1/* "Bag-of-pages" garbage collector for the GNU compiler.
2 Copyright (C) 1999-2024 Free Software Foundation, Inc.
3
4This file is part of GCC.
5
6GCC is free software; you can redistribute it and/or modify it under
7the terms of the GNU General Public License as published by the Free
8Software Foundation; either version 3, or (at your option) any later
9version.
10
11GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12WARRANTY; without even the implied warranty of MERCHANTABILITY or
13FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14for more details.
15
16You should have received a copy of the GNU General Public License
17along with GCC; see the file COPYING3. If not see
18<http://www.gnu.org/licenses/>. */
19
20#include "config.h"
21#include "system.h"
22#include "coretypes.h"
23#include "backend.h"
24#include "alias.h"
25#include "tree.h"
26#include "rtl.h"
27#include "memmodel.h"
28#include "tm_p.h"
29#include "diagnostic-core.h"
30#include "flags.h"
31#include "ggc-internal.h"
32#include "timevar.h"
33#include "cgraph.h"
34#include "cfgloop.h"
35#include "plugin.h"
36
37/* Prefer MAP_ANON(YMOUS) to /dev/zero, since we don't need to keep a
38 file open. Prefer either to valloc. */
39#ifdef HAVE_MMAP_ANON
40# undef HAVE_MMAP_DEV_ZERO
41# define USING_MMAP
42#endif
43
44#ifdef HAVE_MMAP_DEV_ZERO
45# define USING_MMAP
46#endif
47
48#ifndef USING_MMAP
49#define USING_MALLOC_PAGE_GROUPS
50#endif
51
52#if defined(HAVE_MADVISE) && HAVE_DECL_MADVISE && defined(MADV_DONTNEED) \
53 && defined(USING_MMAP)
54# define USING_MADVISE
55#endif
56
57/* Strategy:
58
59 This garbage-collecting allocator allocates objects on one of a set
60 of pages. Each page can allocate objects of a single size only;
61 available sizes are powers of two starting at four bytes. The size
62 of an allocation request is rounded up to the next power of two
63 (`order'), and satisfied from the appropriate page.
64
65 Each page is recorded in a page-entry, which also maintains an
66 in-use bitmap of object positions on the page. This allows the
67 allocation state of a particular object to be flipped without
68 touching the page itself.
69
70 Each page-entry also has a context depth, which is used to track
71 pushing and popping of allocation contexts. Only objects allocated
72 in the current (highest-numbered) context may be collected.
73
74 Page entries are arranged in an array of singly-linked lists. The
75 array is indexed by the allocation size, in bits, of the pages on
76 it; i.e. all pages on a list allocate objects of the same size.
77 Pages are ordered on the list such that all non-full pages precede
78 all full pages, with non-full pages arranged in order of decreasing
79 context depth.
80
81 Empty pages (of all orders) are kept on a single page cache list,
82 and are considered first when new pages are required; they are
83 deallocated at the start of the next collection if they haven't
84 been recycled by then. */
85
86/* Define GGC_DEBUG_LEVEL to print debugging information.
87 0: No debugging output.
88 1: GC statistics only.
89 2: Page-entry allocations/deallocations as well.
90 3: Object allocations as well.
91 4: Object marks as well. */
92#define GGC_DEBUG_LEVEL (0)
93
94/* A two-level tree is used to look up the page-entry for a given
95 pointer. Two chunks of the pointer's bits are extracted to index
96 the first and second levels of the tree, as follows:
97
98 HOST_PAGE_SIZE_BITS
99 32 | |
100 msb +----------------+----+------+------+ lsb
101 | | |
102 PAGE_L1_BITS |
103 | |
104 PAGE_L2_BITS
105
106 The bottommost HOST_PAGE_SIZE_BITS are ignored, since page-entry
107 pages are aligned on system page boundaries. The next most
108 significant PAGE_L2_BITS and PAGE_L1_BITS are the second and first
109 index values in the lookup table, respectively.
110
111 For 32-bit architectures and the settings below, there are no
112 leftover bits. For architectures with wider pointers, the lookup
113 tree points to a list of pages, which must be scanned to find the
114 correct one. */
115
116#define PAGE_L1_BITS (8)
117#define PAGE_L2_BITS (32 - PAGE_L1_BITS - G.lg_pagesize)
118#define PAGE_L1_SIZE ((uintptr_t) 1 << PAGE_L1_BITS)
119#define PAGE_L2_SIZE ((uintptr_t) 1 << PAGE_L2_BITS)
120
121#define LOOKUP_L1(p) \
122 (((uintptr_t) (p) >> (32 - PAGE_L1_BITS)) & ((1 << PAGE_L1_BITS) - 1))
123
124#define LOOKUP_L2(p) \
125 (((uintptr_t) (p) >> G.lg_pagesize) & ((1 << PAGE_L2_BITS) - 1))
126
127/* The number of objects per allocation page, for objects on a page of
128 the indicated ORDER. */
129#define OBJECTS_PER_PAGE(ORDER) objects_per_page_table[ORDER]
130
131/* The number of objects in P. */
132#define OBJECTS_IN_PAGE(P) ((P)->bytes / OBJECT_SIZE ((P)->order))
133
134/* The size of an object on a page of the indicated ORDER. */
135#define OBJECT_SIZE(ORDER) object_size_table[ORDER]
136
137/* For speed, we avoid doing a general integer divide to locate the
138 offset in the allocation bitmap, by precalculating numbers M, S
139 such that (O * M) >> S == O / Z (modulo 2^32), for any offset O
140 within the page which is evenly divisible by the object size Z. */
141#define DIV_MULT(ORDER) inverse_table[ORDER].mult
142#define DIV_SHIFT(ORDER) inverse_table[ORDER].shift
143#define OFFSET_TO_BIT(OFFSET, ORDER) \
144 (((OFFSET) * DIV_MULT (ORDER)) >> DIV_SHIFT (ORDER))
145
146/* We use this structure to determine the alignment required for
147 allocations. For power-of-two sized allocations, that's not a
148 problem, but it does matter for odd-sized allocations.
149 We do not care about alignment for floating-point types. */
150
151struct max_alignment {
152 char c;
153 union {
154 int64_t i;
155 void *p;
156 } u;
157};
158
159/* The biggest alignment required. */
160
161#define MAX_ALIGNMENT (offsetof (struct max_alignment, u))
162
163
164/* The number of extra orders, not corresponding to power-of-two sized
165 objects. */
166
167#define NUM_EXTRA_ORDERS ARRAY_SIZE (extra_order_size_table)
168
169#define RTL_SIZE(NSLOTS) \
170 (RTX_HDR_SIZE + (NSLOTS) * sizeof (rtunion))
171
172#define TREE_EXP_SIZE(OPS) \
173 (sizeof (struct tree_exp) + ((OPS) - 1) * sizeof (tree))
174
175/* The Ith entry is the maximum size of an object to be stored in the
176 Ith extra order. Adding a new entry to this array is the *only*
177 thing you need to do to add a new special allocation size. */
178
179static const size_t extra_order_size_table[] = {
180 /* Extra orders for small non-power-of-two multiples of MAX_ALIGNMENT.
181 There are a lot of structures with these sizes and explicitly
182 listing them risks orders being dropped because they changed size. */
183 MAX_ALIGNMENT * 3,
184 MAX_ALIGNMENT * 5,
185 MAX_ALIGNMENT * 6,
186 MAX_ALIGNMENT * 7,
187 MAX_ALIGNMENT * 9,
188 MAX_ALIGNMENT * 10,
189 MAX_ALIGNMENT * 11,
190 MAX_ALIGNMENT * 12,
191 MAX_ALIGNMENT * 13,
192 MAX_ALIGNMENT * 14,
193 MAX_ALIGNMENT * 15,
194 sizeof (struct tree_decl_non_common),
195 sizeof (struct tree_field_decl),
196 sizeof (struct tree_parm_decl),
197 sizeof (struct tree_var_decl),
198 sizeof (struct tree_type_non_common),
199 sizeof (struct function),
200 sizeof (struct basic_block_def),
201 sizeof (struct cgraph_node),
202 sizeof (class loop),
203};
204
205/* The total number of orders. */
206
207#define NUM_ORDERS (HOST_BITS_PER_PTR + NUM_EXTRA_ORDERS)
208
209/* Compute the smallest nonnegative number which when added to X gives
210 a multiple of F. */
211
212#define ROUND_UP_VALUE(x, f) ((f) - 1 - ((f) - 1 + (x)) % (f))
213
214/* Round X to next multiple of the page size */
215
216#define PAGE_ALIGN(x) ROUND_UP ((x), G.pagesize)
217
218/* The Ith entry is the number of objects on a page or order I. */
219
220static unsigned objects_per_page_table[NUM_ORDERS];
221
222/* The Ith entry is the size of an object on a page of order I. */
223
224static size_t object_size_table[NUM_ORDERS];
225
226/* The Ith entry is a pair of numbers (mult, shift) such that
227 ((k * mult) >> shift) mod 2^32 == (k / OBJECT_SIZE(I)) mod 2^32,
228 for all k evenly divisible by OBJECT_SIZE(I). */
229
230static struct
231{
232 size_t mult;
233 unsigned int shift;
234}
235inverse_table[NUM_ORDERS];
236
237/* A page_entry records the status of an allocation page. This
238 structure is dynamically sized to fit the bitmap in_use_p. */
239struct page_entry
240{
241 /* The next page-entry with objects of the same size, or NULL if
242 this is the last page-entry. */
243 struct page_entry *next;
244
245 /* The previous page-entry with objects of the same size, or NULL if
246 this is the first page-entry. The PREV pointer exists solely to
247 keep the cost of ggc_free manageable. */
248 struct page_entry *prev;
249
250 /* The number of bytes allocated. (This will always be a multiple
251 of the host system page size.) */
252 size_t bytes;
253
254 /* The address at which the memory is allocated. */
255 char *page;
256
257#ifdef USING_MALLOC_PAGE_GROUPS
258 /* Back pointer to the page group this page came from. */
259 struct page_group *group;
260#endif
261
262 /* This is the index in the by_depth varray where this page table
263 can be found. */
264 unsigned long index_by_depth;
265
266 /* Context depth of this page. */
267 unsigned short context_depth;
268
269 /* The number of free objects remaining on this page. */
270 unsigned short num_free_objects;
271
272 /* A likely candidate for the bit position of a free object for the
273 next allocation from this page. */
274 unsigned short next_bit_hint;
275
276 /* The lg of size of objects allocated from this page. */
277 unsigned char order;
278
279 /* Discarded page? */
280 bool discarded;
281
282 /* A bit vector indicating whether or not objects are in use. The
283 Nth bit is one if the Nth object on this page is allocated. This
284 array is dynamically sized. */
285 unsigned long in_use_p[1];
286};
287
288#ifdef USING_MALLOC_PAGE_GROUPS
289/* A page_group describes a large allocation from malloc, from which
290 we parcel out aligned pages. */
291struct page_group
292{
293 /* A linked list of all extant page groups. */
294 struct page_group *next;
295
296 /* The address we received from malloc. */
297 char *allocation;
298
299 /* The size of the block. */
300 size_t alloc_size;
301
302 /* A bitmask of pages in use. */
303 unsigned int in_use;
304};
305#endif
306
307#if HOST_BITS_PER_PTR <= 32
308
309/* On 32-bit hosts, we use a two level page table, as pictured above. */
310typedef page_entry **page_table[PAGE_L1_SIZE];
311
312#else
313
314/* On 64-bit hosts, we use the same two level page tables plus a linked
315 list that disambiguates the top 32-bits. There will almost always be
316 exactly one entry in the list. */
317typedef struct page_table_chain
318{
319 struct page_table_chain *next;
320 size_t high_bits;
321 page_entry **table[PAGE_L1_SIZE];
322} *page_table;
323
324#endif
325
326class finalizer
327{
328public:
329 finalizer (void *addr, void (*f)(void *)) : m_addr (addr), m_function (f) {}
330
331 void *addr () const { return m_addr; }
332
333 void call () const { m_function (m_addr); }
334
335private:
336 void *m_addr;
337 void (*m_function)(void *);
338};
339
340class vec_finalizer
341{
342public:
343 vec_finalizer (uintptr_t addr, void (*f)(void *), size_t s, size_t n) :
344 m_addr (addr), m_function (f), m_object_size (s), m_n_objects (n) {}
345
346 void call () const
347 {
348 for (size_t i = 0; i < m_n_objects; i++)
349 m_function (reinterpret_cast<void *> (m_addr + (i * m_object_size)));
350 }
351
352 void *addr () const { return reinterpret_cast<void *> (m_addr); }
353
354private:
355 uintptr_t m_addr;
356 void (*m_function)(void *);
357 size_t m_object_size;
358 size_t m_n_objects;
359};
360
361#ifdef ENABLE_GC_ALWAYS_COLLECT
362/* List of free objects to be verified as actually free on the
363 next collection. */
364struct free_object
365{
366 void *object;
367 struct free_object *next;
368};
369#endif
370
371/* The rest of the global variables. */
372static struct ggc_globals
373{
374 /* The Nth element in this array is a page with objects of size 2^N.
