for EF_AMDGPU_MACH_* values.
706 EF_AMDGPU_MACH = 0x0ff,
707
708 // Not specified processor.
709 EF_AMDGPU_MACH_NONE = 0x000,
710
711 // R600-based processors.
712
713 // Radeon HD 2000/3000 Series (R600).
714 EF_AMDGPU_MACH_R600_R600 = 0x001,
715 EF_AMDGPU_MACH_R600_R630 = 0x002,
716 EF_AMDGPU_MACH_R600_RS880 = 0x003,
717 EF_AMDGPU_MACH_R600_RV670 = 0x004,
718 // Radeon HD 4000 Series (R700).
719 EF_AMDGPU_MACH_R600_RV710 = 0x005,
720 EF_AMDGPU_MACH_R600_RV730 = 0x006,
721 EF_AMDGPU_MACH_R600_RV770 = 0x007,
722 // Radeon HD 5000 Series (Evergreen).
723 EF_AMDGPU_MACH_R600_CEDAR = 0x008,
724 EF_AMDGPU_MACH_R600_CYPRESS = 0x009,
725 EF_AMDGPU_MACH_R600_JUNIPER = 0x00a,
726 EF_AMDGPU_MACH_R600_REDWOOD = 0x00b,
727 EF_AMDGPU_MACH_R600_SUMO = 0x00c,
728 // Radeon HD 6000 Series (Northern Islands).
729 EF_AMDGPU_MACH_R600_BARTS = 0x00d,
730 EF_AMDGPU_MACH_R600_CAICOS = 0x00e,
731 EF_AMDGPU_MACH_R600_CAYMAN = 0x00f,
732 EF_AMDGPU_MACH_R600_TURKS = 0x010,
733
734 // Reserved for R600-based processors.
735 EF_AMDGPU_MACH_R600_RESERVED_FIRST = 0x011,
736 EF_AMDGPU_MACH_R600_RESERVED_LAST = 0x01f,
737
738 // First/last R600-based processors.
739 EF_AMDGPU_MACH_R600_FIRST = EF_AMDGPU_MACH_R600_R600,
740 EF_AMDGPU_MACH_R600_LAST = EF_AMDGPU_MACH_R600_TURKS,
741
742 // AMDGCN-based processors.
743 // clang-format off
744 EF_AMDGPU_MACH_AMDGCN_GFX600 = 0x020,
745 EF_AMDGPU_MACH_AMDGCN_GFX601 = 0x021,
746 EF_AMDGPU_MACH_AMDGCN_GFX700 = 0x022,
747 EF_AMDGPU_MACH_AMDGCN_GFX701 = 0x023,
748 EF_AMDGPU_MACH_AMDGCN_GFX702 = 0x024,
749 EF_AMDGPU_MACH_AMDGCN_GFX703 = 0x025,
750 EF_AMDGPU_MACH_AMDGCN_GFX704 = 0x026,
751 EF_AMDGPU_MACH_AMDGCN_RESERVED_0X27 = 0x027,
752 EF_AMDGPU_MACH_AMDGCN_GFX801 = 0x028,
753 EF_AMDGPU_MACH_AMDGCN_GFX802 = 0x029,
754 EF_AMDGPU_MACH_AMDGCN_GFX803 = 0x02a,
755 EF_AMDGPU_MACH_AMDGCN_GFX810 = 0x02b,
756 EF_AMDGPU_MACH_AMDGCN_GFX900 = 0x02c,
757 EF_AMDGPU_MACH_AMDGCN_GFX902 = 0x02d,
758 EF_AMDGPU_MACH_AMDGCN_GFX904 = 0x02e,
759 EF_AMDGPU_MACH_AMDGCN_GFX906 = 0x02f,
760 EF_AMDGPU_MACH_AMDGCN_GFX908 = 0x030,
761 EF_AMDGPU_MACH_AMDGCN_GFX909 = 0x031,
762 EF_AMDGPU_MACH_AMDGCN_GFX90C = 0x032,
763 EF_AMDGPU_MACH_AMDGCN_GFX1010 = 0x033,
764 EF_AMDGPU_MACH_AMDGCN_GFX1011 = 0x034,
765 EF_AMDGPU_MACH_AMDGCN_GFX1012 = 0x035,
766 EF_AMDGPU_MACH_AMDGCN_GFX1030 = 0x036,
767 EF_AMDGPU_MACH_AMDGCN_GFX1031 = 0x037,
768 EF_AMDGPU_MACH_AMDGCN_GFX1032 = 0x038,
769 EF_AMDGPU_MACH_AMDGCN_GFX1033 = 0x039,
770 EF_AMDGPU_MACH_AMDGCN_GFX602 = 0x03a,
771 EF_AMDGPU_MACH_AMDGCN_GFX705 = 0x03b,
772 EF_AMDGPU_MACH_AMDGCN_GFX805 = 0x03c,
773 EF_AMDGPU_MACH_AMDGCN_GFX1035 = 0x03d,
774 EF_AMDGPU_MACH_AMDGCN_GFX1034 = 0x03e,
775 EF_AMDGPU_MACH_AMDGCN_GFX90A = 0x03f,
776 EF_AMDGPU_MACH_AMDGCN_GFX940 = 0x040,
777 EF_AMDGPU_MACH_AMDGCN_GFX1100 = 0x041,
778 EF_AMDGPU_MACH_AMDGCN_GFX1013 = 0x042,
779 EF_AMDGPU_MACH_AMDGCN_GFX1150 = 0x043,
780 EF_AMDGPU_MACH_AMDGCN_GFX1103 = 0x044,
781 EF_AMDGPU_MACH_AMDGCN_GFX1036 = 0x045,
782 EF_AMDGPU_MACH_AMDGCN_GFX1101 = 0x046,
783 EF_AMDGPU_MACH_AMDGCN_GFX1102 = 0x047,
784 EF_AMDGPU_MACH_AMDGCN_GFX1200 = 0x048,
785 EF_AMDGPU_MACH_AMDGCN_RESERVED_0X49 = 0x049,
786 EF_AMDGPU_MACH_AMDGCN_GFX1151 = 0x04a,
787 EF_AMDGPU_MACH_AMDGCN_GFX941 = 0x04b,
788 EF_AMDGPU_MACH_AMDGCN_GFX942 = 0x04c,
789 EF_AMDGPU_MACH_AMDGCN_RESERVED_0X4D = 0x04d,
790 EF_AMDGPU_MACH_AMDGCN_GFX1201 = 0x04e,
791 EF_AMDGPU_MACH_AMDGCN_RESERVED_0X4F = 0x04f,
792 EF_AMDGPU_MACH_AMDGCN_RESERVED_0X50 = 0x050,
793 EF_AMDGPU_MACH_AMDGCN_GFX9_GENERIC = 0x051,
794 EF_AMDGPU_MACH_AMDGCN_GFX10_1_GENERIC = 0x052,
795 EF_AMDGPU_MACH_AMDGCN_GFX10_3_GENERIC = 0x053,
796 EF_AMDGPU_MACH_AMDGCN_GFX11_GENERIC = 0x054,
797 EF_AMDGPU_MACH_AMDGCN_RESERVED_0X55 = 0x055,
798 // clang-format on
799
800 // First/last AMDGCN-based processors.
801 EF_AMDGPU_MACH_AMDGCN_FIRST = EF_AMDGPU_MACH_AMDGCN_GFX600,
802 EF_AMDGPU_MACH_AMDGCN_LAST = EF_AMDGPU_MACH_AMDGCN_GFX11_GENERIC,
803
804 // Indicates if the "xnack" target feature is enabled for all code contained
805 // in the object.
806 //
807 // Only valid for ELFOSABI_AMDGPU_HSA and ELFABIVERSION_AMDGPU_HSA_V2.
808 EF_AMDGPU_FEATURE_XNACK_V2 = 0x01,
809 // Indicates if the trap handler is enabled for all code contained
810 // in the object.
811 //
812 // Only valid for ELFOSABI_AMDGPU_HSA and ELFABIVERSION_AMDGPU_HSA_V2.
813 EF_AMDGPU_FEATURE_TRAP_HANDLER_V2 = 0x02,
814
815 // Indicates if the "xnack" target feature is enabled for all code contained
816 // in the object.
