1//===-- BlockCoverageInference.cpp - Minimal Execution Coverage -*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// Our algorithm works by first identifying a subset of nodes that must always
10// be instrumented. We call these nodes ambiguous because knowing the coverage
11// of all remaining nodes is not enough to infer their coverage status.
12//
13// In general a node v is ambiguous if there exists two entry-to-terminal paths
14// P_1 and P_2 such that:
15// 1. v not in P_1 but P_1 visits a predecessor of v, and
16// 2. v not in P_2 but P_2 visits a successor of v.
17//
18// If a node v is not ambiguous, then if condition 1 fails, we can infer v’s
19// coverage from the coverage of its predecessors, or if condition 2 fails, we
20// can infer v’s coverage from the coverage of its successors.
21//
22// Sadly, there are example CFGs where it is not possible to infer all nodes
23// from the ambiguous nodes alone. Our algorithm selects a minimum number of
24// extra nodes to add to the ambiguous nodes to form a valid instrumentation S.
25//
26// Details on this algorithm can be found in https://arxiv.org/abs/2208.13907
27//
28//===----------------------------------------------------------------------===//
29
30#include "llvm/Transforms/Instrumentation/BlockCoverageInference.h"
31#include "llvm/ADT/DepthFirstIterator.h"
32#include "llvm/ADT/Statistic.h"
33#include "llvm/Support/CRC.h"
34#include "llvm/Support/Debug.h"
35#include "llvm/Support/GraphWriter.h"
36#include "llvm/Support/raw_ostream.h"
37#include "llvm/Transforms/Utils/BasicBlockUtils.h"
38
39using namespace llvm;
40
41#define DEBUG_TYPE "pgo-block-coverage"
42
43STATISTIC(NumFunctions, "Number of total functions that BCI has processed");
44STATISTIC(NumIneligibleFunctions,
45 "Number of functions for which BCI cannot run on");
46STATISTIC(NumBlocks, "Number of total basic blocks that BCI has processed");
47STATISTIC(NumInstrumentedBlocks,
48 "Number of basic blocks instrumented for coverage");
49
50BlockCoverageInference::BlockCoverageInference(const Function &F,
51 bool ForceInstrumentEntry)
52 : F(F), ForceInstrumentEntry(ForceInstrumentEntry) {
53 findDependencies();
54 assert(!ForceInstrumentEntry || shouldInstrumentBlock(F.getEntryBlock()));
55
56 ++NumFunctions;
57 for (auto &BB : F) {
58 ++NumBlocks;
59 if (shouldInstrumentBlock(BB))
60 ++NumInstrumentedBlocks;
61 }
62}
63
64BlockCoverageInference::BlockSet
65BlockCoverageInference::getDependencies(const BasicBlock &BB) const {
66 assert(BB.getParent() == &F);
67 BlockSet Dependencies;
68 auto It = PredecessorDependencies.find(Val: &BB);
69 if (It != PredecessorDependencies.end())
70 Dependencies.set_union(It->second);
71 It = SuccessorDependencies.find(Val: &BB);
72 if (It != SuccessorDependencies.end())
73 Dependencies.set_union(It->second);
74 return Dependencies;
75}
76
77uint64_t BlockCoverageInference::getInstrumentedBlocksHash() const {
78 JamCRC JC;
79 uint64_t Index = 0;
80 for (auto &BB : F) {
81 if (shouldInstrumentBlock(BB)) {
82 uint8_t Data[8];
83 support::endian::write64le(P: Data, V: Index);
84 JC.update(Data);
85 }
86 Index++;
87 }
88 return JC.getCRC();
89}
90
91bool BlockCoverageInference::shouldInstrumentBlock(const BasicBlock &BB) const {
92 assert(BB.getParent() == &F);
93 auto It = PredecessorDependencies.find(Val: &BB);
94 if (It != PredecessorDependencies.end() && It->second.size())
95 return false;
96 It = SuccessorDependencies.find(Val: &BB);
97 if (It != SuccessorDependencies.end() && It->second.size())
98 return false;
99 return true;
100}
101
102void BlockCoverageInference::findDependencies() {
103 assert(PredecessorDependencies.empty() && SuccessorDependencies.empty());
104 // Empirical analysis shows that this algorithm finishes within 5 seconds for
105 // functions with fewer than 1.5K blocks.