375 If there are any pages with free objects, they will be at the
376 head of the list. NULL if there are no page-entries for this
377 object size. */
378 page_entry *pages[NUM_ORDERS];
379
380 /* The Nth element in this array is the last page with objects of
381 size 2^N. NULL if there are no page-entries for this object
382 size. */
383 page_entry *page_tails[NUM_ORDERS];
384
385 /* Lookup table for associating allocation pages with object addresses. */
386 page_table lookup;
387
388 /* The system's page size. */
389 size_t pagesize;
390 size_t lg_pagesize;
391
392 /* Bytes currently allocated. */
393 size_t allocated;
394
395 /* Bytes currently allocated at the end of the last collection. */
396 size_t allocated_last_gc;
397
398 /* Total amount of memory mapped. */
399 size_t bytes_mapped;
400
401 /* Bit N set if any allocations have been done at context depth N. */
402 unsigned long context_depth_allocations;
403
404 /* Bit N set if any collections have been done at context depth N. */
405 unsigned long context_depth_collections;
406
407 /* The current depth in the context stack. */
408 unsigned short context_depth;
409
410 /* A file descriptor open to /dev/zero for reading. */
411#if defined (HAVE_MMAP_DEV_ZERO)
412 int dev_zero_fd;
413#endif
414
415 /* A cache of free system pages. */
416 page_entry *free_pages;
417
418#ifdef USING_MALLOC_PAGE_GROUPS
419 page_group *page_groups;
420#endif
421
422 /* The file descriptor for debugging output. */
423 FILE *debug_file;
424
425 /* Current number of elements in use in depth below. */
426 unsigned int depth_in_use;
427
428 /* Maximum number of elements that can be used before resizing. */
429 unsigned int depth_max;
430
431 /* Each element of this array is an index in by_depth where the given
432 depth starts. This structure is indexed by that given depth we
433 are interested in. */
434 unsigned int *depth;
435
436 /* Current number of elements in use in by_depth below. */
437 unsigned int by_depth_in_use;
438
439 /* Maximum number of elements that can be used before resizing. */
440 unsigned int by_depth_max;
441
442 /* Each element of this array is a pointer to a page_entry, all
443 page_entries can be found in here by increasing depth.
444 index_by_depth in the page_entry is the index into this data
445 structure where that page_entry can be found. This is used to
446 speed up finding all page_entries at a particular depth. */
447 page_entry **by_depth;
448
449 /* Each element is a pointer to the saved in_use_p bits, if any,
450 zero otherwise. We allocate them all together, to enable a
451 better runtime data access pattern. */
452 unsigned long **save_in_use;
453
454 /* Finalizers for single objects. The first index is collection_depth. */
455 vec<vec<finalizer> > finalizers;
456
457 /* Finalizers for vectors of objects. */
458 vec<vec<vec_finalizer> > vec_finalizers;
459
460#ifdef ENABLE_GC_ALWAYS_COLLECT
461 /* List of free objects to be verified as actually free on the
462 next collection. */
463 struct free_object *free_object_list;
464#endif
465
466 struct
467 {
468 /* Total GC-allocated memory. */
469 unsigned long long total_allocated;
470 /* Total overhead for GC-allocated memory. */
471 unsigned long long total_overhead;
472
473 /* Total allocations and overhead for sizes less than 32, 64 and 128.
474 These sizes are interesting because they are typical cache line
475 sizes. */
476
477 unsigned long long total_allocated_under32;
478 unsigned long long total_overhead_under32;
479
480 unsigned long long total_allocated_under64;
481 unsigned long long total_overhead_under64;
482
483 unsigned long long total_allocated_under128;
484 unsigned long long total_overhead_under128;
485
486 /* The allocations for each of the allocation orders. */
487 unsigned long long total_allocated_per_order[NUM_ORDERS];
488
489 /* The overhead for each of the allocation orders. */
490 unsigned long long total_overhead_per_order[NUM_ORDERS];
491 } stats;
492} G;
493
494/* True if a gc is currently taking place. */
495
496static bool in_gc = false;
497
498/* The size in bytes required to maintain a bitmap for the objects
499 on a page-entry. */
500#define BITMAP_SIZE(Num_objects) \
501 (CEIL ((Num_objects), HOST_BITS_PER_LONG) * sizeof (long))
502
503/* Allocate pages in chunks of this size, to throttle calls to memory
504 allocation routines. The first page is used, the rest go onto the
505 free list. This cannot be larger than HOST_BITS_PER_INT for the
506 in_use bitmask for page_group. Hosts that need a different value
507 can override this by defining GGC_QUIRE_SIZE explicitly. */
508#ifndef GGC_QUIRE_SIZE
509# ifdef USING_MMAP
510# define GGC_QUIRE_SIZE 512 /* 2MB for 4K pages */
511# else
512# define GGC_QUIRE_SIZE 16
513# endif
514#endif
515
516/* Initial guess as to how many page table entries we might need. */
517#define INITIAL_PTE_COUNT 128
518
519static page_entry *lookup_page_table_entry (const void *);
520static void set_page_table_entry (void *, page_entry *);
521#ifdef USING_MMAP
522static char *alloc_anon (char *, size_t, bool check);
523#endif
524#ifdef USING_MALLOC_PAGE_GROUPS
525static size_t page_group_index (char *, char *);
526static void set_page_group_in_use (page_group *, char *);
527static void clear_page_group_in_use (page_group *, char *);
528#endif
529static struct page_entry * alloc_page (unsigned);
530static void free_page (struct page_entry *);
531static void clear_marks (void);
532static void sweep_pages (void);
533static void ggc_recalculate_in_use_p (page_entry *);
534static void compute_inverse (unsigned);
535static inline void adjust_depth (void);
536static void move_ptes_to_front (int, int);
537
538void debug_print_page_list (int);
539static void push_depth (unsigned int);
540static void push_by_depth (page_entry *, unsigned long *);
541
542/* Push an entry onto G.depth. */
543
544inline static void
545push_depth (unsigned int i)
546{
547 if (G.depth_in_use >= G.depth_max)
548 {
549 G.depth_max *= 2;
550 G.depth = XRESIZEVEC (unsigned int, G.depth, G.depth_max);
551 }
552 G.depth[G.depth_in_use++] = i;
553}
554
555/* Push an entry onto G.by_depth and G.save_in_use. */
556
557inline static void
558push_by_depth (page_entry *p, unsigned long *s)
559{
560 if (G.by_depth_in_use >= G.by_depth_max)
561 {
562 G.by_depth_max *= 2;
563 G.by_depth = XRESIZEVEC (page_entry *, G.by_depth, G.by_depth_max);
564 G.save_in_use = XRESIZEVEC (unsigned long *, G.save_in_use,
565 G.by_depth_max);
566 }
567 G.by_depth[G.by_depth_in_use] = p;
568 G.save_in_use[G.by_depth_in_use++] = s;
569}
570
571#if (GCC_VERSION < 3001)
572#define prefetch(X) ((void) X)
573#else
574#define prefetch(X) __builtin_prefetch (X)
575#endif
576
577#define save_in_use_p_i(__i) \
578 (G.save_in_use[__i])
579#define save_in_use_p(__p) \
580 (save_in_use_p_i (__p->index_by_depth))
581
582/* Traverse the page table and find the entry for a page.
583 If the object wasn't allocated in GC return NULL. */
584
585static inline page_entry *
586safe_lookup_page_table_entry (const void *p)
587{
588 page_entry ***base;
589 size_t L1, L2;
590
591#if HOST_BITS_PER_PTR <= 32
592 base = &G.lookup[0];
593#else
594 page_table table = G.lookup;
595 uintptr_t high_bits = (uintptr_t) p & ~ (uintptr_t) 0xffffffff;
596 while (1)
597 {
598 if (table == NULL)
599 return NULL;
600 if (table->high_bits == high_bits)
601 break;
602 table = table->next;
603 }
604 base = &table->table[0];
605#endif
606
607 /* Extract the level 1 and 2 indices. */
608 L1 = LOOKUP_L1 (p);
609 L2 = LOOKUP_L2 (p);
610 if (! base[L1])
611 return NULL;
612
613 return base[L1][L2];
614}
615
616/* Traverse the page table and find the entry for a page.
