1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * f_fs.c -- user mode file system API for USB composite function controllers
4 *
5 * Copyright (C) 2010 Samsung Electronics
6 * Author: Michal Nazarewicz <mina86@mina86.com>
7 *
8 * Based on inode.c (GadgetFS) which was:
9 * Copyright (C) 2003-2004 David Brownell
10 * Copyright (C) 2003 Agilent Technologies
11 */
12
13
14/* #define DEBUG */
15/* #define VERBOSE_DEBUG */
16
17#include <linux/blkdev.h>
18#include <linux/dma-buf.h>
19#include <linux/dma-fence.h>
20#include <linux/dma-resv.h>
21#include <linux/pagemap.h>
22#include <linux/export.h>
23#include <linux/fs_parser.h>
24#include <linux/hid.h>
25#include <linux/mm.h>
26#include <linux/module.h>
27#include <linux/scatterlist.h>
28#include <linux/sched/signal.h>
29#include <linux/uio.h>
30#include <linux/vmalloc.h>
31#include <asm/unaligned.h>
32
33#include <linux/usb/ccid.h>
34#include <linux/usb/composite.h>
35#include <linux/usb/functionfs.h>
36
37#include <linux/aio.h>
38#include <linux/kthread.h>
39#include <linux/poll.h>
40#include <linux/eventfd.h>
41
42#include "u_fs.h"
43#include "u_f.h"
44#include "u_os_desc.h"
45#include "configfs.h"
46
47#define FUNCTIONFS_MAGIC 0xa647361 /* Chosen by a honest dice roll ;) */
48
49#define DMABUF_ENQUEUE_TIMEOUT_MS 5000
50
51MODULE_IMPORT_NS(DMA_BUF);
52
53/* Reference counter handling */
54static void ffs_data_get(struct ffs_data *ffs);
55static void ffs_data_put(struct ffs_data *ffs);
56/* Creates new ffs_data object. */
57static struct ffs_data *__must_check ffs_data_new(const char *dev_name)
58 __attribute__((malloc));
59
60/* Opened counter handling. */
61static void ffs_data_opened(struct ffs_data *ffs);
62static void ffs_data_closed(struct ffs_data *ffs);
63
64/* Called with ffs->mutex held; take over ownership of data. */
65static int __must_check
66__ffs_data_got_descs(struct ffs_data *ffs, char *data, size_t len);
67static int __must_check
68__ffs_data_got_strings(struct ffs_data *ffs, char *data, size_t len);
69
70
71/* The function structure ***************************************************/
72
73struct ffs_ep;
74
75struct ffs_function {
76 struct usb_configuration *conf;
77 struct usb_gadget *gadget;
78 struct ffs_data *ffs;
79
80 struct ffs_ep *eps;
81 u8 eps_revmap[16];
82 short *interfaces_nums;
83
84 struct usb_function function;
85};
86
87
88static struct ffs_function *ffs_func_from_usb(struct usb_function *f)
89{
90 return container_of(f, struct ffs_function, function);
91}
92
93
94static inline enum ffs_setup_state
95ffs_setup_state_clear_cancelled(struct ffs_data *ffs)
96{
97 return (enum ffs_setup_state)
98 cmpxchg(&ffs->setup_state, FFS_SETUP_CANCELLED, FFS_NO_SETUP);
99}
100
101
102static void ffs_func_eps_disable(struct ffs_function *func);
103static int __must_check ffs_func_eps_enable(struct ffs_function *func);
104
105static int ffs_func_bind(struct usb_configuration *,
106 struct usb_function *);
107static int ffs_func_set_alt(struct usb_function *, unsigned, unsigned);
108static void ffs_func_disable(struct usb_function *);
109static int ffs_func_setup(struct usb_function *,
110 const struct usb_ctrlrequest *);
111static bool ffs_func_req_match(struct usb_function *,
112 const struct usb_ctrlrequest *,
113 bool config0);
114static void ffs_func_suspend(struct usb_function *);
115static void ffs_func_resume(struct usb_function *);
116
117
118static int ffs_func_revmap_ep(struct ffs_function *func, u8 num);
119static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf);
120
121
122/* The endpoints structures *************************************************/
123
124struct ffs_ep {
125 struct usb_ep *ep; /* P: ffs->eps_lock */
126 struct usb_request *req; /* P: epfile->mutex */
127
128 /* [0]: full speed, [1]: high speed, [2]: super speed */
129 struct usb_endpoint_descriptor *descs[3];
130
131 u8 num;
132};
133
134struct ffs_dmabuf_priv {
135 struct list_head entry;
136 struct kref ref;
137 struct ffs_data *ffs;
138 struct dma_buf_attachment *attach;
139 struct sg_table *sgt;
140 enum dma_data_direction dir;
141 spinlock_t lock;
142 u64 context;
143 struct usb_request *req; /* P: ffs->eps_lock */
144 struct usb_ep *ep; /* P: ffs->eps_lock */
145};
146
147struct ffs_dma_fence {
148 struct dma_fence base;
149 struct ffs_dmabuf_priv *priv;
150 struct work_struct work;
151};
152
153struct ffs_epfile {
154 /* Protects ep->ep and ep->req. */
155 struct mutex mutex;
156
157 struct ffs_data *ffs;
158 struct ffs_ep *ep; /* P: ffs->eps_lock */
159
160 struct dentry *dentry;
161
162 /*
163 * Buffer for holding data from partial reads which may happen since
164 * we’re rounding user read requests to a multiple of a max packet size.
165 *
166 * The pointer is initialised with NULL value and may be set by
167 * __ffs_epfile_read_data function to point to a temporary buffer.
168 *
169 * In normal operation, calls to __ffs_epfile_read_buffered will consume
170 * data from said buffer and eventually free it. Importantly, while the
171 * function is using the buffer, it sets the pointer to NULL. This is
172 * all right since __ffs_epfile_read_data and __ffs_epfile_read_buffered
173 * can never run concurrently (they are synchronised by epfile->mutex)
174 * so the latter will not assign a new value to the pointer.
175 *
176 * Meanwhile ffs_func_eps_disable frees the buffer (if the pointer is
177 * valid) and sets the pointer to READ_BUFFER_DROP value. This special
178 * value is crux of the synchronisation between ffs_func_eps_disable and
179 * __ffs_epfile_read_data.
180 *
181 * Once __ffs_epfile_read_data is about to finish it will try to set the
182 * pointer back to its old value (as described above), but seeing as the
183 * pointer is not-NULL (namely READ_BUFFER_DROP) it will instead free
184 * the buffer.
185 *
186 * == State transitions ==
187 *
188 * • ptr == NULL: (initial state)
189 * ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP
190 * ◦ __ffs_epfile_read_buffered: nop
191 * ◦ __ffs_epfile_read_data allocates temp buffer: go to ptr == buf
192 * ◦ reading finishes: n/a, not in ‘and reading’ state
193 * • ptr == DROP:
194 * ◦ __ffs_epfile_read_buffer_free: nop
195 * ◦ __ffs_epfile_read_buffered: go to ptr == NULL
196 * ◦ __ffs_epfile_read_data allocates temp buffer: free buf, nop
197 * ◦ reading finishes: n/a, not in ‘and reading’ state
198 * • ptr == buf:
199 * ◦ __ffs_epfile_read_buffer_free: free buf, go to ptr == DROP
200 * ◦ __ffs_epfile_read_buffered: go to ptr == NULL and reading
201 * ◦ __ffs_epfile_read_data: n/a, __ffs_epfile_read_buffered
202 * is always called first
203 * ◦ reading finishes: n/a, not in ‘and reading’ state
204 * • ptr == NULL and reading:
205 * ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP and reading
206 * ◦ __ffs_epfile_read_buffered: n/a, mutex is held
207 * ◦ __ffs_epfile_read_data: n/a, mutex is held
208 * ◦ reading finishes and …
209 * … all data read: free buf, go to ptr == NULL
210 * … otherwise: go to ptr == buf and reading
211 * • ptr == DROP and reading:
212 * ◦ __ffs_epfile_read_buffer_free: nop
213 * ◦ __ffs_epfile_read_buffered: n/a, mutex is held
214 * ◦ __ffs_epfile_read_data: n/a, mutex is held
215 * ◦ reading finishes: free buf, go to ptr == DROP
216 */
217 struct ffs_buffer *read_buffer;
218#define READ_BUFFER_DROP ((struct ffs_buffer *)ERR_PTR(-ESHUTDOWN))
219
220 char name[5];
221
222 unsigned char in; /* P: ffs->eps_lock */
223 unsigned char isoc; /* P: ffs->eps_lock */
224
225 unsigned char _pad;
226
227 /* Protects dmabufs */
228 struct mutex dmabufs_mutex;
229 struct list_head dmabufs; /* P: dmabufs_mutex */
230 atomic_t seqno;
231};
232
233struct ffs_buffer {
234 size_t length;
235 char *data;
236 char storage[] __counted_by(length);
237};
238
239/* ffs_io_data structure ***************************************************/
240
241struct ffs_io_data {
242 bool aio;
243 bool read;
244
245 struct kiocb *kiocb;
246 struct iov_iter data;
247 const void *to_free;
248 char *buf;
249
250 struct mm_struct *mm;
251 struct work_struct work;
252
253 struct usb_ep *ep;
254 struct usb_request *req;
255 struct sg_table sgt;
256 bool use_sg;
257
258 struct ffs_data *ffs;
259
260 int status;
261 struct completion done;
262};
263
264struct ffs_desc_helper {
265 struct ffs_data *ffs;
266 unsigned interfaces_count;
267 unsigned eps_count;
268};
269
270static int __must_check ffs_epfiles_create(struct ffs_data *ffs);
271static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count);
272
273static struct dentry *
274ffs_sb_create_file(struct super_block *sb, const char *name, void *data,
275 const struct file_operations *fops);
276
277/* Devices management *******************************************************/
278
279DEFINE_MUTEX(ffs_lock);
280EXPORT_SYMBOL_GPL(ffs_lock);
281
282static struct ffs_dev *_ffs_find_dev(const char *name);
283static struct ffs_dev *_ffs_alloc_dev(void);
284static void _ffs_free_dev(struct ffs_dev *dev);
285static int ffs_acquire_dev(const char *dev_name, struct ffs_data *ffs_data);
286static void ffs_release_dev(struct ffs_dev *ffs_dev);
287static int ffs_ready(struct ffs_data *ffs);
288static void ffs_closed(struct ffs_data *ffs);
289
290/* Misc helper functions ****************************************************/
291
292static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock)
293 __attribute__((warn_unused_result, nonnull));
294static char *ffs_prepare_buffer(const char __user *buf, size_t len)
295 __attribute__((warn_unused_result, nonnull));
296
297
298/* Control file aka ep0 *****************************************************/
299
300static void ffs_ep0_complete(struct usb_ep *ep, struct usb_request *req)
301{
302 struct ffs_data *ffs = req->context;
303
304 complete(&ffs->ep0req_completion);
305}
306
307static int __ffs_ep0_queue_wait(struct ffs_data *ffs, char *data, size_t len)
308 __releases(&ffs->ev.waitq.lock)
309{
310 struct usb_request *req = ffs->ep0req;
311 int ret;
312
313 if (!req) {
314 spin_unlock_irq(lock: &ffs->ev.waitq.lock);
315 return -EINVAL;
316 }
317
318 req->zero = len < le16_to_cpu(ffs->ev.setup.wLength);
319
320 spin_unlock_irq(lock: &ffs->ev.waitq.lock);
321
322 req->buf = data;
323 req->length = len;
324
325 /*
326 * UDC layer requires to provide a buffer even for ZLP, but should
327 * not use it at all. Let's provide some poisoned pointer to catch
328 * possible bug in the driver.
329 */
330 if (req->buf == NULL)
331 req->buf = (void *)0xDEADBABE;
332
333 reinit_completion(x: &ffs->ep0req_completion);
334
335 ret = usb_ep_queue(ep: ffs->gadget->ep0, req, GFP_ATOMIC);
336 if (ret < 0)
337 return ret;
338
339 ret = wait_for_completion_interruptible(x: &ffs->ep0req_completion);
340 if (ret) {
341 usb_ep_dequeue(ep: ffs->gadget->ep0, req);
342 return -EINTR;
343 }
344
345 ffs->setup_state = FFS_NO_SETUP;
346 return req->status ? req->status : req->actual;
347}
348
349static int __ffs_ep0_stall(struct ffs_data *ffs)
350{
351 if (ffs->ev.can_stall) {
352 pr_vdebug("ep0 stall\n");
353 usb_ep_set_halt(ep: ffs->gadget->ep0);
354 ffs->setup_state = FFS_NO_SETUP;
355 return -EL2HLT;
356 } else {
357 pr_debug("bogus ep0 stall!\n");
358 return -ESRCH;
359 }
360}
361
362static ssize_t ffs_ep0_write(struct file *file, const char __user *buf,
363 size_t len, loff_t *ptr)
364{
365 struct ffs_data *ffs = file->private_data;
366 ssize_t ret;
367 char *data;
368
369 /* Fast check if setup was canceled */
370 if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED)
371 return -EIDRM;
372
373 /* Acquire mutex */
374 ret = ffs_mutex_lock(mutex: &ffs->mutex, nonblock: file->f_flags & O_NONBLOCK);
375 if (ret < 0)
376 return ret;
377
378 /* Check state */
379 switch (ffs->state) {
380 case FFS_READ_DESCRIPTORS:
381 case FFS_READ_STRINGS:
382 /* Copy data */
383 if (len < 16) {
384 ret = -EINVAL;
385 break;
386 }
387
388 data = ffs_prepare_buffer(buf, len);
389 if (IS_ERR(ptr: data)) {
390 ret = PTR_ERR(ptr: data);
391 break;
392 }
393
394 /* Handle data */
395 if (ffs->state == FFS_READ_DESCRIPTORS) {
396 pr_info("read descriptors\n");
397 ret = __ffs_data_got_descs(ffs, data, len);
398 if (ret < 0)
399 break;
400
401 ffs->state = FFS_READ_STRINGS;
402 ret = len;
403 } else {
404 pr_info("read strings\n");
405 ret = __ffs_data_got_strings(ffs, data, len);
406 if (ret < 0)
407 break;
408
409 ret = ffs_epfiles_create(ffs);
410 if (ret) {
411 ffs->state = FFS_CLOSING;
412 break;
413 }
414
415 ffs->state = FFS_ACTIVE;
416 mutex_unlock(lock: &ffs->mutex);
417
418 ret = ffs_ready(ffs);
419 if (ret < 0) {
420 ffs->state = FFS_CLOSING;
421 return ret;
422 }
423
424 return len;
425 }
426 break;
427
428 case FFS_ACTIVE:
429 data = NULL;
430 /*
431 * We're called from user space, we can use _irq
432 * rather then _irqsave
433 */
434 spin_lock_irq(lock: &ffs->ev.waitq.lock);
435 switch (ffs_setup_state_clear_cancelled(ffs)) {
436 case FFS_SETUP_CANCELLED:
437 ret = -EIDRM;
438 goto done_spin;
439
440 case FFS_NO_SETUP:
441 ret = -ESRCH;
442 goto done_spin;
443
444 case FFS_SETUP_PENDING:
445 break;
446 }
447
448 /* FFS_SETUP_PENDING */
449 if (!(ffs->ev.setup.bRequestType & USB_DIR_IN)) {
450 spin_unlock_irq(lock: &ffs->ev.waitq.lock);
451 ret = __ffs_ep0_stall(ffs);
452 break;
453 }
454
455 /* FFS_SETUP_PENDING and not stall */
456 len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength));
457
458 spin_unlock_irq(lock: &ffs->ev.waitq.lock);
459
460 data = ffs_prepare_buffer(buf, len);
461 if (IS_ERR(ptr: data)) {
462 ret = PTR_ERR(ptr: data);
463 break;
464 }
465
466 spin_lock_irq(lock: &ffs->ev.waitq.lock);
467
468 /*
469 * We are guaranteed to be still in FFS_ACTIVE state
470 * but the state of setup could have changed from
471 * FFS_SETUP_PENDING to FFS_SETUP_CANCELLED so we need
472 * to check for that. If that happened we copied data
473 * from user space in vain but it's unlikely.
474 *
475 * For sure we are not in FFS_NO_SETUP since this is
476 * the only place FFS_SETUP_PENDING -> FFS_NO_SETUP
477 * transition can be performed and it's protected by
478 * mutex.
479 */
480 if (ffs_setup_state_clear_cancelled(ffs) ==
481 FFS_SETUP_CANCELLED) {
482 ret = -EIDRM;
483done_spin:
484 spin_unlock_irq(lock: &ffs->ev.waitq.lock);
485 } else {
486 /* unlocks spinlock */
487 ret = __ffs_ep0_queue_wait(ffs, data, len);
488 }
489 kfree(objp: data);
490 break;
491
492 default:
493 ret = -EBADFD;
494 break;
495 }
496
497 mutex_unlock(lock: &ffs->mutex);
498 return ret;
499}
500
501/* Called with ffs->ev.waitq.lock and ffs->mutex held, both released on exit. */
502static ssize_t __ffs_ep0_read_events(struct ffs_data *ffs, char __user *buf,
503 size_t n)
504 __releases(&ffs->ev.waitq.lock)
505{
506 /*
507 * n cannot be bigger than ffs->ev.count, which cannot be bigger than
508 * size of ffs->ev.types array (which is four) so that's how much space
509 * we reserve.