817 //
818 // Only valid for ELFOSABI_AMDGPU_HSA and ELFABIVERSION_AMDGPU_HSA_V3.
819 EF_AMDGPU_FEATURE_XNACK_V3 = 0x100,
820 // Indicates if the "sramecc" target feature is enabled for all code
821 // contained in the object.
822 //
823 // Only valid for ELFOSABI_AMDGPU_HSA and ELFABIVERSION_AMDGPU_HSA_V3.
824 EF_AMDGPU_FEATURE_SRAMECC_V3 = 0x200,
825
826 // XNACK selection mask for EF_AMDGPU_FEATURE_XNACK_* values.
827 //
828 // Only valid for ELFOSABI_AMDGPU_HSA and ELFABIVERSION_AMDGPU_HSA_V4.
829 EF_AMDGPU_FEATURE_XNACK_V4 = 0x300,
830 // XNACK is not supported.
831 EF_AMDGPU_FEATURE_XNACK_UNSUPPORTED_V4 = 0x000,
832 // XNACK is any/default/unspecified.
833 EF_AMDGPU_FEATURE_XNACK_ANY_V4 = 0x100,
834 // XNACK is off.
835 EF_AMDGPU_FEATURE_XNACK_OFF_V4 = 0x200,
836 // XNACK is on.
837 EF_AMDGPU_FEATURE_XNACK_ON_V4 = 0x300,
838
839 // SRAMECC selection mask for EF_AMDGPU_FEATURE_SRAMECC_* values.
840 //
841 // Only valid for ELFOSABI_AMDGPU_HSA and ELFABIVERSION_AMDGPU_HSA_V4.
842 EF_AMDGPU_FEATURE_SRAMECC_V4 = 0xc00,
843 // SRAMECC is not supported.
844 EF_AMDGPU_FEATURE_SRAMECC_UNSUPPORTED_V4 = 0x000,
845 // SRAMECC is any/default/unspecified.
846 EF_AMDGPU_FEATURE_SRAMECC_ANY_V4 = 0x400,
847 // SRAMECC is off.
848 EF_AMDGPU_FEATURE_SRAMECC_OFF_V4 = 0x800,
849 // SRAMECC is on.
850 EF_AMDGPU_FEATURE_SRAMECC_ON_V4 = 0xc00,
851
852 // Generic target versioning. This is contained in the list byte of EFLAGS.
853 EF_AMDGPU_GENERIC_VERSION = 0xff000000,
854 EF_AMDGPU_GENERIC_VERSION_OFFSET = 24,
855 EF_AMDGPU_GENERIC_VERSION_MIN = 1,
856 EF_AMDGPU_GENERIC_VERSION_MAX = 0xff,
857};
858
859// ELF Relocation types for AMDGPU
860enum {
861#include "ELFRelocs/AMDGPU.def"
862};
863
864// NVPTX specific e_flags.
865enum : unsigned {
866 // Processor selection mask for EF_CUDA_SM* values.
867 EF_CUDA_SM = 0xff,
868
869 // SM based processor values.
870 EF_CUDA_SM20 = 0x14,
871 EF_CUDA_SM21 = 0x15,
872 EF_CUDA_SM30 = 0x1e,
873 EF_CUDA_SM32 = 0x20,
874 EF_CUDA_SM35 = 0x23,
875 EF_CUDA_SM37 = 0x25,
876 EF_CUDA_SM50 = 0x32,
877 EF_CUDA_SM52 = 0x34,
878 EF_CUDA_SM53 = 0x35,
879 EF_CUDA_SM60 = 0x3c,
880 EF_CUDA_SM61 = 0x3d,
881 EF_CUDA_SM62 = 0x3e,
882 EF_CUDA_SM70 = 0x46,
883 EF_CUDA_SM72 = 0x48,
884 EF_CUDA_SM75 = 0x4b,
885 EF_CUDA_SM80 = 0x50,
886 EF_CUDA_SM86 = 0x56,
887 EF_CUDA_SM87 = 0x57,
888 EF_CUDA_SM89 = 0x59,
889 // The sm_90a variant uses the same machine flag.
890 EF_CUDA_SM90 = 0x5a,
891
892 // Unified texture binding is enabled.
893 EF_CUDA_TEXMODE_UNIFIED = 0x100,
894 // Independent texture binding is enabled.
895 EF_CUDA_TEXMODE_INDEPENDANT = 0x200,
896 // The target is using 64-bit addressing.
897 EF_CUDA_64BIT_ADDRESS = 0x400,
898 // Set when using the sm_90a processor.
899 EF_CUDA_ACCELERATORS = 0x800,
900 // Undocumented software feature.
901 EF_CUDA_SW_FLAG_V2 = 0x1000,
902
903 // Virtual processor selection mask for EF_CUDA_VIRTUAL_SM* values.
904 EF_CUDA_VIRTUAL_SM = 0xff0000,
905};
906
907// ELF Relocation types for BPF
908enum {
909#include "ELFRelocs/BPF.def"
910};
911
912// ELF Relocation types for M68k
913enum {
914#include "ELFRelocs/M68k.def"
915};
916
917// MSP430 specific e_flags
918enum : unsigned {
919 EF_MSP430_MACH_MSP430x11 = 11,
920 EF_MSP430_MACH_MSP430x11x1 = 110,
921 EF_MSP430_MACH_MSP430x12 = 12,
922 EF_MSP430_MACH_MSP430x13 = 13,
923 EF_MSP430_MACH_MSP430x14 = 14,
924 EF_MSP430_MACH_MSP430x15 = 15,
925 EF_MSP430_MACH_MSP430x16 = 16,
926 EF_MSP430_MACH_MSP430x20 = 20,
927 EF_MSP430_MACH_MSP430x22 = 22,
928 EF_MSP430_MACH_MSP430x23 = 23,
929 EF_MSP430_MACH_MSP430x24 = 24,
930 EF_MSP430_MACH_MSP430x26 = 26,
931 EF_MSP430_MACH_MSP430x31 = 31,
932 EF_MSP430_MACH_MSP430x32 = 32,
933 EF_MSP430_MACH_MSP430x33 = 33,
934 EF_MSP430_MACH_MSP430x41 = 41,
935 EF_MSP430_MACH_MSP430x42 = 42,
936 EF_MSP430_MACH_MSP430x43 = 43,
937 EF_MSP430_MACH_MSP430x44 = 44,
938 EF_MSP430_MACH_MSP430X = 45,
939 EF_MSP430_MACH_MSP430x46 = 46,
940 EF_MSP430_MACH_MSP430x47 = 47,
941 EF_MSP430_MACH_MSP430x54 = 54,
942};
943
944// ELF Relocation types for MSP430
945enum {
946#include "ELFRelocs/MSP430.def"
947};
948
949// ELF Relocation type for VE.
950enum {
951#include "ELFRelocs/VE.def"
952};
953
954// CSKY Specific e_flags
955enum : unsigned {
956 EF_CSKY_801 = 0xa,
957 EF_CSKY_802 = 0x10,
958 EF_CSKY_803 = 0x9,
959 EF_CSKY_805 = 0x11,
960 EF_CSKY_807 = 0x6,
961 EF_CSKY_810 = 0x8,
962 EF_CSKY_860 = 0xb,
963 EF_CSKY_800 = 0x1f,
964 EF_CSKY_FLOAT = 0x2000,
965 EF_CSKY_DSP = 0x4000,
966 EF_CSKY_ABIV2 = 0x20000000,
967 EF_CSKY_EFV1 = 0x1000000,
968 EF_CSKY_EFV2 = 0x2000000,
969 EF_CSKY_EFV3 = 0x3000000
970};
971
972// ELF Relocation types for CSKY
973enum {
974#include "ELFRelocs/CSKY.def"
975};
976
977// LoongArch Specific e_flags
978enum : unsigned {
979 // Definitions from LoongArch ELF psABI v2.01.
