1/* Chains of recurrences.
2 Copyright (C) 2003-2024 Free Software Foundation, Inc.
3 Contributed by Sebastian Pop <pop@cri.ensmp.fr>
4
5This file is part of GCC.
6
7GCC is free software; you can redistribute it and/or modify it under
8the terms of the GNU General Public License as published by the Free
9Software Foundation; either version 3, or (at your option) any later
10version.
11
12GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13WARRANTY; without even the implied warranty of MERCHANTABILITY or
14FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15for more details.
16
17You should have received a copy of the GNU General Public License
18along with GCC; see the file COPYING3. If not see
19<http://www.gnu.org/licenses/>. */
20
21/* This file implements operations on chains of recurrences. Chains
22 of recurrences are used for modeling evolution functions of scalar
23 variables.
24*/
25
26#include "config.h"
27#include "system.h"
28#include "coretypes.h"
29#include "backend.h"
30#include "tree.h"
31#include "gimple-expr.h"
32#include "tree-pretty-print.h"
33#include "fold-const.h"
34#include "cfgloop.h"
35#include "tree-ssa-loop-ivopts.h"
36#include "tree-ssa-loop-niter.h"
37#include "tree-chrec.h"
38#include "gimple.h"
39#include "tree-ssa-loop.h"
40#include "dumpfile.h"
41#include "tree-scalar-evolution.h"
42
43/* Extended folder for chrecs. */
44
45/* Fold the addition of two polynomial functions. */
46
47static inline tree
48chrec_fold_plus_poly_poly (enum tree_code code,
49 tree type,
50 tree poly0,
51 tree poly1)
52{
53 tree left, right;
54 class loop *loop0 = get_chrec_loop (chrec: poly0);
55 class loop *loop1 = get_chrec_loop (chrec: poly1);
56 tree rtype = code == POINTER_PLUS_EXPR ? chrec_type (chrec: poly1) : type;
57
58 gcc_assert (poly0);
59 gcc_assert (poly1);
60 gcc_assert (TREE_CODE (poly0) == POLYNOMIAL_CHREC);
61 gcc_assert (TREE_CODE (poly1) == POLYNOMIAL_CHREC);
62 if (POINTER_TYPE_P (chrec_type (poly0)))
63 gcc_checking_assert (ptrofftype_p (chrec_type (poly1))
64 && useless_type_conversion_p (type, chrec_type (poly0)));
65 else
66 gcc_checking_assert (useless_type_conversion_p (type, chrec_type (poly0))
67 && useless_type_conversion_p (type, chrec_type (poly1)));
68
69 /*
70 {a, +, b}_1 + {c, +, d}_2 -> {{a, +, b}_1 + c, +, d}_2,
71 {a, +, b}_2 + {c, +, d}_1 -> {{c, +, d}_1 + a, +, b}_2,
72 {a, +, b}_x + {c, +, d}_x -> {a+c, +, b+d}_x. */
73 if (flow_loop_nested_p (loop0, loop1))
74 {
75 if (code == PLUS_EXPR || code == POINTER_PLUS_EXPR)
76 return build_polynomial_chrec
77 (CHREC_VARIABLE (poly1),
78 left: chrec_fold_plus (type, poly0, CHREC_LEFT (poly1)),
79 CHREC_RIGHT (poly1));
80 else
81 return build_polynomial_chrec
82 (CHREC_VARIABLE (poly1),
83 left: chrec_fold_minus (type, poly0, CHREC_LEFT (poly1)),
84 right: chrec_fold_multiply (type, CHREC_RIGHT (poly1),
85 SCALAR_FLOAT_TYPE_P (type)
86 ? build_real (type, dconstm1)
87 : build_int_cst_type (type, -1)));
88 }
89
90 if (flow_loop_nested_p (loop1, loop0))
91 {
92 if (code == PLUS_EXPR || code == POINTER_PLUS_EXPR)
93 return build_polynomial_chrec
94 (CHREC_VARIABLE (poly0),
95 left: chrec_fold_plus (type, CHREC_LEFT (poly0), poly1),
96 CHREC_RIGHT (poly0));
97 else
98 return build_polynomial_chrec
99 (CHREC_VARIABLE (poly0),
100 left: chrec_fold_minus (type, CHREC_LEFT (poly0), poly1),
101 CHREC_RIGHT (poly0));
102 }
103
104 /* This function should never be called for chrecs of loops that
105 do not belong to the same loop nest. */
106 if (loop0 != loop1)
107 {
108 /* It still can happen if we are not in loop-closed SSA form. */
109 gcc_assert (! loops_state_satisfies_p (LOOP_CLOSED_SSA));
110 return chrec_dont_know;
111 }
112
113 if (code == PLUS_EXPR || code == POINTER_PLUS_EXPR)
114 {
115 left = chrec_fold_plus
116 (type, CHREC_LEFT (poly0), CHREC_LEFT (poly1));
117 right = chrec_fold_plus
118 (rtype, CHREC_RIGHT (poly0), CHREC_RIGHT (poly1));
119 }
120 else
121 {
122 left = chrec_fold_minus
123 (type, CHREC_LEFT (poly0), CHREC_LEFT (poly1));
124 right = chrec_fold_minus
125 (type, CHREC_RIGHT (poly0), CHREC_RIGHT (poly1));
126 }
127
128 if (chrec_zerop (chrec: right))
129 return left;
130 else
131 return build_polynomial_chrec
132 (CHREC_VARIABLE (poly0), left, right);
133}
134
135
136
137/* Fold the multiplication of two polynomial functions. */
138
139static inline tree
140chrec_fold_multiply_poly_poly (tree type,
141 tree poly0,
142 tree poly1)
143{
144 tree t0, t1, t2;
145 int var;
146 class loop *loop0 = get_chrec_loop (chrec: poly0);
147 class loop *loop1 = get_chrec_loop (chrec: poly1);
148
149 gcc_assert (poly0);
150 gcc_assert (poly1);
151 gcc_assert (TREE_CODE (poly0) == POLYNOMIAL_CHREC);
152 gcc_assert (TREE_CODE (poly1) == POLYNOMIAL_CHREC);
153 gcc_checking_assert (useless_type_conversion_p (type, chrec_type (poly0))
154 && useless_type_conversion_p (type, chrec_type (poly1)));
155
156 /* {a, +, b}_1 * {c, +, d}_2 -> {c*{a, +, b}_1, +, d}_2,
157 {a, +, b}_2 * {c, +, d}_1 -> {a*{c, +, d}_1, +, b}_2,
158 {a, +, b}_x * {c, +, d}_x -> {a*c, +, a*d + b*c + b*d, +, 2*b*d}_x. */
159 if (flow_loop_nested_p (loop0, loop1))
160 /* poly0 is a constant wrt. poly1. */
161 return build_polynomial_chrec
162 (CHREC_VARIABLE (poly1),
163 left: chrec_fold_multiply (type, CHREC_LEFT (poly1), poly0),
164 CHREC_RIGHT (poly1));
165
166 if (flow_loop_nested_p (loop1, loop0))
167 /* poly1 is a constant wrt. poly0. */
168 return build_polynomial_chrec
169 (CHREC_VARIABLE (poly0),
170 left: chrec_fold_multiply (type, CHREC_LEFT (poly0), poly1),
171 CHREC_RIGHT (poly0));
172
173 if (loop0 != loop1)
174 {
175 /* It still can happen if we are not in loop-closed SSA form. */
176 gcc_assert (! loops_state_satisfies_p (LOOP_CLOSED_SSA));
177 return chrec_dont_know;
178 }
179
180 /* poly0 and poly1 are two polynomials in the same variable,
181 {a, +, b}_x * {c, +, d}_x -> {a*c, +, a*d + b*c + b*d, +, 2*b*d}_x. */
182
183 /* "a*c". */
184 t0 = chrec_fold_multiply (type, CHREC_LEFT (poly0), CHREC_LEFT (poly1));
185
186 /* "a*d + b*c". */
187 t1 = chrec_fold_multiply (type, CHREC_LEFT (poly0), CHREC_RIGHT (poly1));
188 t1 = chrec_fold_plus (type, t1, chrec_fold_multiply (type,
189 CHREC_RIGHT (poly0),
190 CHREC_LEFT (poly1)));
191 /* "b*d". */
192 t2 = chrec_fold_multiply (type, CHREC_RIGHT (poly0), CHREC_RIGHT (poly1));
193 /* "a*d + b*c + b*d". */
194 t1 = chrec_fold_plus (type, t1, t2);
195 /* "2*b*d". */
196 t2 = chrec_fold_multiply (type, SCALAR_FLOAT_TYPE_P (type)
197 ? build_real (type, dconst2)
198 : build_int_cst (type, 2), t2);
199
200 var = CHREC_VARIABLE (poly0);
201 return build_polynomial_chrec (loop_num: var, left: t0,
202 right: build_polynomial_chrec (loop_num: var, left: t1, right: t2));
203}
204
205/* When the operands are automatically_generated_chrec_p, the fold has
206 to respect the semantics of the operands. */
207
208static inline tree
209chrec_fold_automatically_generated_operands (tree op0,
210 tree op1)
211{
212 if (op0 == chrec_dont_know
213 || op1 == chrec_dont_know)
214 return chrec_dont_know;
215
216 if (op0 == chrec_known
217 || op1 == chrec_known)
218 return chrec_known;
219
220 if (op0 == chrec_not_analyzed_yet
