1/*
2 * Handle unaligned accesses by emulation.
3 *
4 * This file is subject to the terms and conditions of the GNU General Public
5 * License. See the file "COPYING" in the main directory of this archive
6 * for more details.
7 *
8 * Copyright (C) 1996, 1998, 1999, 2002 by Ralf Baechle
9 * Copyright (C) 1999 Silicon Graphics, Inc.
10 * Copyright (C) 2014 Imagination Technologies Ltd.
11 *
12 * This file contains exception handler for address error exception with the
13 * special capability to execute faulting instructions in software. The
14 * handler does not try to handle the case when the program counter points
15 * to an address not aligned to a word boundary.
16 *
17 * Putting data to unaligned addresses is a bad practice even on Intel where
18 * only the performance is affected. Much worse is that such code is non-
19 * portable. Due to several programs that die on MIPS due to alignment
20 * problems I decided to implement this handler anyway though I originally
21 * didn't intend to do this at all for user code.
22 *
23 * For now I enable fixing of address errors by default to make life easier.
24 * I however intend to disable this somewhen in the future when the alignment
25 * problems with user programs have been fixed. For programmers this is the
26 * right way to go.
27 *
28 * Fixing address errors is a per process option. The option is inherited
29 * across fork(2) and execve(2) calls. If you really want to use the
30 * option in your user programs - I discourage the use of the software
31 * emulation strongly - use the following code in your userland stuff:
32 *
33 * #include <sys/sysmips.h>
34 *
35 * ...
36 * sysmips(MIPS_FIXADE, x);
37 * ...
38 *
39 * The argument x is 0 for disabling software emulation, enabled otherwise.
40 *
41 * Below a little program to play around with this feature.
42 *
43 * #include <stdio.h>
44 * #include <sys/sysmips.h>
45 *
46 * struct foo {
47 * unsigned char bar[8];
48 * };
49 *
50 * main(int argc, char *argv[])
51 * {
52 * struct foo x = {0, 1, 2, 3, 4, 5, 6, 7};
53 * unsigned int *p = (unsigned int *) (x.bar + 3);
54 * int i;
55 *
56 * if (argc > 1)
57 * sysmips(MIPS_FIXADE, atoi(argv[1]));
58 *
59 * printf("*p = %08lx\n", *p);
60 *
61 * *p = 0xdeadface;
62 *
63 * for(i = 0; i <= 7; i++)
64 * printf("%02x ", x.bar[i]);
65 * printf("\n");
66 * }
67 *
68 * Coprocessor loads are not supported; I think this case is unimportant
69 * in the practice.
70 *
71 * TODO: Handle ndc (attempted store to doubleword in uncached memory)
72 * exception for the R6000.
73 * A store crossing a page boundary might be executed only partially.
74 * Undo the partial store in this case.
75 */
76#include <linux/context_tracking.h>
77#include <linux/mm.h>
78#include <linux/signal.h>
79#include <linux/smp.h>
80#include <linux/sched.h>
81#include <linux/debugfs.h>
82#include <linux/perf_event.h>
83
84#include <asm/asm.h>
85#include <asm/branch.h>
86#include <asm/byteorder.h>
87#include <asm/cop2.h>
88#include <asm/debug.h>
89#include <asm/fpu.h>
90#include <asm/fpu_emulator.h>
91#include <asm/inst.h>
92#include <asm/unaligned-emul.h>
93#include <asm/mmu_context.h>
94#include <asm/traps.h>
95#include <linux/uaccess.h>
96
97#include "access-helper.h"
98
99enum {
100 UNALIGNED_ACTION_QUIET,
101 UNALIGNED_ACTION_SIGNAL,
102 UNALIGNED_ACTION_SHOW,
103};
104#ifdef CONFIG_DEBUG_FS
105static u32 unaligned_instructions;
106static u32 unaligned_action;
107#else
108#define unaligned_action UNALIGNED_ACTION_QUIET
109#endif
110extern void show_registers(struct pt_regs *regs);
111
112static void emulate_load_store_insn(struct pt_regs *regs,
113 void __user *addr, unsigned int *pc)
114{
115 unsigned long origpc, orig31, value;
116 union mips_instruction insn;
117 unsigned int res;
118 bool user = user_mode(regs);
119
120 origpc = (unsigned long)pc;
121 orig31 = regs->regs[31];
122
123 perf_sw_event(event_id: PERF_COUNT_SW_EMULATION_FAULTS, nr: 1, regs, addr: 0);
124
125 /*
126 * This load never faults.
127 */
128 __get_inst32(i: &insn.word, p: pc, user);
129
130 switch (insn.i_format.opcode) {
131 /*
132 * These are instructions that a compiler doesn't generate. We
133 * can assume therefore that the code is MIPS-aware and
134 * really buggy. Emulating these instructions would break the
135 * semantics anyway.