980 // Reference: https://github.com/loongson/LoongArch-Documentation
981 // (commit hash 296de4def055c871809068e0816325a4ac04eb12)
982
983 // Base ABI Modifiers
984 EF_LOONGARCH_ABI_SOFT_FLOAT = 0x1,
985 EF_LOONGARCH_ABI_SINGLE_FLOAT = 0x2,
986 EF_LOONGARCH_ABI_DOUBLE_FLOAT = 0x3,
987 EF_LOONGARCH_ABI_MODIFIER_MASK = 0x7,
988
989 // Object file ABI versions
990 EF_LOONGARCH_OBJABI_V0 = 0x0,
991 EF_LOONGARCH_OBJABI_V1 = 0x40,
992 EF_LOONGARCH_OBJABI_MASK = 0xC0,
993};
994
995// ELF Relocation types for LoongArch
996enum {
997#include "ELFRelocs/LoongArch.def"
998};
999
1000// Xtensa specific e_flags
1001enum : unsigned {
1002 // Four-bit Xtensa machine type mask.
1003 EF_XTENSA_MACH = 0x0000000f,
1004 // Various CPU types.
1005 EF_XTENSA_MACH_NONE = 0x00000000, // A base Xtensa implementation
1006 EF_XTENSA_XT_INSN = 0x00000100,
1007 EF_XTENSA_XT_LIT = 0x00000200,
1008};
1009
1010// ELF Relocation types for Xtensa
1011enum {
1012#include "ELFRelocs/Xtensa.def"
1013};
1014
1015#undef ELF_RELOC
1016
1017// Section header.
1018struct Elf32_Shdr {
1019 Elf32_Word sh_name; // Section name (index into string table)
1020 Elf32_Word sh_type; // Section type (SHT_*)
1021 Elf32_Word sh_flags; // Section flags (SHF_*)
1022 Elf32_Addr sh_addr; // Address where section is to be loaded
1023 Elf32_Off sh_offset; // File offset of section data, in bytes
1024 Elf32_Word sh_size; // Size of section, in bytes
1025 Elf32_Word sh_link; // Section type-specific header table index link
1026 Elf32_Word sh_info; // Section type-specific extra information
1027 Elf32_Word sh_addralign; // Section address alignment
1028 Elf32_Word sh_entsize; // Size of records contained within the section
1029};
1030
1031// Section header for ELF64 - same fields as ELF32, different types.
1032struct Elf64_Shdr {
1033 Elf64_Word sh_name;
1034 Elf64_Word sh_type;
1035 Elf64_Xword sh_flags;
1036 Elf64_Addr sh_addr;
1037 Elf64_Off sh_offset;
1038 Elf64_Xword sh_size;
1039 Elf64_Word sh_link;
1040 Elf64_Word sh_info;
1041 Elf64_Xword sh_addralign;
1042 Elf64_Xword sh_entsize;
1043};
1044
1045// Special section indices.
1046enum {
1047 SHN_UNDEF = 0, // Undefined, missing, irrelevant, or meaningless
1048 SHN_LORESERVE = 0xff00, // Lowest reserved index
1049 SHN_LOPROC = 0xff00, // Lowest processor-specific index
1050 SHN_HIPROC = 0xff1f, // Highest processor-specific index
1051 SHN_LOOS = 0xff20, // Lowest operating system-specific index
1052 SHN_HIOS = 0xff3f, // Highest operating system-specific index
1053 SHN_ABS = 0xfff1, // Symbol has absolute value; does not need relocation
1054 SHN_COMMON = 0xfff2, // FORTRAN COMMON or C external global variables
1055 SHN_XINDEX = 0xffff, // Mark that the index is >= SHN_LORESERVE
1056 SHN_HIRESERVE = 0xffff // Highest reserved index
1057};
1058
1059// Section types.
1060enum : unsigned {
1061 SHT_NULL = 0, // No associated section (inactive entry).
1062 SHT_PROGBITS = 1, // Program-defined contents.
1063 SHT_SYMTAB = 2, // Symbol table.
1064 SHT_STRTAB = 3, // String table.
1065 SHT_RELA = 4, // Relocation entries; explicit addends.
1066 SHT_HASH = 5, // Symbol hash table.
1067 SHT_DYNAMIC = 6, // Information for dynamic linking.
1068 SHT_NOTE = 7, // Information about the file.
1069 SHT_NOBITS = 8, // Data occupies no space in the file.
1070 SHT_REL = 9, // Relocation entries; no explicit addends.
1071 SHT_SHLIB = 10, // Reserved.
1072 SHT_DYNSYM = 11, // Symbol table.
1073 SHT_INIT_ARRAY = 14, // Pointers to initialization functions.
1074 SHT_FINI_ARRAY = 15, // Pointers to termination functions.
1075 SHT_PREINIT_ARRAY = 16, // Pointers to pre-init functions.
1076 SHT_GROUP = 17, // Section group.
1077 SHT_SYMTAB_SHNDX = 18, // Indices for SHN_XINDEX entries.
1078 // Experimental support for SHT_RELR sections. For details, see proposal
1079 // at https://groups.google.com/forum/#!topic/generic-abi/bX460iggiKg
1080 SHT_RELR = 19, // Relocation entries; only offsets.
1081 SHT_LOOS = 0x60000000, // Lowest operating system-specific type.
1082 // Android packed relocation section types.
1083 // https://android.googlesource.com/platform/bionic/+/6f12bfece5dcc01325e0abba56a46b1bcf991c69/tools/relocation_packer/src/elf_file.cc#37
1084 SHT_ANDROID_REL = 0x60000001,
1085 SHT_ANDROID_RELA = 0x60000002,
1086 SHT_LLVM_ODRTAB = 0x6fff4c00, // LLVM ODR table.
1087 SHT_LLVM_LINKER_OPTIONS = 0x6fff4c01, // LLVM Linker Options.
1088 SHT_LLVM_ADDRSIG = 0x6fff4c03, // List of address-significant symbols
1089 // for safe ICF.
1090 SHT_LLVM_DEPENDENT_LIBRARIES =
1091 0x6fff4c04, // LLVM Dependent Library Specifiers.
1092 SHT_LLVM_SYMPART = 0x6fff4c05, // Symbol partition specification.
1093 SHT_LLVM_PART_EHDR = 0x6fff4c06, // ELF header for loadable partition.
1094 SHT_LLVM_PART_PHDR = 0x6fff4c07, // Phdrs for loadable partition.
1095 SHT_LLVM_BB_ADDR_MAP_V0 =
1096 0x6fff4c08, // LLVM Basic Block Address Map (old version kept for
1097 // backward-compatibility).
1098 SHT_LLVM_CALL_GRAPH_PROFILE = 0x6fff4c09, // LLVM Call Graph Profile.
1099 SHT_LLVM_BB_ADDR_MAP = 0x6fff4c0a, // LLVM Basic Block Address Map.
1100 SHT_LLVM_OFFLOADING = 0x6fff4c0b, // LLVM device offloading data.
1101 SHT_LLVM_LTO = 0x6fff4c0c, // .llvm.lto for fat LTO.
1102 // Android's experimental support for SHT_RELR sections.
1103 // https://android.googlesource.com/platform/bionic/+/b7feec74547f84559a1467aca02708ff61346d2a/libc/include/elf.h#512
1104 SHT_ANDROID_RELR = 0x6fffff00, // Relocation entries; only offsets.
1105 SHT_GNU_ATTRIBUTES = 0x6ffffff5, // Object attributes.
1106 SHT_GNU_HASH = 0x6ffffff6, // GNU-style hash table.
1107 SHT_GNU_verdef = 0x6ffffffd, // GNU version definitions.
1108 SHT_GNU_verneed = 0x6ffffffe, // GNU version references.
1109 SHT_GNU_versym = 0x6fffffff, // GNU symbol versions table.
1110 SHT_HIOS = 0x6fffffff, // Highest operating system-specific type.
1111 SHT_LOPROC = 0x70000000, // Lowest processor arch-specific type.
1112 // Fixme: All this is duplicated in MCSectionELF. Why??