221 || op1 == chrec_not_analyzed_yet)
222 return chrec_not_analyzed_yet;
223
224 /* The default case produces a safe result. */
225 return chrec_dont_know;
226}
227
228/* Fold the addition of two chrecs. */
229
230static tree
231chrec_fold_plus_1 (enum tree_code code, tree type,
232 tree op0, tree op1)
233{
234 if (automatically_generated_chrec_p (chrec: op0)
235 || automatically_generated_chrec_p (chrec: op1))
236 return chrec_fold_automatically_generated_operands (op0, op1);
237
238 switch (TREE_CODE (op0))
239 {
240 case POLYNOMIAL_CHREC:
241 gcc_checking_assert
242 (!chrec_contains_symbols_defined_in_loop (op0, CHREC_VARIABLE (op0)));
243 switch (TREE_CODE (op1))
244 {
245 case POLYNOMIAL_CHREC:
246 gcc_checking_assert
247 (!chrec_contains_symbols_defined_in_loop (op1,
248 CHREC_VARIABLE (op1)));
249 return chrec_fold_plus_poly_poly (code, type, poly0: op0, poly1: op1);
250
251 CASE_CONVERT:
252 if (tree_contains_chrecs (op1, NULL))
253 {
254 /* We can strip sign-conversions to signed by performing the
255 operation in unsigned. */
256 tree optype = TREE_TYPE (TREE_OPERAND (op1, 0));
257 if (INTEGRAL_TYPE_P (type)
258 && INTEGRAL_TYPE_P (optype)
259 && tree_nop_conversion_p (type, optype)
260 && TYPE_UNSIGNED (optype))
261 {
262 tree tem = chrec_convert (optype, op0, NULL);
263 if (TREE_CODE (tem) == POLYNOMIAL_CHREC)
264 return chrec_convert (type,
265 chrec_fold_plus_1 (code, type: optype,
266 op0: tem,
267 TREE_OPERAND
268 (op1, 0)),
269 NULL);
270 }
271 return chrec_dont_know;
272 }
273 /* FALLTHRU */
274
275 default:
276 if (code == PLUS_EXPR || code == POINTER_PLUS_EXPR)
277 return build_polynomial_chrec
278 (CHREC_VARIABLE (op0),
279 left: chrec_fold_plus (type, CHREC_LEFT (op0), op1),
280 CHREC_RIGHT (op0));
281 else
282 return build_polynomial_chrec
283 (CHREC_VARIABLE (op0),
284 left: chrec_fold_minus (type, CHREC_LEFT (op0), op1),
285 CHREC_RIGHT (op0));
286 }
287
288 CASE_CONVERT:
289 if (tree_contains_chrecs (op0, NULL))
290 {
291 /* We can strip sign-conversions to signed by performing the
292 operation in unsigned. */
293 tree optype = TREE_TYPE (TREE_OPERAND (op0, 0));
294 if (INTEGRAL_TYPE_P (type)
295 && INTEGRAL_TYPE_P (optype)
296 && tree_nop_conversion_p (type, optype)
297 && TYPE_UNSIGNED (optype))
298 return chrec_convert (type,
299 chrec_fold_plus_1 (code, type: optype,
300 TREE_OPERAND (op0, 0),
301 op1: chrec_convert (optype,
302 op1, NULL)),
303 NULL);
304 return chrec_dont_know;
305 }
306 /* FALLTHRU */
307
308 default:
309 gcc_checking_assert (!tree_contains_chrecs (op0, NULL));
310 switch (TREE_CODE (op1))
311 {
312 case POLYNOMIAL_CHREC:
313 gcc_checking_assert
314 (!chrec_contains_symbols_defined_in_loop (op1,
315 CHREC_VARIABLE (op1)));
316 if (code == PLUS_EXPR || code == POINTER_PLUS_EXPR)
317 return build_polynomial_chrec
318 (CHREC_VARIABLE (op1),
319 left: chrec_fold_plus (type, op0, CHREC_LEFT (op1)),
320 CHREC_RIGHT (op1));
321 else
322 return build_polynomial_chrec
323 (CHREC_VARIABLE (op1),
324 left: chrec_fold_minus (type, op0, CHREC_LEFT (op1)),
325 right: chrec_fold_multiply (type, CHREC_RIGHT (op1),
326 SCALAR_FLOAT_TYPE_P (type)
327 ? build_real (type, dconstm1)
328 : build_int_cst_type (type, -1)));
329
330 CASE_CONVERT:
331 if (tree_contains_chrecs (op1, NULL))
332 {
333 /* We can strip sign-conversions to signed by performing the
334 operation in unsigned. */
335 tree optype = TREE_TYPE (TREE_OPERAND (op1, 0));
336 if (INTEGRAL_TYPE_P (type)
337 && INTEGRAL_TYPE_P (optype)
338 && tree_nop_conversion_p (type, optype)
339 && TYPE_UNSIGNED (optype))
340 return chrec_convert (type,
341 chrec_fold_plus_1 (code, type: optype,
342 op0: chrec_convert (optype,
343 op0,
344 NULL),
345 TREE_OPERAND (op1, 0)),
346 NULL);
347 return chrec_dont_know;
348 }
349 /* FALLTHRU */
350
351 default:
352 {
353 int size = 0;
354 if ((tree_contains_chrecs (op0, &size)
355 || tree_contains_chrecs (op1, &size))
356 && size < param_scev_max_expr_size)
357 return build2 (code, type, op0, op1);
358 else if (size < param_scev_max_expr_size)
359 {
360 if (code == POINTER_PLUS_EXPR)
361 return fold_build_pointer_plus (fold_convert (type, op0),
362 op1);
363 else
364 return fold_build2 (code, type,
365 fold_convert (type, op0),
366 fold_convert (type, op1));
367 }
368 else
369 return chrec_dont_know;
370 }
371 }
372 }
373}
374
375/* Fold the addition of two chrecs. */
376
377tree
378chrec_fold_plus (tree type,
379 tree op0,
380 tree op1)
381{
382 enum tree_code code;
383 if (automatically_generated_chrec_p (chrec: op0)
384 || automatically_generated_chrec_p (chrec: op1))
385 return chrec_fold_automatically_generated_operands (op0, op1);
386
387 if (integer_zerop (op0))
388 return chrec_convert (type, op1, NULL);
389 if (integer_zerop (op1))
390 return chrec_convert (type, op0, NULL);
391
392 if (POINTER_TYPE_P (type))
393 code = POINTER_PLUS_EXPR;
394 else
395 code = PLUS_EXPR;
396
397 return chrec_fold_plus_1 (code, type, op0, op1);
398}
399
400/* Fold the subtraction of two chrecs. */
401
402tree
403chrec_fold_minus (tree type,
404 tree op0,
405 tree op1)
406{
407 if (automatically_generated_chrec_p (chrec: op0)
408 || automatically_generated_chrec_p (chrec: op1))
409 return chrec_fold_automatically_generated_operands (op0, op1);
410
411 if (integer_zerop (op1))
412 return op0;
413
414 return chrec_fold_plus_1 (code: MINUS_EXPR, type, op0, op1);
415}
416
417/* Fold the multiplication of two chrecs. */
418
419tree
420chrec_fold_multiply (tree type,
421 tree op0,
422 tree op1)
423{
424 if (automatically_generated_chrec_p (chrec: op0)
425 || automatically_generated_chrec_p (chrec: op1))
426 return chrec_fold_automatically_generated_operands (op0, op1);
427
428 if (TREE_CODE (op0) != POLYNOMIAL_CHREC
429 && TREE_CODE (op1) == POLYNOMIAL_CHREC)
430 std::swap (a&: op0, b&: op1);
431
432 switch (TREE_CODE (op0))
433 {
434 case POLYNOMIAL_CHREC:
435 gcc_checking_assert
436 (!chrec_contains_symbols_defined_in_loop (op0, CHREC_VARIABLE (op0)));
437 switch (TREE_CODE (op1))
438 {
439 case POLYNOMIAL_CHREC:
440 gcc_checking_assert
441 (!chrec_contains_symbols_defined_in_loop (op1,
442 CHREC_VARIABLE (op1)));
443 return chrec_fold_multiply_poly_poly (type, poly0: op0, poly1: op1);
444
445 CASE_CONVERT:
446 if (tree_contains_chrecs (op1, NULL))
447 {
448 /* We can strip sign-conversions to signed by performing the
449 operation in unsigned. */
450 tree optype = TREE_TYPE (TREE_OPERAND (op1, 0));
451 if (INTEGRAL_TYPE_P (type)
452 && INTEGRAL_TYPE_P (optype)
453 && tree_nop_conversion_p (type, optype)
454 && TYPE_UNSIGNED (optype))
455 {
456 tree tem = chrec_convert (optype, op0, NULL);
457 if (TREE_CODE (tem) == POLYNOMIAL_CHREC)
458 return chrec_convert (type,
459 chrec_fold_multiply (type: optype, op0: tem,
460 TREE_OPERAND
461 (op1, 0)),
462 NULL);
463 }
464 return chrec_dont_know;
465 }
466 /* FALLTHRU */
467
468 default:
469 if (integer_onep (op1))
470 return op0;
471 if (integer_zerop (op1))
472 return build_int_cst (type, 0);
473
474 /* When overflow is undefined and CHREC_LEFT/RIGHT do not have the
475 same sign or CHREC_LEFT is zero then folding the multiply into
476 the addition does not have the same behavior on overflow.