106 if (F.hasFnAttribute(Attribute::NoReturn) || F.size() > 1500) {
107 ++NumIneligibleFunctions;
108 return;
109 }
110
111 SmallVector<const BasicBlock *, 4> TerminalBlocks;
112 for (auto &BB : F)
113 if (succ_empty(BB: &BB))
114 TerminalBlocks.push_back(Elt: &BB);
115
116 // Traverse the CFG backwards from the terminal blocks to make sure every
117 // block can reach some terminal block. Otherwise this algorithm will not work
118 // and we must fall back to instrumenting every block.
119 df_iterator_default_set<const BasicBlock *> Visited;
120 for (auto *BB : TerminalBlocks)
121 for (auto *N : inverse_depth_first_ext(G: BB, S&: Visited))
122 (void)N;
123 if (F.size() != Visited.size()) {
124 ++NumIneligibleFunctions;
125 return;
126 }
127
128 // The current implementation for computing `PredecessorDependencies` and
129 // `SuccessorDependencies` runs in quadratic time with respect to the number
130 // of basic blocks. While we do have a more complicated linear time algorithm
131 // in https://arxiv.org/abs/2208.13907 we do not know if it will give a
132 // significant speedup in practice given that most functions tend to be
133 // relatively small in size for intended use cases.
134 auto &EntryBlock = F.getEntryBlock();
135 for (auto &BB : F) {
136 // The set of blocks that are reachable while avoiding BB.
137 BlockSet ReachableFromEntry, ReachableFromTerminal;
138 getReachableAvoiding(Start: EntryBlock, Avoid: BB, /*IsForward=*/true,
139 Reachable&: ReachableFromEntry);
140 for (auto *TerminalBlock : TerminalBlocks)
141 getReachableAvoiding(Start: *TerminalBlock, Avoid: BB, /*IsForward=*/false,
142 Reachable&: ReachableFromTerminal);
143
144 auto Preds = predecessors(BB: &BB);
145 bool HasSuperReachablePred = llvm::any_of(Range&: Preds, P: [&](auto *Pred) {
146 return ReachableFromEntry.count(key: Pred) &&
147 ReachableFromTerminal.count(key: Pred);
148 });
149 if (!HasSuperReachablePred)
150 for (auto *Pred : Preds)
151 if (ReachableFromEntry.count(key: Pred))
152 PredecessorDependencies[&BB].insert(X: Pred);
153
154 auto Succs = successors(BB: &BB);
155 bool HasSuperReachableSucc = llvm::any_of(Range&: Succs, P: [&](auto *Succ) {
156 return ReachableFromEntry.count(key: Succ) &&
157 ReachableFromTerminal.count(key: Succ);
158 });
159 if (!HasSuperReachableSucc)
160 for (auto *Succ : Succs)
161 if (ReachableFromTerminal.count(key: Succ))
162 SuccessorDependencies[&BB].insert(X: Succ);
163 }
164
165 if (ForceInstrumentEntry) {
166 // Force the entry block to be instrumented by clearing the blocks it can
167 // infer coverage from.
168 PredecessorDependencies[&EntryBlock].clear();
169 SuccessorDependencies[&EntryBlock].clear();
170 }
171
172 // Construct a graph where blocks are connected if there is a mutual
173 // dependency between them. This graph has a special property that it contains
174 // only paths.