617 Die (probably) if the object wasn't allocated via GC. */
618
619static inline page_entry *
620lookup_page_table_entry (const void *p)
621{
622 page_entry ***base;
623 size_t L1, L2;
624
625#if HOST_BITS_PER_PTR <= 32
626 base = &G.lookup[0];
627#else
628 page_table table = G.lookup;
629 uintptr_t high_bits = (uintptr_t) p & ~ (uintptr_t) 0xffffffff;
630 while (table->high_bits != high_bits)
631 table = table->next;
632 base = &table->table[0];
633#endif
634
635 /* Extract the level 1 and 2 indices. */
636 L1 = LOOKUP_L1 (p);
637 L2 = LOOKUP_L2 (p);
638
639 return base[L1][L2];
640}
641
642/* Set the page table entry for a page. */
643
644static void
645set_page_table_entry (void *p, page_entry *entry)
646{
647 page_entry ***base;
648 size_t L1, L2;
649
650#if HOST_BITS_PER_PTR <= 32
651 base = &G.lookup[0];
652#else
653 page_table table;
654 uintptr_t high_bits = (uintptr_t) p & ~ (uintptr_t) 0xffffffff;
655 for (table = G.lookup; table; table = table->next)
656 if (table->high_bits == high_bits)
657 goto found;
658
659 /* Not found -- allocate a new table. */
660 table = XCNEW (struct page_table_chain);
661 table->next = G.lookup;
662 table->high_bits = high_bits;
663 G.lookup = table;
664found:
665 base = &table->table[0];
666#endif
667
668 /* Extract the level 1 and 2 indices. */
669 L1 = LOOKUP_L1 (p);
670 L2 = LOOKUP_L2 (p);
671
672 if (base[L1] == NULL)
673 base[L1] = XCNEWVEC (page_entry *, PAGE_L2_SIZE);
674
675 base[L1][L2] = entry;
676}
677
678/* Prints the page-entry for object size ORDER, for debugging. */
679
680DEBUG_FUNCTION void
681debug_print_page_list (int order)
682{
683 page_entry *p;
684 printf (format: "Head=%p, Tail=%p:\n", (void *) G.pages[order],
685 (void *) G.page_tails[order]);
686 p = G.pages[order];
687 while (p != NULL)
688 {
689 printf (format: "%p(%1d|%3d) -> ", (void *) p, p->context_depth,
690 p->num_free_objects);
691 p = p->next;
692 }
693 printf (format: "NULL\n");
694 fflush (stdout);
695}
696
697#ifdef USING_MMAP
698/* Allocate SIZE bytes of anonymous memory, preferably near PREF,
699 (if non-null). The ifdef structure here is intended to cause a
700 compile error unless exactly one of the HAVE_* is defined. */
701
702static inline char *
703alloc_anon (char *pref ATTRIBUTE_UNUSED, size_t size, bool check)
704{
705#ifdef HAVE_MMAP_ANON
706 char *page = (char *) mmap (addr: pref, len: size, PROT_READ | PROT_WRITE,
707 MAP_PRIVATE | MAP_ANONYMOUS, fd: -1, offset: 0);
708#endif
709#ifdef HAVE_MMAP_DEV_ZERO
710 char *page = (char *) mmap (pref, size, PROT_READ | PROT_WRITE,
711 MAP_PRIVATE, G.dev_zero_fd, 0);
712#endif
713
714 if (page == (char *) MAP_FAILED)
715 {
716 if (!check)
717 return NULL;
718 perror (s: "virtual memory exhausted");
719 exit (FATAL_EXIT_CODE);
720 }
721
722 /* Remember that we allocated this memory. */
723 G.bytes_mapped += size;
724
725 /* Pretend we don't have access to the allocated pages. We'll enable
726 access to smaller pieces of the area in ggc_internal_alloc. Discard the
727 handle to avoid handle leak. */
728 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS (page, size));
729
730 return page;
731}
732#endif
733#ifdef USING_MALLOC_PAGE_GROUPS
734/* Compute the index for this page into the page group. */
735
736static inline size_t
737page_group_index (char *allocation, char *page)
738{
739 return (size_t) (page - allocation) >> G.lg_pagesize;
740}
741
742/* Set and clear the in_use bit for this page in the page group. */
743
744static inline void
745set_page_group_in_use (page_group *group, char *page)
746{
747 group->in_use |= 1 << page_group_index (group->allocation, page);
748}
749
750static inline void
751clear_page_group_in_use (page_group *group, char *page)
752{
753 group->in_use &= ~(1 << page_group_index (group->allocation, page));
754}
755#endif
756
757/* Allocate a new page for allocating objects of size 2^ORDER,
758 and return an entry for it. The entry is not added to the
759 appropriate page_table list. */
760
761static inline struct page_entry *
762alloc_page (unsigned order)
763{
764 struct page_entry *entry, *p, **pp;
765 char *page;
766 size_t num_objects;
767 size_t bitmap_size;
768 size_t page_entry_size;
769 size_t entry_size;
770#ifdef USING_MALLOC_PAGE_GROUPS
771 page_group *group;
772#endif
773
774 num_objects = OBJECTS_PER_PAGE (order);
775 bitmap_size = BITMAP_SIZE (num_objects + 1);
776 page_entry_size = sizeof (page_entry) - sizeof (long) + bitmap_size;
777 entry_size = num_objects * OBJECT_SIZE (order);
778 if (entry_size < G.pagesize)
779 entry_size = G.pagesize;
780 entry_size = PAGE_ALIGN (entry_size);
781
782 entry = NULL;
783 page = NULL;
784
785 /* Check the list of free pages for one we can use. */
786 for (pp = &G.free_pages, p = *pp; p; pp = &p->next, p = *pp)
787 if (p->bytes == entry_size)
788 break;
789
790 if (p != NULL)
791 {
792 if (p->discarded)
793 G.bytes_mapped += p->bytes;
794 p->discarded = false;
795
796 /* Recycle the allocated memory from this page ... */
797 *pp = p->next;
798 page = p->page;
799
800#ifdef USING_MALLOC_PAGE_GROUPS
801 group = p->group;
802#endif
803
804 /* ... and, if possible, the page entry itself. */
805 if (p->order == order)
806 {
807 entry = p;
808 memset (s: entry, c: 0, n: page_entry_size);
809 }
810 else
811 free (ptr: p);
812 }
813#ifdef USING_MMAP
814 else if (entry_size == G.pagesize)
815 {
816 /* We want just one page. Allocate a bunch of them and put the
817 extras on the freelist. (Can only do this optimization with
818 mmap for backing store.) */
819 struct page_entry *e, *f = G.free_pages;
820 int i, entries = GGC_QUIRE_SIZE;
821
822 page = alloc_anon (NULL, size: G.pagesize * GGC_QUIRE_SIZE, check: false);
823 if (page == NULL)
824 {
825 page = alloc_anon (NULL, size: G.pagesize, check: true);
826 entries = 1;
827 }
828
829 /* This loop counts down so that the chain will be in ascending
830 memory order. */
831 for (i = entries - 1; i >= 1; i--)
832 {
833 e = XCNEWVAR (struct page_entry, page_entry_size);
834 e->order = order;
835 e->bytes = G.pagesize;
836 e->page = page + (i << G.lg_pagesize);
837 e->next = f;
838 f = e;
839 }
840
841 G.free_pages = f;
842 }
843 else
844 page = alloc_anon (NULL, size: entry_size, check: true);
845#endif
846#ifdef USING_MALLOC_PAGE_GROUPS
847 else
848 {
849 /* Allocate a large block of memory and serve out the aligned
850 pages therein. This results in much less memory wastage
851 than the traditional implementation of valloc. */
852
853 char *allocation, *a, *enda;
854 size_t alloc_size, head_slop, tail_slop;
855 int multiple_pages = (entry_size == G.pagesize);
856
857 if (multiple_pages)
858 alloc_size = GGC_QUIRE_SIZE * G.pagesize;
859 else
860 alloc_size = entry_size + G.pagesize - 1;
861 allocation = XNEWVEC (char, alloc_size);
862
863 page = (char *) (((uintptr_t) allocation + G.pagesize - 1) & -G.pagesize);
864 head_slop = page - allocation;
865 if (multiple_pages)
866 tail_slop = ((size_t) allocation + alloc_size) & (G.pagesize - 1);
867 else
868 tail_slop = alloc_size - entry_size - head_slop;
869 enda = allocation + alloc_size - tail_slop;
870
871 /* We allocated N pages, which are likely not aligned, leaving
872 us with N-1 usable pages. We plan to place the page_group
873 structure somewhere in the slop. */
874 if (head_slop >= sizeof (page_group))
875 group = (page_group *)page - 1;
876 else
877 {
878 /* We magically got an aligned allocation. Too bad, we have
879 to waste a page anyway. */
880 if (tail_slop == 0)
881 {
882 enda -= G.pagesize;
883 tail_slop += G.pagesize;
884 }
885 gcc_assert (tail_slop >= sizeof (page_group));
886 group = (page_group *)enda;
887 tail_slop -= sizeof (page_group);
888 }
889
890 /* Remember that we allocated this memory. */
891 group->next = G.page_groups;
892 group->allocation = allocation;
893 group->alloc_size = alloc_size;
894 group->in_use = 0;
895 G.page_groups = group;
896 G.bytes_mapped += alloc_size;
897
898 /* If we allocated multiple pages, put the rest on the free list. */
899 if (multiple_pages)
900 {
901 struct page_entry *e, *f = G.free_pages;
902 for (a = enda - G.pagesize; a != page; a -= G.pagesize)
903 {
904 e = XCNEWVAR (struct page_entry, page_entry_size);
905 e->order = order;
906 e->bytes = G.pagesize;
907 e->page = a;
908 e->group = group;
909 e->next = f;
910 f = e;
911 }
912 G.free_pages = f;
913 }
914 }
915#endif
916
917 if (entry == NULL)
918 entry = XCNEWVAR (struct page_entry, page_entry_size);
919
920 entry->bytes = entry_size;
921 entry->page = page;
922 entry->context_depth = G.context_depth;
923 entry->order = order;
924 entry->num_free_objects = num_objects;
925 entry->next_bit_hint = 1;
926
927 G.context_depth_allocations |= (unsigned long)1 << G.context_depth;
928
929#ifdef USING_MALLOC_PAGE_GROUPS
930 entry->group = group;
931 set_page_group_in_use (group, page);
932#endif
933
934 /* Set the one-past-the-end in-use bit. This acts as a sentry as we
935 increment the hint. */
936 entry->in_use_p[num_objects / HOST_BITS_PER_LONG]
937 = (unsigned long) 1 << (num_objects % HOST_BITS_PER_LONG);
938
939 set_page_table_entry (p: page, entry);
940
941 if (GGC_DEBUG_LEVEL >= 2)
942 fprintf (stream: G.debug_file,
943 format: "Allocating page at %p, object size="
944 HOST_SIZE_T_PRINT_UNSIGNED ", data %p-%p\n",
945 (void *) entry, (fmt_size_t) OBJECT_SIZE (order),
946 (void *) page, (void *) (page + entry_size - 1));
947
948 return entry;
949}
950
951/* Adjust the size of G.depth so that no index greater than the one
952 used by the top of the G.by_depth is used. */
953
954static inline void
955adjust_depth (void)
956{
957 page_entry *top;
958
959 if (G.by_depth_in_use)
960 {
961 top = G.by_depth[G.by_depth_in_use-1];
962
963 /* Peel back indices in depth that index into by_depth, so that
964 as new elements are added to by_depth, we note the indices
965 of those elements, if they are for new context depths. */
966 while (G.depth_in_use > (size_t)top->context_depth+1)
967 --G.depth_in_use;
968 }
969}
970
971/* For a page that is no longer needed, put it on the free page list. */
972
973static void
974free_page (page_entry *entry)
975{
976 if (GGC_DEBUG_LEVEL >= 2)
977 fprintf (stream: G.debug_file,
978 format: "Deallocating page at %p, data %p-%p\n", (void *) entry,
979 (void *) entry->page, (void *) (entry->page + entry->bytes - 1));
980
981 /* Mark the page as inaccessible. Discard the handle to avoid handle
982 leak. */
983 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS (entry->page, entry->bytes));
984
985 set_page_table_entry (p: entry->page, NULL);
986
987#ifdef USING_MALLOC_PAGE_GROUPS
988 clear_page_group_in_use (entry->group, entry->page);
989#endif
990
991 if (G.by_depth_in_use > 1)
992 {
993 page_entry *top = G.by_depth[G.by_depth_in_use-1];
994 int i = entry->index_by_depth;
995
996 /* We cannot free a page from a context deeper than the current
997 one. */
998 gcc_assert (entry->context_depth == top->context_depth);
999
1000 /* Put top element into freed slot. */
1001 G.by_depth[i] = top;
1002 G.save_in_use[i] = G.save_in_use[G.by_depth_in_use-1];
1003 top->index_by_depth = i;
1004 }
1005 --G.by_depth_in_use;
1006
1007 adjust_depth ();
1008
1009 entry->next = G.free_pages;
1010 G.free_pages = entry;
1011}
1012
1013/* Release the free page cache to the system. */
1014
1015static void
1016release_pages (void)
1017{
1018 size_t n1 = 0;
1019 size_t n2 = 0;
1020#ifdef USING_MADVISE
1021 page_entry *p, *start_p;
1022 char *start;
1023 size_t len;
1024 size_t mapped_len;
1025 page_entry *next, *prev, *newprev;
1026 size_t free_unit = (GGC_QUIRE_SIZE/2) * G.pagesize;
1027
1028 /* First free larger continuous areas to the OS.