510 */
511 struct usb_functionfs_event events[ARRAY_SIZE(ffs->ev.types)];
512 const size_t size = n * sizeof *events;
513 unsigned i = 0;
514
515 memset(events, 0, size);
516
517 do {
518 events[i].type = ffs->ev.types[i];
519 if (events[i].type == FUNCTIONFS_SETUP) {
520 events[i].u.setup = ffs->ev.setup;
521 ffs->setup_state = FFS_SETUP_PENDING;
522 }
523 } while (++i < n);
524
525 ffs->ev.count -= n;
526 if (ffs->ev.count)
527 memmove(ffs->ev.types, ffs->ev.types + n,
528 ffs->ev.count * sizeof *ffs->ev.types);
529
530 spin_unlock_irq(lock: &ffs->ev.waitq.lock);
531 mutex_unlock(lock: &ffs->mutex);
532
533 return copy_to_user(to: buf, from: events, n: size) ? -EFAULT : size;
534}
535
536static ssize_t ffs_ep0_read(struct file *file, char __user *buf,
537 size_t len, loff_t *ptr)
538{
539 struct ffs_data *ffs = file->private_data;
540 char *data = NULL;
541 size_t n;
542 int ret;
543
544 /* Fast check if setup was canceled */
545 if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED)
546 return -EIDRM;
547
548 /* Acquire mutex */
549 ret = ffs_mutex_lock(mutex: &ffs->mutex, nonblock: file->f_flags & O_NONBLOCK);
550 if (ret < 0)
551 return ret;
552
553 /* Check state */
554 if (ffs->state != FFS_ACTIVE) {
555 ret = -EBADFD;
556 goto done_mutex;
557 }
558
559 /*
560 * We're called from user space, we can use _irq rather then
561 * _irqsave
562 */
563 spin_lock_irq(lock: &ffs->ev.waitq.lock);
564
565 switch (ffs_setup_state_clear_cancelled(ffs)) {
566 case FFS_SETUP_CANCELLED:
567 ret = -EIDRM;
568 break;
569
570 case FFS_NO_SETUP:
571 n = len / sizeof(struct usb_functionfs_event);
572 if (!n) {
573 ret = -EINVAL;
574 break;
575 }
576
577 if ((file->f_flags & O_NONBLOCK) && !ffs->ev.count) {
578 ret = -EAGAIN;
579 break;
580 }
581
582 if (wait_event_interruptible_exclusive_locked_irq(ffs->ev.waitq,
583 ffs->ev.count)) {
584 ret = -EINTR;
585 break;
586 }
587
588 /* unlocks spinlock */
589 return __ffs_ep0_read_events(ffs, buf,
590 min(n, (size_t)ffs->ev.count));
591
592 case FFS_SETUP_PENDING:
593 if (ffs->ev.setup.bRequestType & USB_DIR_IN) {
594 spin_unlock_irq(lock: &ffs->ev.waitq.lock);
595 ret = __ffs_ep0_stall(ffs);
596 goto done_mutex;
597 }
598
599 len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength));
600
601 spin_unlock_irq(lock: &ffs->ev.waitq.lock);
602
603 if (len) {
604 data = kmalloc(size: len, GFP_KERNEL);
605 if (!data) {
606 ret = -ENOMEM;
607 goto done_mutex;
608 }
609 }
610
611 spin_lock_irq(lock: &ffs->ev.waitq.lock);
612
613 /* See ffs_ep0_write() */
614 if (ffs_setup_state_clear_cancelled(ffs) ==
615 FFS_SETUP_CANCELLED) {
616 ret = -EIDRM;
617 break;
618 }
619
620 /* unlocks spinlock */
621 ret = __ffs_ep0_queue_wait(ffs, data, len);
622 if ((ret > 0) && (copy_to_user(to: buf, from: data, n: len)))
623 ret = -EFAULT;
624 goto done_mutex;
625
626 default:
627 ret = -EBADFD;
628 break;
629 }
630
631 spin_unlock_irq(lock: &ffs->ev.waitq.lock);
632done_mutex:
633 mutex_unlock(lock: &ffs->mutex);
634 kfree(objp: data);
635 return ret;
636}
637
638static int ffs_ep0_open(struct inode *inode, struct file *file)
639{
640 struct ffs_data *ffs = inode->i_private;
641
642 if (ffs->state == FFS_CLOSING)
643 return -EBUSY;
644
645 file->private_data = ffs;
646 ffs_data_opened(ffs);
647
648 return stream_open(inode, filp: file);
649}
650
651static int ffs_ep0_release(struct inode *inode, struct file *file)
652{
653 struct ffs_data *ffs = file->private_data;
654
655 ffs_data_closed(ffs);
656
657 return 0;
658}
659
660static long ffs_ep0_ioctl(struct file *file, unsigned code, unsigned long value)
661{
662 struct ffs_data *ffs = file->private_data;
663 struct usb_gadget *gadget = ffs->gadget;
664 long ret;
665
666 if (code == FUNCTIONFS_INTERFACE_REVMAP) {
667 struct ffs_function *func = ffs->func;
668 ret = func ? ffs_func_revmap_intf(func, intf: value) : -ENODEV;
669 } else if (gadget && gadget->ops->ioctl) {
670 ret = gadget->ops->ioctl(gadget, code, value);
671 } else {
672 ret = -ENOTTY;
673 }
674
675 return ret;
676}
677
678static __poll_t ffs_ep0_poll(struct file *file, poll_table *wait)
679{
680 struct ffs_data *ffs = file->private_data;
681 __poll_t mask = EPOLLWRNORM;
682 int ret;
683
684 poll_wait(filp: file, wait_address: &ffs->ev.waitq, p: wait);
685
686 ret = ffs_mutex_lock(mutex: &ffs->mutex, nonblock: file->f_flags & O_NONBLOCK);
687 if (ret < 0)
688 return mask;
689
690 switch (ffs->state) {
691 case FFS_READ_DESCRIPTORS:
692 case FFS_READ_STRINGS:
693 mask |= EPOLLOUT;
694 break;
695
696 case FFS_ACTIVE:
697 switch (ffs->setup_state) {
698 case FFS_NO_SETUP:
699 if (ffs->ev.count)
700 mask |= EPOLLIN;
701 break;
702
703 case FFS_SETUP_PENDING:
704 case FFS_SETUP_CANCELLED:
705 mask |= (EPOLLIN | EPOLLOUT);
706 break;
707 }
708 break;
709
710 case FFS_CLOSING:
711 break;
712 case FFS_DEACTIVATED:
713 break;
714 }
715
716 mutex_unlock(lock: &ffs->mutex);
717
718 return mask;
719}
720
721static const struct file_operations ffs_ep0_operations = {
722 .llseek = no_llseek,
723
724 .open = ffs_ep0_open,
725 .write = ffs_ep0_write,
726 .read = ffs_ep0_read,
727 .release = ffs_ep0_release,
728 .unlocked_ioctl = ffs_ep0_ioctl,
729 .poll = ffs_ep0_poll,
730};
731
732
733/* "Normal" endpoints operations ********************************************/
734
735static void ffs_epfile_io_complete(struct usb_ep *_ep, struct usb_request *req)
736{
737 struct ffs_io_data *io_data = req->context;
738
739 if (req->status)
740 io_data->status = req->status;
741 else
742 io_data->status = req->actual;
743
744 complete(&io_data->done);
745}
746
747static ssize_t ffs_copy_to_iter(void *data, int data_len, struct iov_iter *iter)
748{
749 ssize_t ret = copy_to_iter(addr: data, bytes: data_len, i: iter);
750 if (ret == data_len)
751 return ret;
752
753 if (iov_iter_count(i: iter))
754 return -EFAULT;
755
756 /*
757 * Dear user space developer!
758 *
759 * TL;DR: To stop getting below error message in your kernel log, change
760 * user space code using functionfs to align read buffers to a max
761 * packet size.
762 *
763 * Some UDCs (e.g. dwc3) require request sizes to be a multiple of a max
764 * packet size. When unaligned buffer is passed to functionfs, it
765 * internally uses a larger, aligned buffer so that such UDCs are happy.
766 *
767 * Unfortunately, this means that host may send more data than was
768 * requested in read(2) system call. f_fs doesn’t know what to do with
769 * that excess data so it simply drops it.
770 *
771 * Was the buffer aligned in the first place, no such problem would
772 * happen.
773 *
774 * Data may be dropped only in AIO reads. Synchronous reads are handled
775 * by splitting a request into multiple parts. This splitting may still
776 * be a problem though so it’s likely best to align the buffer
777 * regardless of it being AIO or not..
778 *
779 * This only affects OUT endpoints, i.e. reading data with a read(2),
780 * aio_read(2) etc. system calls. Writing data to an IN endpoint is not
781 * affected.
782 */
783 pr_err("functionfs read size %d > requested size %zd, dropping excess data. "
784 "Align read buffer size to max packet size to avoid the problem.\n",
785 data_len, ret);
786
787 return ret;
788}
789
790/*
791 * allocate a virtually contiguous buffer and create a scatterlist describing it
792 * @sg_table - pointer to a place to be filled with sg_table contents
793 * @size - required buffer size
794 */
795static void *ffs_build_sg_list(struct sg_table *sgt, size_t sz)
796{
797 struct page **pages;
798 void *vaddr, *ptr;
799 unsigned int n_pages;
800 int i;
801
802 vaddr = vmalloc(size: sz);
803 if (!vaddr)
804 return NULL;
805
806 n_pages = PAGE_ALIGN(sz) >> PAGE_SHIFT;
807 pages = kvmalloc_array(n: n_pages, size: sizeof(struct page *), GFP_KERNEL);
808 if (!pages) {
809 vfree(addr: vaddr);
810
811 return NULL;
812 }
813 for (i = 0, ptr = vaddr; i < n_pages; ++i, ptr += PAGE_SIZE)
814 pages[i] = vmalloc_to_page(addr: ptr);
815
816 if (sg_alloc_table_from_pages(sgt, pages, n_pages, offset: 0, size: sz, GFP_KERNEL)) {
817 kvfree(addr: pages);
818 vfree(addr: vaddr);
819
820 return NULL;
821 }
822 kvfree(addr: pages);
823
824 return vaddr;
825}
826
827static inline void *ffs_alloc_buffer(struct ffs_io_data *io_data,
828 size_t data_len)
829{
830 if (io_data->use_sg)
831 return ffs_build_sg_list(sgt: &io_data->sgt, sz: data_len);
832
833 return kmalloc(size: data_len, GFP_KERNEL);
834}
835
836static inline void ffs_free_buffer(struct ffs_io_data *io_data)
837{
838 if (!io_data->buf)
839 return;
840
841 if (io_data->use_sg) {
842 sg_free_table(&io_data->sgt);
843 vfree(addr: io_data->buf);
844 } else {
845 kfree(objp: io_data->buf);
846 }
847}
848
849static void ffs_user_copy_worker(struct work_struct *work)
850{
851 struct ffs_io_data *io_data = container_of(work, struct ffs_io_data,
852 work);
853 int ret = io_data->status;
854 bool kiocb_has_eventfd = io_data->kiocb->ki_flags & IOCB_EVENTFD;
855
856 if (io_data->read && ret > 0) {
857 kthread_use_mm(mm: io_data->mm);
858 ret = ffs_copy_to_iter(data: io_data->buf, data_len: ret, iter: &io_data->data);
859 kthread_unuse_mm(mm: io_data->mm);
860 }
861
862 io_data->kiocb->ki_complete(io_data->kiocb, ret);
863
864 if (io_data->ffs->ffs_eventfd && !kiocb_has_eventfd)
865 eventfd_signal(ctx: io_data->ffs->ffs_eventfd);
866
867 if (io_data->read)
868 kfree(objp: io_data->to_free);
869 ffs_free_buffer(io_data);
870 kfree(objp: io_data);
871}
872
873static void ffs_epfile_async_io_complete(struct usb_ep *_ep,
874 struct usb_request *req)
875{
876 struct ffs_io_data *io_data = req->context;
877 struct ffs_data *ffs = io_data->ffs;
878
879 io_data->status = req->status ? req->status : req->actual;
880 usb_ep_free_request(ep: _ep, req);
881
882 INIT_WORK(&io_data->work, ffs_user_copy_worker);
883 queue_work(wq: ffs->io_completion_wq, work: &io_data->work);
884}
885
886static void __ffs_epfile_read_buffer_free(struct ffs_epfile *epfile)
887{
888 /*
889 * See comment in struct ffs_epfile for full read_buffer pointer
890 * synchronisation story.
891 */
892 struct ffs_buffer *buf = xchg(&epfile->read_buffer, READ_BUFFER_DROP);
893 if (buf && buf != READ_BUFFER_DROP)
894 kfree(objp: buf);
895}
896
897/* Assumes epfile->mutex is held. */
898static ssize_t __ffs_epfile_read_buffered(struct ffs_epfile *epfile,
899 struct iov_iter *iter)
900{
901 /*
902 * Null out epfile->read_buffer so ffs_func_eps_disable does not free
903 * the buffer while we are using it. See comment in struct ffs_epfile
904 * for full read_buffer pointer synchronisation story.
905 */
906 struct ffs_buffer *buf = xchg(&epfile->read_buffer, NULL);
907 ssize_t ret;
908 if (!buf || buf == READ_BUFFER_DROP)
909 return 0;
910
911 ret = copy_to_iter(addr: buf->data, bytes: buf->length, i: iter);
912 if (buf->length == ret) {
913 kfree(objp: buf);
914 return ret;
915 }
916
917 if (iov_iter_count(i: iter)) {
918 ret = -EFAULT;
919 } else {
920 buf->length -= ret;
921 buf->data += ret;
922 }
923
924 if (cmpxchg(&epfile->read_buffer, NULL, buf))
925 kfree(objp: buf);
926
927 return ret;
928}
929
930/* Assumes epfile->mutex is held. */
931static ssize_t __ffs_epfile_read_data(struct ffs_epfile *epfile,
932 void *data, int data_len,
933 struct iov_iter *iter)
934{
935 struct ffs_buffer *buf;
936
937 ssize_t ret = copy_to_iter(addr: data, bytes: data_len, i: iter);
938 if (data_len == ret)
939 return ret;
940
941 if (iov_iter_count(i: iter))
942 return -EFAULT;
943
944 /* See ffs_copy_to_iter for more context. */
945 pr_warn("functionfs read size %d > requested size %zd, splitting request into multiple reads.",
946 data_len, ret);
947
948 data_len -= ret;
949 buf = kmalloc(struct_size(buf, storage, data_len), GFP_KERNEL);
950 if (!buf)
951 return -ENOMEM;
952 buf->length = data_len;
953 buf->data = buf->storage;
954 memcpy(buf->storage, data + ret, flex_array_size(buf, storage, data_len));
955
956 /*
957 * At this point read_buffer is NULL or READ_BUFFER_DROP (if
958 * ffs_func_eps_disable has been called in the meanwhile). See comment
959 * in struct ffs_epfile for full read_buffer pointer synchronisation
960 * story.
961 */
962 if (cmpxchg(&epfile->read_buffer, NULL, buf))
963 kfree(objp: buf);
964
965 return ret;
966}
967
968static struct ffs_ep *ffs_epfile_wait_ep(struct file *file)
969{
970 struct ffs_epfile *epfile = file->private_data;
971 struct ffs_ep *ep;
972 int ret;
973
974 /* Wait for endpoint to be enabled */
975 ep = epfile->ep;
976 if (!ep) {
977 if (file->f_flags & O_NONBLOCK)
978 return ERR_PTR(error: -EAGAIN);
979
980 ret = wait_event_interruptible(
981 epfile->ffs->wait, (ep = epfile->ep));
982 if (ret)
983 return ERR_PTR(error: -EINTR);
984 }
985
986 return ep;
987}
988
989static ssize_t ffs_epfile_io(struct file *file, struct ffs_io_data *io_data)
990{
991 struct ffs_epfile *epfile = file->private_data;
992 struct usb_request *req;
993 struct ffs_ep *ep;
994 char *data = NULL;
995 ssize_t ret, data_len = -EINVAL;
996 int halt;
997
998 /* Are we still active? */
999 if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
1000 return -ENODEV;
1001
1002 ep = ffs_epfile_wait_ep(file);
1003 if (IS_ERR(ptr: ep))
1004 return PTR_ERR(ptr: ep);
1005
1006 /* Do we halt? */
1007 halt = (!io_data->read == !epfile->in);
1008 if (halt && epfile->isoc)
1009 return -EINVAL;
1010
1011 /* We will be using request and read_buffer */
1012 ret = ffs_mutex_lock(mutex: &epfile->mutex, nonblock: file->f_flags & O_NONBLOCK);
1013 if (ret)
1014 goto error;
1015
1016 /* Allocate & copy */
1017 if (!halt) {
1018 struct usb_gadget *gadget;
1019
1020 /*
1021 * Do we have buffered data from previous partial read? Check
1022 * that for synchronous case only because we do not have
1023 * facility to ‘wake up’ a pending asynchronous read and push
1024 * buffered data to it which we would need to make things behave
1025 * consistently.
1026 */
1027 if (!io_data->aio && io_data->read) {
1028 ret = __ffs_epfile_read_buffered(epfile, iter: &io_data->data);
1029 if (ret)
1030 goto error_mutex;
1031 }
1032
1033 /*
1034 * if we _do_ wait above, the epfile->ffs->gadget might be NULL
1035 * before the waiting completes, so do not assign to 'gadget'
1036 * earlier
1037 */
1038 gadget = epfile->ffs->gadget;
1039
1040 spin_lock_irq(lock: &epfile->ffs->eps_lock);
1041 /* In the meantime, endpoint got disabled or changed. */
1042 if (epfile->ep != ep) {
1043 ret = -ESHUTDOWN;
1044 goto error_lock;
1045 }
1046 data_len = iov_iter_count(i: &io_data->data);
1047 /*
1048 * Controller may require buffer size to be aligned to
1049 * maxpacketsize of an out endpoint.
1050 */
1051 if (io_data->read)
1052 data_len = usb_ep_align_maybe(g: gadget, ep: ep->ep, len: data_len);
1053
1054 io_data->use_sg = gadget->sg_supported && data_len > PAGE_SIZE;
1055 spin_unlock_irq(lock: &epfile->ffs->eps_lock);
1056
1057 data = ffs_alloc_buffer(io_data, data_len);
1058 if (!data) {
1059 ret = -ENOMEM;
1060 goto error_mutex;
1061 }
1062 if (!io_data->read &&
1063 !copy_from_iter_full(addr: data, bytes: data_len, i: &io_data->data)) {
1064 ret = -EFAULT;
1065 goto error_mutex;
1066 }
1067 }
1068
1069 spin_lock_irq(lock: &epfile->ffs->eps_lock);
1070
1071 if (epfile->ep != ep) {
1072 /* In the meantime, endpoint got disabled or changed. */
1073 ret = -ESHUTDOWN;
1074 } else if (halt) {
1075 ret = usb_ep_set_halt(ep: ep->ep);
1076 if (!ret)
1077 ret = -EBADMSG;
1078 } else if (data_len == -EINVAL) {
1079 /*
1080 * Sanity Check: even though data_len can't be used
1081 * uninitialized at the time I write this comment, some
1082 * compilers complain about this situation.
1083 * In order to keep the code clean from warnings, data_len is
1084 * being initialized to -EINVAL during its declaration, which
1085 * means we can't rely on compiler anymore to warn no future
1086 * changes won't result in data_len being used uninitialized.
1087 * For such reason, we're adding this redundant sanity check
1088 * here.
1089 */
1090 WARN(1, "%s: data_len == -EINVAL\n", __func__);
1091 ret = -EINVAL;
1092 } else if (!io_data->aio) {
1093 bool interrupted = false;
1094
1095 req = ep->req;
1096 if (io_data->use_sg) {
1097 req->buf = NULL;
1098 req->sg = io_data->sgt.sgl;
1099 req->num_sgs = io_data->sgt.nents;
1100 } else {
1101 req->buf = data;
1102 req->num_sgs = 0;
1103 }
1104 req->length = data_len;
1105
1106 io_data->buf = data;
1107
1108 init_completion(x: &io_data->done);
1109 req->context = io_data;
1110 req->complete = ffs_epfile_io_complete;
1111
1112 ret = usb_ep_queue(ep: ep->ep, req, GFP_ATOMIC);
1113 if (ret < 0)
1114 goto error_lock;
1115
1116 spin_unlock_irq(lock: &epfile->ffs->eps_lock);
1117
1118 if (wait_for_completion_interruptible(x: &io_data->done)) {
1119 spin_lock_irq(lock: &epfile->ffs->eps_lock);
1120 if (epfile->ep != ep) {
1121 ret = -ESHUTDOWN;
1122 goto error_lock;
1123 }
1124 /*
1125 * To avoid race condition with ffs_epfile_io_complete,
1126 * dequeue the request first then check
1127 * status. usb_ep_dequeue API should guarantee no race
1128 * condition with req->complete callback.