1113 // Exception Index table
1114 SHT_ARM_EXIDX = 0x70000001U,
1115 // BPABI DLL dynamic linking pre-emption map
1116 SHT_ARM_PREEMPTMAP = 0x70000002U,
1117 // Object file compatibility attributes
1118 SHT_ARM_ATTRIBUTES = 0x70000003U,
1119 SHT_ARM_DEBUGOVERLAY = 0x70000004U,
1120 SHT_ARM_OVERLAYSECTION = 0x70000005U,
1121 // Special aarch64-specific section for MTE support, as described in:
1122 // https://github.com/ARM-software/abi-aa/blob/main/pauthabielf64/pauthabielf64.rst#section-types
1123 SHT_AARCH64_AUTH_RELR = 0x70000004U,
1124 // Special aarch64-specific sections for MTE support, as described in:
1125 // https://github.com/ARM-software/abi-aa/blob/main/memtagabielf64/memtagabielf64.rst#7section-types
1126 SHT_AARCH64_MEMTAG_GLOBALS_STATIC = 0x70000007U,
1127 SHT_AARCH64_MEMTAG_GLOBALS_DYNAMIC = 0x70000008U,
1128 SHT_HEX_ORDERED = 0x70000000, // Link editor is to sort the entries in
1129 // this section based on their sizes
1130 SHT_X86_64_UNWIND = 0x70000001, // Unwind information
1131
1132 SHT_MIPS_REGINFO = 0x70000006, // Register usage information
1133 SHT_MIPS_OPTIONS = 0x7000000d, // General options
1134 SHT_MIPS_DWARF = 0x7000001e, // DWARF debugging section.
1135 SHT_MIPS_ABIFLAGS = 0x7000002a, // ABI information.
1136
1137 SHT_MSP430_ATTRIBUTES = 0x70000003U,
1138
1139 SHT_RISCV_ATTRIBUTES = 0x70000003U,
1140
1141 SHT_CSKY_ATTRIBUTES = 0x70000001U,
1142
1143 SHT_HIPROC = 0x7fffffff, // Highest processor arch-specific type.
1144 SHT_LOUSER = 0x80000000, // Lowest type reserved for applications.
1145 SHT_HIUSER = 0xffffffff // Highest type reserved for applications.
1146};
1147
1148// Section flags.
1149enum : unsigned {
1150 // Section data should be writable during execution.
1151 SHF_WRITE = 0x1,
1152
1153 // Section occupies memory during program execution.
1154 SHF_ALLOC = 0x2,
1155
1156 // Section contains executable machine instructions.
1157 SHF_EXECINSTR = 0x4,
1158
1159 // The data in this section may be merged.
1160 SHF_MERGE = 0x10,
1161
1162 // The data in this section is null-terminated strings.
1163 SHF_STRINGS = 0x20,
1164
1165 // A field in this section holds a section header table index.
1166 SHF_INFO_LINK = 0x40U,
1167
1168 // Adds special ordering requirements for link editors.
1169 SHF_LINK_ORDER = 0x80U,
1170
1171 // This section requires special OS-specific processing to avoid incorrect
1172 // behavior.
1173 SHF_OS_NONCONFORMING = 0x100U,
1174
1175 // This section is a member of a section group.
1176 SHF_GROUP = 0x200U,
1177
1178 // This section holds Thread-Local Storage.
1179 SHF_TLS = 0x400U,
1180
1181 // Identifies a section containing compressed data.
1182 SHF_COMPRESSED = 0x800U,
1183
1184 // This section should not be garbage collected by the linker.
1185 SHF_GNU_RETAIN = 0x200000,
1186
1187 // This section is excluded from the final executable or shared library.
1188 SHF_EXCLUDE = 0x80000000U,
1189
1190 // Start of target-specific flags.
1191
1192 SHF_MASKOS = 0x0ff00000,
1193
1194 // Solaris equivalent of SHF_GNU_RETAIN.
1195 SHF_SUNW_NODISCARD = 0x00100000,
1196
1197 // Bits indicating processor-specific flags.
1198 SHF_MASKPROC = 0xf0000000,
1199
1200 /// All sections with the "d" flag are grouped together by the linker to form
1201 /// the data section and the dp register is set to the start of the section by
1202 /// the boot code.
1203 XCORE_SHF_DP_SECTION = 0x10000000,
1204
1205 /// All sections with the "c" flag are grouped together by the linker to form
1206 /// the constant pool and the cp register is set to the start of the constant
1207 /// pool by the boot code.
1208 XCORE_SHF_CP_SECTION = 0x20000000,
1209
1210 // If an object file section does not have this flag set, then it may not hold
1211 // more than 2GB and can be freely referred to in objects using smaller code
1212 // models. Otherwise, only objects using larger code models can refer to them.
1213 // For example, a medium code model object can refer to data in a section that
1214 // sets this flag besides being able to refer to data in a section that does
1215 // not set it; likewise, a small code model object can refer only to code in a
1216 // section that does not set this flag.
1217 SHF_X86_64_LARGE = 0x10000000,
1218
1219 // All sections with the GPREL flag are grouped into a global data area
1220 // for faster accesses
1221 SHF_HEX_GPREL = 0x10000000,
1222
1223 // Section contains text/data which may be replicated in other sections.
1224 // Linker must retain only one copy.
1225 SHF_MIPS_NODUPES = 0x01000000,
1226
1227 // Linker must generate implicit hidden weak names.
1228 SHF_MIPS_NAMES = 0x02000000,
1229
1230 // Section data local to process.
1231 SHF_MIPS_LOCAL = 0x04000000,
1232
1233 // Do not strip this section.
1234 SHF_MIPS_NOSTRIP = 0x08000000,
1235
1236 // Section must be part of global data area.
1237 SHF_MIPS_GPREL = 0x10000000,
1238
1239 // This section should be merged.
1240 SHF_MIPS_MERGE = 0x20000000,
1241
1242 // Address size to be inferred from section entry size.
1243 SHF_MIPS_ADDR = 0x40000000,
1244
1245 // Section data is string data by default.
1246 SHF_MIPS_STRING = 0x80000000,
1247
1248 // Make code section unreadable when in execute-only mode
1249 SHF_ARM_PURECODE = 0x20000000
1250};
1251
1252// Section Group Flags
1253enum : unsigned {
1254 GRP_COMDAT = 0x1,
1255 GRP_MASKOS = 0x0ff00000,
1256 GRP_MASKPROC = 0xf0000000
1257};
1258
1259// Symbol table entries for ELF32.
1260struct Elf32_Sym {
1261 Elf32_Word st_name; // Symbol name (index into string table)
1262 Elf32_Addr st_value; // Value or address associated with the symbol
1263 Elf32_Word st_size; // Size of the symbol
1264 unsigned char st_info; // Symbol's type and binding attributes
1265 unsigned char st_other; // Must be zero; reserved
1266 Elf32_Half st_shndx; // Which section (header table index) it's defined in
1267
1268 // These accessors and mutators correspond to the ELF32_ST_BIND,
1269 // ELF32_ST_TYPE, and ELF32_ST_INFO macros defined in the ELF specification:
1270 unsigned char getBinding() const { return st_info >> 4; }
1271 unsigned char getType() const { return st_info & 0x0f; }
1272 void setBinding(unsigned char b) { setBindingAndType(b, t: getType()); }
1273 void setType(unsigned char t) { setBindingAndType(b: getBinding(), t); }
1274 void setBindingAndType(unsigned char b, unsigned char t) {
1275 st_info = (b << 4) + (t & 0x0f);
1276 }
1277};
1278
1279// Symbol table entries for ELF64.
1280struct Elf64_Sym {
1281 Elf64_Word st_name; // Symbol name (index into string table)
1282 unsigned char st_info; // Symbol's type and binding attributes
1283 unsigned char st_other; // Must be zero; reserved
1284 Elf64_Half st_shndx; // Which section (header tbl index) it's defined in
1285 Elf64_Addr st_value; // Value or address associated with the symbol
1286 Elf64_Xword st_size; // Size of the symbol
1287
1288 // These accessors and mutators are identical to those defined for ELF32
1289 // symbol table entries.
1290 unsigned char getBinding() const { return st_info >> 4; }
1291 unsigned char getType() const { return st_info & 0x0f; }
1292 void setBinding(unsigned char b) { setBindingAndType(b, t: getType()); }
1293 void setType(unsigned char t) { setBindingAndType(b: getBinding(), t); }
1294 void setBindingAndType(unsigned char b, unsigned char t) {
1295 st_info = (b << 4) + (t & 0x0f);
1296 }
1297};
1298
1299// The size (in bytes) of symbol table entries.
1300enum {
1301 SYMENTRY_SIZE32 = 16, // 32-bit symbol entry size
1302 SYMENTRY_SIZE64 = 24 // 64-bit symbol entry size.
1303};
1304
1305// Symbol bindings.