136 */
137 case ll_op:
138 case lld_op:
139 case sc_op:
140 case scd_op:
141
142 /*
143 * For these instructions the only way to create an address
144 * error is an attempted access to kernel/supervisor address
145 * space.
146 */
147 case ldl_op:
148 case ldr_op:
149 case lwl_op:
150 case lwr_op:
151 case sdl_op:
152 case sdr_op:
153 case swl_op:
154 case swr_op:
155 case lb_op:
156 case lbu_op:
157 case sb_op:
158 goto sigbus;
159
160 /*
161 * The remaining opcodes are the ones that are really of
162 * interest.
163 */
164#ifdef CONFIG_MACH_INGENIC
165 case spec2_op:
166 if (insn.mxu_lx_format.func != mxu_lx_op)
167 goto sigbus; /* other MXU instructions we don't care */
168
169 switch (insn.mxu_lx_format.op) {
170 case mxu_lxw_op:
171 if (user && !access_ok(addr, 4))
172 goto sigbus;
173 LoadW(addr, value, res);
174 if (res)
175 goto fault;
176 compute_return_epc(regs);
177 regs->regs[insn.mxu_lx_format.rd] = value;
178 break;
179 case mxu_lxh_op:
180 if (user && !access_ok(addr, 2))
181 goto sigbus;
182 LoadHW(addr, value, res);
183 if (res)
184 goto fault;
185 compute_return_epc(regs);
186 regs->regs[insn.dsp_format.rd] = value;
187 break;
188 case mxu_lxhu_op:
189 if (user && !access_ok(addr, 2))
190 goto sigbus;
191 LoadHWU(addr, value, res);
192 if (res)
193 goto fault;
194 compute_return_epc(regs);
195 regs->regs[insn.dsp_format.rd] = value;
196 break;
197 case mxu_lxb_op:
198 case mxu_lxbu_op:
199 goto sigbus;
200 default:
201 goto sigill;
202 }
203 break;
204#endif
205 case spec3_op:
206 if (insn.dsp_format.func == lx_op) {
207 switch (insn.dsp_format.op) {
208 case lwx_op:
209 if (user && !access_ok(addr, 4))
210 goto sigbus;
211 LoadW(addr, value, res);
212 if (res)
213 goto fault;
214 compute_return_epc(regs);
215 regs->regs[insn.dsp_format.rd] = value;
216 break;
217 case lhx_op:
218 if (user && !access_ok(addr, 2))
219 goto sigbus;
220 LoadHW(addr, value, res);
221 if (res)
222 goto fault;
223 compute_return_epc(regs);
224 regs->regs[insn.dsp_format.rd] = value;
225 break;
226 default:
227 goto sigill;
228 }
229 }
230#ifdef CONFIG_EVA
231 else {
232 /*
233 * we can land here only from kernel accessing user
234 * memory, so we need to "switch" the address limit to
235 * user space, so that address check can work properly.
236 */
237 switch (insn.spec3_format.func) {
238 case lhe_op:
239 if (!access_ok(addr, 2))
240 goto sigbus;
241 LoadHWE(addr, value, res);
242 if (res)
243 goto fault;
244 compute_return_epc(regs);
245 regs->regs[insn.spec3_format.rt] = value;
246 break;
247 case lwe_op:
248 if (!access_ok(addr, 4))
249 goto sigbus;
250 LoadWE(addr, value, res);
251 if (res)
252 goto fault;
253 compute_return_epc(regs);
254 regs->regs[insn.spec3_format.rt] = value;
255 break;
256 case lhue_op:
257 if (!access_ok(addr, 2))
258 goto sigbus;
259 LoadHWUE(addr, value, res);
260 if (res)
261 goto fault;
262 compute_return_epc(regs);
263 regs->regs[insn.spec3_format.rt] = value;
264 break;
265 case she_op:
266 if (!access_ok(addr, 2))
267 goto sigbus;
268 compute_return_epc(regs);
269 value = regs->regs[insn.spec3_format.rt];
270 StoreHWE(addr, value, res);
271 if (res)
272 goto fault;
273 break;
274 case swe_op:
275 if (!access_ok(addr, 4))
276 goto sigbus;
277 compute_return_epc(regs);
278 value = regs->regs[insn.spec3_format.rt];
279 StoreWE(addr, value, res);
280 if (res)
281 goto fault;
282 break;
283 default:
284 goto sigill;
285 }
286 }
287#endif
288 break;
289 case lh_op:
290 if (user && !access_ok(addr, 2))
291 goto sigbus;
292
293 if (IS_ENABLED(CONFIG_EVA) && user)
294 LoadHWE(addr, value, res);
295 else
296 LoadHW(addr, value, res);
297
298 if (res)
299 goto fault;
300 compute_return_epc(regs);
301 regs->regs[insn.i_format.rt] = value;
302 break;
303
304 case lw_op:
305 if (user && !access_ok(addr, 4))
306 goto sigbus;
307
308 if (IS_ENABLED(CONFIG_EVA) && user)
309 LoadWE(addr, value, res);
310 else
311 LoadW(addr, value, res);
312
313 if (res)
314 goto fault;
315 compute_return_epc(regs);
316 regs->regs[insn.i_format.rt] = value;
317 break;
318
319 case lhu_op:
320 if (user && !access_ok(addr, 2))
321 goto sigbus;
322
323 if (IS_ENABLED(CONFIG_EVA) && user)
324 LoadHWUE(addr, value, res);
325 else
326 LoadHWU(addr, value, res);
327
328 if (res)
329 goto fault;
330 compute_return_epc(regs);
331 regs->regs[insn.i_format.rt] = value;
332 break;
333
334 case lwu_op:
335#ifdef CONFIG_64BIT
336 /*
337 * A 32-bit kernel might be running on a 64-bit processor. But
338 * if we're on a 32-bit processor and an i-cache incoherency
339 * or race makes us see a 64-bit instruction here the sdl/sdr
340 * would blow up, so for now we don't handle unaligned 64-bit
341 * instructions on 32-bit kernels.