477 Using unsigned arithmetic in that case causes too many performance
478 regressions, but catch the constant case where the multiplication
479 of the step overflows. */
480 if (INTEGRAL_TYPE_P (type)
481 && TYPE_OVERFLOW_UNDEFINED (type)
482 && !integer_zerop (CHREC_LEFT (op0))
483 && TREE_CODE (op1) == INTEGER_CST
484 && TREE_CODE (CHREC_RIGHT (op0)) == INTEGER_CST)
485 {
486 wi::overflow_type ovf = wi::OVF_NONE;
487 wide_int res
488 = wi::mul (x: wi::to_wide (CHREC_RIGHT (op0)),
489 y: wi::to_wide (t: op1), TYPE_SIGN (type), overflow: &ovf);
490 if (ovf != wi::OVF_NONE)
491 {
492 tree utype = unsigned_type_for (type);
493 tree uop1 = chrec_convert_rhs (utype, op1);
494 tree uleft0 = chrec_convert_rhs (utype, CHREC_LEFT (op0));
495 tree uright0 = chrec_convert_rhs (utype, CHREC_RIGHT (op0));
496 tree left = chrec_fold_multiply (type: utype, op0: uleft0, op1: uop1);
497 tree right = chrec_fold_multiply (type: utype, op0: uright0, op1: uop1);
498 tree tem = build_polynomial_chrec (CHREC_VARIABLE (op0),
499 left, right);
500 return chrec_convert_rhs (type, tem);
501 }
502 }
503 tree left = chrec_fold_multiply (type, CHREC_LEFT (op0), op1);
504 tree right = chrec_fold_multiply (type, CHREC_RIGHT (op0), op1);
505 return build_polynomial_chrec (CHREC_VARIABLE (op0), left, right);
506 }
507
508 CASE_CONVERT:
509 if (tree_contains_chrecs (op0, NULL))
510 {
511 /* We can strip sign-conversions to signed by performing the
512 operation in unsigned. */
513 tree optype = TREE_TYPE (TREE_OPERAND (op0, 0));
514 if (INTEGRAL_TYPE_P (type)
515 && INTEGRAL_TYPE_P (optype)
516 && tree_nop_conversion_p (type, optype)
517 && TYPE_UNSIGNED (optype))
518 return chrec_convert (type,
519 chrec_fold_multiply (type: optype,
520 TREE_OPERAND (op0, 0),
521 op1: chrec_convert (optype,
522 op1,
523 NULL)),
524 NULL);
525 return chrec_dont_know;
526 }
527 /* FALLTHRU */
528
529 default:
530 gcc_checking_assert (!tree_contains_chrecs (op0, NULL));
531 if (integer_onep (op0))
532 return op1;
533
534 if (integer_zerop (op0))
535 return build_int_cst (type, 0);
536
537 switch (TREE_CODE (op1))
538 {
539 case POLYNOMIAL_CHREC:
540 gcc_unreachable ();
541
542 CASE_CONVERT:
543 if (tree_contains_chrecs (op1, NULL))
544 return chrec_fold_multiply (type, op0: op1, op1: op0);
545 /* FALLTHRU */
546
547 default:
548 if (integer_onep (op1))
549 return op0;
550 if (integer_zerop (op1))
551 return build_int_cst (type, 0);
552 return fold_build2 (MULT_EXPR, type, op0, op1);
553 }
554 }
555}
556
557
558
559/* Operations. */
560
561/* Evaluate the binomial coefficient. Return NULL_TREE if the intermediate
562 calculation overflows, otherwise return C(n,k) with type TYPE. */
563
564static tree
565tree_fold_binomial (tree type, tree n, unsigned int k)
566{
567 wi::overflow_type overflow;
568 unsigned int i;
569
570 /* Handle the most frequent cases. */
571 if (k == 0)
572 return build_int_cst (type, 1);
573 if (k == 1)
574 return fold_convert (type, n);
575
576 widest_int num = wi::to_widest (t: n);
577
578 /* Check that k <= n. */
579 if (wi::ltu_p (x: num, y: k))
580 return NULL_TREE;
581
582 /* Denominator = 2. */
583 widest_int denom = 2;
584
585 /* Index = Numerator-1. */
586 widest_int idx = num - 1;
587
588 /* Numerator = Numerator*Index = n*(n-1). */
589 num = wi::smul (x: num, y: idx, overflow: &overflow);
590 if (overflow)
591 return NULL_TREE;
592
593 for (i = 3; i <= k; i++)
594 {
595 /* Index--. */
596 --idx;
597
598 /* Numerator *= Index. */
599 num = wi::smul (x: num, y: idx, overflow: &overflow);
600 if (overflow)
601 return NULL_TREE;
602
603 /* Denominator *= i. */
604 denom *= i;
605 }
606
607 /* Result = Numerator / Denominator. */
608 num = wi::udiv_trunc (x: num, y: denom);
609 if (! wi::fits_to_tree_p (x: num, type))
610 return NULL_TREE;
611 return wide_int_to_tree (type, cst: num);
612}
613
614/* Helper function. Use the Newton's interpolating formula for
615 evaluating the value of the evolution function.
616 The result may be in an unsigned type of CHREC. */
617
618static tree
619chrec_evaluate (unsigned var, tree chrec, tree n, unsigned int k)
620{
621 tree arg0, arg1, binomial_n_k;
622 tree type = TREE_TYPE (chrec);
623 class loop *var_loop = get_loop (cfun, num: var);
624
625 while (TREE_CODE (chrec) == POLYNOMIAL_CHREC
626 && flow_loop_nested_p (var_loop, get_chrec_loop (chrec)))
627 chrec = CHREC_LEFT (chrec);
628
629 /* The formula associates the expression and thus we have to make
630 sure to not introduce undefined overflow. */
631 tree ctype = type;
632 if (INTEGRAL_TYPE_P (type)
633 && ! TYPE_OVERFLOW_WRAPS (type))
634 ctype = unsigned_type_for (type);
635
636 if (TREE_CODE (chrec) == POLYNOMIAL_CHREC
637 && CHREC_VARIABLE (chrec) == var)
638 {
639 arg1 = chrec_evaluate (var, CHREC_RIGHT (chrec), n, k: k + 1);
640 if (arg1 == chrec_dont_know)
641 return chrec_dont_know;
642 binomial_n_k = tree_fold_binomial (type: ctype, n, k);
643 if (!binomial_n_k)
644 return chrec_dont_know;
645 tree l = chrec_convert (ctype, CHREC_LEFT (chrec), NULL);
646 arg0 = fold_build2 (MULT_EXPR, ctype, l, binomial_n_k);
647 return chrec_fold_plus (type: ctype, op0: arg0, op1: arg1);
648 }
649
650 binomial_n_k = tree_fold_binomial (type: ctype, n, k);
651 if (!binomial_n_k)
652 return chrec_dont_know;
653
654 return fold_build2 (MULT_EXPR, ctype,
655 chrec_convert (ctype, chrec, NULL), binomial_n_k);
656}
657
658/* Evaluates "CHREC (X)" when the varying variable is VAR.
659 Example: Given the following parameters,
660
661 var = 1
662 chrec = {3, +, 4}_1
663 x = 10
664
665 The result is given by the Newton's interpolating formula:
666 3 * \binom{10}{0} + 4 * \binom{10}{1}.