1029 This allows other allocators to grab these areas if needed.
1030 This is only done on larger chunks to avoid fragmentation.
1031 This does not always work because the free_pages list is only
1032 approximately sorted. */
1033
1034 p = G.free_pages;
1035 prev = NULL;
1036 while (p)
1037 {
1038 start = p->page;
1039 start_p = p;
1040 len = 0;
1041 mapped_len = 0;
1042 newprev = prev;
1043 while (p && p->page == start + len)
1044 {
1045 len += p->bytes;
1046 if (!p->discarded)
1047 mapped_len += p->bytes;
1048 newprev = p;
1049 p = p->next;
1050 }
1051 if (len >= free_unit)
1052 {
1053 while (start_p != p)
1054 {
1055 next = start_p->next;
1056 free (ptr: start_p);
1057 start_p = next;
1058 }
1059 munmap (addr: start, len: len);
1060 if (prev)
1061 prev->next = p;
1062 else
1063 G.free_pages = p;
1064 G.bytes_mapped -= mapped_len;
1065 n1 += len;
1066 continue;
1067 }
1068 prev = newprev;
1069 }
1070
1071 /* Now give back the fragmented pages to the OS, but keep the address
1072 space to reuse it next time. */
1073
1074 for (p = G.free_pages; p; )
1075 {
1076 if (p->discarded)
1077 {
1078 p = p->next;
1079 continue;
1080 }
1081 start = p->page;
1082 len = p->bytes;
1083 start_p = p;
1084 p = p->next;
1085 while (p && p->page == start + len)
1086 {
1087 len += p->bytes;
1088 p = p->next;
1089 }
1090 /* Give the page back to the kernel, but don't free the mapping.
1091 This avoids fragmentation in the virtual memory map of the
1092 process. Next time we can reuse it by just touching it. */
1093 madvise (addr: start, len: len, MADV_DONTNEED);
1094 /* Don't count those pages as mapped to not touch the garbage collector
1095 unnecessarily. */
1096 G.bytes_mapped -= len;
1097 n2 += len;
1098 while (start_p != p)
1099 {
1100 start_p->discarded = true;
1101 start_p = start_p->next;
1102 }
1103 }
1104#endif
1105#if defined(USING_MMAP) && !defined(USING_MADVISE)
1106 page_entry *p, *next;
1107 char *start;
1108 size_t len;
1109
1110 /* Gather up adjacent pages so they are unmapped together. */
1111 p = G.free_pages;
1112
1113 while (p)
1114 {
1115 start = p->page;
1116 next = p->next;
1117 len = p->bytes;
1118 free (p);
1119 p = next;
1120
1121 while (p && p->page == start + len)
1122 {
1123 next = p->next;
1124 len += p->bytes;
1125 free (p);
1126 p = next;
1127 }
1128
1129 munmap (start, len);
1130 n1 += len;
1131 G.bytes_mapped -= len;
1132 }
1133
1134 G.free_pages = NULL;
1135#endif
1136#ifdef USING_MALLOC_PAGE_GROUPS
1137 page_entry **pp, *p;
1138 page_group **gp, *g;
1139
1140 /* Remove all pages from free page groups from the list. */
1141 pp = &G.free_pages;
1142 while ((p = *pp) != NULL)
1143 if (p->group->in_use == 0)
1144 {
1145 *pp = p->next;
1146 free (p);
1147 }
1148 else
1149 pp = &p->next;
1150
1151 /* Remove all free page groups, and release the storage. */
1152 gp = &G.page_groups;
1153 while ((g = *gp) != NULL)
1154 if (g->in_use == 0)
1155 {
1156 *gp = g->next;
1157 G.bytes_mapped -= g->alloc_size;
1158 n1 += g->alloc_size;
1159 free (g->allocation);
1160 }
1161 else
1162 gp = &g->next;
1163#endif
1164 if (!quiet_flag && (n1 || n2))
1165 {
1166 fprintf (stderr, format: " {GC");
1167 if (n1)
1168 fprintf (stderr, format: " released " PRsa (0), SIZE_AMOUNT (n1));
1169 if (n2)
1170 fprintf (stderr, format: " madv_dontneed " PRsa (0), SIZE_AMOUNT (n2));
1171 fprintf (stderr, format: "}");
1172 }
1173}
1174
1175/* This table provides a fast way to determine ceil(log_2(size)) for
1176 allocation requests. The minimum allocation size is eight bytes. */
1177#define NUM_SIZE_LOOKUP 512
1178static unsigned char size_lookup[NUM_SIZE_LOOKUP] =
1179{
1180 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4,
1181 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
1182 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
1183 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
1184 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
1185 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
1186 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
1187 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
1188 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1189 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1190 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1191 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1192 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1193 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1194 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1195 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1196 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1197 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1198 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1199 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1200 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1201 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1202 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1203 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1204 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1205 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1206 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1207 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1208 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1209 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1210 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1211 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9
1212};
1213
1214/* For a given size of memory requested for allocation, return the
1215 actual size that is going to be allocated, as well as the size
1216 order. */
1217
1218static void
1219ggc_round_alloc_size_1 (size_t requested_size,
1220 size_t *size_order,
1221 size_t *alloced_size)
1222{
1223 size_t order, object_size;
1224
1225 if (requested_size < NUM_SIZE_LOOKUP)
1226 {
1227 order = size_lookup[requested_size];
1228 object_size = OBJECT_SIZE (order);
1229 }
1230 else
1231 {
1232 order = 10;
1233 while (requested_size > (object_size = OBJECT_SIZE (order)))
1234 order++;
1235 }
1236
1237 if (size_order)
1238 *size_order = order;
1239 if (alloced_size)
1240 *alloced_size = object_size;
1241}
1242
1243/* For a given size of memory requested for allocation, return the
1244 actual size that is going to be allocated. */
1245
1246size_t
1247ggc_round_alloc_size (size_t requested_size)
1248{
1249 size_t size = 0;
1250
1251 ggc_round_alloc_size_1 (requested_size, NULL, alloced_size: &size);
1252 return size;
1253}
1254
1255/* Push a finalizer onto the appropriate vec. */
1256
1257static void
1258add_finalizer (void *result, void (*f)(void *), size_t s, size_t n)
1259{
1260 if (f == NULL)
1261 /* No finalizer. */;
1262 else if (n == 1)
1263 {
1264 finalizer fin (result, f);
1265 G.finalizers[G.context_depth].safe_push (obj: fin);
1266 }
1267 else
1268 {
1269 vec_finalizer fin (reinterpret_cast<uintptr_t> (result), f, s, n);
1270 G.vec_finalizers[G.context_depth].safe_push (obj: fin);
1271 }
1272}
1273
1274/* Allocate a chunk of memory of SIZE bytes. Its contents are undefined. */
1275
1276void *
1277ggc_internal_alloc (size_t size, void (*f)(void *), size_t s, size_t n
1278 MEM_STAT_DECL)
1279{
1280 size_t order, word, bit, object_offset, object_size;
1281 struct page_entry *entry;
1282 void *result;
1283
1284 ggc_round_alloc_size_1 (requested_size: size, size_order: &order, alloced_size: &object_size);
1285
1286 /* If there are non-full pages for this size allocation, they are at
1287 the head of the list. */
1288 entry = G.pages[order];
1289
1290 /* If there is no page for this object size, or all pages in this
1291 context are full, allocate a new page. */
1292 if (entry == NULL || entry->num_free_objects == 0)
1293 {
1294 struct page_entry *new_entry;
1295 new_entry = alloc_page (order);
1296
1297 new_entry->index_by_depth = G.by_depth_in_use;
1298 push_by_depth (p: new_entry, s: 0);
1299
1300 /* We can skip context depths, if we do, make sure we go all the
1301 way to the new depth. */
1302 while (new_entry->context_depth >= G.depth_in_use)
1303 push_depth (i: G.by_depth_in_use-1);
1304
1305 /* If this is the only entry, it's also the tail. If it is not
1306 the only entry, then we must update the PREV pointer of the
1307 ENTRY (G.pages[order]) to point to our new page entry. */
1308 if (entry == NULL)
1309 G.page_tails[order] = new_entry;
1310 else
1311 entry->prev = new_entry;
1312
1313 /* Put new pages at the head of the page list. By definition the
1314 entry at the head of the list always has a NULL pointer. */
1315 new_entry->next = entry;
1316 new_entry->prev = NULL;
1317 entry = new_entry;
1318 G.pages[order] = new_entry;
1319
1320 /* For a new page, we know the word and bit positions (in the
1321 in_use bitmap) of the first available object -- they're zero. */
1322 new_entry->next_bit_hint = 1;
1323 word = 0;
1324 bit = 0;
1325 object_offset = 0;
1326 }
1327 else
1328 {
1329 /* First try to use the hint left from the previous allocation
1330 to locate a clear bit in the in-use bitmap. We've made sure
1331 that the one-past-the-end bit is always set, so if the hint
1332 has run over, this test will fail. */
1333 unsigned hint = entry->next_bit_hint;
1334 word = hint / HOST_BITS_PER_LONG;
1335 bit = hint % HOST_BITS_PER_LONG;
1336
1337 /* If the hint didn't work, scan the bitmap from the beginning. */
1338 if ((entry->in_use_p[word] >> bit) & 1)
1339 {
1340 word = bit = 0;
1341 while (~entry->in_use_p[word] == 0)
1342 ++word;
1343
1344#if GCC_VERSION >= 3004
1345 bit = __builtin_ctzl (~entry->in_use_p[word]);
1346#else
1347 while ((entry->in_use_p[word] >> bit) & 1)
1348 ++bit;
1349#endif
1350
1351 hint = word * HOST_BITS_PER_LONG + bit;
1352 }
1353
1354 /* Next time, try the next bit. */
1355 entry->next_bit_hint = hint + 1;
1356
1357 object_offset = hint * object_size;
1358 }
1359
1360 /* Set the in-use bit. */
1361 entry->in_use_p[word] |= ((unsigned long) 1 << bit);
1362
1363 /* Keep a running total of the number of free objects. If this page
1364 fills up, we may have to move it to the end of the list if the
1365 next page isn't full. If the next page is full, all subsequent
1366 pages are full, so there's no need to move it. */
1367 if (--entry->num_free_objects == 0
1368 && entry->next != NULL
1369 && entry->next->num_free_objects > 0)
1370 {
1371 /* We have a new head for the list. */
1372 G.pages[order] = entry->next;
1373
1374 /* We are moving ENTRY to the end of the page table list.