342 */
343 if (user && !access_ok(addr, 4))
344 goto sigbus;
345
346 LoadWU(addr, value, res);
347 if (res)
348 goto fault;
349 compute_return_epc(regs);
350 regs->regs[insn.i_format.rt] = value;
351 break;
352#endif /* CONFIG_64BIT */
353
354 /* Cannot handle 64-bit instructions in 32-bit kernel */
355 goto sigill;
356
357 case ld_op:
358#ifdef CONFIG_64BIT
359 /*
360 * A 32-bit kernel might be running on a 64-bit processor. But
361 * if we're on a 32-bit processor and an i-cache incoherency
362 * or race makes us see a 64-bit instruction here the sdl/sdr
363 * would blow up, so for now we don't handle unaligned 64-bit
364 * instructions on 32-bit kernels.
365 */
366 if (user && !access_ok(addr, 8))
367 goto sigbus;
368
369 LoadDW(addr, value, res);
370 if (res)
371 goto fault;
372 compute_return_epc(regs);
373 regs->regs[insn.i_format.rt] = value;
374 break;
375#endif /* CONFIG_64BIT */
376
377 /* Cannot handle 64-bit instructions in 32-bit kernel */
378 goto sigill;
379
380 case sh_op:
381 if (user && !access_ok(addr, 2))
382 goto sigbus;
383
384 compute_return_epc(regs);
385 value = regs->regs[insn.i_format.rt];
386
387 if (IS_ENABLED(CONFIG_EVA) && user)
388 StoreHWE(addr, value, res);
389 else
390 StoreHW(addr, value, res);
391
392 if (res)
393 goto fault;
394 break;
395
396 case sw_op:
397 if (user && !access_ok(addr, 4))
398 goto sigbus;
399
400 compute_return_epc(regs);
401 value = regs->regs[insn.i_format.rt];
402
403 if (IS_ENABLED(CONFIG_EVA) && user)
404 StoreWE(addr, value, res);
405 else
406 StoreW(addr, value, res);
407
408 if (res)
409 goto fault;
410 break;
411
412 case sd_op:
413#ifdef CONFIG_64BIT
414 /*
415 * A 32-bit kernel might be running on a 64-bit processor. But
416 * if we're on a 32-bit processor and an i-cache incoherency
417 * or race makes us see a 64-bit instruction here the sdl/sdr
418 * would blow up, so for now we don't handle unaligned 64-bit
419 * instructions on 32-bit kernels.
420 */
421 if (user && !access_ok(addr, 8))
422 goto sigbus;
423
424 compute_return_epc(regs);
425 value = regs->regs[insn.i_format.rt];
426 StoreDW(addr, value, res);
427 if (res)
428 goto fault;
429 break;
430#endif /* CONFIG_64BIT */
431
432 /* Cannot handle 64-bit instructions in 32-bit kernel */
433 goto sigill;
434
435#ifdef CONFIG_MIPS_FP_SUPPORT
436
437 case lwc1_op:
438 case ldc1_op:
439 case swc1_op:
440 case sdc1_op:
441 case cop1x_op: {
442 void __user *fault_addr = NULL;
443
444 die_if_kernel("Unaligned FP access in kernel code", regs);
445 BUG_ON(!used_math());
446
447 res = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1,
448 &fault_addr);
449 own_fpu(1); /* Restore FPU state. */
450
451 /* Signal if something went wrong. */
452 process_fpemu_return(res, fault_addr, 0);
453
454 if (res == 0)
455 break;
456 return;
457 }
458#endif /* CONFIG_MIPS_FP_SUPPORT */
459
460#ifdef CONFIG_CPU_HAS_MSA
461
462 case msa_op: {
463 unsigned int wd, preempted;
464 enum msa_2b_fmt df;
465 union fpureg *fpr;
466
467 if (!cpu_has_msa)
468 goto sigill;
469
470 /*
471 * If we've reached this point then userland should have taken
472 * the MSA disabled exception & initialised vector context at
473 * some point in the past.