667*/
668
669tree
670chrec_apply (unsigned var,
671 tree chrec,
672 tree x)
673{
674 tree type = chrec_type (chrec);
675 tree res = chrec_dont_know;
676
677 if (automatically_generated_chrec_p (chrec)
678 || automatically_generated_chrec_p (chrec: x)
679
680 /* When the symbols are defined in an outer loop, it is possible
681 to symbolically compute the apply, since the symbols are
682 constants with respect to the varying loop. */
683 || chrec_contains_symbols_defined_in_loop (chrec, var))
684 return chrec_dont_know;
685
686 if (dump_file && (dump_flags & TDF_SCEV))
687 fprintf (stream: dump_file, format: "(chrec_apply \n");
688
689 if (TREE_CODE (x) == INTEGER_CST && SCALAR_FLOAT_TYPE_P (type))
690 x = build_real_from_int_cst (type, x);
691
692 switch (TREE_CODE (chrec))
693 {
694 case POLYNOMIAL_CHREC:
695 if (evolution_function_is_affine_p (chrec))
696 {
697 tree chrecr = CHREC_RIGHT (chrec);
698 tree chrecl = CHREC_LEFT (chrec);
699 if (CHREC_VARIABLE (chrec) != var)
700 res = build_polynomial_chrec (CHREC_VARIABLE (chrec),
701 left: chrec_apply (var, chrec: chrecl, x),
702 right: chrec_apply (var, chrec: chrecr, x));
703
704 /* "{a, +, a}" (x-1) -> "a*x". */
705 else if (operand_equal_p (chrecl, chrecr)
706 && TREE_CODE (x) == PLUS_EXPR
707 && integer_all_onesp (TREE_OPERAND (x, 1))
708 && !POINTER_TYPE_P (type)
709 && TYPE_PRECISION (TREE_TYPE (x))
710 >= TYPE_PRECISION (type))
711 {
712 /* We know the number of iterations can't be negative. */
713 res = build_int_cst (TREE_TYPE (x), 1);
714 res = chrec_fold_plus (TREE_TYPE (x), op0: x, op1: res);
715 res = chrec_convert_rhs (type, res, NULL);
716 res = chrec_fold_multiply (type, op0: chrecr, op1: res);
717 }
718 /* "{a, +, b} (x)" -> "a + b*x". */
719 else
720 {
721 /* The overall increment might not fit in a signed type so
722 use an unsigned computation to get at the final value
723 and avoid undefined signed overflow. */
724 tree utype = TREE_TYPE (chrecr);
725 if (INTEGRAL_TYPE_P (utype) && !TYPE_OVERFLOW_WRAPS (utype))
726 utype = unsigned_type_for (TREE_TYPE (chrecr));
727 res = chrec_convert_rhs (utype, x, NULL);
728 res = chrec_fold_multiply (type: utype,
729 op0: chrec_convert (utype, chrecr, NULL),
730 op1: res);
731 /* When the resulting increment fits the original type
732 do the increment in it. */
733 if (TREE_CODE (res) == INTEGER_CST
734 && int_fits_type_p (res, TREE_TYPE (chrecr)))
735 {
736 res = chrec_convert (TREE_TYPE (chrecr), res, NULL);
737 res = chrec_fold_plus (type, op0: chrecl, op1: res);
738 }
739 else
740 {
741 res = chrec_fold_plus (type: utype,
742 op0: chrec_convert (utype, chrecl, NULL),
743 op1: res);
744 res = chrec_convert (type, res, NULL);
745 }
746 }
747 }
748 else if (TREE_CODE (x) == INTEGER_CST
749 && tree_int_cst_sgn (x) == 1)
750 /* testsuite/.../ssa-chrec-38.c. */
751 res = chrec_convert (type, chrec_evaluate (var, chrec, n: x, k: 0), NULL);
752 else
753 res = chrec_dont_know;
754 break;
755
756 CASE_CONVERT:
757 res = chrec_convert (TREE_TYPE (chrec),
758 chrec_apply (var, TREE_OPERAND (chrec, 0), x),
759 NULL);
760 break;
761
762 default:
763 res = chrec;
764 break;
765 }
766
767 if (dump_file && (dump_flags & TDF_SCEV))
768 {
769 fprintf (stream: dump_file, format: " (varying_loop = %d", var);
770 fprintf (stream: dump_file, format: ")\n (chrec = ");
771 print_generic_expr (dump_file, chrec);
772 fprintf (stream: dump_file, format: ")\n (x = ");
773 print_generic_expr (dump_file, x);
774 fprintf (stream: dump_file, format: ")\n (res = ");
775 print_generic_expr (dump_file, res);
776 fprintf (stream: dump_file, format: "))\n");
777 }
778
779 return res;
780}
781
782/* For a given CHREC and an induction variable map IV_MAP that maps
783 (loop->num, expr) for every loop number of the current_loops an
784 expression, calls chrec_apply when the expression is not NULL. */
785
786tree
787chrec_apply_map (tree chrec, vec<tree> iv_map)
788{
789 int i;
790 tree expr;
791
792 FOR_EACH_VEC_ELT (iv_map, i, expr)
793 if (expr)
794 chrec = chrec_apply (var: i, chrec, x: expr);
795
796 return chrec;
797}
798
799/* Replaces the initial condition in CHREC with INIT_COND. */
800
801tree
802chrec_replace_initial_condition (tree chrec,
803 tree init_cond)
804{
805 if (automatically_generated_chrec_p (chrec))
806 return chrec;
807
808 gcc_assert (chrec_type (chrec) == chrec_type (init_cond));
809
810 switch (TREE_CODE (chrec))
811 {
812 case POLYNOMIAL_CHREC:
813 return build_polynomial_chrec
814 (CHREC_VARIABLE (chrec),
815 left: chrec_replace_initial_condition (CHREC_LEFT (chrec), init_cond),
816 CHREC_RIGHT (chrec));
817
818 default:
819 return init_cond;
820 }
821}
822
823/* Returns the initial condition of a given CHREC. */
824
825tree
826initial_condition (tree chrec)
827{
828 if (automatically_generated_chrec_p (chrec))
829 return chrec;
830
831 if (TREE_CODE (chrec) == POLYNOMIAL_CHREC)
832 return initial_condition (CHREC_LEFT (chrec));
833 else
834 return chrec;
835}
836
837/* Returns a univariate function that represents the evolution in
838 LOOP_NUM. Mask the evolution of any other loop. */
839
840tree
841hide_evolution_in_other_loops_than_loop (tree chrec,
842 unsigned loop_num)
843{
844 class loop *loop = get_loop (cfun, num: loop_num), *chloop;
845 if (automatically_generated_chrec_p (chrec))
846 return chrec;
847
848 switch (TREE_CODE (chrec))
849 {
850 case POLYNOMIAL_CHREC:
851 chloop = get_chrec_loop (chrec);
852
853 if (chloop == loop)
854 return build_polynomial_chrec
855 (loop_num,
856 left: hide_evolution_in_other_loops_than_loop (CHREC_LEFT (chrec),
857 loop_num),
858 CHREC_RIGHT (chrec));
859
860 else if (flow_loop_nested_p (chloop, loop))
861 /* There is no evolution in this loop. */
862 return initial_condition (chrec);
863
864 else if (flow_loop_nested_p (loop, chloop))
865 return hide_evolution_in_other_loops_than_loop (CHREC_LEFT (chrec),
866 loop_num);
867
868 else
869 return chrec_dont_know;
870
871 default:
872 return chrec;
873 }
874}
875
876/* Returns the evolution part of CHREC in LOOP_NUM when RIGHT is
877 true, otherwise returns the initial condition in LOOP_NUM. */
878
879static tree
880chrec_component_in_loop_num (tree chrec,
881 unsigned loop_num,
882 bool right)
883{
884 tree component;
885 class loop *loop = get_loop (cfun, num: loop_num), *chloop;
886
887 if (automatically_generated_chrec_p (chrec))
888 return chrec;
889
890 switch (TREE_CODE (chrec))
891 {
892 case POLYNOMIAL_CHREC:
893 chloop = get_chrec_loop (chrec);
894
895 if (chloop == loop)
896 {
897 if (right)
898 component = CHREC_RIGHT (chrec);
899 else
900 component = CHREC_LEFT (chrec);
901
902 if (TREE_CODE (CHREC_LEFT (chrec)) != POLYNOMIAL_CHREC
903 || CHREC_VARIABLE (CHREC_LEFT (chrec)) != CHREC_VARIABLE (chrec))
904 return component;
905
906 else
907 return build_polynomial_chrec
908 (loop_num,
909 left: chrec_component_in_loop_num (CHREC_LEFT (chrec),
910 loop_num,
911 right),
912 right: component);
913 }
914
915 else if (flow_loop_nested_p (chloop, loop))
916 /* There is no evolution part in this loop. */
917 return NULL_TREE;
918
919 else
920 {
921 gcc_assert (flow_loop_nested_p (loop, chloop));
922 return chrec_component_in_loop_num (CHREC_LEFT (chrec),
923 loop_num,
924 right);
925 }
926
927 default:
928 if (right)
929 return NULL_TREE;
930 else
931 return chrec;
932 }
933}
934
935/* Returns the evolution part in LOOP_NUM. Example: the call
936 evolution_part_in_loop_num ({{0, +, 1}_1, +, 2}_1, 1) returns
937 {1, +, 2}_1 */
938
939tree
940evolution_part_in_loop_num (tree chrec,
941 unsigned loop_num)
942{
943 return chrec_component_in_loop_num (chrec, loop_num, right: true);
944}
945
946/* Returns the initial condition in LOOP_NUM. Example: the call
947 initial_condition_in_loop_num ({{0, +, 1}_1, +, 2}_2, 2) returns
948 {0, +, 1}_1 */
949
950tree
951initial_condition_in_loop_num (tree chrec,
952 unsigned loop_num)
953{
954 return chrec_component_in_loop_num (chrec, loop_num, right: false);
955}
956
957/* Set or reset the evolution of CHREC to NEW_EVOL in loop LOOP_NUM.