175 DenseMap<const BasicBlock *, BlockSet> AdjacencyList;
176 for (auto &BB : F) {
177 for (auto *Succ : successors(BB: &BB)) {
178 if (SuccessorDependencies[&BB].count(key: Succ) &&
179 PredecessorDependencies[Succ].count(key: &BB)) {
180 AdjacencyList[&BB].insert(X: Succ);
181 AdjacencyList[Succ].insert(X: &BB);
182 }
183 }
184 }
185
186 // Given a path with at least one node, return the next node on the path.
187 auto getNextOnPath = [&](BlockSet &Path) -> const BasicBlock * {
188 assert(Path.size());
189 auto &Neighbors = AdjacencyList[Path.back()];
190 if (Path.size() == 1) {
191 // This is the first node on the path, return its neighbor.
192 assert(Neighbors.size() == 1);
193 return Neighbors.front();
194 } else if (Neighbors.size() == 2) {
195 // This is the middle of the path, find the neighbor that is not on the
196 // path already.
197 assert(Path.size() >= 2);
198 return Path.count(key: Neighbors[0]) ? Neighbors[1] : Neighbors[0];
199 }
200 // This is the end of the path.
201 assert(Neighbors.size() == 1);
202 return nullptr;
203 };
204
205 // Remove all cycles in the inferencing graph.
206 for (auto &BB : F) {
207 if (AdjacencyList[&BB].size() == 1) {
208 // We found the head of some path.
209 BlockSet Path;
210 Path.insert(X: &BB);
211 while (const BasicBlock *Next = getNextOnPath(Path))
212 Path.insert(X: Next);
213 LLVM_DEBUG(dbgs() << "Found path: " << getBlockNames(Path) << "\n");
214
215 // Remove these nodes from the graph so we don't discover this path again.
216 for (auto *BB : Path)
217 AdjacencyList[BB].clear();
218
219 // Finally, remove the cycles.
220 if (PredecessorDependencies[Path.front()].size()) {
221 for (auto *BB : Path)
222 if (BB != Path.back())
223 SuccessorDependencies[BB].clear();
224 } else {
225 for (auto *BB : Path)
226 if (BB != Path.front())
227 PredecessorDependencies[BB].clear();
228 }
229 }
230 }
231 LLVM_DEBUG(dump(dbgs()));
232}
233
234void BlockCoverageInference::getReachableAvoiding(const BasicBlock &Start,
235 const BasicBlock &Avoid,
236 bool IsForward,
237 BlockSet &Reachable) const {
238 df_iterator_default_set<const BasicBlock *> Visited;
239 Visited.insert(N: &Avoid);
240 if (IsForward) {
241 auto Range = depth_first_ext(G: &Start, S&: Visited);
242 Reachable.insert(Start: Range.begin(), End: Range.end());
243 } else {
244 auto Range = inverse_depth_first_ext(G: &Start, S&: Visited);
245 Reachable.insert(Start: Range.begin(), End: Range.end());
246 }
247}
248
249namespace llvm {
250class DotFuncBCIInfo {
251private:
252 const BlockCoverageInference *BCI;
253 const DenseMap<const BasicBlock *, bool> *Coverage;
254
255public:
256 DotFuncBCIInfo(const BlockCoverageInference *BCI,
257 const DenseMap<const BasicBlock *, bool> *Coverage)
258 : BCI(BCI), Coverage(Coverage) {}
259
260 const Function &getFunction() { return BCI->F; }
261
262 bool isInstrumented(const BasicBlock *BB) const {
263 return BCI->shouldInstrumentBlock(BB: *BB);
264 }
265
266 bool isCovered(const BasicBlock *BB) const {
267 return Coverage && Coverage->lookup(Val: BB);
268 }
269
270 bool isDependent(const BasicBlock *Src, const BasicBlock *Dest) const {
271 return BCI->getDependencies(BB: *Src).count(key: Dest);
272 }
273};
274
275template <>