1375 The new page at the head of the list will have NULL in
1376 its PREV field and ENTRY will have NULL in its NEXT field. */
1377 entry->next->prev = NULL;
1378 entry->next = NULL;
1379
1380 /* Append ENTRY to the tail of the list. */
1381 entry->prev = G.page_tails[order];
1382 G.page_tails[order]->next = entry;
1383 G.page_tails[order] = entry;
1384 }
1385
1386 /* Calculate the object's address. */
1387 result = entry->page + object_offset;
1388 if (GATHER_STATISTICS)
1389 ggc_record_overhead (OBJECT_SIZE (order), OBJECT_SIZE (order) - size,
1390 result FINAL_PASS_MEM_STAT);
1391
1392#ifdef ENABLE_GC_CHECKING
1393 /* Keep poisoning-by-writing-0xaf the object, in an attempt to keep the
1394 exact same semantics in presence of memory bugs, regardless of
1395 ENABLE_VALGRIND_CHECKING. We override this request below. Drop the
1396 handle to avoid handle leak. */
1397 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_UNDEFINED (result, object_size));
1398
1399 /* `Poison' the entire allocated object, including any padding at
1400 the end. */
1401 memset (s: result, c: 0xaf, n: object_size);
1402
1403 /* Make the bytes after the end of the object unaccessible. Discard the
1404 handle to avoid handle leak. */
1405 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS ((char *) result + size,
1406 object_size - size));
1407#endif
1408
1409 /* Tell Valgrind that the memory is there, but its content isn't
1410 defined. The bytes at the end of the object are still marked
1411 unaccessible. */
1412 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_UNDEFINED (result, size));
1413
1414 /* Keep track of how many bytes are being allocated. This
1415 information is used in deciding when to collect. */
1416 G.allocated += object_size;
1417
1418 /* For timevar statistics. */
1419 timevar_ggc_mem_total += object_size;
1420
1421 if (f)
1422 add_finalizer (result, f, s, n);
1423
1424 if (GATHER_STATISTICS)
1425 {
1426 size_t overhead = object_size - size;
1427
1428 G.stats.total_overhead += overhead;
1429 G.stats.total_allocated += object_size;
1430 G.stats.total_overhead_per_order[order] += overhead;
1431 G.stats.total_allocated_per_order[order] += object_size;
1432
1433 if (size <= 32)
1434 {
1435 G.stats.total_overhead_under32 += overhead;
1436 G.stats.total_allocated_under32 += object_size;
1437 }
1438 if (size <= 64)
1439 {
1440 G.stats.total_overhead_under64 += overhead;
1441 G.stats.total_allocated_under64 += object_size;
1442 }
1443 if (size <= 128)
1444 {
1445 G.stats.total_overhead_under128 += overhead;
1446 G.stats.total_allocated_under128 += object_size;
1447 }
1448 }
1449
1450 if (GGC_DEBUG_LEVEL >= 3)
1451 fprintf (stream: G.debug_file,
1452 format: "Allocating object, requested size="
1453 HOST_SIZE_T_PRINT_UNSIGNED ", actual=" HOST_SIZE_T_PRINT_UNSIGNED
1454 " at %p on %p\n",
1455 (fmt_size_t) size, (fmt_size_t) object_size, result,
1456 (void *) entry);
1457
1458 return result;
1459}
1460
1461/* Mark function for strings. */
1462
1463void
1464gt_ggc_m_S (const void *p)
1465{
1466 page_entry *entry;
1467 unsigned bit, word;
1468 unsigned long mask;
1469 unsigned long offset;
1470
1471 if (!p)
1472 return;
1473
1474 /* Look up the page on which the object is alloced. If it was not
1475 GC allocated, gracefully bail out. */
1476 entry = safe_lookup_page_table_entry (p);
1477 if (!entry)
1478 return;
1479
1480 /* Calculate the index of the object on the page; this is its bit
1481 position in the in_use_p bitmap. Note that because a char* might
1482 point to the middle of an object, we need special code here to
1483 make sure P points to the start of an object. */
1484 offset = ((const char *) p - entry->page) % object_size_table[entry->order];
1485 if (offset)
1486 {
1487 /* Here we've seen a char* which does not point to the beginning
1488 of an allocated object. We assume it points to the middle of
1489 a STRING_CST. */
1490 gcc_assert (offset == offsetof (struct tree_string, str));
1491 p = ((const char *) p) - offset;
1492 gt_ggc_mx_lang_tree_node (CONST_CAST (void *, p));
1493 return;
1494 }
1495
1496 bit = OFFSET_TO_BIT (((const char *) p) - entry->page, entry->order);
1497 word = bit / HOST_BITS_PER_LONG;
1498 mask = (unsigned long) 1 << (bit % HOST_BITS_PER_LONG);
1499
1500 /* If the bit was previously set, skip it. */
1501 if (entry->in_use_p[word] & mask)
1502 return;
1503
1504 /* Otherwise set it, and decrement the free object count. */
1505 entry->in_use_p[word] |= mask;
1506 entry->num_free_objects -= 1;
1507
1508 if (GGC_DEBUG_LEVEL >= 4)
1509 fprintf (stream: G.debug_file, format: "Marking %p\n", p);
1510
1511 return;
1512}
1513
1514
1515/* User-callable entry points for marking string X. */
1516
1517void
1518gt_ggc_mx (const char *& x)
1519{
1520 gt_ggc_m_S (p: x);
1521}
1522
1523void
1524gt_ggc_mx (char *& x)
1525{
1526 gt_ggc_m_S (p: x);
1527}
1528
1529void
1530gt_ggc_mx (unsigned char *& x)
1531{
1532 gt_ggc_m_S (p: x);
1533}
1534
1535void
1536gt_ggc_mx (unsigned char& x ATTRIBUTE_UNUSED)
1537{
1538}
1539
1540/* If P is not marked, marks it and return false. Otherwise return true.
1541 P must have been allocated by the GC allocator; it mustn't point to
1542 static objects, stack variables, or memory allocated with malloc. */
1543
1544bool
1545ggc_set_mark (const void *p)
1546{
1547 page_entry *entry;
1548 unsigned bit, word;
1549 unsigned long mask;
1550
1551 /* Look up the page on which the object is alloced. If the object
1552 wasn't allocated by the collector, we'll probably die. */
1553 entry = lookup_page_table_entry (p);
1554 gcc_assert (entry);
1555
1556 /* Calculate the index of the object on the page; this is its bit
1557 position in the in_use_p bitmap. */
1558 bit = OFFSET_TO_BIT (((const char *) p) - entry->page, entry->order);
1559 word = bit / HOST_BITS_PER_LONG;
1560 mask = (unsigned long) 1 << (bit % HOST_BITS_PER_LONG);
1561
1562 /* If the bit was previously set, skip it. */
1563 if (entry->in_use_p[word] & mask)
1564 return true;
1565
1566 /* Otherwise set it, and decrement the free object count. */
1567 entry->in_use_p[word] |= mask;
1568 entry->num_free_objects -= 1;
1569
1570 if (GGC_DEBUG_LEVEL >= 4)
1571 fprintf (stream: G.debug_file, format: "Marking %p\n", p);
1572
1573 return false;
1574}
1575
1576/* Return true if P has been marked, zero otherwise.
1577 P must have been allocated by the GC allocator; it mustn't point to
1578 static objects, stack variables, or memory allocated with malloc. */
1579
1580bool
1581ggc_marked_p (const void *p)
1582{
1583 page_entry *entry;
1584 unsigned bit, word;
1585 unsigned long mask;
1586
1587 /* Look up the page on which the object is alloced. If the object
1588 wasn't allocated by the collector, we'll probably die. */
1589 entry = lookup_page_table_entry (p);
1590 gcc_assert (entry);
1591
1592 /* Calculate the index of the object on the page; this is its bit
1593 position in the in_use_p bitmap. */
1594 bit = OFFSET_TO_BIT (((const char *) p) - entry->page, entry->order);
1595 word = bit / HOST_BITS_PER_LONG;
1596 mask = (unsigned long) 1 << (bit % HOST_BITS_PER_LONG);
1597
1598 return (entry->in_use_p[word] & mask) != 0;
1599}
1600
1601/* Return the size of the gc-able object P. */
1602
1603size_t
1604ggc_get_size (const void *p)
1605{
1606 page_entry *pe = lookup_page_table_entry (p);
1607 return OBJECT_SIZE (pe->order);
1608}
1609
1610/* Release the memory for object P. */
1611
1612void
1613ggc_free (void *p)
1614{
1615 if (in_gc)
1616 return;
1617
1618 page_entry *pe = lookup_page_table_entry (p);
1619 size_t order = pe->order;
1620 size_t size = OBJECT_SIZE (order);
1621
1622 if (GATHER_STATISTICS)
1623 ggc_free_overhead (p);
1624
1625 if (GGC_DEBUG_LEVEL >= 3)
1626 fprintf (stream: G.debug_file,
1627 format: "Freeing object, actual size="
1628 HOST_SIZE_T_PRINT_UNSIGNED ", at %p on %p\n",
1629 (fmt_size_t) size, p, (void *) pe);
1630
1631#ifdef ENABLE_GC_CHECKING
1632 /* Poison the data, to indicate the data is garbage. */
1633 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_UNDEFINED (p, size));
1634 memset (s: p, c: 0xa5, n: size);
1635#endif
1636 /* Let valgrind know the object is free. */
1637 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS (p, size));
1638
1639#ifdef ENABLE_GC_ALWAYS_COLLECT
1640 /* In the completely-anal-checking mode, we do *not* immediately free
1641 the data, but instead verify that the data is *actually* not
1642 reachable the next time we collect. */
1643 {
1644 struct free_object *fo = XNEW (struct free_object);
1645 fo->object = p;
1646 fo->next = G.free_object_list;
1647 G.free_object_list = fo;
1648 }
1649#else
1650 {
1651 unsigned int bit_offset, word, bit;
1652
1653 G.allocated -= size;
1654
1655 /* Mark the object not-in-use. */
1656 bit_offset = OFFSET_TO_BIT (((const char *) p) - pe->page, order);
1657 word = bit_offset / HOST_BITS_PER_LONG;
1658 bit = bit_offset % HOST_BITS_PER_LONG;
1659 pe->in_use_p[word] &= ~(1UL << bit);
1660
1661 if (pe->num_free_objects++ == 0)
1662 {
1663 page_entry *p, *q;
1664
1665 /* If the page is completely full, then it's supposed to
1666 be after all pages that aren't. Since we've freed one
1667 object from a page that was full, we need to move the
1668 page to the head of the list.
1669
1670 PE is the node we want to move. Q is the previous node
1671 and P is the next node in the list. */
1672 q = pe->prev;
1673 if (q && q->num_free_objects == 0)
1674 {
1675 p = pe->next;
1676
1677 q->next = p;
1678
1679 /* If PE was at the end of the list, then Q becomes the
1680 new end of the list. If PE was not the end of the
1681 list, then we need to update the PREV field for P. */
1682 if (!p)
1683 G.page_tails[order] = q;
1684 else
1685 p->prev = q;
1686
1687 /* Move PE to the head of the list. */
1688 pe->next = G.pages[order];
1689 pe->prev = NULL;
1690 G.pages[order]->prev = pe;
1691 G.pages[order] = pe;
1692 }
1693
1694 /* Reset the hint bit to point to the only free object. */
1695 pe->next_bit_hint = bit_offset;
1696 }
1697 }
1698#endif
1699}
1700
1701/* Subroutine of init_ggc which computes the pair of numbers used to
1702 perform division by OBJECT_SIZE (order) and fills in inverse_table[].