958 This function is essentially used for setting the evolution to
959 chrec_dont_know, for example after having determined that it is
960 impossible to say how many times a loop will execute. */
961
962tree
963reset_evolution_in_loop (unsigned loop_num,
964 tree chrec,
965 tree new_evol)
966{
967 class loop *loop = get_loop (cfun, num: loop_num);
968
969 if (POINTER_TYPE_P (chrec_type (chrec)))
970 gcc_assert (ptrofftype_p (chrec_type (new_evol)));
971 else
972 gcc_assert (chrec_type (chrec) == chrec_type (new_evol));
973
974 if (TREE_CODE (chrec) == POLYNOMIAL_CHREC
975 && flow_loop_nested_p (loop, get_chrec_loop (chrec)))
976 {
977 tree left = reset_evolution_in_loop (loop_num, CHREC_LEFT (chrec),
978 new_evol);
979 tree right = reset_evolution_in_loop (loop_num, CHREC_RIGHT (chrec),
980 new_evol);
981 return build_polynomial_chrec (CHREC_VARIABLE (chrec), left, right);
982 }
983
984 while (TREE_CODE (chrec) == POLYNOMIAL_CHREC
985 && CHREC_VARIABLE (chrec) == loop_num)
986 chrec = CHREC_LEFT (chrec);
987
988 return build_polynomial_chrec (loop_num, left: chrec, right: new_evol);
989}
990
991/* Merges two evolution functions that were found by following two
992 alternate paths of a conditional expression. */
993
994tree
995chrec_merge (tree chrec1,
996 tree chrec2)
997{
998 if (chrec1 == chrec_dont_know
999 || chrec2 == chrec_dont_know)
1000 return chrec_dont_know;
1001
1002 if (chrec1 == chrec_known
1003 || chrec2 == chrec_known)
1004 return chrec_known;
1005
1006 if (chrec1 == chrec_not_analyzed_yet)
1007 return chrec2;
1008 if (chrec2 == chrec_not_analyzed_yet)
1009 return chrec1;
1010
1011 if (eq_evolutions_p (chrec1, chrec2))
1012 return chrec1;
1013
1014 return chrec_dont_know;
1015}
1016
1017
1018
1019/* Observers. */
1020
1021/* Helper function for is_multivariate_chrec. */
1022
1023static bool
1024is_multivariate_chrec_rec (const_tree chrec, unsigned int rec_var)
1025{
1026 if (chrec == NULL_TREE)
1027 return false;
1028
1029 if (TREE_CODE (chrec) == POLYNOMIAL_CHREC)
1030 {
1031 if (CHREC_VARIABLE (chrec) != rec_var)
1032 return true;
1033 else
1034 return (is_multivariate_chrec_rec (CHREC_LEFT (chrec), rec_var)
1035 || is_multivariate_chrec_rec (CHREC_RIGHT (chrec), rec_var));
1036 }
1037 else
1038 return false;
1039}
1040
1041/* Determine whether the given chrec is multivariate or not. */
1042
1043bool
1044is_multivariate_chrec (const_tree chrec)
1045{
1046 if (chrec == NULL_TREE)
1047 return false;
1048
1049 if (TREE_CODE (chrec) == POLYNOMIAL_CHREC)
1050 return (is_multivariate_chrec_rec (CHREC_LEFT (chrec),
1051 CHREC_VARIABLE (chrec))
1052 || is_multivariate_chrec_rec (CHREC_RIGHT (chrec),
1053 CHREC_VARIABLE (chrec)));
1054 else
1055 return false;
1056}
1057
1058/* Determines whether the chrec contains symbolic names or not. If LOOP isn't
1059 NULL, we also consider chrec wrto outer loops of LOOP as symbol. */
1060
1061static bool
1062chrec_contains_symbols (const_tree chrec, hash_set<const_tree> &visited,
1063 class loop *loop)
1064{
1065 int i, n;
1066
1067 if (chrec == NULL_TREE)
1068 return false;
1069
1070 if (TREE_CODE (chrec) == SSA_NAME
1071 || VAR_P (chrec)
1072 || TREE_CODE (chrec) == POLY_INT_CST
1073 || TREE_CODE (chrec) == PARM_DECL
1074 || TREE_CODE (chrec) == FUNCTION_DECL
1075 || TREE_CODE (chrec) == LABEL_DECL
1076 || TREE_CODE (chrec) == RESULT_DECL
1077 || TREE_CODE (chrec) == FIELD_DECL)
1078 return true;
1079
1080 if (loop != NULL
1081 && TREE_CODE (chrec) == POLYNOMIAL_CHREC
1082 && flow_loop_nested_p (get_chrec_loop (chrec), loop))
1083 return true;
1084
1085 if (visited.add (k: chrec))
1086 return false;
1087
1088 n = TREE_OPERAND_LENGTH (chrec);
1089 for (i = 0; i < n; i++)
1090 if (chrec_contains_symbols (TREE_OPERAND (chrec, i), visited, loop))
1091 return true;
1092 return false;
1093}
1094
1095/* Return true if CHREC contains any symbols. If LOOP is not NULL, check if
1096 CHREC contains any chrec which is invariant wrto the loop (nest), in other
1097 words, chrec defined by outer loops of loop, so from LOOP's point of view,
1098 the chrec is considered as a SYMBOL. */
1099
1100bool
1101chrec_contains_symbols (const_tree chrec, class loop* loop)
1102{
1103 hash_set<const_tree> visited;
1104 return chrec_contains_symbols (chrec, visited, loop);
1105}
1106
1107/* Return true when CHREC contains symbolic names defined in
1108 LOOP_NB. */
1109
1110static bool
1111chrec_contains_symbols_defined_in_loop (const_tree chrec, unsigned loop_nb,
1112 hash_set<const_tree> &visited)
1113{
1114 int i, n;
1115
1116 if (chrec == NULL_TREE)
1117 return false;
1118
1119 if (is_gimple_min_invariant (chrec))
1120 return false;
1121
1122 if (TREE_CODE (chrec) == SSA_NAME)
1123 {
1124 gimple *def;
1125 loop_p def_loop, loop;
1126
1127 if (SSA_NAME_IS_DEFAULT_DEF (chrec))
1128 return false;
1129
1130 def = SSA_NAME_DEF_STMT (chrec);
1131 def_loop = loop_containing_stmt (stmt: def);
1132 loop = get_loop (cfun, num: loop_nb);
1133
1134 if (def_loop == NULL)
1135 return false;
1136
1137 if (loop == def_loop || flow_loop_nested_p (loop, def_loop))
1138 return true;
1139
1140 return false;
1141 }
1142
1143 if (visited.add (k: chrec))
1144 return false;
1145
1146 n = TREE_OPERAND_LENGTH (chrec);
1147 for (i = 0; i < n; i++)
1148 if (chrec_contains_symbols_defined_in_loop (TREE_OPERAND (chrec, i),
1149 loop_nb, visited))
1150 return true;
1151 return false;
1152}
1153
1154/* Return true when CHREC contains symbolic names defined in
1155 LOOP_NB. */
1156
1157bool
1158chrec_contains_symbols_defined_in_loop (const_tree chrec, unsigned loop_nb)
1159{
1160 hash_set<const_tree> visited;
1161 return chrec_contains_symbols_defined_in_loop (chrec, loop_nb, visited);
1162}
1163
1164/* Determines whether the chrec contains undetermined coefficients. */
1165
1166static bool
1167chrec_contains_undetermined (const_tree chrec, hash_set<const_tree> &visited)
1168{
1169 int i, n;
1170
1171 if (chrec == chrec_dont_know)
1172 return true;
1173
1174 if (chrec == NULL_TREE)
1175 return false;
1176
1177 if (visited.add (k: chrec))
1178 return false;
1179
1180 n = TREE_OPERAND_LENGTH (chrec);
1181 for (i = 0; i < n; i++)
1182 if (chrec_contains_undetermined (TREE_OPERAND (chrec, i), visited))
1183 return true;
1184 return false;
1185}
1186
1187bool
1188chrec_contains_undetermined (const_tree chrec)
1189{
1190 hash_set<const_tree> visited;
1191 return chrec_contains_undetermined (chrec, visited);
1192}
1193
1194/* Determines whether the tree EXPR contains chrecs, and increment
1195 SIZE if it is not a NULL pointer by an estimation of the depth of
1196 the tree. */
1197
1198static bool
1199tree_contains_chrecs (const_tree expr, int *size, hash_set<const_tree> &visited)
1200{
1201 int i, n;
1202
1203 if (expr == NULL_TREE)
1204 return false;
1205
1206 if (size)
1207 (*size)++;
1208