1306enum {
1307 STB_LOCAL = 0, // Local symbol, not visible outside obj file containing def
1308 STB_GLOBAL = 1, // Global symbol, visible to all object files being combined
1309 STB_WEAK = 2, // Weak symbol, like global but lower-precedence
1310 STB_GNU_UNIQUE = 10,
1311 STB_LOOS = 10, // Lowest operating system-specific binding type
1312 STB_HIOS = 12, // Highest operating system-specific binding type
1313 STB_LOPROC = 13, // Lowest processor-specific binding type
1314 STB_HIPROC = 15 // Highest processor-specific binding type
1315};
1316
1317// Symbol types.
1318enum {
1319 STT_NOTYPE = 0, // Symbol's type is not specified
1320 STT_OBJECT = 1, // Symbol is a data object (variable, array, etc.)
1321 STT_FUNC = 2, // Symbol is executable code (function, etc.)
1322 STT_SECTION = 3, // Symbol refers to a section
1323 STT_FILE = 4, // Local, absolute symbol that refers to a file
1324 STT_COMMON = 5, // An uninitialized common block
1325 STT_TLS = 6, // Thread local data object
1326 STT_GNU_IFUNC = 10, // GNU indirect function
1327 STT_LOOS = 10, // Lowest operating system-specific symbol type
1328 STT_HIOS = 12, // Highest operating system-specific symbol type
1329 STT_LOPROC = 13, // Lowest processor-specific symbol type
1330 STT_HIPROC = 15, // Highest processor-specific symbol type
1331
1332 // AMDGPU symbol types
1333 STT_AMDGPU_HSA_KERNEL = 10
1334};
1335
1336enum {
1337 STV_DEFAULT = 0, // Visibility is specified by binding type
1338 STV_INTERNAL = 1, // Defined by processor supplements
1339 STV_HIDDEN = 2, // Not visible to other components
1340 STV_PROTECTED = 3 // Visible in other components but not preemptable
1341};
1342
1343// Symbol number.
1344enum { STN_UNDEF = 0 };
1345
1346// Special relocation symbols used in the MIPS64 ELF relocation entries
1347enum {
1348 RSS_UNDEF = 0, // None
1349 RSS_GP = 1, // Value of gp
1350 RSS_GP0 = 2, // Value of gp used to create object being relocated
1351 RSS_LOC = 3 // Address of location being relocated
1352};
1353
1354// Relocation entry, without explicit addend.
1355struct Elf32_Rel {
1356 Elf32_Addr r_offset; // Location (file byte offset, or program virtual addr)
1357 Elf32_Word r_info; // Symbol table index and type of relocation to apply
1358
1359 // These accessors and mutators correspond to the ELF32_R_SYM, ELF32_R_TYPE,
1360 // and ELF32_R_INFO macros defined in the ELF specification:
1361 Elf32_Word getSymbol() const { return (r_info >> 8); }
1362 unsigned char getType() const { return (unsigned char)(r_info & 0x0ff); }
1363 void setSymbol(Elf32_Word s) { setSymbolAndType(s, t: getType()); }
1364 void setType(unsigned char t) { setSymbolAndType(s: getSymbol(), t); }
1365 void setSymbolAndType(Elf32_Word s, unsigned char t) {
1366 r_info = (s << 8) + t;
1367 }
1368};
1369
1370// Relocation entry with explicit addend.
1371struct Elf32_Rela {
1372 Elf32_Addr r_offset; // Location (file byte offset, or program virtual addr)
1373 Elf32_Word r_info; // Symbol table index and type of relocation to apply
1374 Elf32_Sword r_addend; // Compute value for relocatable field by adding this
1375
1376 // These accessors and mutators correspond to the ELF32_R_SYM, ELF32_R_TYPE,
1377 // and ELF32_R_INFO macros defined in the ELF specification:
1378 Elf32_Word getSymbol() const { return (r_info >> 8); }
1379 unsigned char getType() const { return (unsigned char)(r_info & 0x0ff); }
1380 void setSymbol(Elf32_Word s) { setSymbolAndType(s, t: getType()); }
1381 void setType(unsigned char t) { setSymbolAndType(s: getSymbol(), t); }
1382 void setSymbolAndType(Elf32_Word s, unsigned char t) {
1383 r_info = (s << 8) + t;
1384 }
1385};
1386
1387// Relocation entry without explicit addend or info (relative relocations only).
1388typedef Elf32_Word Elf32_Relr; // offset/bitmap for relative relocations
1389
1390// Relocation entry, without explicit addend.
1391struct Elf64_Rel {
1392 Elf64_Addr r_offset; // Location (file byte offset, or program virtual addr).
1393 Elf64_Xword r_info; // Symbol table index and type of relocation to apply.
1394
1395 // These accessors and mutators correspond to the ELF64_R_SYM, ELF64_R_TYPE,
1396 // and ELF64_R_INFO macros defined in the ELF specification:
1397 Elf64_Word getSymbol() const { return (r_info >> 32); }
1398 Elf64_Word getType() const { return (Elf64_Word)(r_info & 0xffffffffL); }
1399 void setSymbol(Elf64_Word s) { setSymbolAndType(s, t: getType()); }
1400 void setType(Elf64_Word t) { setSymbolAndType(s: getSymbol(), t); }
1401 void setSymbolAndType(Elf64_Word s, Elf64_Word t) {
1402 r_info = ((Elf64_Xword)s << 32) + (t & 0xffffffffL);
1403 }
1404};
1405
1406// Relocation entry with explicit addend.
1407struct Elf64_Rela {
1408 Elf64_Addr r_offset; // Location (file byte offset, or program virtual addr).
1409 Elf64_Xword r_info; // Symbol table index and type of relocation to apply.
1410 Elf64_Sxword r_addend; // Compute value for relocatable field by adding this.
1411
1412 // These accessors and mutators correspond to the ELF64_R_SYM, ELF64_R_TYPE,
1413 // and ELF64_R_INFO macros defined in the ELF specification:
1414 Elf64_Word getSymbol() const { return (r_info >> 32); }
1415 Elf64_Word getType() const { return (Elf64_Word)(r_info & 0xffffffffL); }
1416 void setSymbol(Elf64_Word s) { setSymbolAndType(s, t: getType()); }
1417 void setType(Elf64_Word t) { setSymbolAndType(s: getSymbol(), t); }
1418 void setSymbolAndType(Elf64_Word s, Elf64_Word t) {
1419 r_info = ((Elf64_Xword)s << 32) + (t & 0xffffffffL);
1420 }
1421};
1422
1423// Relocation entry without explicit addend or info (relative relocations only).
1424typedef Elf64_Xword Elf64_Relr; // offset/bitmap for relative relocations
1425
1426// Program header for ELF32.
1427struct Elf32_Phdr {
1428 Elf32_Word p_type; // Type of segment
1429 Elf32_Off p_offset; // File offset where segment is located, in bytes
1430 Elf32_Addr p_vaddr; // Virtual address of beginning of segment
1431 Elf32_Addr p_paddr; // Physical address of beginning of segment (OS-specific)
1432 Elf32_Word p_filesz; // Num. of bytes in file image of segment (may be zero)
1433 Elf32_Word p_memsz; // Num. of bytes in mem image of segment (may be zero)
1434 Elf32_Word p_flags; // Segment flags
1435 Elf32_Word p_align; // Segment alignment constraint
1436};
1437
1438// Program header for ELF64.
1439struct Elf64_Phdr {
1440 Elf64_Word p_type; // Type of segment
1441 Elf64_Word p_flags; // Segment flags
1442 Elf64_Off p_offset; // File offset where segment is located, in bytes
1443 Elf64_Addr p_vaddr; // Virtual address of beginning of segment
1444 Elf64_Addr p_paddr; // Physical addr of beginning of segment (OS-specific)
1445 Elf64_Xword p_filesz; // Num. of bytes in file image of segment (may be zero)
1446 Elf64_Xword p_memsz; // Num. of bytes in mem image of segment (may be zero)
1447 Elf64_Xword p_align; // Segment alignment constraint
1448};
1449
1450// Segment types.