1703
1704 This algorithm is taken from Granlund and Montgomery's paper
1705 "Division by Invariant Integers using Multiplication"
1706 (Proc. SIGPLAN PLDI, 1994), section 9 (Exact division by
1707 constants). */
1708
1709static void
1710compute_inverse (unsigned order)
1711{
1712 size_t size, inv;
1713 unsigned int e;
1714
1715 size = OBJECT_SIZE (order);
1716 e = 0;
1717 while (size % 2 == 0)
1718 {
1719 e++;
1720 size >>= 1;
1721 }
1722
1723 inv = size;
1724 while (inv * size != 1)
1725 inv = inv * (2 - inv*size);
1726
1727 DIV_MULT (order) = inv;
1728 DIV_SHIFT (order) = e;
1729}
1730
1731/* Initialize the ggc-mmap allocator. */
1732void
1733init_ggc (void)
1734{
1735 static bool init_p = false;
1736 unsigned order;
1737
1738 if (init_p)
1739 return;
1740 init_p = true;
1741
1742 G.pagesize = getpagesize ();
1743 G.lg_pagesize = exact_log2 (x: G.pagesize);
1744
1745#ifdef HAVE_MMAP_DEV_ZERO
1746 G.dev_zero_fd = open ("/dev/zero", O_RDONLY);
1747 if (G.dev_zero_fd == -1)
1748 internal_error ("open /dev/zero: %m");
1749#endif
1750
1751#if 0
1752 G.debug_file = fopen ("ggc-mmap.debug", "w");
1753#else
1754 G.debug_file = stdout;
1755#endif
1756
1757#ifdef USING_MMAP
1758 /* StunOS has an amazing off-by-one error for the first mmap allocation
1759 after fiddling with RLIMIT_STACK. The result, as hard as it is to
1760 believe, is an unaligned page allocation, which would cause us to
1761 hork badly if we tried to use it. */
1762 {
1763 char *p = alloc_anon (NULL, size: G.pagesize, check: true);
1764 struct page_entry *e;
1765 if ((uintptr_t)p & (G.pagesize - 1))
1766 {
1767 /* How losing. Discard this one and try another. If we still
1768 can't get something useful, give up. */
1769
1770 p = alloc_anon (NULL, size: G.pagesize, check: true);
1771 gcc_assert (!((uintptr_t)p & (G.pagesize - 1)));
1772 }
1773
1774 /* We have a good page, might as well hold onto it... */
1775 e = XCNEW (struct page_entry);
1776 e->bytes = G.pagesize;
1777 e->page = p;
1778 e->next = G.free_pages;
1779 G.free_pages = e;
1780 }
1781#endif
1782
1783 /* Initialize the object size table. */
1784 for (order = 0; order < HOST_BITS_PER_PTR; ++order)
1785 object_size_table[order] = (size_t) 1 << order;
1786 for (order = HOST_BITS_PER_PTR; order < NUM_ORDERS; ++order)
1787 {
1788 size_t s = extra_order_size_table[order - HOST_BITS_PER_PTR];
1789
1790 /* If S is not a multiple of the MAX_ALIGNMENT, then round it up
1791 so that we're sure of getting aligned memory. */
1792 s = ROUND_UP (s, MAX_ALIGNMENT);
1793 object_size_table[order] = s;
1794 }
1795
1796 /* Initialize the objects-per-page and inverse tables. */
1797 for (order = 0; order < NUM_ORDERS; ++order)
1798 {
1799 objects_per_page_table[order] = G.pagesize / OBJECT_SIZE (order);
1800 if (objects_per_page_table[order] == 0)
1801 objects_per_page_table[order] = 1;
1802 compute_inverse (order);
1803 }
1804
1805 /* Reset the size_lookup array to put appropriately sized objects in
1806 the special orders. All objects bigger than the previous power
1807 of two, but no greater than the special size, should go in the
1808 new order. */
1809 for (order = HOST_BITS_PER_PTR; order < NUM_ORDERS; ++order)
1810 {
1811 int o;
1812 int i;
1813
1814 i = OBJECT_SIZE (order);
1815 if (i >= NUM_SIZE_LOOKUP)
1816 continue;
1817
1818 for (o = size_lookup[i]; o == size_lookup [i]; --i)
1819 size_lookup[i] = order;
1820 }
1821
1822 G.depth_in_use = 0;
1823 G.depth_max = 10;
1824 G.depth = XNEWVEC (unsigned int, G.depth_max);
1825
1826 G.by_depth_in_use = 0;
1827 G.by_depth_max = INITIAL_PTE_COUNT;
1828 G.by_depth = XNEWVEC (page_entry *, G.by_depth_max);
1829 G.save_in_use = XNEWVEC (unsigned long *, G.by_depth_max);
1830
1831 /* Allocate space for the depth 0 finalizers. */
1832 G.finalizers.safe_push (obj: vNULL);
1833 G.vec_finalizers.safe_push (obj: vNULL);
1834 gcc_assert (G.finalizers.length() == 1);
1835}
1836
1837/* Merge the SAVE_IN_USE_P and IN_USE_P arrays in P so that IN_USE_P
1838 reflects reality. Recalculate NUM_FREE_OBJECTS as well. */
1839
1840static void
1841ggc_recalculate_in_use_p (page_entry *p)
1842{
1843 unsigned int i;
1844 size_t num_objects;
1845
1846 /* Because the past-the-end bit in in_use_p is always set, we
1847 pretend there is one additional object. */
1848 num_objects = OBJECTS_IN_PAGE (p) + 1;
1849
1850 /* Reset the free object count. */
1851 p->num_free_objects = num_objects;
1852
1853 /* Combine the IN_USE_P and SAVE_IN_USE_P arrays. */
1854 for (i = 0;
1855 i < CEIL (BITMAP_SIZE (num_objects),
1856 sizeof (*p->in_use_p));
1857 ++i)
1858 {
1859 unsigned long j;
1860
1861 /* Something is in use if it is marked, or if it was in use in a
1862 context further down the context stack. */
1863 p->in_use_p[i] |= save_in_use_p (p)[i];
1864
1865 /* Decrement the free object count for every object allocated. */
1866 for (j = p->in_use_p[i]; j; j >>= 1)
1867 p->num_free_objects -= (j & 1);
1868 }
1869
1870 gcc_assert (p->num_free_objects < num_objects);
1871}
1872
1873/* Unmark all objects. */
1874
1875static void
1876clear_marks (void)
1877{
1878 unsigned order;
1879
1880 for (order = 2; order < NUM_ORDERS; order++)
1881 {
1882 page_entry *p;
1883
1884 for (p = G.pages[order]; p != NULL; p = p->next)
1885 {
1886 size_t num_objects = OBJECTS_IN_PAGE (p);
1887 size_t bitmap_size = BITMAP_SIZE (num_objects + 1);
1888
1889 /* The data should be page-aligned. */
1890 gcc_assert (!((uintptr_t) p->page & (G.pagesize - 1)));
1891
1892 /* Pages that aren't in the topmost context are not collected;
1893 nevertheless, we need their in-use bit vectors to store GC
1894 marks. So, back them up first. */
1895 if (p->context_depth < G.context_depth)
1896 {
1897 if (! save_in_use_p (p))
1898 save_in_use_p (p) = XNEWVAR (unsigned long, bitmap_size);
1899 memcpy (save_in_use_p (p), src: p->in_use_p, n: bitmap_size);
1900 }
1901
1902 /* Reset reset the number of free objects and clear the
1903 in-use bits. These will be adjusted by mark_obj. */
1904 p->num_free_objects = num_objects;
1905 memset (s: p->in_use_p, c: 0, n: bitmap_size);
1906
1907 /* Make sure the one-past-the-end bit is always set. */
1908 p->in_use_p[num_objects / HOST_BITS_PER_LONG]
1909 = ((unsigned long) 1 << (num_objects % HOST_BITS_PER_LONG));
1910 }
1911 }
1912}
1913
1914/* Check if any blocks with a registered finalizer have become unmarked. If so
1915 run the finalizer and unregister it because the block is about to be freed.
1916 Note that no garantee is made about what order finalizers will run in so
1917 touching other objects in gc memory is extremely unwise. */
1918
1919static void
1920ggc_handle_finalizers ()
1921{
1922 unsigned dlen = G.finalizers.length();
1923 for (unsigned d = G.context_depth; d < dlen; ++d)
1924 {
1925 vec<finalizer> &v = G.finalizers[d];
1926 unsigned length = v.length ();
1927 for (unsigned int i = 0; i < length;)
1928 {
1929 finalizer &f = v[i];
1930 if (!ggc_marked_p (p: f.addr ()))
1931 {
1932 f.call ();
1933 v.unordered_remove (ix: i);
1934 length--;
1935 }
1936 else
1937 i++;
1938 }
1939 }
1940
1941 gcc_assert (dlen == G.vec_finalizers.length());
1942 for (unsigned d = G.context_depth; d < dlen; ++d)
1943 {
1944 vec<vec_finalizer> &vv = G.vec_finalizers[d];
1945 unsigned length = vv.length ();
1946 for (unsigned int i = 0; i < length;)
1947 {
1948 vec_finalizer &f = vv[i];
1949 if (!ggc_marked_p (p: f.addr ()))
1950 {
1951 f.call ();
1952 vv.unordered_remove (ix: i);
1953 length--;
1954 }
1955 else
1956 i++;
1957 }
1958 }
1959}
1960
1961/* Free all empty pages. Partially empty pages need no attention
1962 because the `mark' bit doubles as an `unused' bit. */
1963
1964static void
1965sweep_pages (void)
1966{
1967 unsigned order;
1968
1969 for (order = 2; order < NUM_ORDERS; order++)
1970 {
1971 /* The last page-entry to consider, regardless of entries
1972 placed at the end of the list. */
1973 page_entry * const last = G.page_tails[order];
1974
1975 size_t num_objects;
1976 size_t live_objects;
1977 page_entry *p, *previous;
1978 int done;
1979
1980 p = G.pages[order];
1981 if (p == NULL)
1982 continue;
1983
1984 previous = NULL;
1985 do
1986 {
1987 page_entry *next = p->next;
1988
1989 /* Loop until all entries have been examined. */
1990 done = (p == last);
1991
1992 num_objects = OBJECTS_IN_PAGE (p);
1993
1994 /* Add all live objects on this page to the count of
1995 allocated memory. */
1996 live_objects = num_objects - p->num_free_objects;
1997
1998 G.allocated += OBJECT_SIZE (order) * live_objects;
1999
2000 /* Only objects on pages in the topmost context should get
2001 collected. */
2002 if (p->context_depth < G.context_depth)
2003 ;
2004
2005 /* Remove the page if it's empty. */
2006 else if (live_objects == 0)
2007 {
2008 /* If P was the first page in the list, then NEXT
2009 becomes the new first page in the list, otherwise
2010 splice P out of the forward pointers. */
2011 if (! previous)
2012 G.pages[order] = next;
2013 else
2014 previous->next = next;
2015
2016 /* Splice P out of the back pointers too. */
2017 if (next)
2018 next->prev = previous;
2019
2020 /* Are we removing the last element? */
2021 if (p == G.page_tails[order])
2022 G.page_tails[order] = previous;
2023 free_page (entry: p);
2024 p = previous;
2025 }
2026
2027 /* If the page is full, move it to the end. */
2028 else if (p->num_free_objects == 0)
2029 {
2030 /* Don't move it if it's already at the end. */
2031 if (p != G.page_tails[order])
2032 {
2033 /* Move p to the end of the list. */
2034 p->next = NULL;
2035 p->prev = G.page_tails[order];
2036 G.page_tails[order]->next = p;
2037
2038 /* Update the tail pointer... */
2039 G.page_tails[order] = p;
2040
2041 /* ... and the head pointer, if necessary. */