1209 if (tree_is_chrec (expr))
1210 return true;
1211
1212 if (visited.add (k: expr))
1213 return false;
1214
1215 n = TREE_OPERAND_LENGTH (expr);
1216 for (i = 0; i < n; i++)
1217 if (tree_contains_chrecs (TREE_OPERAND (expr, i), size, visited))
1218 return true;
1219 return false;
1220}
1221
1222bool
1223tree_contains_chrecs (const_tree expr, int *size)
1224{
1225 hash_set<const_tree> visited;
1226 return tree_contains_chrecs (expr, size, visited);
1227}
1228
1229
1230/* Recursive helper function. */
1231
1232static bool
1233evolution_function_is_invariant_rec_p (tree chrec, int loopnum)
1234{
1235 if (evolution_function_is_constant_p (chrec))
1236 return true;
1237
1238 if (TREE_CODE (chrec) == SSA_NAME
1239 && (loopnum == 0
1240 || expr_invariant_in_loop_p (get_loop (cfun, num: loopnum), chrec)))
1241 return true;
1242
1243 if (TREE_CODE (chrec) == POLYNOMIAL_CHREC)
1244 {
1245 if (CHREC_VARIABLE (chrec) == (unsigned) loopnum
1246 || flow_loop_nested_p (get_loop (cfun, num: loopnum),
1247 get_chrec_loop (chrec))
1248 || !evolution_function_is_invariant_rec_p (CHREC_RIGHT (chrec),
1249 loopnum)
1250 || !evolution_function_is_invariant_rec_p (CHREC_LEFT (chrec),
1251 loopnum))
1252 return false;
1253 return true;
1254 }
1255
1256 switch (TREE_OPERAND_LENGTH (chrec))
1257 {
1258 case 2:
1259 if (!evolution_function_is_invariant_rec_p (TREE_OPERAND (chrec, 1),
1260 loopnum))
1261 return false;
1262 /* FALLTHRU */
1263
1264 case 1:
1265 if (!evolution_function_is_invariant_rec_p (TREE_OPERAND (chrec, 0),
1266 loopnum))
1267 return false;
1268 return true;
1269
1270 default:
1271 return false;
1272 }
1273}
1274
1275/* Return true if CHREC is invariant in loop LOOPNUM, false otherwise. */
1276
1277bool
1278evolution_function_is_invariant_p (tree chrec, int loopnum)
1279{
1280 return evolution_function_is_invariant_rec_p (chrec, loopnum);
1281}
1282
1283/* Determine whether the given tree is an affine multivariate
1284 evolution. */
1285
1286bool
1287evolution_function_is_affine_multivariate_p (const_tree chrec, int loopnum)
1288{
1289 if (chrec == NULL_TREE)
1290 return false;
1291
1292 switch (TREE_CODE (chrec))
1293 {
1294 case POLYNOMIAL_CHREC:
1295 if (evolution_function_is_invariant_rec_p (CHREC_LEFT (chrec), loopnum))
1296 {
1297 if (evolution_function_is_invariant_rec_p (CHREC_RIGHT (chrec), loopnum))
1298 return true;
1299 else
1300 {
1301 if (TREE_CODE (CHREC_RIGHT (chrec)) == POLYNOMIAL_CHREC
1302 && CHREC_VARIABLE (CHREC_RIGHT (chrec))
1303 != CHREC_VARIABLE (chrec)
1304 && evolution_function_is_affine_multivariate_p
1305 (CHREC_RIGHT (chrec), loopnum))
1306 return true;
1307 else
1308 return false;
1309 }
1310 }
1311 else
1312 {
1313 if (evolution_function_is_invariant_rec_p (CHREC_RIGHT (chrec), loopnum)
1314 && TREE_CODE (CHREC_LEFT (chrec)) == POLYNOMIAL_CHREC
1315 && CHREC_VARIABLE (CHREC_LEFT (chrec)) != CHREC_VARIABLE (chrec)
1316 && evolution_function_is_affine_multivariate_p
1317 (CHREC_LEFT (chrec), loopnum))
1318 return true;
1319 else
1320 return false;
1321 }
1322
1323 default:
1324 return false;
1325 }
1326}
1327
1328/* Determine whether the given tree is a function in zero or one
1329 variables with respect to loop specified by LOOPNUM. Note only positive
1330 LOOPNUM stands for a real loop. */
1331
1332bool
1333evolution_function_is_univariate_p (const_tree chrec, int loopnum)
1334{
1335 if (chrec == NULL_TREE)
1336 return true;
1337
1338 tree sub_chrec;
1339 switch (TREE_CODE (chrec))
1340 {
1341 case POLYNOMIAL_CHREC:
1342 switch (TREE_CODE (CHREC_LEFT (chrec)))
1343 {
1344 case POLYNOMIAL_CHREC:
1345 sub_chrec = CHREC_LEFT (chrec);
1346 if (CHREC_VARIABLE (chrec) != CHREC_VARIABLE (sub_chrec)
1347 && (loopnum <= 0
1348 || CHREC_VARIABLE (sub_chrec) == (unsigned) loopnum
1349 || flow_loop_nested_p (get_loop (cfun, num: loopnum),
1350 get_chrec_loop (chrec: sub_chrec))))
1351 return false;
1352 if (!evolution_function_is_univariate_p (chrec: sub_chrec, loopnum))
1353 return false;
1354 break;
1355
1356 default:
1357 if (tree_contains_chrecs (CHREC_LEFT (chrec), NULL))
1358 return false;
1359 break;
1360 }
1361
1362 switch (TREE_CODE (CHREC_RIGHT (chrec)))
1363 {
1364 case POLYNOMIAL_CHREC:
1365 sub_chrec = CHREC_RIGHT (chrec);
1366 if (CHREC_VARIABLE (chrec) != CHREC_VARIABLE (sub_chrec)
1367 && (loopnum <= 0
1368 || CHREC_VARIABLE (sub_chrec) == (unsigned) loopnum
1369 || flow_loop_nested_p (get_loop (cfun, num: loopnum),
1370 get_chrec_loop (chrec: sub_chrec))))
1371 return false;
1372 if (!evolution_function_is_univariate_p (chrec: sub_chrec, loopnum))
1373 return false;
1374 break;
1375
1376 default:
1377 if (tree_contains_chrecs (CHREC_RIGHT (chrec), NULL))
1378 return false;
1379 break;
1380 }
1381 return true;
1382
1383 default:
1384 return true;
1385 }
1386}
1387
1388/* Returns the number of variables of CHREC. Example: the call
1389 nb_vars_in_chrec ({{0, +, 1}_5, +, 2}_6) returns 2. */
1390
1391unsigned
1392nb_vars_in_chrec (tree chrec)
1393{
1394 if (chrec == NULL_TREE)
1395 return 0;
1396
1397 switch (TREE_CODE (chrec))
1398 {
1399 case POLYNOMIAL_CHREC:
1400 return 1 + nb_vars_in_chrec
1401 (chrec: initial_condition_in_loop_num (chrec, CHREC_VARIABLE (chrec)));
1402
1403 default:
1404 return 0;
1405 }
1406}
1407
1408/* Converts BASE and STEP of affine scev to TYPE. LOOP is the loop whose iv
1409 the scev corresponds to. AT_STMT is the statement at that the scev is
1410 evaluated. USE_OVERFLOW_SEMANTICS is true if this function should assume
1411 that the rules for overflow of the given language apply (e.g., that signed
1412 arithmetics in C does not overflow) -- i.e., to use them to avoid
1413 unnecessary tests, but also to enforce that the result follows them.
1414 FROM is the source variable converted if it's not NULL. Returns true if
1415 the conversion succeeded, false otherwise. */
1416
1417bool
1418convert_affine_scev (class loop *loop, tree type,
1419 tree *base, tree *step, gimple *at_stmt,
1420 bool use_overflow_semantics, tree from)
1421{
1422 tree ct = TREE_TYPE (*step);
1423 bool enforce_overflow_semantics;
1424 bool must_check_src_overflow, must_check_rslt_overflow;
1425 tree new_base, new_step;
1426 tree step_type = POINTER_TYPE_P (type) ? sizetype : type;
1427
1428 /* In general,
1429 (TYPE) (BASE + STEP * i) = (TYPE) BASE + (TYPE -- sign extend) STEP * i,
1430 but we must check some assumptions.
1431
1432 1) If [BASE, +, STEP] wraps, the equation is not valid when precision
1433 of CT is smaller than the precision of TYPE. For example, when we
1434 cast unsigned char [254, +, 1] to unsigned, the values on left side
1435 are 254, 255, 0, 1, ..., but those on the right side are
1436 254, 255, 256, 257, ...
1437 2) In case that we must also preserve the fact that signed ivs do not
1438 overflow, we must additionally check that the new iv does not wrap.