474 */
475 BUG_ON(!thread_msa_context_live());
476
477 df = insn.msa_mi10_format.df;
478 wd = insn.msa_mi10_format.wd;
479 fpr = &current->thread.fpu.fpr[wd];
480
481 switch (insn.msa_mi10_format.func) {
482 case msa_ld_op:
483 if (!access_ok(addr, sizeof(*fpr)))
484 goto sigbus;
485
486 do {
487 /*
488 * If we have live MSA context keep track of
489 * whether we get preempted in order to avoid
490 * the register context we load being clobbered
491 * by the live context as it's saved during
492 * preemption. If we don't have live context
493 * then it can't be saved to clobber the value
494 * we load.
495 */
496 preempted = test_thread_flag(TIF_USEDMSA);
497
498 res = __copy_from_user_inatomic(fpr, addr,
499 sizeof(*fpr));
500 if (res)
501 goto fault;
502
503 /*
504 * Update the hardware register if it is in use
505 * by the task in this quantum, in order to
506 * avoid having to save & restore the whole
507 * vector context.
508 */
509 preempt_disable();
510 if (test_thread_flag(TIF_USEDMSA)) {
511 write_msa_wr(wd, fpr, df);
512 preempted = 0;
513 }
514 preempt_enable();
515 } while (preempted);
516 break;
517
518 case msa_st_op:
519 if (!access_ok(addr, sizeof(*fpr)))
520 goto sigbus;
521
522 /*
523 * Update from the hardware register if it is in use by
524 * the task in this quantum, in order to avoid having to
525 * save & restore the whole vector context.
526 */
527 preempt_disable();
528 if (test_thread_flag(TIF_USEDMSA))
529 read_msa_wr(wd, fpr, df);
530 preempt_enable();
531
532 res = __copy_to_user_inatomic(addr, fpr, sizeof(*fpr));
533 if (res)
534 goto fault;
535 break;
536
537 default:
538 goto sigbus;
539 }
540
541 compute_return_epc(regs);
542 break;
543 }
544#endif /* CONFIG_CPU_HAS_MSA */
545
546#ifndef CONFIG_CPU_MIPSR6
547 /*
548 * COP2 is available to implementor for application specific use.
549 * It's up to applications to register a notifier chain and do
550 * whatever they have to do, including possible sending of signals.
551 *
552 * This instruction has been reallocated in Release 6
553 */
554 case lwc2_op:
555 cu2_notifier_call_chain(CU2_LWC2_OP, regs);
556 break;
557
558 case ldc2_op:
559 cu2_notifier_call_chain(CU2_LDC2_OP, regs);
560 break;
561
562 case swc2_op:
563 cu2_notifier_call_chain(CU2_SWC2_OP, regs);
564 break;
565
566 case sdc2_op:
567 cu2_notifier_call_chain(CU2_SDC2_OP, regs);
568 break;
569#endif
570 default:
571 /*
572 * Pheeee... We encountered an yet unknown instruction or
573 * cache coherence problem. Die sucker, die ...
574 */
575 goto sigill;
576 }
577
578#ifdef CONFIG_DEBUG_FS
579 unaligned_instructions++;
580#endif
581
582 return;
583
584fault:
585 /* roll back jump/branch */
586 regs->cp0_epc = origpc;
587 regs->regs[31] = orig31;
588 /* Did we have an exception handler installed? */
589 if (fixup_exception(regs))
590 return;
591
592 die_if_kernel("Unhandled kernel unaligned access", regs);
593 force_sig(SIGSEGV);
594
595 return;
596
597sigbus:
598 die_if_kernel("Unhandled kernel unaligned access", regs);
599 force_sig(SIGBUS);
600
601 return;
602
603sigill:
604 die_if_kernel
605 ("Unhandled kernel unaligned access or invalid instruction", regs);
606 force_sig(SIGILL);
607}
608
609/* Recode table from 16-bit register notation to 32-bit GPR. */
610const int reg16to32[] = { 16, 17, 2, 3, 4, 5, 6, 7 };
611
612/* Recode table from 16-bit STORE register notation to 32-bit GPR. */
613static const int reg16to32st[] = { 0, 17, 2, 3, 4, 5, 6, 7 };
614
615static void emulate_load_store_microMIPS(struct pt_regs *regs,
616 void __user *addr)
617{
618 unsigned long value;
619 unsigned int res;
620 int i;
621 unsigned int reg = 0, rvar;
622 unsigned long orig31;
623 u16 __user *pc16;
624 u16 halfword;
625 unsigned int word;
626 unsigned long origpc, contpc;
627 union mips_instruction insn;
628 struct mm_decoded_insn mminsn;
629 bool user = user_mode(regs);
630
631 origpc = regs->cp0_epc;
632 orig31 = regs->regs[31];
633
634 mminsn.micro_mips_mode = 1;
635
636 /*
637 * This load never faults.