2042 if (! previous)
2043 G.pages[order] = next;
2044 else
2045 previous->next = next;
2046
2047 /* And update the backpointer in NEXT if necessary. */
2048 if (next)
2049 next->prev = previous;
2050
2051 p = previous;
2052 }
2053 }
2054
2055 /* If we've fallen through to here, it's a page in the
2056 topmost context that is neither full nor empty. Such a
2057 page must precede pages at lesser context depth in the
2058 list, so move it to the head. */
2059 else if (p != G.pages[order])
2060 {
2061 previous->next = p->next;
2062
2063 /* Update the backchain in the next node if it exists. */
2064 if (p->next)
2065 p->next->prev = previous;
2066
2067 /* Move P to the head of the list. */
2068 p->next = G.pages[order];
2069 p->prev = NULL;
2070 G.pages[order]->prev = p;
2071
2072 /* Update the head pointer. */
2073 G.pages[order] = p;
2074
2075 /* Are we moving the last element? */
2076 if (G.page_tails[order] == p)
2077 G.page_tails[order] = previous;
2078 p = previous;
2079 }
2080
2081 previous = p;
2082 p = next;
2083 }
2084 while (! done);
2085
2086 /* Now, restore the in_use_p vectors for any pages from contexts
2087 other than the current one. */
2088 for (p = G.pages[order]; p; p = p->next)
2089 if (p->context_depth != G.context_depth)
2090 ggc_recalculate_in_use_p (p);
2091 }
2092}
2093
2094#ifdef ENABLE_GC_CHECKING
2095/* Clobber all free objects. */
2096
2097static void
2098poison_pages (void)
2099{
2100 unsigned order;
2101
2102 for (order = 2; order < NUM_ORDERS; order++)
2103 {
2104 size_t size = OBJECT_SIZE (order);
2105 page_entry *p;
2106
2107 for (p = G.pages[order]; p != NULL; p = p->next)
2108 {
2109 size_t num_objects;
2110 size_t i;
2111
2112 if (p->context_depth != G.context_depth)
2113 /* Since we don't do any collection for pages in pushed
2114 contexts, there's no need to do any poisoning. And
2115 besides, the IN_USE_P array isn't valid until we pop
2116 contexts. */
2117 continue;
2118
2119 num_objects = OBJECTS_IN_PAGE (p);
2120 for (i = 0; i < num_objects; i++)
2121 {
2122 size_t word, bit;
2123 word = i / HOST_BITS_PER_LONG;
2124 bit = i % HOST_BITS_PER_LONG;
2125 if (((p->in_use_p[word] >> bit) & 1) == 0)
2126 {
2127 char *object = p->page + i * size;
2128
2129 /* Keep poison-by-write when we expect to use Valgrind,
2130 so the exact same memory semantics is kept, in case
2131 there are memory errors. We override this request
2132 below. */
2133 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_UNDEFINED (object,
2134 size));
2135 memset (s: object, c: 0xa5, n: size);
2136
2137 /* Drop the handle to avoid handle leak. */
2138 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS (object, size));
2139 }
2140 }
2141 }
2142 }
2143}
2144#else
2145#define poison_pages()
2146#endif
2147
2148#ifdef ENABLE_GC_ALWAYS_COLLECT
2149/* Validate that the reportedly free objects actually are. */
2150
2151static void
2152validate_free_objects (void)
2153{
2154 struct free_object *f, *next, *still_free = NULL;
2155
2156 for (f = G.free_object_list; f ; f = next)
2157 {
2158 page_entry *pe = lookup_page_table_entry (f->object);
2159 size_t bit, word;
2160
2161 bit = OFFSET_TO_BIT ((char *)f->object - pe->page, pe->order);
2162 word = bit / HOST_BITS_PER_LONG;
2163 bit = bit % HOST_BITS_PER_LONG;
2164 next = f->next;
2165
2166 /* Make certain it isn't visible from any root. Notice that we
2167 do this check before sweep_pages merges save_in_use_p. */
2168 gcc_assert (!(pe->in_use_p[word] & (1UL << bit)));
2169
2170 /* If the object comes from an outer context, then retain the
2171 free_object entry, so that we can verify that the address
2172 isn't live on the stack in some outer context. */
2173 if (pe->context_depth != G.context_depth)
2174 {
2175 f->next = still_free;
2176 still_free = f;
2177 }
2178 else
2179 free (f);
2180 }
2181
2182 G.free_object_list = still_free;
2183}
2184#else
2185#define validate_free_objects()
2186#endif
2187
2188/* Top level mark-and-sweep routine. */
2189
2190void
2191ggc_collect (enum ggc_collect mode)
2192{
2193 /* Avoid frequent unnecessary work by skipping collection if the
2194 total allocations haven't expanded much since the last
2195 collection. */
2196 float allocated_last_gc =
2197 MAX (G.allocated_last_gc, (size_t)param_ggc_min_heapsize * ONE_K);
2198
2199 /* It is also good time to get memory block pool into limits. */
2200 memory_block_pool::trim ();
2201
2202 float min_expand = allocated_last_gc * param_ggc_min_expand / 100;
2203 if (mode == GGC_COLLECT_HEURISTIC
2204 && G.allocated < allocated_last_gc + min_expand)
2205 return;
2206
2207 timevar_push (tv: TV_GC);
2208 if (GGC_DEBUG_LEVEL >= 2)
2209 fprintf (stream: G.debug_file, format: "BEGIN COLLECTING\n");
2210
2211 /* Zero the total allocated bytes. This will be recalculated in the
2212 sweep phase. */
2213 size_t allocated = G.allocated;
2214 G.allocated = 0;
2215
2216 /* Release the pages we freed the last time we collected, but didn't
2217 reuse in the interim. */
2218 release_pages ();
2219
2220 /* Output this later so we do not interfere with release_pages. */
2221 if (!quiet_flag)
2222 fprintf (stderr, format: " {GC " PRsa (0) " -> ", SIZE_AMOUNT (allocated));
2223
2224 /* Indicate that we've seen collections at this context depth. */
2225 G.context_depth_collections = ((unsigned long)1 << (G.context_depth + 1)) - 1;
2226
2227 invoke_plugin_callbacks (event: PLUGIN_GGC_START, NULL);
2228
2229 in_gc = true;
2230 clear_marks ();
2231 ggc_mark_roots ();
2232 ggc_handle_finalizers ();
2233
2234 if (GATHER_STATISTICS)
2235 ggc_prune_overhead_list ();
2236
2237 poison_pages ();
2238 validate_free_objects ();
2239 sweep_pages ();
2240
2241 in_gc = false;
2242 G.allocated_last_gc = G.allocated;
2243
2244 invoke_plugin_callbacks (event: PLUGIN_GGC_END, NULL);
2245
2246 timevar_pop (tv: TV_GC);
2247
2248 if (!quiet_flag)
2249 fprintf (stderr, PRsa (0) "}", SIZE_AMOUNT (G.allocated));
2250 if (GGC_DEBUG_LEVEL >= 2)
2251 fprintf (stream: G.debug_file, format: "END COLLECTING\n");
2252}
2253
2254/* Return free pages to the system. */
2255
2256void
2257ggc_trim ()
2258{
2259 timevar_push (tv: TV_GC);
2260 G.allocated = 0;
2261 sweep_pages ();
2262 release_pages ();
2263 if (!quiet_flag)
2264 fprintf (stderr, format: " {GC trimmed to " PRsa (0) ", " PRsa (0) " mapped}",
2265 SIZE_AMOUNT (G.allocated), SIZE_AMOUNT (G.bytes_mapped));
2266 timevar_pop (tv: TV_GC);
2267}
2268
2269/* Assume that all GGC memory is reachable and grow the limits for next
2270 collection. With checking, trigger GGC so -Q compilation outputs how much
2271 of memory really is reachable. */
2272
2273void
2274ggc_grow (void)
2275{
2276 if (!flag_checking)
2277 G.allocated_last_gc = MAX (G.allocated_last_gc,
2278 G.allocated);
2279 else
2280 ggc_collect ();
2281 if (!quiet_flag)
2282 fprintf (stderr, format: " {GC " PRsa (0) "} ", SIZE_AMOUNT (G.allocated));
2283}
2284
2285void
2286ggc_print_statistics (void)
2287{
2288 struct ggc_statistics stats;
2289 unsigned int i;
2290 size_t total_overhead = 0;
2291
2292 /* Clear the statistics. */
2293 memset (s: &stats, c: 0, n: sizeof (stats));
2294
2295 /* Make sure collection will really occur. */
2296 G.allocated_last_gc = 0;
2297
2298 /* Collect and print the statistics common across collectors. */
2299 ggc_print_common_statistics (stderr, &stats);
2300
2301 /* Release free pages so that we will not count the bytes allocated
2302 there as part of the total allocated memory. */
2303 release_pages ();
2304
2305 /* Collect some information about the various sizes of
2306 allocation. */
2307 fprintf (stderr,
2308 format: "Memory still allocated at the end of the compilation process\n");
2309 fprintf (stderr, format: "%-8s %10s %10s %10s\n",
2310 "Size", "Allocated", "Used", "Overhead");
2311 for (i = 0; i < NUM_ORDERS; ++i)
2312 {
2313 page_entry *p;
2314 size_t allocated;
2315 size_t in_use;
2316 size_t overhead;
2317
2318 /* Skip empty entries. */
2319 if (!G.pages[i])
2320 continue;
2321
2322 overhead = allocated = in_use = 0;
2323
2324 /* Figure out the total number of bytes allocated for objects of
2325 this size, and how many of them are actually in use. Also figure
2326 out how much memory the page table is using. */
2327 for (p = G.pages[i]; p; p = p->next)
2328 {
2329 allocated += p->bytes;
2330 in_use +=
2331 (OBJECTS_IN_PAGE (p) - p->num_free_objects) * OBJECT_SIZE (i);
2332
2333 overhead += (sizeof (page_entry) - sizeof (long)
2334 + BITMAP_SIZE (OBJECTS_IN_PAGE (p) + 1));
2335 }
2336 fprintf (stderr, format: "%-8" PRIu64 " " PRsa (10) " " PRsa (10) " "
2337 PRsa (10) "\n",
2338 (uint64_t)OBJECT_SIZE (i),
2339 SIZE_AMOUNT (allocated),
2340 SIZE_AMOUNT (in_use),
2341 SIZE_AMOUNT (overhead));
2342 total_overhead += overhead;
2343 }
2344 fprintf (stderr, format: "%-8s " PRsa (10) " " PRsa (10) " " PRsa (10) "\n",
2345 "Total",
2346 SIZE_AMOUNT (G.bytes_mapped),
2347 SIZE_AMOUNT (G.allocated),
2348 SIZE_AMOUNT (total_overhead));
2349
2350 if (GATHER_STATISTICS)
2351 {
2352 fprintf (stderr, format: "\nTotal allocations and overheads during "
2353 "the compilation process\n");
2354
2355 fprintf (stderr, format: "Total Overhead: "
2356 PRsa (9) "\n",
2357 SIZE_AMOUNT (G.stats.total_overhead));
2358 fprintf (stderr, format: "Total Allocated: "
2359 PRsa (9) "\n",
2360 SIZE_AMOUNT (G.stats.total_allocated));
2361
2362 fprintf (stderr, format: "Total Overhead under 32B: "
2363 PRsa (9) "\n",
2364 SIZE_AMOUNT (G.stats.total_overhead_under32));
2365 fprintf (stderr, format: "Total Allocated under 32B: "
2366 PRsa (9) "\n",
2367 SIZE_AMOUNT (G.stats.total_allocated_under32));
2368 fprintf (stderr, format: "Total Overhead under 64B: "
2369 PRsa (9) "\n",