1439 For example, unsigned char [125, +, 1] casted to signed char could
1440 become a wrapping variable with values 125, 126, 127, -128, -127, ...,
1441 which would confuse optimizers that assume that this does not
1442 happen. */
1443 must_check_src_overflow = TYPE_PRECISION (ct) < TYPE_PRECISION (type);
1444
1445 enforce_overflow_semantics = (use_overflow_semantics
1446 && nowrap_type_p (type));
1447 if (enforce_overflow_semantics)
1448 {
1449 /* We can avoid checking whether the result overflows in the following
1450 cases:
1451
1452 -- must_check_src_overflow is true, and the range of TYPE is superset
1453 of the range of CT -- i.e., in all cases except if CT signed and
1454 TYPE unsigned.
1455 -- both CT and TYPE have the same precision and signedness, and we
1456 verify instead that the source does not overflow (this may be
1457 easier than verifying it for the result, as we may use the
1458 information about the semantics of overflow in CT). */
1459 if (must_check_src_overflow)
1460 {
1461 if (TYPE_UNSIGNED (type) && !TYPE_UNSIGNED (ct))
1462 must_check_rslt_overflow = true;
1463 else
1464 must_check_rslt_overflow = false;
1465 }
1466 else if (TYPE_UNSIGNED (ct) == TYPE_UNSIGNED (type)
1467 && TYPE_PRECISION (ct) == TYPE_PRECISION (type))
1468 {
1469 must_check_rslt_overflow = false;
1470 must_check_src_overflow = true;
1471 }
1472 else
1473 must_check_rslt_overflow = true;
1474 }
1475 else
1476 must_check_rslt_overflow = false;
1477
1478 if (must_check_src_overflow
1479 && scev_probably_wraps_p (from, *base, *step, at_stmt, loop,
1480 use_overflow_semantics))
1481 return false;
1482
1483 new_base = chrec_convert (type, *base, at_stmt, use_overflow_semantics);
1484 /* The step must be sign extended, regardless of the signedness
1485 of CT and TYPE. This only needs to be handled specially when
1486 CT is unsigned -- to avoid e.g. unsigned char [100, +, 255]
1487 (with values 100, 99, 98, ...) from becoming signed or unsigned
1488 [100, +, 255] with values 100, 355, ...; the sign-extension is
1489 performed by default when CT is signed. */
1490 new_step = *step;
1491 if (TYPE_PRECISION (step_type) > TYPE_PRECISION (ct) && TYPE_UNSIGNED (ct))
1492 {
1493 tree signed_ct = build_nonstandard_integer_type (TYPE_PRECISION (ct), 0);
1494 new_step = chrec_convert (signed_ct, new_step, at_stmt,
1495 use_overflow_semantics);
1496 }
1497 new_step = chrec_convert (step_type, new_step, at_stmt,
1498 use_overflow_semantics);
1499
1500 if (automatically_generated_chrec_p (chrec: new_base)
1501 || automatically_generated_chrec_p (chrec: new_step))
1502 return false;
1503
1504 if (must_check_rslt_overflow
1505 /* Note that in this case we cannot use the fact that signed variables
1506 do not overflow, as this is what we are verifying for the new iv. */
1507 && scev_probably_wraps_p (NULL_TREE, new_base, new_step,
1508 at_stmt, loop, false))
1509 return false;
1510
1511 *base = new_base;
1512 *step = new_step;
1513 return true;
1514}
1515
1516
1517/* Convert CHREC for the right hand side of a CHREC.
1518 The increment for a pointer type is always sizetype. */
1519
1520tree
1521chrec_convert_rhs (tree type, tree chrec, gimple *at_stmt)
1522{
1523 if (POINTER_TYPE_P (type))
1524 type = sizetype;
1525
1526 return chrec_convert (type, chrec, at_stmt);
1527}
1528
1529/* Convert CHREC to TYPE. When the analyzer knows the context in
1530 which the CHREC is built, it sets AT_STMT to the statement that
1531 contains the definition of the analyzed variable, otherwise the
1532 conversion is less accurate: the information is used for
1533 determining a more accurate estimation of the number of iterations.
1534 By default AT_STMT could be safely set to NULL_TREE.
1535
1536 USE_OVERFLOW_SEMANTICS is true if this function should assume that
1537 the rules for overflow of the given language apply (e.g., that signed
1538 arithmetics in C does not overflow) -- i.e., to use them to avoid
1539 unnecessary tests, but also to enforce that the result follows them.
1540
1541 FROM is the source variable converted if it's not NULL. */
1542
1543static tree
1544chrec_convert_1 (tree type, tree chrec, gimple *at_stmt,
1545 bool use_overflow_semantics, tree from)
1546{
1547 tree ct, res;
1548 tree base, step;
1549 class loop *loop;
1550
1551 if (automatically_generated_chrec_p (chrec))
1552 return chrec;
1553
1554 ct = chrec_type (chrec);
1555 if (useless_type_conversion_p (type, ct))
1556 return chrec;
1557
1558 if (!evolution_function_is_affine_p (chrec))
1559 goto keep_cast;
1560
1561 loop = get_chrec_loop (chrec);
1562 base = CHREC_LEFT (chrec);
1563 step = CHREC_RIGHT (chrec);
1564
1565 if (convert_affine_scev (loop, type, base: &base, step: &step, at_stmt,
1566 use_overflow_semantics, from))
1567 return build_polynomial_chrec (loop_num: loop->num, left: base, right: step);
1568
1569 /* If we cannot propagate the cast inside the chrec, just keep the cast. */
1570keep_cast:
1571 /* Fold will not canonicalize (long)(i - 1) to (long)i - 1 because that
1572 may be more expensive. We do want to perform this optimization here
1573 though for canonicalization reasons. */
1574 if (use_overflow_semantics
1575 && (TREE_CODE (chrec) == PLUS_EXPR
1576 || TREE_CODE (chrec) == MINUS_EXPR)
1577 && TREE_CODE (type) == INTEGER_TYPE
1578 && TREE_CODE (ct) == INTEGER_TYPE
1579 && TYPE_PRECISION (type) > TYPE_PRECISION (ct)
1580 && TYPE_OVERFLOW_UNDEFINED (ct))
1581 res = fold_build2 (TREE_CODE (chrec), type,
1582 fold_convert (type, TREE_OPERAND (chrec, 0)),
1583 fold_convert (type, TREE_OPERAND (chrec, 1)));
1584 /* Similar perform the trick that (signed char)((int)x + 2) can be
1585 narrowed to (signed char)((unsigned char)x + 2). */
1586 else if (use_overflow_semantics
1587 && TREE_CODE (chrec) == POLYNOMIAL_CHREC
1588 && TREE_CODE (ct) == INTEGER_TYPE
1589 && TREE_CODE (type) == INTEGER_TYPE
1590 && TYPE_OVERFLOW_UNDEFINED (type)
1591 && TYPE_PRECISION (type) < TYPE_PRECISION (ct))
1592 {
1593 tree utype = unsigned_type_for (type);
1594 res = build_polynomial_chrec (CHREC_VARIABLE (chrec),
1595 fold_convert (utype,
1596 CHREC_LEFT (chrec)),
1597 fold_convert (utype,
1598 CHREC_RIGHT (chrec)));
1599 res = chrec_convert_1 (type, chrec: res, at_stmt, use_overflow_semantics, from);
1600 }
1601 else
1602 res = fold_convert (type, chrec);
1603
1604 /* Don't propagate overflows. */
1605 if (CONSTANT_CLASS_P (res))
1606 TREE_OVERFLOW (res) = 0;
1607
1608 /* But reject constants that don't fit in their type after conversion.
1609 This can happen if TYPE_MIN_VALUE or TYPE_MAX_VALUE are not the
1610 natural values associated with TYPE_PRECISION and TYPE_UNSIGNED,
1611 and can cause problems later when computing niters of loops. Note
1612 that we don't do the check before converting because we don't want
1613 to reject conversions of negative chrecs to unsigned types. */
1614 if (TREE_CODE (res) == INTEGER_CST
1615 && TREE_CODE (type) == INTEGER_TYPE
1616 && !int_fits_type_p (res, type))
1617 res = chrec_dont_know;
1618
1619 return res;
1620}
1621
1622/* Convert CHREC to TYPE. When the analyzer knows the context in
1623 which the CHREC is built, it sets AT_STMT to the statement that
1624 contains the definition of the analyzed variable, otherwise the
1625 conversion is less accurate: the information is used for
1626 determining a more accurate estimation of the number of iterations.
1627 By default AT_STMT could be safely set to NULL_TREE.
1628
1629 The following rule is always true: TREE_TYPE (chrec) ==
1630 TREE_TYPE (CHREC_LEFT (chrec)) == TREE_TYPE (CHREC_RIGHT (chrec)).
1631 An example of what could happen when adding two chrecs and the type
1632 of the CHREC_RIGHT is different than CHREC_LEFT is:
1633
1634 {(uint) 0, +, (uchar) 10} +
1635 {(uint) 0, +, (uchar) 250}
1636
1637 that would produce a wrong result if CHREC_RIGHT is not (uint):
1638
1639 {(uint) 0, +, (uchar) 4}
1640
1641 instead of
1642
1643 {(uint) 0, +, (uint) 260}
1644
1645 USE_OVERFLOW_SEMANTICS is true if this function should assume that
1646 the rules for overflow of the given language apply (e.g., that signed
1647 arithmetics in C does not overflow) -- i.e., to use them to avoid
1648 unnecessary tests, but also to enforce that the result follows them.