1451enum {
1452 PT_NULL = 0, // Unused segment.
1453 PT_LOAD = 1, // Loadable segment.
1454 PT_DYNAMIC = 2, // Dynamic linking information.
1455 PT_INTERP = 3, // Interpreter pathname.
1456 PT_NOTE = 4, // Auxiliary information.
1457 PT_SHLIB = 5, // Reserved.
1458 PT_PHDR = 6, // The program header table itself.
1459 PT_TLS = 7, // The thread-local storage template.
1460 PT_LOOS = 0x60000000, // Lowest operating system-specific pt entry type.
1461 PT_HIOS = 0x6fffffff, // Highest operating system-specific pt entry type.
1462 PT_LOPROC = 0x70000000, // Lowest processor-specific program hdr entry type.
1463 PT_HIPROC = 0x7fffffff, // Highest processor-specific program hdr entry type.
1464
1465 // x86-64 program header types.
1466 // These all contain stack unwind tables.
1467 PT_GNU_EH_FRAME = 0x6474e550,
1468 PT_SUNW_EH_FRAME = 0x6474e550,
1469 PT_SUNW_UNWIND = 0x6464e550,
1470
1471 PT_GNU_STACK = 0x6474e551, // Indicates stack executability.
1472 PT_GNU_RELRO = 0x6474e552, // Read-only after relocation.
1473 PT_GNU_PROPERTY = 0x6474e553, // .note.gnu.property notes sections.
1474
1475 PT_OPENBSD_MUTABLE = 0x65a3dbe5, // Like bss, but not immutable.
1476 PT_OPENBSD_RANDOMIZE = 0x65a3dbe6, // Fill with random data.
1477 PT_OPENBSD_WXNEEDED = 0x65a3dbe7, // Program does W^X violations.
1478 PT_OPENBSD_NOBTCFI = 0x65a3dbe8, // Do not enforce branch target CFI.
1479 PT_OPENBSD_BOOTDATA = 0x65a41be6, // Section for boot arguments.
1480
1481 // ARM program header types.
1482 PT_ARM_ARCHEXT = 0x70000000, // Platform architecture compatibility info
1483 // These all contain stack unwind tables.
1484 PT_ARM_EXIDX = 0x70000001,
1485 PT_ARM_UNWIND = 0x70000001,
1486 // MTE memory tag segment type
1487 PT_AARCH64_MEMTAG_MTE = 0x70000002,
1488
1489 // MIPS program header types.
1490 PT_MIPS_REGINFO = 0x70000000, // Register usage information.
1491 PT_MIPS_RTPROC = 0x70000001, // Runtime procedure table.
1492 PT_MIPS_OPTIONS = 0x70000002, // Options segment.
1493 PT_MIPS_ABIFLAGS = 0x70000003, // Abiflags segment.
1494
1495 // RISCV program header types.
1496 PT_RISCV_ATTRIBUTES = 0x70000003,
1497};
1498
1499// Segment flag bits.
1500enum : unsigned {
1501 PF_X = 1, // Execute
1502 PF_W = 2, // Write
1503 PF_R = 4, // Read
1504 PF_MASKOS = 0x0ff00000, // Bits for operating system-specific semantics.
1505 PF_MASKPROC = 0xf0000000 // Bits for processor-specific semantics.
1506};
1507
1508// Dynamic table entry for ELF32.
1509struct Elf32_Dyn {
1510 Elf32_Sword d_tag; // Type of dynamic table entry.
1511 union {
1512 Elf32_Word d_val; // Integer value of entry.
1513 Elf32_Addr d_ptr; // Pointer value of entry.
1514 } d_un;
1515};
1516
1517// Dynamic table entry for ELF64.
1518struct Elf64_Dyn {
1519 Elf64_Sxword d_tag; // Type of dynamic table entry.
1520 union {
1521 Elf64_Xword d_val; // Integer value of entry.
1522 Elf64_Addr d_ptr; // Pointer value of entry.
1523 } d_un;
1524};
1525
1526// Dynamic table entry tags.
1527enum {
1528#define DYNAMIC_TAG(name, value) DT_##name = value,
1529#include "DynamicTags.def"
1530#undef DYNAMIC_TAG
1531};
1532
1533// DT_FLAGS values.
1534enum {
1535 DF_ORIGIN = 0x01, // The object may reference $ORIGIN.
1536 DF_SYMBOLIC = 0x02, // Search the shared lib before searching the exe.
1537 DF_TEXTREL = 0x04, // Relocations may modify a non-writable segment.
1538 DF_BIND_NOW = 0x08, // Process all relocations on load.
1539 DF_STATIC_TLS = 0x10 // Reject attempts to load dynamically.
1540};
1541
1542// State flags selectable in the `d_un.d_val' element of the DT_FLAGS_1 entry.
1543enum {
1544 DF_1_NOW = 0x00000001, // Set RTLD_NOW for this object.
1545 DF_1_GLOBAL = 0x00000002, // Set RTLD_GLOBAL for this object.
1546 DF_1_GROUP = 0x00000004, // Set RTLD_GROUP for this object.
1547 DF_1_NODELETE = 0x00000008, // Set RTLD_NODELETE for this object.
1548 DF_1_LOADFLTR = 0x00000010, // Trigger filtee loading at runtime.
1549 DF_1_INITFIRST = 0x00000020, // Set RTLD_INITFIRST for this object.
1550 DF_1_NOOPEN = 0x00000040, // Set RTLD_NOOPEN for this object.
1551 DF_1_ORIGIN = 0x00000080, // $ORIGIN must be handled.
1552 DF_1_DIRECT = 0x00000100, // Direct binding enabled.
1553 DF_1_TRANS = 0x00000200,
1554 DF_1_INTERPOSE = 0x00000400, // Object is used to interpose.
1555 DF_1_NODEFLIB = 0x00000800, // Ignore default lib search path.
1556 DF_1_NODUMP = 0x00001000, // Object can't be dldump'ed.
1557 DF_1_CONFALT = 0x00002000, // Configuration alternative created.
1558 DF_1_ENDFILTEE = 0x00004000, // Filtee terminates filters search.
1559 DF_1_DISPRELDNE = 0x00008000, // Disp reloc applied at build time.
1560 DF_1_DISPRELPND = 0x00010000, // Disp reloc applied at run-time.
1561 DF_1_NODIRECT = 0x00020000, // Object has no-direct binding.
1562 DF_1_IGNMULDEF = 0x00040000,
1563 DF_1_NOKSYMS = 0x00080000,
1564 DF_1_NOHDR = 0x00100000,
1565 DF_1_EDITED = 0x00200000, // Object is modified after built.
1566 DF_1_NORELOC = 0x00400000,
1567 DF_1_SYMINTPOSE = 0x00800000, // Object has individual interposers.
1568 DF_1_GLOBAUDIT = 0x01000000, // Global auditing required.
1569 DF_1_SINGLETON = 0x02000000, // Singleton symbols are used.
1570 DF_1_PIE = 0x08000000, // Object is a position-independent executable.
1571};
1572
1573// DT_MIPS_FLAGS values.
1574enum {
1575 RHF_NONE = 0x00000000, // No flags.
1576 RHF_QUICKSTART = 0x00000001, // Uses shortcut pointers.
1577 RHF_NOTPOT = 0x00000002, // Hash size is not a power of two.
1578 RHS_NO_LIBRARY_REPLACEMENT = 0x00000004, // Ignore LD_LIBRARY_PATH.
1579 RHF_NO_MOVE = 0x00000008, // DSO address may not be relocated.
1580 RHF_SGI_ONLY = 0x00000010, // SGI specific features.
1581 RHF_GUARANTEE_INIT = 0x00000020, // Guarantee that .init will finish
1582 // executing before any non-init
1583 // code in DSO is called.
1584 RHF_DELTA_C_PLUS_PLUS = 0x00000040, // Contains Delta C++ code.
1585 RHF_GUARANTEE_START_INIT = 0x00000080, // Guarantee that .init will start
1586 // executing before any non-init
1587 // code in DSO is called.
1588 RHF_PIXIE = 0x00000100, // Generated by pixie.
1589 RHF_DEFAULT_DELAY_LOAD = 0x00000200, // Delay-load DSO by default.
1590 RHF_REQUICKSTART = 0x00000400, // Object may be requickstarted
1591 RHF_REQUICKSTARTED = 0x00000800, // Object has been requickstarted
1592 RHF_CORD = 0x00001000, // Generated by cord.
1593 RHF_NO_UNRES_UNDEF = 0x00002000, // Object contains no unresolved
1594 // undef symbols.