1129 */
1130 usb_ep_dequeue(ep: ep->ep, req);
1131 spin_unlock_irq(lock: &epfile->ffs->eps_lock);
1132 wait_for_completion(&io_data->done);
1133 interrupted = io_data->status < 0;
1134 }
1135
1136 if (interrupted)
1137 ret = -EINTR;
1138 else if (io_data->read && io_data->status > 0)
1139 ret = __ffs_epfile_read_data(epfile, data, data_len: io_data->status,
1140 iter: &io_data->data);
1141 else
1142 ret = io_data->status;
1143 goto error_mutex;
1144 } else if (!(req = usb_ep_alloc_request(ep: ep->ep, GFP_ATOMIC))) {
1145 ret = -ENOMEM;
1146 } else {
1147 if (io_data->use_sg) {
1148 req->buf = NULL;
1149 req->sg = io_data->sgt.sgl;
1150 req->num_sgs = io_data->sgt.nents;
1151 } else {
1152 req->buf = data;
1153 req->num_sgs = 0;
1154 }
1155 req->length = data_len;
1156
1157 io_data->buf = data;
1158 io_data->ep = ep->ep;
1159 io_data->req = req;
1160 io_data->ffs = epfile->ffs;
1161
1162 req->context = io_data;
1163 req->complete = ffs_epfile_async_io_complete;
1164
1165 ret = usb_ep_queue(ep: ep->ep, req, GFP_ATOMIC);
1166 if (ret) {
1167 io_data->req = NULL;
1168 usb_ep_free_request(ep: ep->ep, req);
1169 goto error_lock;
1170 }
1171
1172 ret = -EIOCBQUEUED;
1173 /*
1174 * Do not kfree the buffer in this function. It will be freed
1175 * by ffs_user_copy_worker.
1176 */
1177 data = NULL;
1178 }
1179
1180error_lock:
1181 spin_unlock_irq(lock: &epfile->ffs->eps_lock);
1182error_mutex:
1183 mutex_unlock(lock: &epfile->mutex);
1184error:
1185 if (ret != -EIOCBQUEUED) /* don't free if there is iocb queued */
1186 ffs_free_buffer(io_data);
1187 return ret;
1188}
1189
1190static int
1191ffs_epfile_open(struct inode *inode, struct file *file)
1192{
1193 struct ffs_epfile *epfile = inode->i_private;
1194
1195 if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
1196 return -ENODEV;
1197
1198 file->private_data = epfile;
1199 ffs_data_opened(ffs: epfile->ffs);
1200
1201 return stream_open(inode, filp: file);
1202}
1203
1204static int ffs_aio_cancel(struct kiocb *kiocb)
1205{
1206 struct ffs_io_data *io_data = kiocb->private;
1207 struct ffs_epfile *epfile = kiocb->ki_filp->private_data;
1208 unsigned long flags;
1209 int value;
1210
1211 spin_lock_irqsave(&epfile->ffs->eps_lock, flags);
1212
1213 if (io_data && io_data->ep && io_data->req)
1214 value = usb_ep_dequeue(ep: io_data->ep, req: io_data->req);
1215 else
1216 value = -EINVAL;
1217
1218 spin_unlock_irqrestore(lock: &epfile->ffs->eps_lock, flags);
1219
1220 return value;
1221}
1222
1223static ssize_t ffs_epfile_write_iter(struct kiocb *kiocb, struct iov_iter *from)
1224{
1225 struct ffs_io_data io_data, *p = &io_data;
1226 ssize_t res;
1227
1228 if (!is_sync_kiocb(kiocb)) {
1229 p = kzalloc(size: sizeof(io_data), GFP_KERNEL);
1230 if (!p)
1231 return -ENOMEM;
1232 p->aio = true;
1233 } else {
1234 memset(p, 0, sizeof(*p));
1235 p->aio = false;
1236 }
1237
1238 p->read = false;
1239 p->kiocb = kiocb;
1240 p->data = *from;
1241 p->mm = current->mm;
1242
1243 kiocb->private = p;
1244
1245 if (p->aio)
1246 kiocb_set_cancel_fn(req: kiocb, cancel: ffs_aio_cancel);
1247
1248 res = ffs_epfile_io(file: kiocb->ki_filp, io_data: p);
1249 if (res == -EIOCBQUEUED)
1250 return res;
1251 if (p->aio)
1252 kfree(objp: p);
1253 else
1254 *from = p->data;
1255 return res;
1256}
1257
1258static ssize_t ffs_epfile_read_iter(struct kiocb *kiocb, struct iov_iter *to)
1259{
1260 struct ffs_io_data io_data, *p = &io_data;
1261 ssize_t res;
1262
1263 if (!is_sync_kiocb(kiocb)) {
1264 p = kzalloc(size: sizeof(io_data), GFP_KERNEL);
1265 if (!p)
1266 return -ENOMEM;
1267 p->aio = true;
1268 } else {
1269 memset(p, 0, sizeof(*p));
1270 p->aio = false;
1271 }
1272
1273 p->read = true;
1274 p->kiocb = kiocb;
1275 if (p->aio) {
1276 p->to_free = dup_iter(new: &p->data, old: to, GFP_KERNEL);
1277 if (!iter_is_ubuf(i: &p->data) && !p->to_free) {
1278 kfree(objp: p);
1279 return -ENOMEM;
1280 }
1281 } else {
1282 p->data = *to;
1283 p->to_free = NULL;
1284 }
1285 p->mm = current->mm;
1286
1287 kiocb->private = p;
1288
1289 if (p->aio)
1290 kiocb_set_cancel_fn(req: kiocb, cancel: ffs_aio_cancel);
1291
1292 res = ffs_epfile_io(file: kiocb->ki_filp, io_data: p);
1293 if (res == -EIOCBQUEUED)
1294 return res;
1295
1296 if (p->aio) {
1297 kfree(objp: p->to_free);
1298 kfree(objp: p);
1299 } else {
1300 *to = p->data;
1301 }
1302 return res;
1303}
1304
1305static void ffs_dmabuf_release(struct kref *ref)
1306{
1307 struct ffs_dmabuf_priv *priv = container_of(ref, struct ffs_dmabuf_priv, ref);
1308 struct dma_buf_attachment *attach = priv->attach;
1309 struct dma_buf *dmabuf = attach->dmabuf;
1310
1311 pr_vdebug("FFS DMABUF release\n");
1312 dma_resv_lock(obj: dmabuf->resv, NULL);
1313 dma_buf_unmap_attachment(attach, priv->sgt, priv->dir);
1314 dma_resv_unlock(obj: dmabuf->resv);
1315
1316 dma_buf_detach(dmabuf: attach->dmabuf, attach);
1317 dma_buf_put(dmabuf);
1318 kfree(objp: priv);
1319}
1320
1321static void ffs_dmabuf_get(struct dma_buf_attachment *attach)
1322{
1323 struct ffs_dmabuf_priv *priv = attach->importer_priv;
1324
1325 kref_get(kref: &priv->ref);
1326}
1327
1328static void ffs_dmabuf_put(struct dma_buf_attachment *attach)
1329{
1330 struct ffs_dmabuf_priv *priv = attach->importer_priv;
1331
1332 kref_put(kref: &priv->ref, release: ffs_dmabuf_release);
1333}
1334
1335static int
1336ffs_epfile_release(struct inode *inode, struct file *file)
1337{
1338 struct ffs_epfile *epfile = inode->i_private;
1339 struct ffs_dmabuf_priv *priv, *tmp;
1340 struct ffs_data *ffs = epfile->ffs;
1341
1342 mutex_lock(&epfile->dmabufs_mutex);
1343
1344 /* Close all attached DMABUFs */
1345 list_for_each_entry_safe(priv, tmp, &epfile->dmabufs, entry) {
1346 /* Cancel any pending transfer */
1347 spin_lock_irq(lock: &ffs->eps_lock);
1348 if (priv->ep && priv->req)
1349 usb_ep_dequeue(ep: priv->ep, req: priv->req);
1350 spin_unlock_irq(lock: &ffs->eps_lock);
1351
1352 list_del(entry: &priv->entry);
1353 ffs_dmabuf_put(attach: priv->attach);
1354 }
1355
1356 mutex_unlock(lock: &epfile->dmabufs_mutex);
1357
1358 __ffs_epfile_read_buffer_free(epfile);
1359 ffs_data_closed(ffs: epfile->ffs);
1360
1361 return 0;
1362}
1363
1364static void ffs_dmabuf_cleanup(struct work_struct *work)
1365{
1366 struct ffs_dma_fence *dma_fence =
1367 container_of(work, struct ffs_dma_fence, work);
1368 struct ffs_dmabuf_priv *priv = dma_fence->priv;
1369 struct dma_buf_attachment *attach = priv->attach;
1370 struct dma_fence *fence = &dma_fence->base;
1371
1372 ffs_dmabuf_put(attach);
1373 dma_fence_put(fence);
1374}
1375
1376static void ffs_dmabuf_signal_done(struct ffs_dma_fence *dma_fence, int ret)
1377{
1378 struct ffs_dmabuf_priv *priv = dma_fence->priv;
1379 struct dma_fence *fence = &dma_fence->base;
1380 bool cookie = dma_fence_begin_signalling();
1381
1382 dma_fence_get(fence);
1383 fence->error = ret;
1384 dma_fence_signal(fence);
1385 dma_fence_end_signalling(cookie);
1386
1387 /*
1388 * The fence will be unref'd in ffs_dmabuf_cleanup.
1389 * It can't be done here, as the unref functions might try to lock
1390 * the resv object, which would deadlock.
1391 */
1392 INIT_WORK(&dma_fence->work, ffs_dmabuf_cleanup);
1393 queue_work(wq: priv->ffs->io_completion_wq, work: &dma_fence->work);
1394}
1395
1396static void ffs_epfile_dmabuf_io_complete(struct usb_ep *ep,
1397 struct usb_request *req)
1398{
1399 pr_vdebug("FFS: DMABUF transfer complete, status=%d\n", req->status);
1400 ffs_dmabuf_signal_done(dma_fence: req->context, ret: req->status);
1401 usb_ep_free_request(ep, req);
1402}
1403
1404static const char *ffs_dmabuf_get_driver_name(struct dma_fence *fence)
1405{
1406 return "functionfs";
1407}
1408
1409static const char *ffs_dmabuf_get_timeline_name(struct dma_fence *fence)
1410{
1411 return "";
1412}
1413
1414static void ffs_dmabuf_fence_release(struct dma_fence *fence)
1415{
1416 struct ffs_dma_fence *dma_fence =
1417 container_of(fence, struct ffs_dma_fence, base);
1418
1419 kfree(objp: dma_fence);
1420}
1421
1422static const struct dma_fence_ops ffs_dmabuf_fence_ops = {
1423 .get_driver_name = ffs_dmabuf_get_driver_name,
1424 .get_timeline_name = ffs_dmabuf_get_timeline_name,
1425 .release = ffs_dmabuf_fence_release,
1426};
1427
1428static int ffs_dma_resv_lock(struct dma_buf *dmabuf, bool nonblock)
1429{
1430 if (!nonblock)
1431 return dma_resv_lock_interruptible(obj: dmabuf->resv, NULL);
1432
1433 if (!dma_resv_trylock(obj: dmabuf->resv))
1434 return -EBUSY;
1435
1436 return 0;
1437}
1438
1439static struct dma_buf_attachment *
1440ffs_dmabuf_find_attachment(struct ffs_epfile *epfile, struct dma_buf *dmabuf)
1441{
1442 struct device *dev = epfile->ffs->gadget->dev.parent;
1443 struct dma_buf_attachment *attach = NULL;
1444 struct ffs_dmabuf_priv *priv;
1445
1446 mutex_lock(&epfile->dmabufs_mutex);
1447
1448 list_for_each_entry(priv, &epfile->dmabufs, entry) {
1449 if (priv->attach->dev == dev
1450 && priv->attach->dmabuf == dmabuf) {
1451 attach = priv->attach;
1452 break;
1453 }
1454 }
1455
1456 if (attach)
1457 ffs_dmabuf_get(attach);
1458
1459 mutex_unlock(lock: &epfile->dmabufs_mutex);
1460
1461 return attach ?: ERR_PTR(error: -EPERM);
1462}
1463
1464static int ffs_dmabuf_attach(struct file *file, int fd)
1465{
1466 bool nonblock = file->f_flags & O_NONBLOCK;
1467 struct ffs_epfile *epfile = file->private_data;
1468 struct usb_gadget *gadget = epfile->ffs->gadget;
1469 struct dma_buf_attachment *attach;
1470 struct ffs_dmabuf_priv *priv;
1471 enum dma_data_direction dir;
1472 struct sg_table *sg_table;
1473 struct dma_buf *dmabuf;
1474 int err;
1475
1476 if (!gadget || !gadget->sg_supported)
1477 return -EPERM;
1478
1479 dmabuf = dma_buf_get(fd);
1480 if (IS_ERR(ptr: dmabuf))
1481 return PTR_ERR(ptr: dmabuf);
1482
1483 attach = dma_buf_attach(dmabuf, dev: gadget->dev.parent);
1484 if (IS_ERR(ptr: attach)) {
1485 err = PTR_ERR(ptr: attach);
1486 goto err_dmabuf_put;
1487 }
1488
1489 priv = kzalloc(size: sizeof(*priv), GFP_KERNEL);
1490 if (!priv) {
1491 err = -ENOMEM;
1492 goto err_dmabuf_detach;
1493 }
1494
1495 dir = epfile->in ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1496
1497 err = ffs_dma_resv_lock(dmabuf, nonblock);
1498 if (err)
1499 goto err_free_priv;
1500
1501 sg_table = dma_buf_map_attachment(attach, dir);
1502 dma_resv_unlock(obj: dmabuf->resv);
1503
1504 if (IS_ERR(ptr: sg_table)) {
1505 err = PTR_ERR(ptr: sg_table);
1506 goto err_free_priv;
1507 }
1508
1509 attach->importer_priv = priv;
1510
1511 priv->sgt = sg_table;
1512 priv->dir = dir;
1513 priv->ffs = epfile->ffs;
1514 priv->attach = attach;
1515 spin_lock_init(&priv->lock);
1516 kref_init(kref: &priv->ref);
1517 priv->context = dma_fence_context_alloc(num: 1);
1518
1519 mutex_lock(&epfile->dmabufs_mutex);
1520 list_add(new: &priv->entry, head: &epfile->dmabufs);
1521 mutex_unlock(lock: &epfile->dmabufs_mutex);
1522
1523 return 0;
1524
1525err_free_priv:
1526 kfree(objp: priv);
1527err_dmabuf_detach:
1528 dma_buf_detach(dmabuf, attach);
1529err_dmabuf_put:
1530 dma_buf_put(dmabuf);
1531
1532 return err;
1533}
1534
1535static int ffs_dmabuf_detach(struct file *file, int fd)
1536{
1537 struct ffs_epfile *epfile = file->private_data;
1538 struct ffs_data *ffs = epfile->ffs;
1539 struct device *dev = ffs->gadget->dev.parent;
1540 struct ffs_dmabuf_priv *priv, *tmp;
1541 struct dma_buf *dmabuf;
1542 int ret = -EPERM;
1543
1544 dmabuf = dma_buf_get(fd);
1545 if (IS_ERR(ptr: dmabuf))
1546 return PTR_ERR(ptr: dmabuf);
1547
1548 mutex_lock(&epfile->dmabufs_mutex);
1549
1550 list_for_each_entry_safe(priv, tmp, &epfile->dmabufs, entry) {
1551 if (priv->attach->dev == dev
1552 && priv->attach->dmabuf == dmabuf) {
1553 /* Cancel any pending transfer */
1554 spin_lock_irq(lock: &ffs->eps_lock);
1555 if (priv->ep && priv->req)
1556 usb_ep_dequeue(ep: priv->ep, req: priv->req);
1557 spin_unlock_irq(lock: &ffs->eps_lock);
1558
1559 list_del(entry: &priv->entry);
1560
1561 /* Unref the reference from ffs_dmabuf_attach() */
1562 ffs_dmabuf_put(attach: priv->attach);
1563 ret = 0;
1564 break;
1565 }
1566 }
1567
1568 mutex_unlock(lock: &epfile->dmabufs_mutex);
1569 dma_buf_put(dmabuf);
1570
1571 return ret;
1572}
1573
1574static int ffs_dmabuf_transfer(struct file *file,
1575 const struct usb_ffs_dmabuf_transfer_req *req)
1576{
1577 bool nonblock = file->f_flags & O_NONBLOCK;
1578 struct ffs_epfile *epfile = file->private_data;
1579 struct dma_buf_attachment *attach;
1580 struct ffs_dmabuf_priv *priv;
1581 struct ffs_dma_fence *fence;
1582 struct usb_request *usb_req;
1583 enum dma_resv_usage resv_dir;
1584 struct dma_buf *dmabuf;
1585 unsigned long timeout;
1586 struct ffs_ep *ep;
1587 bool cookie;
1588 u32 seqno;
1589 long retl;
1590 int ret;
1591
1592 if (req->flags & ~USB_FFS_DMABUF_TRANSFER_MASK)
1593 return -EINVAL;
1594
1595 dmabuf = dma_buf_get(fd: req->fd);
1596 if (IS_ERR(ptr: dmabuf))
1597 return PTR_ERR(ptr: dmabuf);
1598
1599 if (req->length > dmabuf->size || req->length == 0) {
1600 ret = -EINVAL;
1601 goto err_dmabuf_put;
1602 }
1603
1604 attach = ffs_dmabuf_find_attachment(epfile, dmabuf);
1605 if (IS_ERR(ptr: attach)) {
1606 ret = PTR_ERR(ptr: attach);
1607 goto err_dmabuf_put;
1608 }
1609
1610 priv = attach->importer_priv;
1611
1612 ep = ffs_epfile_wait_ep(file);
1613 if (IS_ERR(ptr: ep)) {
1614 ret = PTR_ERR(ptr: ep);
1615 goto err_attachment_put;
1616 }
1617
1618 ret = ffs_dma_resv_lock(dmabuf, nonblock);
1619 if (ret)
1620 goto err_attachment_put;
1621
1622 /* Make sure we don't have writers */
1623 timeout = nonblock ? 0 : msecs_to_jiffies(DMABUF_ENQUEUE_TIMEOUT_MS);
1624 retl = dma_resv_wait_timeout(obj: dmabuf->resv,
1625 usage: dma_resv_usage_rw(write: epfile->in),
1626 intr: true, timeout);
1627 if (retl == 0)
1628 retl = -EBUSY;
1629 if (retl < 0) {
1630 ret = (int)retl;
1631 goto err_resv_unlock;
1632 }
1633
1634 ret = dma_resv_reserve_fences(obj: dmabuf->resv, num_fences: 1);
1635 if (ret)
1636 goto err_resv_unlock;
1637
1638 fence = kmalloc(size: sizeof(*fence), GFP_KERNEL);
1639 if (!fence) {
1640 ret = -ENOMEM;
1641 goto err_resv_unlock;
1642 }
1643
1644 fence->priv = priv;
1645
1646 spin_lock_irq(lock: &epfile->ffs->eps_lock);
1647
1648 /* In the meantime, endpoint got disabled or changed. */
1649 if (epfile->ep != ep) {
1650 ret = -ESHUTDOWN;
1651 goto err_fence_put;
1652 }
1653
1654 usb_req = usb_ep_alloc_request(ep: ep->ep, GFP_ATOMIC);
1655 if (!usb_req) {
1656 ret = -ENOMEM;
1657 goto err_fence_put;
1658 }
1659
1660 /*
1661 * usb_ep_queue() guarantees that all transfers are processed in the
1662 * order they are enqueued, so we can use a simple incrementing
1663 * sequence number for the dma_fence.