1649
1650 FROM is the source variable converted if it's not NULL. */
1651
1652tree
1653chrec_convert (tree type, tree chrec, gimple *at_stmt,
1654 bool use_overflow_semantics, tree from)
1655{
1656 return chrec_convert_1 (type, chrec, at_stmt, use_overflow_semantics, from);
1657}
1658
1659/* Convert CHREC to TYPE, without regard to signed overflows. Returns the new
1660 chrec if something else than what chrec_convert would do happens, NULL_TREE
1661 otherwise. This function set TRUE to variable pointed by FOLD_CONVERSIONS
1662 if the result chrec may overflow. */
1663
1664tree
1665chrec_convert_aggressive (tree type, tree chrec, bool *fold_conversions)
1666{
1667 tree inner_type, left, right, lc, rc, rtype;
1668
1669 gcc_assert (fold_conversions != NULL);
1670
1671 if (automatically_generated_chrec_p (chrec)
1672 || TREE_CODE (chrec) != POLYNOMIAL_CHREC)
1673 return NULL_TREE;
1674
1675 inner_type = TREE_TYPE (chrec);
1676 if (TYPE_PRECISION (type) > TYPE_PRECISION (inner_type))
1677 return NULL_TREE;
1678
1679 if (useless_type_conversion_p (type, inner_type))
1680 return NULL_TREE;
1681
1682 if (!*fold_conversions && evolution_function_is_affine_p (chrec))
1683 {
1684 tree base, step;
1685 class loop *loop;
1686
1687 loop = get_chrec_loop (chrec);
1688 base = CHREC_LEFT (chrec);
1689 step = CHREC_RIGHT (chrec);
1690 if (convert_affine_scev (loop, type, base: &base, step: &step, NULL, use_overflow_semantics: true))
1691 return build_polynomial_chrec (loop_num: loop->num, left: base, right: step);
1692 }
1693 rtype = POINTER_TYPE_P (type) ? sizetype : type;
1694
1695 left = CHREC_LEFT (chrec);
1696 right = CHREC_RIGHT (chrec);
1697 lc = chrec_convert_aggressive (type, chrec: left, fold_conversions);
1698 if (!lc)
1699 lc = chrec_convert (type, chrec: left, NULL);
1700 rc = chrec_convert_aggressive (type: rtype, chrec: right, fold_conversions);
1701 if (!rc)
1702 rc = chrec_convert (type: rtype, chrec: right, NULL);
1703
1704 *fold_conversions = true;
1705
1706 return build_polynomial_chrec (CHREC_VARIABLE (chrec), left: lc, right: rc);
1707}
1708
1709/* Returns true when CHREC0 == CHREC1. */
1710
1711bool
1712eq_evolutions_p (const_tree chrec0, const_tree chrec1)
1713{
1714 if (chrec0 == NULL_TREE
1715 || chrec1 == NULL_TREE
1716 || TREE_CODE (chrec0) != TREE_CODE (chrec1))
1717 return false;
1718
1719 if (chrec0 == chrec1)
1720 return true;
1721
1722 if (! types_compatible_p (TREE_TYPE (chrec0), TREE_TYPE (chrec1)))
1723 return false;
1724
1725 switch (TREE_CODE (chrec0))
1726 {
1727 case POLYNOMIAL_CHREC:
1728 return (CHREC_VARIABLE (chrec0) == CHREC_VARIABLE (chrec1)
1729 && eq_evolutions_p (CHREC_LEFT (chrec0), CHREC_LEFT (chrec1))
1730 && eq_evolutions_p (CHREC_RIGHT (chrec0), CHREC_RIGHT (chrec1)));
1731
1732 case PLUS_EXPR:
1733 case MULT_EXPR:
1734 case MINUS_EXPR:
1735 case POINTER_PLUS_EXPR:
1736 return eq_evolutions_p (TREE_OPERAND (chrec0, 0),
1737 TREE_OPERAND (chrec1, 0))
1738 && eq_evolutions_p (TREE_OPERAND (chrec0, 1),
1739 TREE_OPERAND (chrec1, 1));
1740
1741 CASE_CONVERT:
1742 return eq_evolutions_p (TREE_OPERAND (chrec0, 0),
1743 TREE_OPERAND (chrec1, 0));
1744
1745 default:
1746 return operand_equal_p (chrec0, chrec1, flags: 0);
1747 }
1748}
1749
1750/* Returns EV_GROWS if CHREC grows (assuming that it does not overflow),
1751 EV_DECREASES if it decreases, and EV_UNKNOWN if we cannot determine
1752 which of these cases happens. */
1753
1754enum ev_direction
1755scev_direction (const_tree chrec)
1756{
1757 const_tree step;
1758
1759 if (!evolution_function_is_affine_p (chrec))
1760 return EV_DIR_UNKNOWN;
1761
1762 step = CHREC_RIGHT (chrec);
1763 if (TREE_CODE (step) != INTEGER_CST)
1764 return EV_DIR_UNKNOWN;
1765
1766 if (tree_int_cst_sign_bit (step))
1767 return EV_DIR_DECREASES;
1768 else
1769 return EV_DIR_GROWS;
1770}
1771
1772/* Iterates over all the components of SCEV, and calls CBCK. */
1773
1774void
1775for_each_scev_op (tree *scev, bool (*cbck) (tree *, void *), void *data)
1776{
1777 switch (TREE_CODE_LENGTH (TREE_CODE (*scev)))
1778 {
1779 case 3:
1780 for_each_scev_op (scev: &TREE_OPERAND (*scev, 2), cbck, data);
1781 /* FALLTHRU */
1782
1783 case 2:
1784 for_each_scev_op (scev: &TREE_OPERAND (*scev, 1), cbck, data);
1785 /* FALLTHRU */
1786
1787 case 1:
1788 for_each_scev_op (scev: &TREE_OPERAND (*scev, 0), cbck, data);
1789 /* FALLTHRU */
1790
1791 default:
1792 cbck (scev, data);
1793 break;
1794 }
1795}
1796
1797/* Returns true when the operation can be part of a linear
1798 expression. */
1799
1800static inline bool
1801operator_is_linear (tree scev)
1802{
1803 switch (TREE_CODE (scev))
1804 {
1805 case INTEGER_CST:
1806 case POLYNOMIAL_CHREC:
1807 case PLUS_EXPR:
1808 case POINTER_PLUS_EXPR:
1809 case MULT_EXPR:
1810 case MINUS_EXPR:
1811 case NEGATE_EXPR:
1812 case SSA_NAME:
1813 case NON_LVALUE_EXPR:
1814 case BIT_NOT_EXPR:
1815 CASE_CONVERT:
1816 return true;
1817
1818 default:
1819 return false;
1820 }
1821}
1822
1823/* Return true when SCEV is a linear expression. Linear expressions
1824 can contain additions, substractions and multiplications.
1825 Multiplications are restricted to constant scaling: "cst * x". */
1826
1827bool
1828scev_is_linear_expression (tree scev)
1829{
1830 if (evolution_function_is_constant_p (chrec: scev))
1831 return true;
1832
1833 if (scev == NULL
1834 || !operator_is_linear (scev))
1835 return false;
1836
1837 if (TREE_CODE (scev) == MULT_EXPR)
1838 return !(tree_contains_chrecs (TREE_OPERAND (scev, 0), NULL)
1839 && tree_contains_chrecs (TREE_OPERAND (scev, 1), NULL));
1840
1841 if (TREE_CODE (scev) == POLYNOMIAL_CHREC
1842 && !evolution_function_is_affine_multivariate_p (chrec: scev, CHREC_VARIABLE (scev)))
1843 return false;
1844
1845 switch (TREE_CODE_LENGTH (TREE_CODE (scev)))
1846 {
1847 case 3:
1848 return scev_is_linear_expression (TREE_OPERAND (scev, 0))
1849 && scev_is_linear_expression (TREE_OPERAND (scev, 1))
1850 && scev_is_linear_expression (TREE_OPERAND (scev, 2));
1851
1852 case 2:
1853 return scev_is_linear_expression (TREE_OPERAND (scev, 0))
1854 && scev_is_linear_expression (TREE_OPERAND (scev, 1));
1855
1856 case 1:
1857 return scev_is_linear_expression (TREE_OPERAND (scev, 0));
1858
1859 case 0:
1860 return true;
1861
1862 default:
1863 return false;
1864 }
1865}
1866
1867/* Determines whether the expression CHREC contains only interger consts
1868 in the right parts. */
1869
1870bool
1871evolution_function_right_is_integer_cst (const_tree chrec)
1872{
1873 if (chrec == NULL_TREE)
1874 return false;
1875
1876 switch (TREE_CODE (chrec))
1877 {
1878 case INTEGER_CST:
1879 return true;
1880
1881 case POLYNOMIAL_CHREC:
1882 return TREE_CODE (CHREC_RIGHT (chrec)) == INTEGER_CST
1883 && (TREE_CODE (CHREC_LEFT (chrec)) != POLYNOMIAL_CHREC
1884 || evolution_function_right_is_integer_cst (CHREC_LEFT (chrec)));
1885
1886 CASE_CONVERT:
1887 return evolution_function_right_is_integer_cst (TREE_OPERAND (chrec, 0));
1888
1889 default:
1890 return false;
1891 }
1892}
1893

source code of gcc/tree-chrec.cc