638 */
639 pc16 = (unsigned short __user *)msk_isa16_mode(regs->cp0_epc);
640 __get_user(halfword, pc16);
641 pc16++;
642 contpc = regs->cp0_epc + 2;
643 word = ((unsigned int)halfword << 16);
644 mminsn.pc_inc = 2;
645
646 if (!mm_insn_16bit(halfword)) {
647 __get_user(halfword, pc16);
648 pc16++;
649 contpc = regs->cp0_epc + 4;
650 mminsn.pc_inc = 4;
651 word |= halfword;
652 }
653 mminsn.insn = word;
654
655 if (get_user(halfword, pc16))
656 goto fault;
657 mminsn.next_pc_inc = 2;
658 word = ((unsigned int)halfword << 16);
659
660 if (!mm_insn_16bit(halfword)) {
661 pc16++;
662 if (get_user(halfword, pc16))
663 goto fault;
664 mminsn.next_pc_inc = 4;
665 word |= halfword;
666 }
667 mminsn.next_insn = word;
668
669 insn = (union mips_instruction)(mminsn.insn);
670 if (mm_isBranchInstr(regs, mminsn, &contpc))
671 insn = (union mips_instruction)(mminsn.next_insn);
672
673 /* Parse instruction to find what to do */
674
675 switch (insn.mm_i_format.opcode) {
676
677 case mm_pool32a_op:
678 switch (insn.mm_x_format.func) {
679 case mm_lwxs_op:
680 reg = insn.mm_x_format.rd;
681 goto loadW;
682 }
683
684 goto sigbus;
685
686 case mm_pool32b_op:
687 switch (insn.mm_m_format.func) {
688 case mm_lwp_func:
689 reg = insn.mm_m_format.rd;
690 if (reg == 31)
691 goto sigbus;
692
693 if (user && !access_ok(addr, 8))
694 goto sigbus;
695
696 LoadW(addr, value, res);
697 if (res)
698 goto fault;
699 regs->regs[reg] = value;
700 addr += 4;
701 LoadW(addr, value, res);
702 if (res)
703 goto fault;
704 regs->regs[reg + 1] = value;
705 goto success;
706
707 case mm_swp_func:
708 reg = insn.mm_m_format.rd;
709 if (reg == 31)
710 goto sigbus;
711
712 if (user && !access_ok(addr, 8))
713 goto sigbus;
714
715 value = regs->regs[reg];
716 StoreW(addr, value, res);
717 if (res)
718 goto fault;
719 addr += 4;
720 value = regs->regs[reg + 1];
721 StoreW(addr, value, res);
722 if (res)
723 goto fault;
724 goto success;
725
726 case mm_ldp_func:
727#ifdef CONFIG_64BIT
728 reg = insn.mm_m_format.rd;
729 if (reg == 31)
730 goto sigbus;
731
732 if (user && !access_ok(addr, 16))
733 goto sigbus;
734
735 LoadDW(addr, value, res);
736 if (res)
737 goto fault;
738 regs->regs[reg] = value;
739 addr += 8;
740 LoadDW(addr, value, res);
741 if (res)
742 goto fault;
743 regs->regs[reg + 1] = value;
744 goto success;
745#endif /* CONFIG_64BIT */
746
747 goto sigill;
748
749 case mm_sdp_func:
750#ifdef CONFIG_64BIT
751 reg = insn.mm_m_format.rd;
752 if (reg == 31)
753 goto sigbus;
754
755 if (user && !access_ok(addr, 16))
756 goto sigbus;
757
758 value = regs->regs[reg];
759 StoreDW(addr, value, res);
760 if (res)
761 goto fault;
762 addr += 8;
763 value = regs->regs[reg + 1];
764 StoreDW(addr, value, res);
765 if (res)
766 goto fault;
767 goto success;
768#endif /* CONFIG_64BIT */
769
770 goto sigill;
771
772 case mm_lwm32_func:
773 reg = insn.mm_m_format.rd;
774 rvar = reg & 0xf;
775 if ((rvar > 9) || !reg)
776 goto sigill;
777 if (reg & 0x10) {
778 if (user && !access_ok(addr, 4 * (rvar + 1)))
779 goto sigbus;
780 } else {
781 if (user && !access_ok(addr, 4 * rvar))
782 goto sigbus;
783 }
784 if (rvar == 9)
785 rvar = 8;
786 for (i = 16; rvar; rvar--, i++) {
787 LoadW(addr, value, res);
788 if (res)
789 goto fault;
790 addr += 4;
791 regs->regs[i] = value;
792 }
793 if ((reg & 0xf) == 9) {
794 LoadW(addr, value, res);
795 if (res)
796 goto fault;
797 addr += 4;
798 regs->regs[30] = value;
799 }
800 if (reg & 0x10) {
801 LoadW(addr, value, res);
802 if (res)
803 goto fault;
804 regs->regs[31] = value;
805 }
806 goto success;
807
808 case mm_swm32_func:
809 reg = insn.mm_m_format.rd;