1595 RHF_RLD_ORDER_SAFE = 0x00004000 // Symbol table is in a safe order.
1596};
1597
1598// ElfXX_VerDef structure version (GNU versioning)
1599enum { VER_DEF_NONE = 0, VER_DEF_CURRENT = 1 };
1600
1601// VerDef Flags (ElfXX_VerDef::vd_flags)
1602enum { VER_FLG_BASE = 0x1, VER_FLG_WEAK = 0x2, VER_FLG_INFO = 0x4 };
1603
1604// Special constants for the version table. (SHT_GNU_versym/.gnu.version)
1605enum {
1606 VER_NDX_LOCAL = 0, // Unversioned local symbol
1607 VER_NDX_GLOBAL = 1, // Unversioned global symbol
1608 VERSYM_VERSION = 0x7fff, // Version Index mask
1609 VERSYM_HIDDEN = 0x8000 // Hidden bit (non-default version)
1610};
1611
1612// ElfXX_VerNeed structure version (GNU versioning)
1613enum { VER_NEED_NONE = 0, VER_NEED_CURRENT = 1 };
1614
1615// SHT_NOTE section types.
1616
1617// Generic note types.
1618enum : unsigned {
1619 NT_VERSION = 1,
1620 NT_ARCH = 2,
1621 NT_GNU_BUILD_ATTRIBUTE_OPEN = 0x100,
1622 NT_GNU_BUILD_ATTRIBUTE_FUNC = 0x101,
1623};
1624
1625// Core note types.
1626enum : unsigned {
1627 NT_PRSTATUS = 1,
1628 NT_FPREGSET = 2,
1629 NT_PRPSINFO = 3,
1630 NT_TASKSTRUCT = 4,
1631 NT_AUXV = 6,
1632 NT_PSTATUS = 10,
1633 NT_FPREGS = 12,
1634 NT_PSINFO = 13,
1635 NT_LWPSTATUS = 16,
1636 NT_LWPSINFO = 17,
1637 NT_WIN32PSTATUS = 18,
1638
1639 NT_PPC_VMX = 0x100,
1640 NT_PPC_VSX = 0x102,
1641 NT_PPC_TAR = 0x103,
1642 NT_PPC_PPR = 0x104,
1643 NT_PPC_DSCR = 0x105,
1644 NT_PPC_EBB = 0x106,
1645 NT_PPC_PMU = 0x107,
1646 NT_PPC_TM_CGPR = 0x108,
1647 NT_PPC_TM_CFPR = 0x109,
1648 NT_PPC_TM_CVMX = 0x10a,
1649 NT_PPC_TM_CVSX = 0x10b,
1650 NT_PPC_TM_SPR = 0x10c,
1651 NT_PPC_TM_CTAR = 0x10d,
1652 NT_PPC_TM_CPPR = 0x10e,
1653 NT_PPC_TM_CDSCR = 0x10f,
1654
1655 NT_386_TLS = 0x200,
1656 NT_386_IOPERM = 0x201,
1657 NT_X86_XSTATE = 0x202,
1658
1659 NT_S390_HIGH_GPRS = 0x300,
1660 NT_S390_TIMER = 0x301,
1661 NT_S390_TODCMP = 0x302,
1662 NT_S390_TODPREG = 0x303,
1663 NT_S390_CTRS = 0x304,
1664 NT_S390_PREFIX = 0x305,
1665 NT_S390_LAST_BREAK = 0x306,
1666 NT_S390_SYSTEM_CALL = 0x307,
1667 NT_S390_TDB = 0x308,
1668 NT_S390_VXRS_LOW = 0x309,
1669 NT_S390_VXRS_HIGH = 0x30a,
1670 NT_S390_GS_CB = 0x30b,
1671 NT_S390_GS_BC = 0x30c,
1672
1673 NT_ARM_VFP = 0x400,
1674 NT_ARM_TLS = 0x401,
1675 NT_ARM_HW_BREAK = 0x402,
1676 NT_ARM_HW_WATCH = 0x403,
1677 NT_ARM_SVE = 0x405,
1678 NT_ARM_PAC_MASK = 0x406,
1679 NT_ARM_TAGGED_ADDR_CTRL = 0x409,
1680 NT_ARM_SSVE = 0x40b,
1681 NT_ARM_ZA = 0x40c,
1682 NT_ARM_ZT = 0x40d,
1683
1684 NT_FILE = 0x46494c45,
1685 NT_PRXFPREG = 0x46e62b7f,
1686 NT_SIGINFO = 0x53494749,
1687};
1688
1689// LLVM-specific notes.
1690enum {
1691 NT_LLVM_HWASAN_GLOBALS = 3,
1692};
1693
1694// GNU note types.
1695enum {
1696 NT_GNU_ABI_TAG = 1,
1697 NT_GNU_HWCAP = 2,
1698 NT_GNU_BUILD_ID = 3,
1699 NT_GNU_GOLD_VERSION = 4,
1700 NT_GNU_PROPERTY_TYPE_0 = 5,
1701 FDO_PACKAGING_METADATA = 0xcafe1a7e,
1702};
1703
1704// Android note types.
1705enum {
1706 NT_ANDROID_TYPE_IDENT = 1,
1707 NT_ANDROID_TYPE_KUSER = 3,
1708 NT_ANDROID_TYPE_MEMTAG = 4,
1709};
1710
1711// ARM note types.
1712enum {
1713 NT_ARM_TYPE_PAUTH_ABI_TAG = 1,
1714};
1715
1716// Memory tagging values used in NT_ANDROID_TYPE_MEMTAG notes.
1717enum {
1718 // Enumeration to determine the tagging mode. In Android-land, 'SYNC' means
1719 // running all threads in MTE Synchronous mode, and 'ASYNC' means to use the
1720 // kernels auto-upgrade feature to allow for either MTE Asynchronous,
1721 // Asymmetric, or Synchronous mode. This allows silicon vendors to specify, on
1722 // a per-cpu basis what 'ASYNC' should mean. Generally, the expectation is
1723 // "pick the most precise mode that's very fast".
1724 NT_MEMTAG_LEVEL_NONE = 0,
1725 NT_MEMTAG_LEVEL_ASYNC = 1,
1726 NT_MEMTAG_LEVEL_SYNC = 2,
1727 NT_MEMTAG_LEVEL_MASK = 3,
1728 // Bits indicating whether the loader should prepare for MTE to be enabled on
1729 // the heap and/or stack.
1730 NT_MEMTAG_HEAP = 4,
1731 NT_MEMTAG_STACK = 8,
1732};
1733
1734// Property types used in GNU_PROPERTY_TYPE_0 notes.
1735enum : unsigned {
1736 GNU_PROPERTY_STACK_SIZE = 1,
1737 GNU_PROPERTY_NO_COPY_ON_PROTECTED = 2,
1738 GNU_PROPERTY_AARCH64_FEATURE_1_AND = 0xc0000000,
1739 GNU_PROPERTY_X86_FEATURE_1_AND = 0xc0000002,
1740
1741 GNU_PROPERTY_X86_UINT32_OR_LO = 0xc0008000,
1742 GNU_PROPERTY_X86_FEATURE_2_NEEDED = GNU_PROPERTY_X86_UINT32_OR_LO + 1,
1743 GNU_PROPERTY_X86_ISA_1_NEEDED = GNU_PROPERTY_X86_UINT32_OR_LO + 2,
1744
1745 GNU_PROPERTY_X86_UINT32_OR_AND_LO = 0xc0010000,
1746 GNU_PROPERTY_X86_FEATURE_2_USED = GNU_PROPERTY_X86_UINT32_OR_AND_LO + 1,
1747 GNU_PROPERTY_X86_ISA_1_USED = GNU_PROPERTY_X86_UINT32_OR_AND_LO + 2,
1748};
1749
1750// aarch64 processor feature bits.
1751enum : unsigned {
1752 GNU_PROPERTY_AARCH64_FEATURE_1_BTI = 1 << 0,
1753 GNU_PROPERTY_AARCH64_FEATURE_1_PAC = 1 << 1,
1754 GNU_PROPERTY_AARCH64_FEATURE_1_GCS = 1 << 2,
1755};
1756
1757// x86 processor feature bits.