1664 */
1665 seqno = atomic_add_return(i: 1, v: &epfile->seqno);
1666
1667 dma_fence_init(fence: &fence->base, ops: &ffs_dmabuf_fence_ops,
1668 lock: &priv->lock, context: priv->context, seqno);
1669
1670 resv_dir = epfile->in ? DMA_RESV_USAGE_WRITE : DMA_RESV_USAGE_READ;
1671
1672 dma_resv_add_fence(obj: dmabuf->resv, fence: &fence->base, usage: resv_dir);
1673 dma_resv_unlock(obj: dmabuf->resv);
1674
1675 /* Now that the dma_fence is in place, queue the transfer. */
1676
1677 usb_req->length = req->length;
1678 usb_req->buf = NULL;
1679 usb_req->sg = priv->sgt->sgl;
1680 usb_req->num_sgs = sg_nents_for_len(sg: priv->sgt->sgl, len: req->length);
1681 usb_req->sg_was_mapped = true;
1682 usb_req->context = fence;
1683 usb_req->complete = ffs_epfile_dmabuf_io_complete;
1684
1685 cookie = dma_fence_begin_signalling();
1686 ret = usb_ep_queue(ep: ep->ep, req: usb_req, GFP_ATOMIC);
1687 dma_fence_end_signalling(cookie);
1688 if (!ret) {
1689 priv->req = usb_req;
1690 priv->ep = ep->ep;
1691 } else {
1692 pr_warn("FFS: Failed to queue DMABUF: %d\n", ret);
1693 ffs_dmabuf_signal_done(dma_fence: fence, ret);
1694 usb_ep_free_request(ep: ep->ep, req: usb_req);
1695 }
1696
1697 spin_unlock_irq(lock: &epfile->ffs->eps_lock);
1698 dma_buf_put(dmabuf);
1699
1700 return ret;
1701
1702err_fence_put:
1703 spin_unlock_irq(lock: &epfile->ffs->eps_lock);
1704 dma_fence_put(fence: &fence->base);
1705err_resv_unlock:
1706 dma_resv_unlock(obj: dmabuf->resv);
1707err_attachment_put:
1708 ffs_dmabuf_put(attach);
1709err_dmabuf_put:
1710 dma_buf_put(dmabuf);
1711
1712 return ret;
1713}
1714
1715static long ffs_epfile_ioctl(struct file *file, unsigned code,
1716 unsigned long value)
1717{
1718 struct ffs_epfile *epfile = file->private_data;
1719 struct ffs_ep *ep;
1720 int ret;
1721
1722 if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
1723 return -ENODEV;
1724
1725 switch (code) {
1726 case FUNCTIONFS_DMABUF_ATTACH:
1727 {
1728 int fd;
1729
1730 if (copy_from_user(to: &fd, from: (void __user *)value, n: sizeof(fd))) {
1731 ret = -EFAULT;
1732 break;
1733 }
1734
1735 return ffs_dmabuf_attach(file, fd);
1736 }
1737 case FUNCTIONFS_DMABUF_DETACH:
1738 {
1739 int fd;
1740
1741 if (copy_from_user(to: &fd, from: (void __user *)value, n: sizeof(fd))) {
1742 ret = -EFAULT;
1743 break;
1744 }
1745
1746 return ffs_dmabuf_detach(file, fd);
1747 }
1748 case FUNCTIONFS_DMABUF_TRANSFER:
1749 {
1750 struct usb_ffs_dmabuf_transfer_req req;
1751
1752 if (copy_from_user(to: &req, from: (void __user *)value, n: sizeof(req))) {
1753 ret = -EFAULT;
1754 break;
1755 }
1756
1757 return ffs_dmabuf_transfer(file, req: &req);
1758 }
1759 default:
1760 break;
1761 }
1762
1763 /* Wait for endpoint to be enabled */
1764 ep = ffs_epfile_wait_ep(file);
1765 if (IS_ERR(ptr: ep))
1766 return PTR_ERR(ptr: ep);
1767
1768 spin_lock_irq(lock: &epfile->ffs->eps_lock);
1769
1770 /* In the meantime, endpoint got disabled or changed. */
1771 if (epfile->ep != ep) {
1772 spin_unlock_irq(lock: &epfile->ffs->eps_lock);
1773 return -ESHUTDOWN;
1774 }
1775
1776 switch (code) {
1777 case FUNCTIONFS_FIFO_STATUS:
1778 ret = usb_ep_fifo_status(ep: epfile->ep->ep);
1779 break;
1780 case FUNCTIONFS_FIFO_FLUSH:
1781 usb_ep_fifo_flush(ep: epfile->ep->ep);
1782 ret = 0;
1783 break;
1784 case FUNCTIONFS_CLEAR_HALT:
1785 ret = usb_ep_clear_halt(ep: epfile->ep->ep);
1786 break;
1787 case FUNCTIONFS_ENDPOINT_REVMAP:
1788 ret = epfile->ep->num;
1789 break;
1790 case FUNCTIONFS_ENDPOINT_DESC:
1791 {
1792 int desc_idx;
1793 struct usb_endpoint_descriptor desc1, *desc;
1794
1795 switch (epfile->ffs->gadget->speed) {
1796 case USB_SPEED_SUPER:
1797 case USB_SPEED_SUPER_PLUS:
1798 desc_idx = 2;
1799 break;
1800 case USB_SPEED_HIGH:
1801 desc_idx = 1;
1802 break;
1803 default:
1804 desc_idx = 0;
1805 }
1806
1807 desc = epfile->ep->descs[desc_idx];
1808 memcpy(&desc1, desc, desc->bLength);
1809
1810 spin_unlock_irq(lock: &epfile->ffs->eps_lock);
1811 ret = copy_to_user(to: (void __user *)value, from: &desc1, n: desc1.bLength);
1812 if (ret)
1813 ret = -EFAULT;
1814 return ret;
1815 }
1816 default:
1817 ret = -ENOTTY;
1818 }
1819 spin_unlock_irq(lock: &epfile->ffs->eps_lock);
1820
1821 return ret;
1822}
1823
1824static const struct file_operations ffs_epfile_operations = {
1825 .llseek = no_llseek,
1826
1827 .open = ffs_epfile_open,
1828 .write_iter = ffs_epfile_write_iter,
1829 .read_iter = ffs_epfile_read_iter,
1830 .release = ffs_epfile_release,
1831 .unlocked_ioctl = ffs_epfile_ioctl,
1832 .compat_ioctl = compat_ptr_ioctl,
1833};
1834
1835
1836/* File system and super block operations ***********************************/
1837
1838/*
1839 * Mounting the file system creates a controller file, used first for
1840 * function configuration then later for event monitoring.
1841 */
1842
1843static struct inode *__must_check
1844ffs_sb_make_inode(struct super_block *sb, void *data,
1845 const struct file_operations *fops,
1846 const struct inode_operations *iops,
1847 struct ffs_file_perms *perms)
1848{
1849 struct inode *inode;
1850
1851 inode = new_inode(sb);
1852
1853 if (inode) {
1854 struct timespec64 ts = inode_set_ctime_current(inode);
1855
1856 inode->i_ino = get_next_ino();
1857 inode->i_mode = perms->mode;
1858 inode->i_uid = perms->uid;
1859 inode->i_gid = perms->gid;
1860 inode_set_atime_to_ts(inode, ts);
1861 inode_set_mtime_to_ts(inode, ts);
1862 inode->i_private = data;
1863 if (fops)
1864 inode->i_fop = fops;
1865 if (iops)
1866 inode->i_op = iops;
1867 }
1868
1869 return inode;
1870}
1871
1872/* Create "regular" file */
1873static struct dentry *ffs_sb_create_file(struct super_block *sb,
1874 const char *name, void *data,
1875 const struct file_operations *fops)
1876{
1877 struct ffs_data *ffs = sb->s_fs_info;
1878 struct dentry *dentry;
1879 struct inode *inode;
1880
1881 dentry = d_alloc_name(sb->s_root, name);
1882 if (!dentry)
1883 return NULL;
1884
1885 inode = ffs_sb_make_inode(sb, data, fops, NULL, perms: &ffs->file_perms);
1886 if (!inode) {
1887 dput(dentry);
1888 return NULL;
1889 }
1890
1891 d_add(dentry, inode);
1892 return dentry;
1893}
1894
1895/* Super block */
1896static const struct super_operations ffs_sb_operations = {
1897 .statfs = simple_statfs,
1898 .drop_inode = generic_delete_inode,
1899};
1900
1901struct ffs_sb_fill_data {
1902 struct ffs_file_perms perms;
1903 umode_t root_mode;
1904 const char *dev_name;
1905 bool no_disconnect;
1906 struct ffs_data *ffs_data;
1907};
1908
1909static int ffs_sb_fill(struct super_block *sb, struct fs_context *fc)
1910{
1911 struct ffs_sb_fill_data *data = fc->fs_private;
1912 struct inode *inode;
1913 struct ffs_data *ffs = data->ffs_data;
1914
1915 ffs->sb = sb;
1916 data->ffs_data = NULL;
1917 sb->s_fs_info = ffs;
1918 sb->s_blocksize = PAGE_SIZE;
1919 sb->s_blocksize_bits = PAGE_SHIFT;
1920 sb->s_magic = FUNCTIONFS_MAGIC;
1921 sb->s_op = &ffs_sb_operations;
1922 sb->s_time_gran = 1;
1923
1924 /* Root inode */
1925 data->perms.mode = data->root_mode;
1926 inode = ffs_sb_make_inode(sb, NULL,
1927 fops: &simple_dir_operations,
1928 iops: &simple_dir_inode_operations,
1929 perms: &data->perms);
1930 sb->s_root = d_make_root(inode);
1931 if (!sb->s_root)
1932 return -ENOMEM;
1933
1934 /* EP0 file */
1935 if (!ffs_sb_create_file(sb, name: "ep0", data: ffs, fops: &ffs_ep0_operations))
1936 return -ENOMEM;
1937
1938 return 0;
1939}
1940
1941enum {
1942 Opt_no_disconnect,
1943 Opt_rmode,
1944 Opt_fmode,
1945 Opt_mode,
1946 Opt_uid,
1947 Opt_gid,
1948};
1949
1950static const struct fs_parameter_spec ffs_fs_fs_parameters[] = {
1951 fsparam_bool ("no_disconnect", Opt_no_disconnect),
1952 fsparam_u32 ("rmode", Opt_rmode),
1953 fsparam_u32 ("fmode", Opt_fmode),
1954 fsparam_u32 ("mode", Opt_mode),
1955 fsparam_u32 ("uid", Opt_uid),
1956 fsparam_u32 ("gid", Opt_gid),
1957 {}
1958};
1959
1960static int ffs_fs_parse_param(struct fs_context *fc, struct fs_parameter *param)
1961{
1962 struct ffs_sb_fill_data *data = fc->fs_private;
1963 struct fs_parse_result result;
1964 int opt;
1965
1966 opt = fs_parse(fc, desc: ffs_fs_fs_parameters, param, result: &result);
1967 if (opt < 0)
1968 return opt;
1969
1970 switch (opt) {
1971 case Opt_no_disconnect:
1972 data->no_disconnect = result.boolean;
1973 break;
1974 case Opt_rmode:
1975 data->root_mode = (result.uint_32 & 0555) | S_IFDIR;
1976 break;
1977 case Opt_fmode:
1978 data->perms.mode = (result.uint_32 & 0666) | S_IFREG;
1979 break;
1980 case Opt_mode:
1981 data->root_mode = (result.uint_32 & 0555) | S_IFDIR;
1982 data->perms.mode = (result.uint_32 & 0666) | S_IFREG;
1983 break;
1984
1985 case Opt_uid:
1986 data->perms.uid = make_kuid(current_user_ns(), uid: result.uint_32);
1987 if (!uid_valid(uid: data->perms.uid))
1988 goto unmapped_value;
1989 break;
1990 case Opt_gid:
1991 data->perms.gid = make_kgid(current_user_ns(), gid: result.uint_32);
1992 if (!gid_valid(gid: data->perms.gid))
1993 goto unmapped_value;
1994 break;
1995
1996 default:
1997 return -ENOPARAM;
1998 }
1999
2000 return 0;
2001
2002unmapped_value:
2003 return invalf(fc, "%s: unmapped value: %u", param->key, result.uint_32);
2004}
2005
2006/*
2007 * Set up the superblock for a mount.
2008 */
2009static int ffs_fs_get_tree(struct fs_context *fc)
2010{
2011 struct ffs_sb_fill_data *ctx = fc->fs_private;
2012 struct ffs_data *ffs;
2013 int ret;
2014
2015 if (!fc->source)
2016 return invalf(fc, "No source specified");
2017
2018 ffs = ffs_data_new(dev_name: fc->source);
2019 if (!ffs)
2020 return -ENOMEM;
2021 ffs->file_perms = ctx->perms;
2022 ffs->no_disconnect = ctx->no_disconnect;
2023
2024 ffs->dev_name = kstrdup(s: fc->source, GFP_KERNEL);
2025 if (!ffs->dev_name) {
2026 ffs_data_put(ffs);
2027 return -ENOMEM;
2028 }
2029
2030 ret = ffs_acquire_dev(dev_name: ffs->dev_name, ffs_data: ffs);
2031 if (ret) {
2032 ffs_data_put(ffs);
2033 return ret;
2034 }
2035
2036 ctx->ffs_data = ffs;
2037 return get_tree_nodev(fc, fill_super: ffs_sb_fill);
2038}
2039
2040static void ffs_fs_free_fc(struct fs_context *fc)
2041{
2042 struct ffs_sb_fill_data *ctx = fc->fs_private;
2043
2044 if (ctx) {
2045 if (ctx->ffs_data) {
2046 ffs_data_put(ffs: ctx->ffs_data);
2047 }
2048
2049 kfree(objp: ctx);
2050 }
2051}
2052
2053static const struct fs_context_operations ffs_fs_context_ops = {
2054 .free = ffs_fs_free_fc,
2055 .parse_param = ffs_fs_parse_param,
2056 .get_tree = ffs_fs_get_tree,
2057};
2058
2059static int ffs_fs_init_fs_context(struct fs_context *fc)
2060{
2061 struct ffs_sb_fill_data *ctx;
2062
2063 ctx = kzalloc(size: sizeof(struct ffs_sb_fill_data), GFP_KERNEL);
2064 if (!ctx)
2065 return -ENOMEM;
2066
2067 ctx->perms.mode = S_IFREG | 0600;
2068 ctx->perms.uid = GLOBAL_ROOT_UID;
2069 ctx->perms.gid = GLOBAL_ROOT_GID;
2070 ctx->root_mode = S_IFDIR | 0500;
2071 ctx->no_disconnect = false;
2072
2073 fc->fs_private = ctx;
2074 fc->ops = &ffs_fs_context_ops;
2075 return 0;
2076}
2077
2078static void
2079ffs_fs_kill_sb(struct super_block *sb)
2080{
2081 kill_litter_super(sb);
2082 if (sb->s_fs_info)
2083 ffs_data_closed(ffs: sb->s_fs_info);
2084}
2085
2086static struct file_system_type ffs_fs_type = {
2087 .owner = THIS_MODULE,
2088 .name = "functionfs",
2089 .init_fs_context = ffs_fs_init_fs_context,
2090 .parameters = ffs_fs_fs_parameters,
2091 .kill_sb = ffs_fs_kill_sb,
2092};
2093MODULE_ALIAS_FS("functionfs");
2094
2095
2096/* Driver's main init/cleanup functions *************************************/
2097
2098static int functionfs_init(void)
2099{
2100 int ret;
2101
2102 ret = register_filesystem(&ffs_fs_type);
2103 if (!ret)
2104 pr_info("file system registered\n");
2105 else
2106 pr_err("failed registering file system (%d)\n", ret);
2107
2108 return ret;
2109}
2110
2111static void functionfs_cleanup(void)
2112{
2113 pr_info("unloading\n");
2114 unregister_filesystem(&ffs_fs_type);
2115}
2116
2117
2118/* ffs_data and ffs_function construction and destruction code **************/
2119
2120static void ffs_data_clear(struct ffs_data *ffs);
2121static void ffs_data_reset(struct ffs_data *ffs);
2122
2123static void ffs_data_get(struct ffs_data *ffs)
2124{
2125 refcount_inc(r: &ffs->ref);
2126}
2127
2128static void ffs_data_opened(struct ffs_data *ffs)
2129{
2130 refcount_inc(r: &ffs->ref);
2131 if (atomic_add_return(i: 1, v: &ffs->opened) == 1 &&
2132 ffs->state == FFS_DEACTIVATED) {
2133 ffs->state = FFS_CLOSING;
2134 ffs_data_reset(ffs);
2135 }
2136}
2137
2138static void ffs_data_put(struct ffs_data *ffs)
2139{
2140 if (refcount_dec_and_test(r: &ffs->ref)) {
2141 pr_info("%s(): freeing\n", __func__);
2142 ffs_data_clear(ffs);
2143 ffs_release_dev(ffs_dev: ffs->private_data);
2144 BUG_ON(waitqueue_active(&ffs->ev.waitq) ||
2145 swait_active(&ffs->ep0req_completion.wait) ||
2146 waitqueue_active(&ffs->wait));
2147 destroy_workqueue(wq: ffs->io_completion_wq);
2148 kfree(objp: ffs->dev_name);
2149 kfree(objp: ffs);
2150 }
2151}
2152
2153static void ffs_data_closed(struct ffs_data *ffs)
2154{
2155 struct ffs_epfile *epfiles;
2156 unsigned long flags;
2157
2158 if (atomic_dec_and_test(v: &ffs->opened)) {
2159 if (ffs->no_disconnect) {
2160 ffs->state = FFS_DEACTIVATED;
2161 spin_lock_irqsave(&ffs->eps_lock, flags);
2162 epfiles = ffs->epfiles;
2163 ffs->epfiles = NULL;
2164 spin_unlock_irqrestore(lock: &ffs->eps_lock,
2165 flags);
2166
2167 if (epfiles)
2168 ffs_epfiles_destroy(epfiles,
2169 count: ffs->eps_count);
2170
2171 if (ffs->setup_state == FFS_SETUP_PENDING)
2172 __ffs_ep0_stall(ffs);
2173 } else {
2174 ffs->state = FFS_CLOSING;
2175 ffs_data_reset(ffs);
2176 }
2177 }
2178 if (atomic_read(v: &ffs->opened) < 0) {
2179 ffs->state = FFS_CLOSING;
2180 ffs_data_reset(ffs);
2181 }
2182
2183 ffs_data_put(ffs);
2184}
2185
2186static struct ffs_data *ffs_data_new(const char *dev_name)
2187{
2188 struct ffs_data *ffs = kzalloc(size: sizeof *ffs, GFP_KERNEL);
2189 if (!ffs)
2190 return NULL;
2191
2192 ffs->io_completion_wq = alloc_ordered_workqueue("%s", 0, dev_name);
2193 if (!ffs->io_completion_wq) {
2194 kfree(objp: ffs);
2195 return NULL;
2196 }
2197
2198 refcount_set(r: &ffs->ref, n: 1);
2199 atomic_set(v: &ffs->opened, i: 0);
2200 ffs->state = FFS_READ_DESCRIPTORS;
2201 mutex_init(&ffs->mutex);
2202 spin_lock_init(&ffs->eps_lock);
2203 init_waitqueue_head(&ffs->ev.waitq);
2204 init_waitqueue_head(&ffs->wait);
2205 init_completion(x: &ffs->ep0req_completion);
2206
2207 /* XXX REVISIT need to update it in some places, or do we? */
2208 ffs->ev.can_stall = 1;
2209
2210 return ffs;
2211}
2212
2213static void ffs_data_clear(struct ffs_data *ffs)
2214{
2215 struct ffs_epfile *epfiles;
2216 unsigned long flags;
2217
2218 ffs_closed(ffs);
2219
2220 BUG_ON(ffs->gadget);
2221
2222 spin_lock_irqsave(&ffs->eps_lock, flags);
2223 epfiles = ffs->epfiles;
2224 ffs->epfiles = NULL;
2225 spin_unlock_irqrestore(lock: &ffs->eps_lock, flags);
2226
2227 /*
2228 * potential race possible between ffs_func_eps_disable
2229 * & ffs_epfile_release therefore maintaining a local
2230 * copy of epfile will save us from use-after-free.