810 rvar = reg & 0xf;
811 if ((rvar > 9) || !reg)
812 goto sigill;
813 if (reg & 0x10) {
814 if (user && !access_ok(addr, 4 * (rvar + 1)))
815 goto sigbus;
816 } else {
817 if (user && !access_ok(addr, 4 * rvar))
818 goto sigbus;
819 }
820 if (rvar == 9)
821 rvar = 8;
822 for (i = 16; rvar; rvar--, i++) {
823 value = regs->regs[i];
824 StoreW(addr, value, res);
825 if (res)
826 goto fault;
827 addr += 4;
828 }
829 if ((reg & 0xf) == 9) {
830 value = regs->regs[30];
831 StoreW(addr, value, res);
832 if (res)
833 goto fault;
834 addr += 4;
835 }
836 if (reg & 0x10) {
837 value = regs->regs[31];
838 StoreW(addr, value, res);
839 if (res)
840 goto fault;
841 }
842 goto success;
843
844 case mm_ldm_func:
845#ifdef CONFIG_64BIT
846 reg = insn.mm_m_format.rd;
847 rvar = reg & 0xf;
848 if ((rvar > 9) || !reg)
849 goto sigill;
850 if (reg & 0x10) {
851 if (user && !access_ok(addr, 8 * (rvar + 1)))
852 goto sigbus;
853 } else {
854 if (user && !access_ok(addr, 8 * rvar))
855 goto sigbus;
856 }
857 if (rvar == 9)
858 rvar = 8;
859
860 for (i = 16; rvar; rvar--, i++) {
861 LoadDW(addr, value, res);
862 if (res)
863 goto fault;
864 addr += 4;
865 regs->regs[i] = value;
866 }
867 if ((reg & 0xf) == 9) {
868 LoadDW(addr, value, res);
869 if (res)
870 goto fault;
871 addr += 8;
872 regs->regs[30] = value;
873 }
874 if (reg & 0x10) {
875 LoadDW(addr, value, res);
876 if (res)
877 goto fault;
878 regs->regs[31] = value;
879 }
880 goto success;
881#endif /* CONFIG_64BIT */
882
883 goto sigill;
884
885 case mm_sdm_func:
886#ifdef CONFIG_64BIT
887 reg = insn.mm_m_format.rd;
888 rvar = reg & 0xf;
889 if ((rvar > 9) || !reg)
890 goto sigill;
891 if (reg & 0x10) {
892 if (user && !access_ok(addr, 8 * (rvar + 1)))
893 goto sigbus;
894 } else {
895 if (user && !access_ok(addr, 8 * rvar))
896 goto sigbus;
897 }
898 if (rvar == 9)
899 rvar = 8;
900
901 for (i = 16; rvar; rvar--, i++) {
902 value = regs->regs[i];
903 StoreDW(addr, value, res);
904 if (res)
905 goto fault;
906 addr += 8;
907 }
908 if ((reg & 0xf) == 9) {
909 value = regs->regs[30];
910 StoreDW(addr, value, res);
911 if (res)
912 goto fault;
913 addr += 8;
914 }
915 if (reg & 0x10) {
916 value = regs->regs[31];
917 StoreDW(addr, value, res);
918 if (res)
919 goto fault;
920 }
921 goto success;
922#endif /* CONFIG_64BIT */
923
924 goto sigill;
925
926 /* LWC2, SWC2, LDC2, SDC2 are not serviced */
927 }
928
929 goto sigbus;
930
931 case mm_pool32c_op:
932 switch (insn.mm_m_format.func) {
933 case mm_lwu_func:
934 reg = insn.mm_m_format.rd;
935 goto loadWU;
936 }
937
938 /* LL,SC,LLD,SCD are not serviced */
939 goto sigbus;
940
941#ifdef CONFIG_MIPS_FP_SUPPORT
942 case mm_pool32f_op:
943 switch (insn.mm_x_format.func) {
944 case mm_lwxc1_func:
945 case mm_swxc1_func:
946 case mm_ldxc1_func:
947 case mm_sdxc1_func:
948 goto fpu_emul;
949 }
950
951 goto sigbus;
952
953 case mm_ldc132_op:
954 case mm_sdc132_op:
955 case mm_lwc132_op:
956 case mm_swc132_op: {
957 void __user *fault_addr = NULL;
958
959fpu_emul:
960 /* roll back jump/branch */
961 regs->cp0_epc = origpc;
962 regs->regs[31] = orig31;
963
964 die_if_kernel("Unaligned FP access in kernel code", regs);
965 BUG_ON(!used_math());
966 BUG_ON(!is_fpu_owner());
967
968 res = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1,
969 &fault_addr);
970 own_fpu(1); /* restore FPU state */
971
972 /* If something went wrong, signal */
973 process_fpemu_return(res, fault_addr, 0);
974
975 if (res == 0)
976 goto success;
977 return;
978 }
979#endif /* CONFIG_MIPS_FP_SUPPORT */
980
981 case mm_lh32_op:
982 reg = insn.mm_i_format.rt;
983 goto loadHW;
984