1758enum : unsigned {
1759 GNU_PROPERTY_X86_FEATURE_1_IBT = 1 << 0,
1760 GNU_PROPERTY_X86_FEATURE_1_SHSTK = 1 << 1,
1761
1762 GNU_PROPERTY_X86_FEATURE_2_X86 = 1 << 0,
1763 GNU_PROPERTY_X86_FEATURE_2_X87 = 1 << 1,
1764 GNU_PROPERTY_X86_FEATURE_2_MMX = 1 << 2,
1765 GNU_PROPERTY_X86_FEATURE_2_XMM = 1 << 3,
1766 GNU_PROPERTY_X86_FEATURE_2_YMM = 1 << 4,
1767 GNU_PROPERTY_X86_FEATURE_2_ZMM = 1 << 5,
1768 GNU_PROPERTY_X86_FEATURE_2_FXSR = 1 << 6,
1769 GNU_PROPERTY_X86_FEATURE_2_XSAVE = 1 << 7,
1770 GNU_PROPERTY_X86_FEATURE_2_XSAVEOPT = 1 << 8,
1771 GNU_PROPERTY_X86_FEATURE_2_XSAVEC = 1 << 9,
1772
1773 GNU_PROPERTY_X86_ISA_1_BASELINE = 1 << 0,
1774 GNU_PROPERTY_X86_ISA_1_V2 = 1 << 1,
1775 GNU_PROPERTY_X86_ISA_1_V3 = 1 << 2,
1776 GNU_PROPERTY_X86_ISA_1_V4 = 1 << 3,
1777};
1778
1779// FreeBSD note types.
1780enum {
1781 NT_FREEBSD_ABI_TAG = 1,
1782 NT_FREEBSD_NOINIT_TAG = 2,
1783 NT_FREEBSD_ARCH_TAG = 3,
1784 NT_FREEBSD_FEATURE_CTL = 4,
1785};
1786
1787// NT_FREEBSD_FEATURE_CTL values (see FreeBSD's sys/sys/elf_common.h).
1788enum {
1789 NT_FREEBSD_FCTL_ASLR_DISABLE = 0x00000001,
1790 NT_FREEBSD_FCTL_PROTMAX_DISABLE = 0x00000002,
1791 NT_FREEBSD_FCTL_STKGAP_DISABLE = 0x00000004,
1792 NT_FREEBSD_FCTL_WXNEEDED = 0x00000008,
1793 NT_FREEBSD_FCTL_LA48 = 0x00000010,
1794 NT_FREEBSD_FCTL_ASG_DISABLE = 0x00000020,
1795};
1796
1797// FreeBSD core note types.
1798enum {
1799 NT_FREEBSD_THRMISC = 7,
1800 NT_FREEBSD_PROCSTAT_PROC = 8,
1801 NT_FREEBSD_PROCSTAT_FILES = 9,
1802 NT_FREEBSD_PROCSTAT_VMMAP = 10,
1803 NT_FREEBSD_PROCSTAT_GROUPS = 11,
1804 NT_FREEBSD_PROCSTAT_UMASK = 12,
1805 NT_FREEBSD_PROCSTAT_RLIMIT = 13,
1806 NT_FREEBSD_PROCSTAT_OSREL = 14,
1807 NT_FREEBSD_PROCSTAT_PSSTRINGS = 15,
1808 NT_FREEBSD_PROCSTAT_AUXV = 16,
1809};
1810
1811// NetBSD core note types.
1812enum {
1813 NT_NETBSDCORE_PROCINFO = 1,
1814 NT_NETBSDCORE_AUXV = 2,
1815 NT_NETBSDCORE_LWPSTATUS = 24,
1816};
1817
1818// OpenBSD core note types.
1819enum {
1820 NT_OPENBSD_PROCINFO = 10,
1821 NT_OPENBSD_AUXV = 11,
1822 NT_OPENBSD_REGS = 20,
1823 NT_OPENBSD_FPREGS = 21,
1824 NT_OPENBSD_XFPREGS = 22,
1825 NT_OPENBSD_WCOOKIE = 23,
1826};
1827
1828// AMDGPU-specific section indices.
1829enum {
1830 SHN_AMDGPU_LDS = 0xff00, // Variable in LDS; symbol encoded like SHN_COMMON
1831};
1832
1833// AMD vendor specific notes. (Code Object V2)
1834enum {
1835 NT_AMD_HSA_CODE_OBJECT_VERSION = 1,
1836 NT_AMD_HSA_HSAIL = 2,
1837 NT_AMD_HSA_ISA_VERSION = 3,
1838 // Note types with values between 4 and 9 (inclusive) are reserved.
1839 NT_AMD_HSA_METADATA = 10,
1840 NT_AMD_HSA_ISA_NAME = 11,
1841 NT_AMD_PAL_METADATA = 12
1842};
1843
1844// AMDGPU vendor specific notes. (Code Object V3)
1845enum {
1846 // Note types with values between 0 and 31 (inclusive) are reserved.
1847 NT_AMDGPU_METADATA = 32
1848};
1849
1850// LLVMOMPOFFLOAD specific notes.
1851enum : unsigned {
1852 NT_LLVM_OPENMP_OFFLOAD_VERSION = 1,
1853 NT_LLVM_OPENMP_OFFLOAD_PRODUCER = 2,
1854 NT_LLVM_OPENMP_OFFLOAD_PRODUCER_VERSION = 3
1855};
1856
1857enum {
1858 GNU_ABI_TAG_LINUX = 0,
1859 GNU_ABI_TAG_HURD = 1,
1860 GNU_ABI_TAG_SOLARIS = 2,
1861 GNU_ABI_TAG_FREEBSD = 3,
1862 GNU_ABI_TAG_NETBSD = 4,
1863 GNU_ABI_TAG_SYLLABLE = 5,
1864 GNU_ABI_TAG_NACL = 6,
1865};
1866
1867constexpr const char *ELF_NOTE_GNU = "GNU";
1868
1869// Android packed relocation group flags.
1870enum {
1871 RELOCATION_GROUPED_BY_INFO_FLAG = 1,
1872 RELOCATION_GROUPED_BY_OFFSET_DELTA_FLAG = 2,
1873 RELOCATION_GROUPED_BY_ADDEND_FLAG = 4,
1874 RELOCATION_GROUP_HAS_ADDEND_FLAG = 8,
1875};
1876
1877// Compressed section header for ELF32.
1878struct Elf32_Chdr {
1879 Elf32_Word ch_type;
1880 Elf32_Word ch_size;
1881 Elf32_Word ch_addralign;
1882};
1883
1884// Compressed section header for ELF64.
1885struct Elf64_Chdr {
1886 Elf64_Word ch_type;
1887 Elf64_Word ch_reserved;
1888 Elf64_Xword ch_size;
1889 Elf64_Xword ch_addralign;
1890};
1891
1892// Note header for ELF32.
1893struct Elf32_Nhdr {
1894 Elf32_Word n_namesz;
1895 Elf32_Word n_descsz;
1896 Elf32_Word n_type;
1897};
1898
1899// Note header for ELF64.
1900struct Elf64_Nhdr {
1901 Elf64_Word n_namesz;
1902 Elf64_Word n_descsz;
1903 Elf64_Word n_type;
1904};
1905
1906// Legal values for ch_type field of compressed section header.
1907enum {
1908 ELFCOMPRESS_ZLIB = 1, // ZLIB/DEFLATE algorithm.
1909 ELFCOMPRESS_ZSTD = 2, // Zstandard algorithm
1910 ELFCOMPRESS_LOOS = 0x60000000, // Start of OS-specific.
1911 ELFCOMPRESS_HIOS = 0x6fffffff, // End of OS-specific.
1912 ELFCOMPRESS_LOPROC = 0x70000000, // Start of processor-specific.
1913 ELFCOMPRESS_HIPROC = 0x7fffffff // End of processor-specific.
1914};
1915
1916/// Convert an architecture name into ELF's e_machine value.
1917uint16_t convertArchNameToEMachine(StringRef Arch);
1918
1919/// Convert an ELF's e_machine value into an architecture name.
1920StringRef convertEMachineToArchName(uint16_t EMachine);
1921
1922} // end namespace ELF
1923} // end namespace llvm
1924
1925#endif // LLVM_BINARYFORMAT_ELF_H
1926

source code of llvm/include/llvm/BinaryFormat/ELF.h