276struct GraphTraits<DotFuncBCIInfo *> : public GraphTraits<const BasicBlock *> {
277 static NodeRef getEntryNode(DotFuncBCIInfo *Info) {
278 return &(Info->getFunction().getEntryBlock());
279 }
280
281 // nodes_iterator/begin/end - Allow iteration over all nodes in the graph
282 using nodes_iterator = pointer_iterator<Function::const_iterator>;
283
284 static nodes_iterator nodes_begin(DotFuncBCIInfo *Info) {
285 return nodes_iterator(Info->getFunction().begin());
286 }
287
288 static nodes_iterator nodes_end(DotFuncBCIInfo *Info) {
289 return nodes_iterator(Info->getFunction().end());
290 }
291
292 static size_t size(DotFuncBCIInfo *Info) {
293 return Info->getFunction().size();
294 }
295};
296
297template <>
298struct DOTGraphTraits<DotFuncBCIInfo *> : public DefaultDOTGraphTraits {
299
300 DOTGraphTraits(bool IsSimple = false) : DefaultDOTGraphTraits(IsSimple) {}
301
302 static std::string getGraphName(DotFuncBCIInfo *Info) {
303 return "BCI CFG for " + Info->getFunction().getName().str();
304 }
305
306 std::string getNodeLabel(const BasicBlock *Node, DotFuncBCIInfo *Info) {
307 return Node->getName().str();
308 }
309
310 std::string getEdgeAttributes(const BasicBlock *Src, const_succ_iterator I,
311 DotFuncBCIInfo *Info) {
312 const BasicBlock *Dest = *I;
313 if (Info->isDependent(Src, Dest))
314 return "color=red";
315 if (Info->isDependent(Src: Dest, Dest: Src))
316 return "color=blue";
317 return "";
318 }
319
320 std::string getNodeAttributes(const BasicBlock *Node, DotFuncBCIInfo *Info) {
321 std::string Result;
322 if (Info->isInstrumented(BB: Node))
323 Result += "style=filled,fillcolor=gray";
324 if (Info->isCovered(BB: Node))
325 Result += std::string(Result.empty() ? "" : ",") + "color=red";
326 return Result;
327 }
328};
329
330} // namespace llvm
331
332void BlockCoverageInference::viewBlockCoverageGraph(
333 const DenseMap<const BasicBlock *, bool> *Coverage) const {
334 DotFuncBCIInfo Info(this, Coverage);
335 WriteGraph(G: &Info, Name: "BCI", ShortNames: false,
336 Title: "Block Coverage Inference for " + F.getName());
337}
338
339void BlockCoverageInference::dump(raw_ostream &OS) const {
340 OS << "Minimal block coverage for function \'" << F.getName()
341 << "\' (Instrumented=*)\n";
342 for (auto &BB : F) {
343 OS << (shouldInstrumentBlock(BB) ? "* " : " ") << BB.getName() << "\n";
344 auto It = PredecessorDependencies.find(Val: &BB);
345 if (It != PredecessorDependencies.end() && It->second.size())
346 OS << " PredDeps = " << getBlockNames(BBs: It->second) << "\n";
347 It = SuccessorDependencies.find(Val: &BB);
348 if (It != SuccessorDependencies.end() && It->second.size())
349 OS << " SuccDeps = " << getBlockNames(BBs: It->second) << "\n";
350 }
351 OS << " Instrumented Blocks Hash = 0x"
352 << Twine::utohexstr(Val: getInstrumentedBlocksHash()) << "\n";
353}
354
355std::string
356BlockCoverageInference::getBlockNames(ArrayRef<const BasicBlock *> BBs) {
357 std::string Result;
358 raw_string_ostream OS(Result);
359 OS << "[";
360 if (!BBs.empty()) {
361 OS << BBs.front()->getName();
362 BBs = BBs.drop_front();
363 }
364 for (auto *BB : BBs)
365 OS << ", " << BB->getName();
366 OS << "]";
367 return OS.str();
368}
369

source code of llvm/lib/Transforms/Instrumentation/BlockCoverageInference.cpp