2231 */
2232 if (epfiles) {
2233 ffs_epfiles_destroy(epfiles, count: ffs->eps_count);
2234 ffs->epfiles = NULL;
2235 }
2236
2237 if (ffs->ffs_eventfd) {
2238 eventfd_ctx_put(ctx: ffs->ffs_eventfd);
2239 ffs->ffs_eventfd = NULL;
2240 }
2241
2242 kfree(objp: ffs->raw_descs_data);
2243 kfree(objp: ffs->raw_strings);
2244 kfree(objp: ffs->stringtabs);
2245}
2246
2247static void ffs_data_reset(struct ffs_data *ffs)
2248{
2249 ffs_data_clear(ffs);
2250
2251 ffs->raw_descs_data = NULL;
2252 ffs->raw_descs = NULL;
2253 ffs->raw_strings = NULL;
2254 ffs->stringtabs = NULL;
2255
2256 ffs->raw_descs_length = 0;
2257 ffs->fs_descs_count = 0;
2258 ffs->hs_descs_count = 0;
2259 ffs->ss_descs_count = 0;
2260
2261 ffs->strings_count = 0;
2262 ffs->interfaces_count = 0;
2263 ffs->eps_count = 0;
2264
2265 ffs->ev.count = 0;
2266
2267 ffs->state = FFS_READ_DESCRIPTORS;
2268 ffs->setup_state = FFS_NO_SETUP;
2269 ffs->flags = 0;
2270
2271 ffs->ms_os_descs_ext_prop_count = 0;
2272 ffs->ms_os_descs_ext_prop_name_len = 0;
2273 ffs->ms_os_descs_ext_prop_data_len = 0;
2274}
2275
2276
2277static int functionfs_bind(struct ffs_data *ffs, struct usb_composite_dev *cdev)
2278{
2279 struct usb_gadget_strings **lang;
2280 int first_id;
2281
2282 if (WARN_ON(ffs->state != FFS_ACTIVE
2283 || test_and_set_bit(FFS_FL_BOUND, &ffs->flags)))
2284 return -EBADFD;
2285
2286 first_id = usb_string_ids_n(c: cdev, n: ffs->strings_count);
2287 if (first_id < 0)
2288 return first_id;
2289
2290 ffs->ep0req = usb_ep_alloc_request(ep: cdev->gadget->ep0, GFP_KERNEL);
2291 if (!ffs->ep0req)
2292 return -ENOMEM;
2293 ffs->ep0req->complete = ffs_ep0_complete;
2294 ffs->ep0req->context = ffs;
2295
2296 lang = ffs->stringtabs;
2297 if (lang) {
2298 for (; *lang; ++lang) {
2299 struct usb_string *str = (*lang)->strings;
2300 int id = first_id;
2301 for (; str->s; ++id, ++str)
2302 str->id = id;
2303 }
2304 }
2305
2306 ffs->gadget = cdev->gadget;
2307 ffs_data_get(ffs);
2308 return 0;
2309}
2310
2311static void functionfs_unbind(struct ffs_data *ffs)
2312{
2313 if (!WARN_ON(!ffs->gadget)) {
2314 /* dequeue before freeing ep0req */
2315 usb_ep_dequeue(ep: ffs->gadget->ep0, req: ffs->ep0req);
2316 mutex_lock(&ffs->mutex);
2317 usb_ep_free_request(ep: ffs->gadget->ep0, req: ffs->ep0req);
2318 ffs->ep0req = NULL;
2319 ffs->gadget = NULL;
2320 clear_bit(FFS_FL_BOUND, addr: &ffs->flags);
2321 mutex_unlock(lock: &ffs->mutex);
2322 ffs_data_put(ffs);
2323 }
2324}
2325
2326static int ffs_epfiles_create(struct ffs_data *ffs)
2327{
2328 struct ffs_epfile *epfile, *epfiles;
2329 unsigned i, count;
2330
2331 count = ffs->eps_count;
2332 epfiles = kcalloc(n: count, size: sizeof(*epfiles), GFP_KERNEL);
2333 if (!epfiles)
2334 return -ENOMEM;
2335
2336 epfile = epfiles;
2337 for (i = 1; i <= count; ++i, ++epfile) {
2338 epfile->ffs = ffs;
2339 mutex_init(&epfile->mutex);
2340 mutex_init(&epfile->dmabufs_mutex);
2341 INIT_LIST_HEAD(list: &epfile->dmabufs);
2342 if (ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
2343 sprintf(buf: epfile->name, fmt: "ep%02x", ffs->eps_addrmap[i]);
2344 else
2345 sprintf(buf: epfile->name, fmt: "ep%u", i);
2346 epfile->dentry = ffs_sb_create_file(sb: ffs->sb, name: epfile->name,
2347 data: epfile,
2348 fops: &ffs_epfile_operations);
2349 if (!epfile->dentry) {
2350 ffs_epfiles_destroy(epfiles, count: i - 1);
2351 return -ENOMEM;
2352 }
2353 }
2354
2355 ffs->epfiles = epfiles;
2356 return 0;
2357}
2358
2359static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count)
2360{
2361 struct ffs_epfile *epfile = epfiles;
2362
2363 for (; count; --count, ++epfile) {
2364 BUG_ON(mutex_is_locked(&epfile->mutex));
2365 if (epfile->dentry) {
2366 d_delete(epfile->dentry);
2367 dput(epfile->dentry);
2368 epfile->dentry = NULL;
2369 }
2370 }
2371
2372 kfree(objp: epfiles);
2373}
2374
2375static void ffs_func_eps_disable(struct ffs_function *func)
2376{
2377 struct ffs_ep *ep;
2378 struct ffs_epfile *epfile;
2379 unsigned short count;
2380 unsigned long flags;
2381
2382 spin_lock_irqsave(&func->ffs->eps_lock, flags);
2383 count = func->ffs->eps_count;
2384 epfile = func->ffs->epfiles;
2385 ep = func->eps;
2386 while (count--) {
2387 /* pending requests get nuked */
2388 if (ep->ep)
2389 usb_ep_disable(ep: ep->ep);
2390 ++ep;
2391
2392 if (epfile) {
2393 epfile->ep = NULL;
2394 __ffs_epfile_read_buffer_free(epfile);
2395 ++epfile;
2396 }
2397 }
2398 spin_unlock_irqrestore(lock: &func->ffs->eps_lock, flags);
2399}
2400
2401static int ffs_func_eps_enable(struct ffs_function *func)
2402{
2403 struct ffs_data *ffs;
2404 struct ffs_ep *ep;
2405 struct ffs_epfile *epfile;
2406 unsigned short count;
2407 unsigned long flags;
2408 int ret = 0;
2409
2410 spin_lock_irqsave(&func->ffs->eps_lock, flags);
2411 ffs = func->ffs;
2412 ep = func->eps;
2413 epfile = ffs->epfiles;
2414 count = ffs->eps_count;
2415 while(count--) {
2416 ep->ep->driver_data = ep;
2417
2418 ret = config_ep_by_speed(g: func->gadget, f: &func->function, ep: ep->ep);
2419 if (ret) {
2420 pr_err("%s: config_ep_by_speed(%s) returned %d\n",
2421 __func__, ep->ep->name, ret);
2422 break;
2423 }
2424
2425 ret = usb_ep_enable(ep: ep->ep);
2426 if (!ret) {
2427 epfile->ep = ep;
2428 epfile->in = usb_endpoint_dir_in(epd: ep->ep->desc);
2429 epfile->isoc = usb_endpoint_xfer_isoc(epd: ep->ep->desc);
2430 } else {
2431 break;
2432 }
2433
2434 ++ep;
2435 ++epfile;
2436 }
2437
2438 wake_up_interruptible(&ffs->wait);
2439 spin_unlock_irqrestore(lock: &func->ffs->eps_lock, flags);
2440
2441 return ret;
2442}
2443
2444
2445/* Parsing and building descriptors and strings *****************************/
2446
2447/*
2448 * This validates if data pointed by data is a valid USB descriptor as
2449 * well as record how many interfaces, endpoints and strings are
2450 * required by given configuration. Returns address after the
2451 * descriptor or NULL if data is invalid.
2452 */
2453
2454enum ffs_entity_type {
2455 FFS_DESCRIPTOR, FFS_INTERFACE, FFS_STRING, FFS_ENDPOINT
2456};
2457
2458enum ffs_os_desc_type {
2459 FFS_OS_DESC, FFS_OS_DESC_EXT_COMPAT, FFS_OS_DESC_EXT_PROP
2460};
2461
2462typedef int (*ffs_entity_callback)(enum ffs_entity_type entity,
2463 u8 *valuep,
2464 struct usb_descriptor_header *desc,
2465 void *priv);
2466
2467typedef int (*ffs_os_desc_callback)(enum ffs_os_desc_type entity,
2468 struct usb_os_desc_header *h, void *data,
2469 unsigned len, void *priv);
2470
2471static int __must_check ffs_do_single_desc(char *data, unsigned len,
2472 ffs_entity_callback entity,
2473 void *priv, int *current_class)
2474{
2475 struct usb_descriptor_header *_ds = (void *)data;
2476 u8 length;
2477 int ret;
2478
2479 /* At least two bytes are required: length and type */
2480 if (len < 2) {
2481 pr_vdebug("descriptor too short\n");
2482 return -EINVAL;
2483 }
2484
2485 /* If we have at least as many bytes as the descriptor takes? */
2486 length = _ds->bLength;
2487 if (len < length) {
2488 pr_vdebug("descriptor longer then available data\n");
2489 return -EINVAL;
2490 }
2491
2492#define __entity_check_INTERFACE(val) 1
2493#define __entity_check_STRING(val) (val)
2494#define __entity_check_ENDPOINT(val) ((val) & USB_ENDPOINT_NUMBER_MASK)
2495#define __entity(type, val) do { \
2496 pr_vdebug("entity " #type "(%02x)\n", (val)); \
2497 if (!__entity_check_ ##type(val)) { \
2498 pr_vdebug("invalid entity's value\n"); \
2499 return -EINVAL; \
2500 } \
2501 ret = entity(FFS_ ##type, &val, _ds, priv); \
2502 if (ret < 0) { \
2503 pr_debug("entity " #type "(%02x); ret = %d\n", \
2504 (val), ret); \
2505 return ret; \
2506 } \
2507 } while (0)
2508
2509 /* Parse descriptor depending on type. */
2510 switch (_ds->bDescriptorType) {
2511 case USB_DT_DEVICE:
2512 case USB_DT_CONFIG:
2513 case USB_DT_STRING:
2514 case USB_DT_DEVICE_QUALIFIER:
2515 /* function can't have any of those */
2516 pr_vdebug("descriptor reserved for gadget: %d\n",
2517 _ds->bDescriptorType);
2518 return -EINVAL;
2519
2520 case USB_DT_INTERFACE: {
2521 struct usb_interface_descriptor *ds = (void *)_ds;
2522 pr_vdebug("interface descriptor\n");
2523 if (length != sizeof *ds)
2524 goto inv_length;
2525
2526 __entity(INTERFACE, ds->bInterfaceNumber);
2527 if (ds->iInterface)
2528 __entity(STRING, ds->iInterface);
2529 *current_class = ds->bInterfaceClass;
2530 }
2531 break;
2532
2533 case USB_DT_ENDPOINT: {
2534 struct usb_endpoint_descriptor *ds = (void *)_ds;
2535 pr_vdebug("endpoint descriptor\n");
2536 if (length != USB_DT_ENDPOINT_SIZE &&
2537 length != USB_DT_ENDPOINT_AUDIO_SIZE)
2538 goto inv_length;
2539 __entity(ENDPOINT, ds->bEndpointAddress);
2540 }
2541 break;
2542
2543 case USB_TYPE_CLASS | 0x01:
2544 if (*current_class == USB_INTERFACE_CLASS_HID) {
2545 pr_vdebug("hid descriptor\n");
2546 if (length != sizeof(struct hid_descriptor))
2547 goto inv_length;
2548 break;
2549 } else if (*current_class == USB_INTERFACE_CLASS_CCID) {
2550 pr_vdebug("ccid descriptor\n");
2551 if (length != sizeof(struct ccid_descriptor))
2552 goto inv_length;
2553 break;
2554 } else {
2555 pr_vdebug("unknown descriptor: %d for class %d\n",
2556 _ds->bDescriptorType, *current_class);
2557 return -EINVAL;
2558 }
2559
2560 case USB_DT_OTG:
2561 if (length != sizeof(struct usb_otg_descriptor))
2562 goto inv_length;
2563 break;
2564
2565 case USB_DT_INTERFACE_ASSOCIATION: {
2566 struct usb_interface_assoc_descriptor *ds = (void *)_ds;
2567 pr_vdebug("interface association descriptor\n");
2568 if (length != sizeof *ds)
2569 goto inv_length;
2570 if (ds->iFunction)
2571 __entity(STRING, ds->iFunction);
2572 }
2573 break;
2574
2575 case USB_DT_SS_ENDPOINT_COMP:
2576 pr_vdebug("EP SS companion descriptor\n");
2577 if (length != sizeof(struct usb_ss_ep_comp_descriptor))
2578 goto inv_length;
2579 break;
2580
2581 case USB_DT_OTHER_SPEED_CONFIG:
2582 case USB_DT_INTERFACE_POWER:
2583 case USB_DT_DEBUG:
2584 case USB_DT_SECURITY:
2585 case USB_DT_CS_RADIO_CONTROL:
2586 /* TODO */
2587 pr_vdebug("unimplemented descriptor: %d\n", _ds->bDescriptorType);
2588 return -EINVAL;
2589
2590 default:
2591 /* We should never be here */
2592 pr_vdebug("unknown descriptor: %d\n", _ds->bDescriptorType);
2593 return -EINVAL;
2594
2595inv_length:
2596 pr_vdebug("invalid length: %d (descriptor %d)\n",
2597 _ds->bLength, _ds->bDescriptorType);
2598 return -EINVAL;
2599 }
2600
2601#undef __entity
2602#undef __entity_check_DESCRIPTOR
2603#undef __entity_check_INTERFACE
2604#undef __entity_check_STRING
2605#undef __entity_check_ENDPOINT
2606
2607 return length;
2608}
2609
2610static int __must_check ffs_do_descs(unsigned count, char *data, unsigned len,
2611 ffs_entity_callback entity, void *priv)
2612{
2613 const unsigned _len = len;
2614 unsigned long num = 0;
2615 int current_class = -1;
2616
2617 for (;;) {
2618 int ret;
2619
2620 if (num == count)
2621 data = NULL;
2622
2623 /* Record "descriptor" entity */
2624 ret = entity(FFS_DESCRIPTOR, (u8 *)num, (void *)data, priv);
2625 if (ret < 0) {
2626 pr_debug("entity DESCRIPTOR(%02lx); ret = %d\n",
2627 num, ret);
2628 return ret;
2629 }
2630
2631 if (!data)
2632 return _len - len;
2633
2634 ret = ffs_do_single_desc(data, len, entity, priv,
2635 current_class: &current_class);
2636 if (ret < 0) {
2637 pr_debug("%s returns %d\n", __func__, ret);
2638 return ret;
2639 }
2640
2641 len -= ret;
2642 data += ret;
2643 ++num;
2644 }
2645}
2646
2647static int __ffs_data_do_entity(enum ffs_entity_type type,
2648 u8 *valuep, struct usb_descriptor_header *desc,
2649 void *priv)
2650{
2651 struct ffs_desc_helper *helper = priv;
2652 struct usb_endpoint_descriptor *d;
2653
2654 switch (type) {
2655 case FFS_DESCRIPTOR:
2656 break;
2657
2658 case FFS_INTERFACE:
2659 /*
2660 * Interfaces are indexed from zero so if we
2661 * encountered interface "n" then there are at least
2662 * "n+1" interfaces.
2663 */
2664 if (*valuep >= helper->interfaces_count)
2665 helper->interfaces_count = *valuep + 1;
2666 break;
2667
2668 case FFS_STRING:
2669 /*
2670 * Strings are indexed from 1 (0 is reserved
2671 * for languages list)
2672 */
2673 if (*valuep > helper->ffs->strings_count)
2674 helper->ffs->strings_count = *valuep;
2675 break;
2676
2677 case FFS_ENDPOINT:
2678 d = (void *)desc;
2679 helper->eps_count++;
2680 if (helper->eps_count >= FFS_MAX_EPS_COUNT)
2681 return -EINVAL;
2682 /* Check if descriptors for any speed were already parsed */
2683 if (!helper->ffs->eps_count && !helper->ffs->interfaces_count)
2684 helper->ffs->eps_addrmap[helper->eps_count] =
2685 d->bEndpointAddress;
2686 else if (helper->ffs->eps_addrmap[helper->eps_count] !=
2687 d->bEndpointAddress)
2688 return -EINVAL;
2689 break;
2690 }
2691
2692 return 0;
2693}
2694
2695static int __ffs_do_os_desc_header(enum ffs_os_desc_type *next_type,
2696 struct usb_os_desc_header *desc)
2697{
2698 u16 bcd_version = le16_to_cpu(desc->bcdVersion);
2699 u16 w_index = le16_to_cpu(desc->wIndex);
2700
2701 if (bcd_version == 0x1) {
2702 pr_warn("bcdVersion must be 0x0100, stored in Little Endian order. "
2703 "Userspace driver should be fixed, accepting 0x0001 for compatibility.\n");
2704 } else if (bcd_version != 0x100) {
2705 pr_vdebug("unsupported os descriptors version: 0x%x\n",
2706 bcd_version);
2707 return -EINVAL;
2708 }
2709 switch (w_index) {
2710 case 0x4:
2711 *next_type = FFS_OS_DESC_EXT_COMPAT;
2712 break;
2713 case 0x5:
2714 *next_type = FFS_OS_DESC_EXT_PROP;
2715 break;
2716 default:
2717 pr_vdebug("unsupported os descriptor type: %d", w_index);
2718 return -EINVAL;
2719 }
2720
2721 return sizeof(*desc);
2722}
2723
2724/*
2725 * Process all extended compatibility/extended property descriptors
2726 * of a feature descriptor
2727 */
2728static int __must_check ffs_do_single_os_desc(char *data, unsigned len,
2729 enum ffs_os_desc_type type,
2730 u16 feature_count,
2731 ffs_os_desc_callback entity,
2732 void *priv,
2733 struct usb_os_desc_header *h)
2734{
2735 int ret;
2736 const unsigned _len = len;
2737
2738 /* loop over all ext compat/ext prop descriptors */
2739 while (feature_count--) {
2740 ret = entity(type, h, data, len, priv);
2741 if (ret < 0) {
2742 pr_debug("bad OS descriptor, type: %d\n", type);
2743 return ret;
2744 }
2745 data += ret;
2746 len -= ret;
2747 }
2748 return _len - len;
2749}
2750
2751/* Process a number of complete Feature Descriptors (Ext Compat or Ext Prop) */
2752static int __must_check ffs_do_os_descs(unsigned count,
2753 char *data, unsigned len,
2754 ffs_os_desc_callback entity, void *priv)
2755{
2756 const unsigned _len = len;
2757 unsigned long num = 0;
2758
2759 for (num = 0; num < count; ++num) {
2760 int ret;
2761 enum ffs_os_desc_type type;
2762 u16 feature_count;
2763 struct usb_os_desc_header *desc = (void *)data;
2764
2765 if (len < sizeof(*desc))
2766 return -EINVAL;
2767
2768 /*
2769 * Record "descriptor" entity.