2370 SIZE_AMOUNT (G.stats.total_overhead_under64));
2371 fprintf (stderr, format: "Total Allocated under 64B: "
2372 PRsa (9) "\n",
2373 SIZE_AMOUNT (G.stats.total_allocated_under64));
2374 fprintf (stderr, format: "Total Overhead under 128B: "
2375 PRsa (9) "\n",
2376 SIZE_AMOUNT (G.stats.total_overhead_under128));
2377 fprintf (stderr, format: "Total Allocated under 128B: "
2378 PRsa (9) "\n",
2379 SIZE_AMOUNT (G.stats.total_allocated_under128));
2380
2381 for (i = 0; i < NUM_ORDERS; i++)
2382 if (G.stats.total_allocated_per_order[i])
2383 {
2384 fprintf (stderr, format: "Total Overhead page size %9" PRIu64 ": "
2385 PRsa (9) "\n",
2386 (uint64_t)OBJECT_SIZE (i),
2387 SIZE_AMOUNT (G.stats.total_overhead_per_order[i]));
2388 fprintf (stderr, format: "Total Allocated page size %9" PRIu64 ": "
2389 PRsa (9) "\n",
2390 (uint64_t)OBJECT_SIZE (i),
2391 SIZE_AMOUNT (G.stats.total_allocated_per_order[i]));
2392 }
2393 }
2394}
2395
2396struct ggc_pch_ondisk
2397{
2398 unsigned totals[NUM_ORDERS];
2399};
2400
2401struct ggc_pch_data
2402{
2403 struct ggc_pch_ondisk d;
2404 uintptr_t base[NUM_ORDERS];
2405 size_t written[NUM_ORDERS];
2406};
2407
2408struct ggc_pch_data *
2409init_ggc_pch (void)
2410{
2411 return XCNEW (struct ggc_pch_data);
2412}
2413
2414void
2415ggc_pch_count_object (struct ggc_pch_data *d, void *x ATTRIBUTE_UNUSED,
2416 size_t size)
2417{
2418 unsigned order;
2419
2420 if (size < NUM_SIZE_LOOKUP)
2421 order = size_lookup[size];
2422 else
2423 {
2424 order = 10;
2425 while (size > OBJECT_SIZE (order))
2426 order++;
2427 }
2428
2429 d->d.totals[order]++;
2430}
2431
2432size_t
2433ggc_pch_total_size (struct ggc_pch_data *d)
2434{
2435 size_t a = 0;
2436 unsigned i;
2437
2438 for (i = 0; i < NUM_ORDERS; i++)
2439 a += PAGE_ALIGN (d->d.totals[i] * OBJECT_SIZE (i));
2440 return a;
2441}
2442
2443void
2444ggc_pch_this_base (struct ggc_pch_data *d, void *base)
2445{
2446 uintptr_t a = (uintptr_t) base;
2447 unsigned i;
2448
2449 for (i = 0; i < NUM_ORDERS; i++)
2450 {
2451 d->base[i] = a;
2452 a += PAGE_ALIGN (d->d.totals[i] * OBJECT_SIZE (i));
2453 }
2454}
2455
2456
2457char *
2458ggc_pch_alloc_object (struct ggc_pch_data *d, void *x ATTRIBUTE_UNUSED,
2459 size_t size)
2460{
2461 unsigned order;
2462 char *result;
2463
2464 if (size < NUM_SIZE_LOOKUP)
2465 order = size_lookup[size];
2466 else
2467 {
2468 order = 10;
2469 while (size > OBJECT_SIZE (order))
2470 order++;
2471 }
2472
2473 result = (char *) d->base[order];
2474 d->base[order] += OBJECT_SIZE (order);
2475 return result;
2476}
2477
2478void
2479ggc_pch_prepare_write (struct ggc_pch_data *d ATTRIBUTE_UNUSED,
2480 FILE *f ATTRIBUTE_UNUSED)
2481{
2482 /* Nothing to do. */
2483}
2484
2485void
2486ggc_pch_write_object (struct ggc_pch_data *d,
2487 FILE *f, void *x, void *newx ATTRIBUTE_UNUSED,
2488 size_t size)
2489{
2490 unsigned order;
2491 static const char emptyBytes[256] = { 0 };
2492
2493 if (size < NUM_SIZE_LOOKUP)
2494 order = size_lookup[size];
2495 else
2496 {
2497 order = 10;
2498 while (size > OBJECT_SIZE (order))
2499 order++;
2500 }
2501
2502 if (fwrite (ptr: x, size: size, n: 1, s: f) != 1)
2503 fatal_error (input_location, "cannot write PCH file: %m");
2504
2505 /* If SIZE is not the same as OBJECT_SIZE(order), then we need to pad the
2506 object out to OBJECT_SIZE(order). This happens for strings. */
2507
2508 if (size != OBJECT_SIZE (order))
2509 {
2510 unsigned padding = OBJECT_SIZE (order) - size;
2511
2512 /* To speed small writes, we use a nulled-out array that's larger
2513 than most padding requests as the source for our null bytes. This
2514 permits us to do the padding with fwrite() rather than fseek(), and
2515 limits the chance the OS may try to flush any outstanding writes. */
2516 if (padding <= sizeof (emptyBytes))
2517 {
2518 if (fwrite (ptr: emptyBytes, size: 1, n: padding, s: f) != padding)
2519 fatal_error (input_location, "cannot write PCH file");
2520 }
2521 else
2522 {
2523 /* Larger than our buffer? Just default to fseek. */
2524 if (fseek (stream: f, off: padding, SEEK_CUR) != 0)
2525 fatal_error (input_location, "cannot write PCH file");
2526 }
2527 }
2528
2529 d->written[order]++;
2530 if (d->written[order] == d->d.totals[order]
2531 && fseek (stream: f, ROUND_UP_VALUE (d->d.totals[order] * OBJECT_SIZE (order),
2532 G.pagesize),
2533 SEEK_CUR) != 0)
2534 fatal_error (input_location, "cannot write PCH file: %m");
2535}
2536
2537void
2538ggc_pch_finish (struct ggc_pch_data *d, FILE *f)
2539{
2540 if (fwrite (ptr: &d->d, size: sizeof (d->d), n: 1, s: f) != 1)
2541 fatal_error (input_location, "cannot write PCH file: %m");
2542 free (ptr: d);
2543}
2544
2545/* Move the PCH PTE entries just added to the end of by_depth, to the
2546 front. */
2547
2548static void
2549move_ptes_to_front (int count_old_page_tables, int count_new_page_tables)
2550{
2551 /* First, we swap the new entries to the front of the varrays. */
2552 page_entry **new_by_depth;
2553 unsigned long **new_save_in_use;
2554
2555 new_by_depth = XNEWVEC (page_entry *, G.by_depth_max);
2556 new_save_in_use = XNEWVEC (unsigned long *, G.by_depth_max);
2557
2558 memcpy (dest: &new_by_depth[0],
2559 src: &G.by_depth[count_old_page_tables],
2560 n: count_new_page_tables * sizeof (void *));
2561 memcpy (dest: &new_by_depth[count_new_page_tables],
2562 src: &G.by_depth[0],
2563 n: count_old_page_tables * sizeof (void *));
2564 memcpy (dest: &new_save_in_use[0],
2565 src: &G.save_in_use[count_old_page_tables],
2566 n: count_new_page_tables * sizeof (void *));
2567 memcpy (dest: &new_save_in_use[count_new_page_tables],
2568 src: &G.save_in_use[0],
2569 n: count_old_page_tables * sizeof (void *));
2570
2571 free (ptr: G.by_depth);
2572 free (ptr: G.save_in_use);
2573
2574 G.by_depth = new_by_depth;
2575 G.save_in_use = new_save_in_use;
2576
2577 /* Now update all the index_by_depth fields. */
2578 for (unsigned i = G.by_depth_in_use; i--;)
2579 {
2580 page_entry *p = G.by_depth[i];
2581 p->index_by_depth = i;
2582 }
2583
2584 /* And last, we update the depth pointers in G.depth. The first
2585 entry is already 0, and context 0 entries always start at index
2586 0, so there is nothing to update in the first slot. We need a
2587 second slot, only if we have old ptes, and if we do, they start
2588 at index count_new_page_tables. */
2589 if (count_old_page_tables)
2590 push_depth (i: count_new_page_tables);
2591}
2592
2593void
2594ggc_pch_read (FILE *f, void *addr)
2595{
2596 struct ggc_pch_ondisk d;
2597 unsigned i;
2598 char *offs = (char *) addr;
2599 unsigned long count_old_page_tables;
2600 unsigned long count_new_page_tables;
2601
2602 count_old_page_tables = G.by_depth_in_use;
2603
2604 if (fread (ptr: &d, size: sizeof (d), n: 1, stream: f) != 1)
2605 fatal_error (input_location, "cannot read PCH file: %m");
2606
2607 /* We've just read in a PCH file. So, every object that used to be
2608 allocated is now free. */
2609 clear_marks ();
2610#ifdef ENABLE_GC_CHECKING
2611 poison_pages ();
2612#endif
2613 /* Since we free all the allocated objects, the free list becomes
2614 useless. Validate it now, which will also clear it. */
2615 validate_free_objects ();
2616
2617 /* No object read from a PCH file should ever be freed. So, set the
2618 context depth to 1, and set the depth of all the currently-allocated
2619 pages to be 1 too. PCH pages will have depth 0. */
2620 gcc_assert (!G.context_depth);
2621 G.context_depth = 1;
2622 /* Allocate space for the depth 1 finalizers. */
2623 G.finalizers.safe_push (obj: vNULL);
2624 G.vec_finalizers.safe_push (obj: vNULL);
2625 gcc_assert (G.finalizers.length() == 2);
2626 for (i = 0; i < NUM_ORDERS; i++)
2627 {
2628 page_entry *p;
2629 for (p = G.pages[i]; p != NULL; p = p->next)
2630 p->context_depth = G.context_depth;
2631 }
2632
2633 /* Allocate the appropriate page-table entries for the pages read from
2634 the PCH file. */
2635
2636 for (i = 0; i < NUM_ORDERS; i++)
2637 {
2638 struct page_entry *entry;
2639 char *pte;
2640 size_t bytes;
2641 size_t num_objs;
2642 size_t j;
2643
2644 if (d.totals[i] == 0)
2645 continue;
2646
2647 bytes = PAGE_ALIGN (d.totals[i] * OBJECT_SIZE (i));
2648 num_objs = bytes / OBJECT_SIZE (i);
2649 entry = XCNEWVAR (struct page_entry, (sizeof (struct page_entry)
2650 - sizeof (long)
2651 + BITMAP_SIZE (num_objs + 1)));
2652 entry->bytes = bytes;
2653 entry->page = offs;
2654 entry->context_depth = 0;
2655 offs += bytes;
2656 entry->num_free_objects = 0;
2657 entry->order = i;
2658
2659 for (j = 0;
2660 j + HOST_BITS_PER_LONG <= num_objs + 1;
2661 j += HOST_BITS_PER_LONG)
2662 entry->in_use_p[j / HOST_BITS_PER_LONG] = -1;
2663 for (; j < num_objs + 1; j++)
2664 entry->in_use_p[j / HOST_BITS_PER_LONG]
2665 |= 1L << (j % HOST_BITS_PER_LONG);
2666
2667 for (pte = entry->page;
2668 pte < entry->page + entry->bytes;
2669 pte += G.pagesize)
2670 set_page_table_entry (p: pte, entry);
2671
2672 if (G.page_tails[i] != NULL)
2673 G.page_tails[i]->next = entry;
2674 else
2675 G.pages[i] = entry;
2676 G.page_tails[i] = entry;
2677
2678 /* We start off by just adding all the new information to the
2679 end of the varrays, later, we will move the new information
2680 to the front of the varrays, as the PCH page tables are at
2681 context 0. */
2682 push_by_depth (p: entry, s: 0);
2683 }
2684
2685 /* Now, we update the various data structures that speed page table
2686 handling. */
2687 count_new_page_tables = G.by_depth_in_use - count_old_page_tables;
2688
2689 move_ptes_to_front (count_old_page_tables, count_new_page_tables);
2690
2691 /* Update the statistics. */
2692 G.allocated = G.allocated_last_gc = offs - (char *)addr;
2693}
2694

source code of gcc/ggc-page.cc