985 case mm_lhu32_op:
986 reg = insn.mm_i_format.rt;
987 goto loadHWU;
988
989 case mm_lw32_op:
990 reg = insn.mm_i_format.rt;
991 goto loadW;
992
993 case mm_sh32_op:
994 reg = insn.mm_i_format.rt;
995 goto storeHW;
996
997 case mm_sw32_op:
998 reg = insn.mm_i_format.rt;
999 goto storeW;
1000
1001 case mm_ld32_op:
1002 reg = insn.mm_i_format.rt;
1003 goto loadDW;
1004
1005 case mm_sd32_op:
1006 reg = insn.mm_i_format.rt;
1007 goto storeDW;
1008
1009 case mm_pool16c_op:
1010 switch (insn.mm16_m_format.func) {
1011 case mm_lwm16_op:
1012 reg = insn.mm16_m_format.rlist;
1013 rvar = reg + 1;
1014 if (user && !access_ok(addr, 4 * rvar))
1015 goto sigbus;
1016
1017 for (i = 16; rvar; rvar--, i++) {
1018 LoadW(addr, value, res);
1019 if (res)
1020 goto fault;
1021 addr += 4;
1022 regs->regs[i] = value;
1023 }
1024 LoadW(addr, value, res);
1025 if (res)
1026 goto fault;
1027 regs->regs[31] = value;
1028
1029 goto success;
1030
1031 case mm_swm16_op:
1032 reg = insn.mm16_m_format.rlist;
1033 rvar = reg + 1;
1034 if (user && !access_ok(addr, 4 * rvar))
1035 goto sigbus;
1036
1037 for (i = 16; rvar; rvar--, i++) {
1038 value = regs->regs[i];
1039 StoreW(addr, value, res);
1040 if (res)
1041 goto fault;
1042 addr += 4;
1043 }
1044 value = regs->regs[31];
1045 StoreW(addr, value, res);
1046 if (res)
1047 goto fault;
1048
1049 goto success;
1050
1051 }
1052
1053 goto sigbus;
1054
1055 case mm_lhu16_op:
1056 reg = reg16to32[insn.mm16_rb_format.rt];
1057 goto loadHWU;
1058
1059 case mm_lw16_op:
1060 reg = reg16to32[insn.mm16_rb_format.rt];
1061 goto loadW;
1062
1063 case mm_sh16_op:
1064 reg = reg16to32st[insn.mm16_rb_format.rt];
1065 goto storeHW;
1066
1067 case mm_sw16_op:
1068 reg = reg16to32st[insn.mm16_rb_format.rt];
1069 goto storeW;
1070
1071 case mm_lwsp16_op:
1072 reg = insn.mm16_r5_format.rt;
1073 goto loadW;
1074
1075 case mm_swsp16_op:
1076 reg = insn.mm16_r5_format.rt;
1077 goto storeW;
1078
1079 case mm_lwgp16_op:
1080 reg = reg16to32[insn.mm16_r3_format.rt];
1081 goto loadW;
1082
1083 default:
1084 goto sigill;
1085 }
1086
1087loadHW:
1088 if (user && !access_ok(addr, 2))
1089 goto sigbus;
1090
1091 LoadHW(addr, value, res);
1092 if (res)
1093 goto fault;
1094 regs->regs[reg] = value;
1095 goto success;
1096
1097loadHWU:
1098 if (user && !access_ok(addr, 2))
1099 goto sigbus;
1100
1101 LoadHWU(addr, value, res);
1102 if (res)
1103 goto fault;
1104 regs->regs[reg] = value;
1105 goto success;
1106
1107loadW:
1108 if (user && !access_ok(addr, 4))
1109 goto sigbus;
1110
1111 LoadW(addr, value, res);
1112 if (res)
1113 goto fault;
1114 regs->regs[reg] = value;
1115 goto success;
1116
1117loadWU:
1118#ifdef CONFIG_64BIT
1119 /*
1120 * A 32-bit kernel might be running on a 64-bit processor. But
1121 * if we're on a 32-bit processor and an i-cache incoherency
1122 * or race makes us see a 64-bit instruction here the sdl/sdr
1123 * would blow up, so for now we don't handle unaligned 64-bit
1124 * instructions on 32-bit kernels.
1125 */
1126 if (user && !access_ok(addr, 4))
1127 goto sigbus;
1128
1129 LoadWU(addr, value, res);
1130 if (res)
1131 goto fault;
1132 regs->regs[reg] = value;
1133 goto success;
1134#endif /* CONFIG_64BIT */
1135
1136 /* Cannot handle 64-bit instructions in 32-bit kernel */
1137 goto sigill;
1138
1139loadDW:
1140#ifdef CONFIG_64BIT
1141 /*
1142 * A 32-bit kernel might be running on a 64-bit processor. But
1143 * if we're on a 32-bit processor and an i-cache incoherency
1144 * or race makes us see a 64-bit instruction here the sdl/sdr
1145 * would blow up, so for now we don't handle unaligned 64-bit
1146 * instructions on 32-bit kernels.