2770 * Process dwLength, bcdVersion, wIndex, get b/wCount.
2771 * Move the data pointer to the beginning of extended
2772 * compatibilities proper or extended properties proper
2773 * portions of the data
2774 */
2775 if (le32_to_cpu(desc->dwLength) > len)
2776 return -EINVAL;
2777
2778 ret = __ffs_do_os_desc_header(next_type: &type, desc);
2779 if (ret < 0) {
2780 pr_debug("entity OS_DESCRIPTOR(%02lx); ret = %d\n",
2781 num, ret);
2782 return ret;
2783 }
2784 /*
2785 * 16-bit hex "?? 00" Little Endian looks like 8-bit hex "??"
2786 */
2787 feature_count = le16_to_cpu(desc->wCount);
2788 if (type == FFS_OS_DESC_EXT_COMPAT &&
2789 (feature_count > 255 || desc->Reserved))
2790 return -EINVAL;
2791 len -= ret;
2792 data += ret;
2793
2794 /*
2795 * Process all function/property descriptors
2796 * of this Feature Descriptor
2797 */
2798 ret = ffs_do_single_os_desc(data, len, type,
2799 feature_count, entity, priv, h: desc);
2800 if (ret < 0) {
2801 pr_debug("%s returns %d\n", __func__, ret);
2802 return ret;
2803 }
2804
2805 len -= ret;
2806 data += ret;
2807 }
2808 return _len - len;
2809}
2810
2811/*
2812 * Validate contents of the buffer from userspace related to OS descriptors.
2813 */
2814static int __ffs_data_do_os_desc(enum ffs_os_desc_type type,
2815 struct usb_os_desc_header *h, void *data,
2816 unsigned len, void *priv)
2817{
2818 struct ffs_data *ffs = priv;
2819 u8 length;
2820
2821 switch (type) {
2822 case FFS_OS_DESC_EXT_COMPAT: {
2823 struct usb_ext_compat_desc *d = data;
2824 int i;
2825
2826 if (len < sizeof(*d) ||
2827 d->bFirstInterfaceNumber >= ffs->interfaces_count)
2828 return -EINVAL;
2829 if (d->Reserved1 != 1) {
2830 /*
2831 * According to the spec, Reserved1 must be set to 1
2832 * but older kernels incorrectly rejected non-zero
2833 * values. We fix it here to avoid returning EINVAL
2834 * in response to values we used to accept.
2835 */
2836 pr_debug("usb_ext_compat_desc::Reserved1 forced to 1\n");
2837 d->Reserved1 = 1;
2838 }
2839 for (i = 0; i < ARRAY_SIZE(d->Reserved2); ++i)
2840 if (d->Reserved2[i])
2841 return -EINVAL;
2842
2843 length = sizeof(struct usb_ext_compat_desc);
2844 }
2845 break;
2846 case FFS_OS_DESC_EXT_PROP: {
2847 struct usb_ext_prop_desc *d = data;
2848 u32 type, pdl;
2849 u16 pnl;
2850
2851 if (len < sizeof(*d) || h->interface >= ffs->interfaces_count)
2852 return -EINVAL;
2853 length = le32_to_cpu(d->dwSize);
2854 if (len < length)
2855 return -EINVAL;
2856 type = le32_to_cpu(d->dwPropertyDataType);
2857 if (type < USB_EXT_PROP_UNICODE ||
2858 type > USB_EXT_PROP_UNICODE_MULTI) {
2859 pr_vdebug("unsupported os descriptor property type: %d",
2860 type);
2861 return -EINVAL;
2862 }
2863 pnl = le16_to_cpu(d->wPropertyNameLength);
2864 if (length < 14 + pnl) {
2865 pr_vdebug("invalid os descriptor length: %d pnl:%d (descriptor %d)\n",
2866 length, pnl, type);
2867 return -EINVAL;
2868 }
2869 pdl = le32_to_cpu(*(__le32 *)((u8 *)data + 10 + pnl));
2870 if (length != 14 + pnl + pdl) {
2871 pr_vdebug("invalid os descriptor length: %d pnl:%d pdl:%d (descriptor %d)\n",
2872 length, pnl, pdl, type);
2873 return -EINVAL;
2874 }
2875 ++ffs->ms_os_descs_ext_prop_count;
2876 /* property name reported to the host as "WCHAR"s */
2877 ffs->ms_os_descs_ext_prop_name_len += pnl * 2;
2878 ffs->ms_os_descs_ext_prop_data_len += pdl;
2879 }
2880 break;
2881 default:
2882 pr_vdebug("unknown descriptor: %d\n", type);
2883 return -EINVAL;
2884 }
2885 return length;
2886}
2887
2888static int __ffs_data_got_descs(struct ffs_data *ffs,
2889 char *const _data, size_t len)
2890{
2891 char *data = _data, *raw_descs;
2892 unsigned os_descs_count = 0, counts[3], flags;
2893 int ret = -EINVAL, i;
2894 struct ffs_desc_helper helper;
2895
2896 if (get_unaligned_le32(p: data + 4) != len)
2897 goto error;
2898
2899 switch (get_unaligned_le32(p: data)) {
2900 case FUNCTIONFS_DESCRIPTORS_MAGIC:
2901 flags = FUNCTIONFS_HAS_FS_DESC | FUNCTIONFS_HAS_HS_DESC;
2902 data += 8;
2903 len -= 8;
2904 break;
2905 case FUNCTIONFS_DESCRIPTORS_MAGIC_V2:
2906 flags = get_unaligned_le32(p: data + 8);
2907 ffs->user_flags = flags;
2908 if (flags & ~(FUNCTIONFS_HAS_FS_DESC |
2909 FUNCTIONFS_HAS_HS_DESC |
2910 FUNCTIONFS_HAS_SS_DESC |
2911 FUNCTIONFS_HAS_MS_OS_DESC |
2912 FUNCTIONFS_VIRTUAL_ADDR |
2913 FUNCTIONFS_EVENTFD |
2914 FUNCTIONFS_ALL_CTRL_RECIP |
2915 FUNCTIONFS_CONFIG0_SETUP)) {
2916 ret = -ENOSYS;
2917 goto error;
2918 }
2919 data += 12;
2920 len -= 12;
2921 break;
2922 default:
2923 goto error;
2924 }
2925
2926 if (flags & FUNCTIONFS_EVENTFD) {
2927 if (len < 4)
2928 goto error;
2929 ffs->ffs_eventfd =
2930 eventfd_ctx_fdget(fd: (int)get_unaligned_le32(p: data));
2931 if (IS_ERR(ptr: ffs->ffs_eventfd)) {
2932 ret = PTR_ERR(ptr: ffs->ffs_eventfd);
2933 ffs->ffs_eventfd = NULL;
2934 goto error;
2935 }
2936 data += 4;
2937 len -= 4;
2938 }
2939
2940 /* Read fs_count, hs_count and ss_count (if present) */
2941 for (i = 0; i < 3; ++i) {
2942 if (!(flags & (1 << i))) {
2943 counts[i] = 0;
2944 } else if (len < 4) {
2945 goto error;
2946 } else {
2947 counts[i] = get_unaligned_le32(p: data);
2948 data += 4;
2949 len -= 4;
2950 }
2951 }
2952 if (flags & (1 << i)) {
2953 if (len < 4) {
2954 goto error;
2955 }
2956 os_descs_count = get_unaligned_le32(p: data);
2957 data += 4;
2958 len -= 4;
2959 }
2960
2961 /* Read descriptors */
2962 raw_descs = data;
2963 helper.ffs = ffs;
2964 for (i = 0; i < 3; ++i) {
2965 if (!counts[i])
2966 continue;
2967 helper.interfaces_count = 0;
2968 helper.eps_count = 0;
2969 ret = ffs_do_descs(count: counts[i], data, len,
2970 entity: __ffs_data_do_entity, priv: &helper);
2971 if (ret < 0)
2972 goto error;
2973 if (!ffs->eps_count && !ffs->interfaces_count) {
2974 ffs->eps_count = helper.eps_count;
2975 ffs->interfaces_count = helper.interfaces_count;
2976 } else {
2977 if (ffs->eps_count != helper.eps_count) {
2978 ret = -EINVAL;
2979 goto error;
2980 }
2981 if (ffs->interfaces_count != helper.interfaces_count) {
2982 ret = -EINVAL;
2983 goto error;
2984 }
2985 }
2986 data += ret;
2987 len -= ret;
2988 }
2989 if (os_descs_count) {
2990 ret = ffs_do_os_descs(count: os_descs_count, data, len,
2991 entity: __ffs_data_do_os_desc, priv: ffs);
2992 if (ret < 0)
2993 goto error;
2994 data += ret;
2995 len -= ret;
2996 }
2997
2998 if (raw_descs == data || len) {
2999 ret = -EINVAL;
3000 goto error;
3001 }
3002
3003 ffs->raw_descs_data = _data;
3004 ffs->raw_descs = raw_descs;
3005 ffs->raw_descs_length = data - raw_descs;
3006 ffs->fs_descs_count = counts[0];
3007 ffs->hs_descs_count = counts[1];
3008 ffs->ss_descs_count = counts[2];
3009 ffs->ms_os_descs_count = os_descs_count;
3010
3011 return 0;
3012
3013error:
3014 kfree(objp: _data);
3015 return ret;
3016}
3017
3018static int __ffs_data_got_strings(struct ffs_data *ffs,
3019 char *const _data, size_t len)
3020{
3021 u32 str_count, needed_count, lang_count;
3022 struct usb_gadget_strings **stringtabs, *t;
3023 const char *data = _data;
3024 struct usb_string *s;
3025
3026 if (len < 16 ||
3027 get_unaligned_le32(p: data) != FUNCTIONFS_STRINGS_MAGIC ||
3028 get_unaligned_le32(p: data + 4) != len)
3029 goto error;
3030 str_count = get_unaligned_le32(p: data + 8);
3031 lang_count = get_unaligned_le32(p: data + 12);
3032
3033 /* if one is zero the other must be zero */
3034 if (!str_count != !lang_count)
3035 goto error;
3036
3037 /* Do we have at least as many strings as descriptors need? */
3038 needed_count = ffs->strings_count;
3039 if (str_count < needed_count)
3040 goto error;
3041
3042 /*
3043 * If we don't need any strings just return and free all
3044 * memory.
3045 */
3046 if (!needed_count) {
3047 kfree(objp: _data);
3048 return 0;
3049 }
3050
3051 /* Allocate everything in one chunk so there's less maintenance. */
3052 {
3053 unsigned i = 0;
3054 vla_group(d);
3055 vla_item(d, struct usb_gadget_strings *, stringtabs,
3056 size_add(lang_count, 1));
3057 vla_item(d, struct usb_gadget_strings, stringtab, lang_count);
3058 vla_item(d, struct usb_string, strings,
3059 size_mul(lang_count, (needed_count + 1)));
3060
3061 char *vlabuf = kmalloc(vla_group_size(d), GFP_KERNEL);
3062
3063 if (!vlabuf) {
3064 kfree(objp: _data);
3065 return -ENOMEM;
3066 }
3067
3068 /* Initialize the VLA pointers */
3069 stringtabs = vla_ptr(vlabuf, d, stringtabs);
3070 t = vla_ptr(vlabuf, d, stringtab);
3071 i = lang_count;
3072 do {
3073 *stringtabs++ = t++;
3074 } while (--i);
3075 *stringtabs = NULL;
3076
3077 /* stringtabs = vlabuf = d_stringtabs for later kfree */
3078 stringtabs = vla_ptr(vlabuf, d, stringtabs);
3079 t = vla_ptr(vlabuf, d, stringtab);
3080 s = vla_ptr(vlabuf, d, strings);
3081 }
3082
3083 /* For each language */
3084 data += 16;
3085 len -= 16;
3086
3087 do { /* lang_count > 0 so we can use do-while */
3088 unsigned needed = needed_count;
3089 u32 str_per_lang = str_count;
3090
3091 if (len < 3)
3092 goto error_free;
3093 t->language = get_unaligned_le16(p: data);
3094 t->strings = s;
3095 ++t;
3096
3097 data += 2;
3098 len -= 2;
3099
3100 /* For each string */
3101 do { /* str_count > 0 so we can use do-while */
3102 size_t length = strnlen(p: data, maxlen: len);
3103
3104 if (length == len)
3105 goto error_free;
3106
3107 /*
3108 * User may provide more strings then we need,
3109 * if that's the case we simply ignore the
3110 * rest
3111 */
3112 if (needed) {
3113 /*
3114 * s->id will be set while adding
3115 * function to configuration so for
3116 * now just leave garbage here.
3117 */
3118 s->s = data;
3119 --needed;
3120 ++s;
3121 }
3122
3123 data += length + 1;
3124 len -= length + 1;
3125 } while (--str_per_lang);
3126
3127 s->id = 0; /* terminator */
3128 s->s = NULL;
3129 ++s;
3130
3131 } while (--lang_count);
3132
3133 /* Some garbage left? */
3134 if (len)
3135 goto error_free;
3136
3137 /* Done! */
3138 ffs->stringtabs = stringtabs;
3139 ffs->raw_strings = _data;
3140
3141 return 0;
3142
3143error_free:
3144 kfree(objp: stringtabs);
3145error:
3146 kfree(objp: _data);
3147 return -EINVAL;
3148}
3149
3150
3151/* Events handling and management *******************************************/
3152
3153static void __ffs_event_add(struct ffs_data *ffs,
3154 enum usb_functionfs_event_type type)
3155{
3156 enum usb_functionfs_event_type rem_type1, rem_type2 = type;
3157 int neg = 0;
3158
3159 /*
3160 * Abort any unhandled setup
3161 *
3162 * We do not need to worry about some cmpxchg() changing value
3163 * of ffs->setup_state without holding the lock because when
3164 * state is FFS_SETUP_PENDING cmpxchg() in several places in
3165 * the source does nothing.
3166 */
3167 if (ffs->setup_state == FFS_SETUP_PENDING)
3168 ffs->setup_state = FFS_SETUP_CANCELLED;
3169
3170 /*
3171 * Logic of this function guarantees that there are at most four pending
3172 * evens on ffs->ev.types queue. This is important because the queue
3173 * has space for four elements only and __ffs_ep0_read_events function
3174 * depends on that limit as well. If more event types are added, those
3175 * limits have to be revisited or guaranteed to still hold.
3176 */
3177 switch (type) {
3178 case FUNCTIONFS_RESUME:
3179 rem_type2 = FUNCTIONFS_SUSPEND;
3180 fallthrough;
3181 case FUNCTIONFS_SUSPEND:
3182 case FUNCTIONFS_SETUP:
3183 rem_type1 = type;
3184 /* Discard all similar events */
3185 break;
3186
3187 case FUNCTIONFS_BIND:
3188 case FUNCTIONFS_UNBIND:
3189 case FUNCTIONFS_DISABLE:
3190 case FUNCTIONFS_ENABLE:
3191 /* Discard everything other then power management. */
3192 rem_type1 = FUNCTIONFS_SUSPEND;
3193 rem_type2 = FUNCTIONFS_RESUME;
3194 neg = 1;
3195 break;
3196
3197 default:
3198 WARN(1, "%d: unknown event, this should not happen\n", type);
3199 return;
3200 }
3201
3202 {
3203 u8 *ev = ffs->ev.types, *out = ev;
3204 unsigned n = ffs->ev.count;
3205 for (; n; --n, ++ev)
3206 if ((*ev == rem_type1 || *ev == rem_type2) == neg)
3207 *out++ = *ev;
3208 else
3209 pr_vdebug("purging event %d\n", *ev);
3210 ffs->ev.count = out - ffs->ev.types;
3211 }
3212
3213 pr_vdebug("adding event %d\n", type);
3214 ffs->ev.types[ffs->ev.count++] = type;
3215 wake_up_locked(&ffs->ev.waitq);
3216 if (ffs->ffs_eventfd)
3217 eventfd_signal(ctx: ffs->ffs_eventfd);
3218}
3219
3220static void ffs_event_add(struct ffs_data *ffs,
3221 enum usb_functionfs_event_type type)
3222{
3223 unsigned long flags;
3224 spin_lock_irqsave(&ffs->ev.waitq.lock, flags);
3225 __ffs_event_add(ffs, type);
3226 spin_unlock_irqrestore(lock: &ffs->ev.waitq.lock, flags);
3227}
3228
3229/* Bind/unbind USB function hooks *******************************************/
3230
3231static int ffs_ep_addr2idx(struct ffs_data *ffs, u8 endpoint_address)
3232{
3233 int i;
3234
3235 for (i = 1; i < ARRAY_SIZE(ffs->eps_addrmap); ++i)
3236 if (ffs->eps_addrmap[i] == endpoint_address)
3237 return i;
3238 return -ENOENT;
3239}
3240
3241static int __ffs_func_bind_do_descs(enum ffs_entity_type type, u8 *valuep,
3242 struct usb_descriptor_header *desc,
3243 void *priv)
3244{
3245 struct usb_endpoint_descriptor *ds = (void *)desc;
3246 struct ffs_function *func = priv;
3247 struct ffs_ep *ffs_ep;
3248 unsigned ep_desc_id;
3249 int idx;
3250 static const char *speed_names[] = { "full", "high", "super" };
3251
3252 if (type != FFS_DESCRIPTOR)
3253 return 0;
3254
3255 /*
3256 * If ss_descriptors is not NULL, we are reading super speed
3257 * descriptors; if hs_descriptors is not NULL, we are reading high
3258 * speed descriptors; otherwise, we are reading full speed
3259 * descriptors.
3260 */
3261 if (func->function.ss_descriptors) {
3262 ep_desc_id = 2;
3263 func->function.ss_descriptors[(long)valuep] = desc;
3264 } else if (func->function.hs_descriptors) {
3265 ep_desc_id = 1;
3266 func->function.hs_descriptors[(long)valuep] = desc;
3267 } else {
3268 ep_desc_id = 0;
3269 func->function.fs_descriptors[(long)valuep] = desc;
3270 }
3271
3272 if (!desc || desc->bDescriptorType != USB_DT_ENDPOINT)
3273 return 0;
3274
3275 idx = ffs_ep_addr2idx(ffs: func->ffs, endpoint_address: ds->bEndpointAddress) - 1;
3276 if (idx < 0)
3277 return idx;
3278
3279 ffs_ep = func->eps + idx;
3280
3281 if (ffs_ep->descs[ep_desc_id]) {
3282 pr_err("two %sspeed descriptors for EP %d\n",
3283 speed_names[ep_desc_id],
3284 ds->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK);
3285 return -EINVAL;
3286 }
3287 ffs_ep->descs[ep_desc_id] = ds;
3288
3289 ffs_dump_mem(": Original ep desc", ds, ds->bLength);
3290 if (ffs_ep->ep) {
3291 ds->bEndpointAddress = ffs_ep->descs[0]->bEndpointAddress;
3292 if (!ds->wMaxPacketSize)
3293 ds->wMaxPacketSize = ffs_ep->descs[0]->wMaxPacketSize;
3294 } else {
3295 struct usb_request *req;
3296 struct usb_ep *ep;
3297 u8 bEndpointAddress;
3298 u16 wMaxPacketSize;
3299
3300 /*
3301 * We back up bEndpointAddress because autoconfig overwrites
3302 * it with physical endpoint address.
3303 */
3304 bEndpointAddress = ds->bEndpointAddress;
3305 /*
3306 * We back up wMaxPacketSize because autoconfig treats
3307 * endpoint descriptors as if they were full speed.
3308 */
3309 wMaxPacketSize = ds->wMaxPacketSize;
3310 pr_vdebug("autoconfig\n");
3311 ep = usb_ep_autoconfig(func->gadget, ds);
3312 if (!ep)
3313 return -ENOTSUPP;
3314 ep->driver_data = func->eps + idx;
3315
3316 req = usb_ep_alloc_request(ep, GFP_KERNEL);
3317 if (!req)
3318 return -ENOMEM;
3319
3320 ffs_ep->ep = ep;
3321 ffs_ep->req = req;
3322 func->eps_revmap[ds->bEndpointAddress &
3323 USB_ENDPOINT_NUMBER_MASK] = idx + 1;
3324 /*
3325 * If we use virtual address mapping, we restore
3326 * original bEndpointAddress value.
3327 */
3328 if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
3329 ds->bEndpointAddress = bEndpointAddress;
3330 /*
3331 * Restore wMaxPacketSize which was potentially
3332 * overwritten by autoconfig.
3333 */
3334 ds->wMaxPacketSize = wMaxPacketSize;
3335 }
3336 ffs_dump_mem(": Rewritten ep desc", ds, ds->bLength);
3337
3338 return 0;
3339}
3340
3341static int __ffs_func_bind_do_nums(enum ffs_entity_type type, u8 *valuep,
3342 struct usb_descriptor_header *desc,
3343 void *priv)
3344{
3345 struct ffs_function *func = priv;
3346 unsigned idx;
3347 u8 newValue;
3348
3349 switch (type) {
3350 default:
3351 case FFS_DESCRIPTOR:
3352 /* Handled in previous pass by __ffs_func_bind_do_descs() */
3353 return 0;
3354
3355 case FFS_INTERFACE:
3356 idx = *valuep;
3357 if (func->interfaces_nums[idx] < 0) {
3358 int id = usb_interface_id(func->conf, &func->function);
3359 if (id < 0)
3360 return id;
3361 func->interfaces_nums[idx] = id;
3362 }
3363 newValue = func->interfaces_nums[idx];
3364 break;
3365
3366 case FFS_STRING:
3367 /* String' IDs are allocated when fsf_data is bound to cdev */
3368 newValue = func->ffs->stringtabs[0]->strings[*valuep - 1].id;
3369 break;
3370
3371 case FFS_ENDPOINT:
3372 /*
3373 * USB_DT_ENDPOINT are handled in
3374 * __ffs_func_bind_do_descs().
3375 */
3376 if (desc->bDescriptorType == USB_DT_ENDPOINT)
3377 return 0;
3378
3379 idx = (*valuep & USB_ENDPOINT_NUMBER_MASK) - 1;
3380 if (!func->eps[idx].ep)
3381 return -EINVAL;
3382
3383 {
3384 struct usb_endpoint_descriptor **descs;
3385 descs = func->eps[idx].descs;
3386 newValue = descs[descs[0] ? 0 : 1]->bEndpointAddress;
3387 }
3388 break;
3389 }
3390
3391 pr_vdebug("%02x -> %02x\n", *valuep, newValue);
3392 *valuep = newValue;
3393 return 0;
3394}
3395
3396static int __ffs_func_bind_do_os_desc(enum ffs_os_desc_type type,
3397 struct usb_os_desc_header *h, void *data,
3398 unsigned len, void *priv)
3399{
3400 struct ffs_function *func = priv;
3401 u8 length = 0;
3402
3403 switch (type) {
3404 case FFS_OS_DESC_EXT_COMPAT: {
3405 struct usb_ext_compat_desc *desc = data;
3406 struct usb_os_desc_table *t;
3407
3408 t = &func->function.os_desc_table[desc->bFirstInterfaceNumber];
3409 t->if_id = func->interfaces_nums[desc->bFirstInterfaceNumber];
3410 memcpy(t->os_desc->ext_compat_id, &desc->IDs,
3411 sizeof_field(struct usb_ext_compat_desc, IDs));
3412 length = sizeof(*desc);
3413 }
3414 break;
3415 case FFS_OS_DESC_EXT_PROP: {
3416 struct usb_ext_prop_desc *desc = data;
3417 struct usb_os_desc_table *t;
3418 struct usb_os_desc_ext_prop *ext_prop;
3419 char *ext_prop_name;
3420 char *ext_prop_data;
3421
3422 t = &func->function.os_desc_table[h->interface];
3423 t->if_id = func->interfaces_nums[h->interface];
3424
3425 ext_prop = func->ffs->ms_os_descs_ext_prop_avail;
3426 func->ffs->ms_os_descs_ext_prop_avail += sizeof(*ext_prop);
3427
3428 ext_prop->type = le32_to_cpu(desc->dwPropertyDataType);
3429 ext_prop->name_len = le16_to_cpu(desc->wPropertyNameLength);
3430 ext_prop->data_len = le32_to_cpu(*(__le32 *)
3431 usb_ext_prop_data_len_ptr(data, ext_prop->name_len));
3432 length = ext_prop->name_len + ext_prop->data_len + 14;
3433
3434 ext_prop_name = func->ffs->ms_os_descs_ext_prop_name_avail;
3435 func->ffs->ms_os_descs_ext_prop_name_avail +=
3436 ext_prop->name_len;
3437
3438 ext_prop_data = func->ffs->ms_os_descs_ext_prop_data_avail;
3439 func->ffs->ms_os_descs_ext_prop_data_avail +=
3440 ext_prop->data_len;
3441 memcpy(ext_prop_data,
3442 usb_ext_prop_data_ptr(data, ext_prop->name_len),
3443 ext_prop->data_len);
3444 /* unicode data reported to the host as "WCHAR"s */
3445 switch (ext_prop->type) {
3446 case USB_EXT_PROP_UNICODE:
3447 case USB_EXT_PROP_UNICODE_ENV:
3448 case USB_EXT_PROP_UNICODE_LINK:
3449 case USB_EXT_PROP_UNICODE_MULTI:
3450 ext_prop->data_len *= 2;
3451 break;
3452 }
3453 ext_prop->data = ext_prop_data;
3454
3455 memcpy(ext_prop_name, usb_ext_prop_name_ptr(data),
3456 ext_prop->name_len);
3457 /* property name reported to the host as "WCHAR"s */
3458 ext_prop->name_len *= 2;
3459 ext_prop->name = ext_prop_name;
3460
3461 t->os_desc->ext_prop_len +=
3462 ext_prop->name_len + ext_prop->data_len + 14;
3463 ++t->os_desc->ext_prop_count;
3464 list_add_tail(new: &ext_prop->entry, head: &t->os_desc->ext_prop);
3465 }
3466 break;
3467 default:
3468 pr_vdebug("unknown descriptor: %d\n", type);
3469 }
3470
3471 return length;
3472}
3473
3474static inline struct f_fs_opts *ffs_do_functionfs_bind(struct usb_function *f,
3475 struct usb_configuration *c)
3476{
3477 struct ffs_function *func = ffs_func_from_usb(f);
3478 struct f_fs_opts *ffs_opts =
3479 container_of(f->fi, struct f_fs_opts, func_inst);
3480 struct ffs_data *ffs_data;
3481 int ret;
3482
3483 /*
3484 * Legacy gadget triggers binding in functionfs_ready_callback,
3485 * which already uses locking; taking the same lock here would
3486 * cause a deadlock.
3487 *
3488 * Configfs-enabled gadgets however do need ffs_dev_lock.
3489 */
3490 if (!ffs_opts->no_configfs)
3491 ffs_dev_lock();
3492 ret = ffs_opts->dev->desc_ready ? 0 : -ENODEV;
3493 ffs_data = ffs_opts->dev->ffs_data;
3494 if (!ffs_opts->no_configfs)
3495 ffs_dev_unlock();
3496 if (ret)
3497 return ERR_PTR(error: ret);
3498
3499 func->ffs = ffs_data;
3500 func->conf = c;
3501 func->gadget = c->cdev->gadget;
3502
3503 /*
3504 * in drivers/usb/gadget/configfs.c:configfs_composite_bind()
3505 * configurations are bound in sequence with list_for_each_entry,
3506 * in each configuration its functions are bound in sequence
3507 * with list_for_each_entry, so we assume no race condition
3508 * with regard to ffs_opts->bound access
3509 */
3510 if (!ffs_opts->refcnt) {
3511 ret = functionfs_bind(ffs: func->ffs, cdev: c->cdev);
3512 if (ret)
3513 return ERR_PTR(error: ret);
3514 }
3515 ffs_opts->refcnt++;
3516 func->function.strings = func->ffs->stringtabs;
3517
3518 return ffs_opts;
3519}
3520
3521static int _ffs_func_bind(struct usb_configuration *c,
3522 struct usb_function *f)
3523{
3524 struct ffs_function *func = ffs_func_from_usb(f);
3525 struct ffs_data *ffs = func->ffs;
3526
3527 const int full = !!func->ffs->fs_descs_count;
3528 const int high = !!func->ffs->hs_descs_count;
3529 const int super = !!func->ffs->ss_descs_count;
3530
3531 int fs_len, hs_len, ss_len, ret, i;
3532 struct ffs_ep *eps_ptr;
3533
3534 /* Make it a single chunk, less management later on */
3535 vla_group(d);
3536 vla_item_with_sz(d, struct ffs_ep, eps, ffs->eps_count);
3537 vla_item_with_sz(d, struct usb_descriptor_header *, fs_descs,
3538 full ? ffs->fs_descs_count + 1 : 0);
3539 vla_item_with_sz(d, struct usb_descriptor_header *, hs_descs,
3540 high ? ffs->hs_descs_count + 1 : 0);
3541 vla_item_with_sz(d, struct usb_descriptor_header *, ss_descs,
3542 super ? ffs->ss_descs_count + 1 : 0);
3543 vla_item_with_sz(d, short, inums, ffs->interfaces_count);
3544 vla_item_with_sz(d, struct usb_os_desc_table, os_desc_table,
3545 c->cdev->use_os_string ? ffs->interfaces_count : 0);
3546 vla_item_with_sz(d, char[16], ext_compat,
3547 c->cdev->use_os_string ? ffs->interfaces_count : 0);
3548 vla_item_with_sz(d, struct usb_os_desc, os_desc,
3549 c->cdev->use_os_string ? ffs->interfaces_count : 0);
3550 vla_item_with_sz(d, struct usb_os_desc_ext_prop, ext_prop,
3551 ffs->ms_os_descs_ext_prop_count);
3552 vla_item_with_sz(d, char, ext_prop_name,
3553 ffs->ms_os_descs_ext_prop_name_len);
3554 vla_item_with_sz(d, char, ext_prop_data,
3555 ffs->ms_os_descs_ext_prop_data_len);
3556 vla_item_with_sz(d, char, raw_descs, ffs->raw_descs_length);
3557 char *vlabuf;
3558
3559 /* Has descriptors only for speeds gadget does not support */
3560 if (!(full | high | super))
3561 return -ENOTSUPP;
3562
3563 /* Allocate a single chunk, less management later on */
3564 vlabuf = kzalloc(vla_group_size(d), GFP_KERNEL);
3565 if (!vlabuf)
3566 return -ENOMEM;
3567
3568 ffs->ms_os_descs_ext_prop_avail = vla_ptr(vlabuf, d, ext_prop);
3569 ffs->ms_os_descs_ext_prop_name_avail =
3570 vla_ptr(vlabuf, d, ext_prop_name);
3571 ffs->ms_os_descs_ext_prop_data_avail =
3572 vla_ptr(vlabuf, d, ext_prop_data);
3573
3574 /* Copy descriptors */
3575 memcpy(vla_ptr(vlabuf, d, raw_descs), ffs->raw_descs,
3576 ffs->raw_descs_length);
3577
3578 memset(vla_ptr(vlabuf, d, inums), 0xff, d_inums__sz);
3579 eps_ptr = vla_ptr(vlabuf, d, eps);
3580 for (i = 0; i < ffs->eps_count; i++)
3581 eps_ptr[i].num = -1;
3582
3583 /* Save pointers
3584 * d_eps == vlabuf, func->eps used to kfree vlabuf later
3585 */
3586 func->eps = vla_ptr(vlabuf, d, eps);
3587 func->interfaces_nums = vla_ptr(vlabuf, d, inums);
3588
3589 /*
3590 * Go through all the endpoint descriptors and allocate
3591 * endpoints first, so that later we can rewrite the endpoint
3592 * numbers without worrying that it may be described later on.
3593 */
3594 if (full) {
3595 func->function.fs_descriptors = vla_ptr(vlabuf, d, fs_descs);
3596 fs_len = ffs_do_descs(count: ffs->fs_descs_count,
3597 vla_ptr(vlabuf, d, raw_descs),
3598 len: d_raw_descs__sz,
3599 entity: __ffs_func_bind_do_descs, priv: func);
3600 if (fs_len < 0) {
3601 ret = fs_len;
3602 goto error;
3603 }
3604 } else {
3605 fs_len = 0;
3606 }
3607
3608 if (high) {
3609 func->function.hs_descriptors = vla_ptr(vlabuf, d, hs_descs);
3610 hs_len = ffs_do_descs(count: ffs->hs_descs_count,
3611 vla_ptr(vlabuf, d, raw_descs) + fs_len,
3612 len: d_raw_descs__sz - fs_len,
3613 entity: __ffs_func_bind_do_descs, priv: func);
3614 if (hs_len < 0) {
3615 ret = hs_len;
3616 goto error;
3617 }
3618 } else {
3619 hs_len = 0;
3620 }
3621
3622 if (super) {
3623 func->function.ss_descriptors = func->function.ssp_descriptors =
3624 vla_ptr(vlabuf, d, ss_descs);
3625 ss_len = ffs_do_descs(count: ffs->ss_descs_count,
3626 vla_ptr(vlabuf, d, raw_descs) + fs_len + hs_len,
3627 len: d_raw_descs__sz - fs_len - hs_len,
3628 entity: __ffs_func_bind_do_descs, priv: func);
3629 if (ss_len < 0) {
3630 ret = ss_len;
3631 goto error;
3632 }
3633 } else {
3634 ss_len = 0;
3635 }
3636
3637 /*
3638 * Now handle interface numbers allocation and interface and
3639 * endpoint numbers rewriting. We can do that in one go
3640 * now.
3641 */
3642 ret = ffs_do_descs(count: ffs->fs_descs_count +
3643 (high ? ffs->hs_descs_count : 0) +
3644 (super ? ffs->ss_descs_count : 0),
3645 vla_ptr(vlabuf, d, raw_descs), len: d_raw_descs__sz,
3646 entity: __ffs_func_bind_do_nums, priv: func);
3647 if (ret < 0)
3648 goto error;
3649
3650 func->function.os_desc_table = vla_ptr(vlabuf, d, os_desc_table);
3651 if (c->cdev->use_os_string) {
3652 for (i = 0; i < ffs->interfaces_count; ++i) {
3653 struct usb_os_desc *desc;
3654
3655 desc = func->function.os_desc_table[i].os_desc =
3656 vla_ptr(vlabuf, d, os_desc) +
3657 i * sizeof(struct usb_os_desc);
3658 desc->ext_compat_id =
3659 vla_ptr(vlabuf, d, ext_compat) + i * 16;
3660 INIT_LIST_HEAD(list: &desc->ext_prop);
3661 }
3662 ret = ffs_do_os_descs(count: ffs->ms_os_descs_count,
3663 vla_ptr(vlabuf, d, raw_descs) +
3664 fs_len + hs_len + ss_len,
3665 len: d_raw_descs__sz - fs_len - hs_len -
3666 ss_len,
3667 entity: __ffs_func_bind_do_os_desc, priv: func);
3668 if (ret < 0)
3669 goto error;
3670 }
3671 func->function.os_desc_n =
3672 c->cdev->use_os_string ? ffs->interfaces_count : 0;
3673
3674 /* And we're done */
3675 ffs_event_add(ffs, type: FUNCTIONFS_BIND);
3676 return 0;
3677
3678error:
3679 /* XXX Do we need to release all claimed endpoints here? */
3680 return ret;
3681}
3682
3683static int ffs_func_bind(struct usb_configuration *c,
3684 struct usb_function *f)
3685{
3686 struct f_fs_opts *ffs_opts = ffs_do_functionfs_bind(f, c);
3687 struct ffs_function *func = ffs_func_from_usb(f);
3688 int ret;
3689
3690 if (IS_ERR(ptr: ffs_opts))
3691 return PTR_ERR(ptr: ffs_opts);
3692
3693 ret = _ffs_func_bind(c, f);
3694 if (ret && !--ffs_opts->refcnt)
3695 functionfs_unbind(ffs: func->ffs);
3696
3697 return ret;
3698}
3699
3700
3701/* Other USB function hooks *************************************************/
3702
3703static void ffs_reset_work(struct work_struct *work)
3704{
3705 struct ffs_data *ffs = container_of(work,
3706 struct ffs_data, reset_work);
3707 ffs_data_reset(ffs);
3708}
3709
3710static int ffs_func_set_alt(struct usb_function *f,
3711 unsigned interface, unsigned alt)
3712{
3713 struct ffs_function *func = ffs_func_from_usb(f);
3714 struct ffs_data *ffs = func->ffs;
3715 int ret = 0, intf;
3716
3717 if (alt != (unsigned)-1) {
3718 intf = ffs_func_revmap_intf(func, intf: interface);
3719 if (intf < 0)
3720 return intf;
3721 }
3722
3723 if (ffs->func)
3724 ffs_func_eps_disable(func: ffs->func);
3725
3726 if (ffs->state == FFS_DEACTIVATED) {
3727 ffs->state = FFS_CLOSING;
3728 INIT_WORK(&ffs->reset_work, ffs_reset_work);
3729 schedule_work(work: &ffs->reset_work);
3730 return -ENODEV;
3731 }
3732
3733 if (ffs->state != FFS_ACTIVE)
3734 return -ENODEV;
3735
3736 if (alt == (unsigned)-1) {
3737 ffs->func = NULL;
3738 ffs_event_add(ffs, type: FUNCTIONFS_DISABLE);
3739 return 0;
3740 }
3741
3742 ffs->func = func;
3743 ret = ffs_func_eps_enable(func);
3744 if (ret >= 0)
3745 ffs_event_add(ffs, type: FUNCTIONFS_ENABLE);
3746 return ret;
3747}
3748
3749static void ffs_func_disable(struct usb_function *f)
3750{
3751 ffs_func_set_alt(f, interface: 0, alt: (unsigned)-1);
3752}
3753
3754static int ffs_func_setup(struct usb_function *f,
3755 const struct usb_ctrlrequest *creq)
3756{
3757 struct ffs_function *func = ffs_func_from_usb(f);
3758 struct ffs_data *ffs = func->ffs;
3759 unsigned long flags;
3760 int ret;
3761
3762 pr_vdebug("creq->bRequestType = %02x\n", creq->bRequestType);
3763 pr_vdebug("creq->bRequest = %02x\n", creq->bRequest);
3764 pr_vdebug("creq->wValue = %04x\n", le16_to_cpu(creq->wValue));
3765 pr_vdebug("creq->wIndex = %04x\n", le16_to_cpu(creq->wIndex));
3766 pr_vdebug("creq->wLength = %04x\n", le16_to_cpu(creq->wLength));
3767
3768 /*
3769 * Most requests directed to interface go through here
3770 * (notable exceptions are set/get interface) so we need to
3771 * handle them. All other either handled by composite or
3772 * passed to usb_configuration->setup() (if one is set). No
3773 * matter, we will handle requests directed to endpoint here
3774 * as well (as it's straightforward). Other request recipient
3775 * types are only handled when the user flag FUNCTIONFS_ALL_CTRL_RECIP
3776 * is being used.
3777 */
3778 if (ffs->state != FFS_ACTIVE)
3779 return -ENODEV;
3780
3781 switch (creq->bRequestType & USB_RECIP_MASK) {
3782 case USB_RECIP_INTERFACE:
3783 ret = ffs_func_revmap_intf(func, le16_to_cpu(creq->wIndex));
3784 if (ret < 0)
3785 return ret;
3786 break;
3787
3788 case USB_RECIP_ENDPOINT:
3789 ret = ffs_func_revmap_ep(func, le16_to_cpu(creq->wIndex));
3790 if (ret < 0)
3791 return ret;
3792 if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
3793 ret = func->ffs->eps_addrmap[ret];
3794 break;
3795
3796 default:
3797 if (func->ffs->user_flags & FUNCTIONFS_ALL_CTRL_RECIP)
3798 ret = le16_to_cpu(creq->wIndex);
3799 else
3800 return -EOPNOTSUPP;
3801 }
3802
3803 spin_lock_irqsave(&ffs->ev.waitq.lock, flags);
3804 ffs->ev.setup = *creq;
3805 ffs->ev.setup.wIndex = cpu_to_le16(ret);
3806 __ffs_event_add(ffs, type: FUNCTIONFS_SETUP);
3807 spin_unlock_irqrestore(lock: &ffs->ev.waitq.lock, flags);
3808
3809 return creq->wLength == 0 ? USB_GADGET_DELAYED_STATUS : 0;
3810}
3811
3812static bool ffs_func_req_match(struct usb_function *f,
3813 const struct usb_ctrlrequest *creq,
3814 bool config0)
3815{
3816 struct ffs_function *func = ffs_func_from_usb(f);
3817
3818 if (config0 && !(func->ffs->user_flags & FUNCTIONFS_CONFIG0_SETUP))
3819 return false;
3820
3821 switch (creq->bRequestType & USB_RECIP_MASK) {
3822 case USB_RECIP_INTERFACE:
3823 return (ffs_func_revmap_intf(func,
3824 le16_to_cpu(creq->wIndex)) >= 0);
3825 case USB_RECIP_ENDPOINT:
3826 return (ffs_func_revmap_ep(func,
3827 le16_to_cpu(creq->wIndex)) >= 0);
3828 default:
3829 return (bool) (func->ffs->user_flags &
3830 FUNCTIONFS_ALL_CTRL_RECIP);
3831 }
3832}
3833
3834static void ffs_func_suspend(struct usb_function *f)
3835{
3836 ffs_event_add(ffs: ffs_func_from_usb(f)->ffs, type: FUNCTIONFS_SUSPEND);
3837}
3838
3839static void ffs_func_resume(struct usb_function *f)
3840{
3841 ffs_event_add(ffs: ffs_func_from_usb(f)->ffs, type: FUNCTIONFS_RESUME);
3842}
3843
3844
3845/* Endpoint and interface numbers reverse mapping ***************************/
3846
3847static int ffs_func_revmap_ep(struct ffs_function *func, u8 num)
3848{
3849 num = func->eps_revmap[num & USB_ENDPOINT_NUMBER_MASK];
3850 return num ? num : -EDOM;
3851}
3852
3853static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf)
3854{
3855 short *nums = func->interfaces_nums;
3856 unsigned count = func->ffs->interfaces_count;
3857
3858 for (; count; --count, ++nums) {
3859 if (*nums >= 0 && *nums == intf)
3860 return nums - func->interfaces_nums;
3861 }
3862
3863 return -EDOM;
3864}
3865
3866
3867/* Devices management *******************************************************/
3868
3869static LIST_HEAD(ffs_devices);
3870
3871static struct ffs_dev *_ffs_do_find_dev(const char *name)
3872{
3873 struct ffs_dev *dev;
3874
3875 if (!name)
3876 return NULL;
3877
3878 list_for_each_entry(dev, &ffs_devices, entry) {
3879 if (strcmp(dev->name, name) == 0)
3880 return dev;
3881 }
3882
3883 return NULL;
3884}
3885
3886/*
3887 * ffs_lock must be taken by the caller of this function
3888 */
3889static struct ffs_dev *_ffs_get_single_dev(void)
3890{
3891 struct ffs_dev *dev;
3892
3893 if (list_is_singular(head: &ffs_devices)) {
3894 dev = list_first_entry(&ffs_devices, struct ffs_dev, entry);
3895 if (dev->single)
3896 return dev;
3897 }
3898
3899 return NULL;
3900}
3901
3902/*
3903 * ffs_lock must be taken by the caller of this function
3904 */
3905static struct ffs_dev *_ffs_find_dev(const char *name)
3906{
3907 struct ffs_dev *dev;
3908
3909 dev = _ffs_get_single_dev();
3910 if (dev)
3911 return dev;
3912
3913 return _ffs_do_find_dev(name);
3914}
3915
3916/* Configfs support *********************************************************/
3917
3918static inline struct f_fs_opts *to_ffs_opts(struct config_item *item)
3919{
3920 return container_of(to_config_group(item), struct f_fs_opts,
3921 func_inst.group);
3922}
3923
3924static ssize_t f_fs_opts_ready_show(struct config_item *item, char *page)
3925{
3926 struct f_fs_opts *opts = to_ffs_opts(item);
3927 int ready;
3928
3929 ffs_dev_lock();
3930 ready = opts->dev->desc_ready;
3931 ffs_dev_unlock();
3932
3933 return sprintf(buf: page, fmt: "%d\n", ready);
3934}
3935
3936CONFIGFS_ATTR_RO(f_fs_opts_, ready);
3937
3938static struct configfs_attribute *ffs_attrs[] = {
3939 &f_fs_opts_attr_ready,
3940 NULL,
3941};
3942
3943static void ffs_attr_release(struct config_item *item)
3944{
3945 struct f_fs_opts *opts = to_ffs_opts(item);
3946
3947 usb_put_function_instance(fi: &opts->func_inst);
3948}
3949
3950static struct configfs_item_operations ffs_item_ops = {
3951 .release = ffs_attr_release,
3952};
3953
3954static const struct config_item_type ffs_func_type = {
3955 .ct_item_ops = &ffs_item_ops,
3956 .ct_attrs = ffs_attrs,
3957 .ct_owner = THIS_MODULE,
3958};
3959
3960
3961/* Function registration interface ******************************************/
3962
3963static void ffs_free_inst(struct usb_function_instance *f)
3964{
3965 struct f_fs_opts *opts;
3966
3967 opts = to_f_fs_opts(fi: f);
3968 ffs_release_dev(ffs_dev: opts->dev);
3969 ffs_dev_lock();
3970 _ffs_free_dev(dev: opts->dev);
3971 ffs_dev_unlock();
3972 kfree(objp: opts);
3973}
3974
3975static int ffs_set_inst_name(struct usb_function_instance *fi, const char *name)
3976{
3977 if (strlen(name) >= sizeof_field(struct ffs_dev, name))
3978 return -ENAMETOOLONG;
3979 return ffs_name_dev(dev: to_f_fs_opts(fi)->dev, name);
3980}
3981
3982static struct usb_function_instance *ffs_alloc_inst(void)
3983{
3984 struct f_fs_opts *opts;
3985 struct ffs_dev *dev;
3986
3987 opts = kzalloc(size: sizeof(*opts), GFP_KERNEL);
3988 if (!opts)
3989 return ERR_PTR(error: -ENOMEM);
3990
3991 opts->func_inst.set_inst_name = ffs_set_inst_name;
3992 opts->func_inst.free_func_inst = ffs_free_inst;
3993 ffs_dev_lock();
3994 dev = _ffs_alloc_dev();
3995 ffs_dev_unlock();
3996 if (IS_ERR(ptr: dev)) {
3997 kfree(objp: opts);
3998 return ERR_CAST(ptr: dev);
3999 }
4000 opts->dev = dev;
4001 dev->opts = opts;
4002
4003 config_group_init_type_name(group: &opts->func_inst.group, name: "",
4004 type: &ffs_func_type);
4005 return &opts->func_inst;
4006}
4007
4008static void ffs_free(struct usb_function *f)
4009{
4010 kfree(objp: ffs_func_from_usb(f));
4011}
4012
4013static void ffs_func_unbind(struct usb_configuration *c,
4014 struct usb_function *f)
4015{
4016 struct ffs_function *func = ffs_func_from_usb(f);
4017 struct ffs_data *ffs = func->ffs;
4018 struct f_fs_opts *opts =
4019 container_of(f->fi, struct f_fs_opts, func_inst);
4020 struct ffs_ep *ep = func->eps;
4021 unsigned count = ffs->eps_count;
4022 unsigned long flags;
4023
4024 if (ffs->func == func) {
4025 ffs_func_eps_disable(func);
4026 ffs->func = NULL;
4027 }
4028
4029 /* Drain any pending AIO completions */
4030 drain_workqueue(wq: ffs->io_completion_wq);
4031
4032 ffs_event_add(ffs, type: FUNCTIONFS_UNBIND);
4033 if (!--opts->refcnt)
4034 functionfs_unbind(ffs);
4035
4036 /* cleanup after autoconfig */
4037 spin_lock_irqsave(&func->ffs->eps_lock, flags);
4038 while (count--) {
4039 if (ep->ep && ep->req)
4040 usb_ep_free_request(ep: ep->ep, req: ep->req);
4041 ep->req = NULL;
4042 ++ep;
4043 }
4044 spin_unlock_irqrestore(lock: &func->ffs->eps_lock, flags);
4045 kfree(objp: func->eps);
4046 func->eps = NULL;
4047 /*
4048 * eps, descriptors and interfaces_nums are allocated in the
4049 * same chunk so only one free is required.
4050 */
4051 func->function.fs_descriptors = NULL;
4052 func->function.hs_descriptors = NULL;
4053 func->function.ss_descriptors = NULL;
4054 func->function.ssp_descriptors = NULL;
4055 func->interfaces_nums = NULL;
4056
4057}
4058
4059static struct usb_function *ffs_alloc(struct usb_function_instance *fi)
4060{
4061 struct ffs_function *func;
4062
4063 func = kzalloc(size: sizeof(*func), GFP_KERNEL);
4064 if (!func)
4065 return ERR_PTR(error: -ENOMEM);
4066
4067 func->function.name = "Function FS Gadget";
4068
4069 func->function.bind = ffs_func_bind;
4070 func->function.unbind = ffs_func_unbind;
4071 func->function.set_alt = ffs_func_set_alt;
4072 func->function.disable = ffs_func_disable;
4073 func->function.setup = ffs_func_setup;
4074 func->function.req_match = ffs_func_req_match;
4075 func->function.suspend = ffs_func_suspend;
4076 func->function.resume = ffs_func_resume;
4077 func->function.free_func = ffs_free;
4078
4079 return &func->function;
4080}
4081
4082/*
4083 * ffs_lock must be taken by the caller of this function
4084 */
4085static struct ffs_dev *_ffs_alloc_dev(void)
4086{
4087 struct ffs_dev *dev;
4088 int ret;
4089
4090 if (_ffs_get_single_dev())
4091 return ERR_PTR(error: -EBUSY);
4092
4093 dev = kzalloc(size: sizeof(*dev), GFP_KERNEL);
4094 if (!dev)
4095 return ERR_PTR(error: -ENOMEM);
4096
4097 if (list_empty(head: &ffs_devices)) {
4098 ret = functionfs_init();
4099 if (ret) {
4100 kfree(objp: dev);
4101 return ERR_PTR(error: ret);
4102 }
4103 }
4104
4105 list_add(new: &dev->entry, head: &ffs_devices);
4106
4107 return dev;
4108}
4109
4110int ffs_name_dev(struct ffs_dev *dev, const char *name)
4111{
4112 struct ffs_dev *existing;
4113 int ret = 0;
4114
4115 ffs_dev_lock();
4116
4117 existing = _ffs_do_find_dev(name);
4118 if (!existing)
4119 strscpy(dev->name, name, ARRAY_SIZE(dev->name));
4120 else if (existing != dev)
4121 ret = -EBUSY;
4122
4123 ffs_dev_unlock();
4124
4125 return ret;
4126}
4127EXPORT_SYMBOL_GPL(ffs_name_dev);
4128
4129int ffs_single_dev(struct ffs_dev *dev)
4130{
4131 int ret;
4132
4133 ret = 0;
4134 ffs_dev_lock();
4135
4136 if (!list_is_singular(head: &ffs_devices))
4137 ret = -EBUSY;
4138 else
4139 dev->single = true;
4140
4141 ffs_dev_unlock();
4142 return ret;
4143}
4144EXPORT_SYMBOL_GPL(ffs_single_dev);
4145
4146/*
4147 * ffs_lock must be taken by the caller of this function
4148 */
4149static void _ffs_free_dev(struct ffs_dev *dev)
4150{
4151 list_del(entry: &dev->entry);
4152
4153 kfree(objp: dev);
4154 if (list_empty(head: &ffs_devices))
4155 functionfs_cleanup();
4156}
4157
4158static int ffs_acquire_dev(const char *dev_name, struct ffs_data *ffs_data)
4159{
4160 int ret = 0;
4161 struct ffs_dev *ffs_dev;
4162
4163 ffs_dev_lock();
4164
4165 ffs_dev = _ffs_find_dev(name: dev_name);
4166 if (!ffs_dev) {
4167 ret = -ENOENT;
4168 } else if (ffs_dev->mounted) {
4169 ret = -EBUSY;
4170 } else if (ffs_dev->ffs_acquire_dev_callback &&
4171 ffs_dev->ffs_acquire_dev_callback(ffs_dev)) {
4172 ret = -ENOENT;
4173 } else {
4174 ffs_dev->mounted = true;
4175 ffs_dev->ffs_data = ffs_data;
4176 ffs_data->private_data = ffs_dev;
4177 }
4178
4179 ffs_dev_unlock();
4180 return ret;
4181}
4182
4183static void ffs_release_dev(struct ffs_dev *ffs_dev)
4184{
4185 ffs_dev_lock();
4186
4187 if (ffs_dev && ffs_dev->mounted) {
4188 ffs_dev->mounted = false;
4189 if (ffs_dev->ffs_data) {
4190 ffs_dev->ffs_data->private_data = NULL;
4191 ffs_dev->ffs_data = NULL;
4192 }
4193
4194 if (ffs_dev->ffs_release_dev_callback)
4195 ffs_dev->ffs_release_dev_callback(ffs_dev);
4196 }
4197
4198 ffs_dev_unlock();
4199}
4200
4201static int ffs_ready(struct ffs_data *ffs)
4202{
4203 struct ffs_dev *ffs_obj;
4204 int ret = 0;
4205
4206 ffs_dev_lock();
4207
4208 ffs_obj = ffs->private_data;
4209 if (!ffs_obj) {
4210 ret = -EINVAL;
4211 goto done;
4212 }
4213 if (WARN_ON(ffs_obj->desc_ready)) {
4214 ret = -EBUSY;
4215 goto done;
4216 }
4217
4218 ffs_obj->desc_ready = true;
4219
4220 if (ffs_obj->ffs_ready_callback) {
4221 ret = ffs_obj->ffs_ready_callback(ffs);
4222 if (ret)
4223 goto done;
4224 }
4225
4226 set_bit(FFS_FL_CALL_CLOSED_CALLBACK, addr: &ffs->flags);
4227done:
4228 ffs_dev_unlock();
4229 return ret;
4230}
4231
4232static void ffs_closed(struct ffs_data *ffs)
4233{
4234 struct ffs_dev *ffs_obj;
4235 struct f_fs_opts *opts;
4236 struct config_item *ci;
4237
4238 ffs_dev_lock();
4239
4240 ffs_obj = ffs->private_data;
4241 if (!ffs_obj)
4242 goto done;
4243
4244 ffs_obj->desc_ready = false;
4245
4246 if (test_and_clear_bit(FFS_FL_CALL_CLOSED_CALLBACK, addr: &ffs->flags) &&
4247 ffs_obj->ffs_closed_callback)
4248 ffs_obj->ffs_closed_callback(ffs);
4249
4250 if (ffs_obj->opts)
4251 opts = ffs_obj->opts;
4252 else
4253 goto done;
4254
4255 if (opts->no_configfs || !opts->func_inst.group.cg_item.ci_parent
4256 || !kref_read(kref: &opts->func_inst.group.cg_item.ci_kref))
4257 goto done;
4258
4259 ci = opts->func_inst.group.cg_item.ci_parent->ci_parent;
4260 ffs_dev_unlock();
4261
4262 if (test_bit(FFS_FL_BOUND, &ffs->flags))
4263 unregister_gadget_item(item: ci);
4264 return;
4265done:
4266 ffs_dev_unlock();
4267}
4268
4269/* Misc helper functions ****************************************************/
4270
4271static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock)
4272{
4273 return nonblock
4274 ? mutex_trylock(lock: mutex) ? 0 : -EAGAIN
4275 : mutex_lock_interruptible(mutex);
4276}
4277
4278static char *ffs_prepare_buffer(const char __user *buf, size_t len)
4279{
4280 char *data;
4281
4282 if (!len)
4283 return NULL;
4284
4285 data = memdup_user(buf, len);
4286 if (IS_ERR(ptr: data))
4287 return data;
4288
4289 pr_vdebug("Buffer from user space:\n");
4290 ffs_dump_mem("", data, len);
4291
4292 return data;
4293}
4294
4295DECLARE_USB_FUNCTION_INIT(ffs, ffs_alloc_inst, ffs_alloc);
4296MODULE_LICENSE("GPL");
4297MODULE_AUTHOR("Michal Nazarewicz");
4298

source code of linux/drivers/usb/gadget/function/f_fs.c