1147 */
1148 if (user && !access_ok(addr, 8))
1149 goto sigbus;
1150
1151 LoadDW(addr, value, res);
1152 if (res)
1153 goto fault;
1154 regs->regs[reg] = value;
1155 goto success;
1156#endif /* CONFIG_64BIT */
1157
1158 /* Cannot handle 64-bit instructions in 32-bit kernel */
1159 goto sigill;
1160
1161storeHW:
1162 if (user && !access_ok(addr, 2))
1163 goto sigbus;
1164
1165 value = regs->regs[reg];
1166 StoreHW(addr, value, res);
1167 if (res)
1168 goto fault;
1169 goto success;
1170
1171storeW:
1172 if (user && !access_ok(addr, 4))
1173 goto sigbus;
1174
1175 value = regs->regs[reg];
1176 StoreW(addr, value, res);
1177 if (res)
1178 goto fault;
1179 goto success;
1180
1181storeDW:
1182#ifdef CONFIG_64BIT
1183 /*
1184 * A 32-bit kernel might be running on a 64-bit processor. But
1185 * if we're on a 32-bit processor and an i-cache incoherency
1186 * or race makes us see a 64-bit instruction here the sdl/sdr
1187 * would blow up, so for now we don't handle unaligned 64-bit
1188 * instructions on 32-bit kernels.
1189 */
1190 if (user && !access_ok(addr, 8))
1191 goto sigbus;
1192
1193 value = regs->regs[reg];
1194 StoreDW(addr, value, res);
1195 if (res)
1196 goto fault;
1197 goto success;
1198#endif /* CONFIG_64BIT */
1199
1200 /* Cannot handle 64-bit instructions in 32-bit kernel */
1201 goto sigill;
1202
1203success:
1204 regs->cp0_epc = contpc; /* advance or branch */
1205
1206#ifdef CONFIG_DEBUG_FS
1207 unaligned_instructions++;
1208#endif
1209 return;
1210
1211fault:
1212 /* roll back jump/branch */
1213 regs->cp0_epc = origpc;
1214 regs->regs[31] = orig31;
1215 /* Did we have an exception handler installed? */
1216 if (fixup_exception(regs))
1217 return;
1218
1219 die_if_kernel("Unhandled kernel unaligned access", regs);
1220 force_sig(SIGSEGV);
1221
1222 return;
1223
1224sigbus:
1225 die_if_kernel("Unhandled kernel unaligned access", regs);
1226 force_sig(SIGBUS);
1227
1228 return;
1229
1230sigill:
1231 die_if_kernel
1232 ("Unhandled kernel unaligned access or invalid instruction", regs);
1233 force_sig(SIGILL);
1234}
1235
1236static void emulate_load_store_MIPS16e(struct pt_regs *regs, void __user * addr)
1237{
1238 unsigned long value;
1239 unsigned int res;
1240 int reg;
1241 unsigned long orig31;
1242 u16 __user *pc16;
1243 unsigned long origpc;
1244 union mips16e_instruction mips16inst, oldinst;
1245 unsigned int opcode;
1246 int extended = 0;
1247 bool user = user_mode(regs);
1248
1249 origpc = regs->cp0_epc;
1250 orig31 = regs->regs[31];
1251 pc16 = (unsigned short __user *)msk_isa16_mode(origpc);
1252 /*
1253 * This load never faults.
1254 */
1255 __get_user(mips16inst.full, pc16);
1256 oldinst = mips16inst;
1257
1258 /* skip EXTEND instruction */
1259 if (mips16inst.ri.opcode == MIPS16e_extend_op) {
1260 extended = 1;
1261 pc16++;
1262 __get_user(mips16inst.full, pc16);
1263 } else if (delay_slot(regs)) {
1264 /* skip jump instructions */
1265 /* JAL/JALX are 32 bits but have OPCODE in first short int */
1266 if (mips16inst.ri.opcode == MIPS16e_jal_op)
1267 pc16++;
1268 pc16++;
1269 if (get_user(mips16inst.full, pc16))
1270 goto sigbus;
1271 }
1272
1273 opcode = mips16inst.ri.opcode;
1274 switch (opcode) {
1275 case MIPS16e_i64_op: /* I64 or RI64 instruction */
1276 switch (mips16inst.i64.func) { /* I64/RI64 func field check */
1277 case MIPS16e_ldpc_func:
1278 case MIPS16e_ldsp_func:
1279 reg = reg16to32[mips16inst.ri64.ry];
1280 goto loadDW;
1281
1282 case MIPS16e_sdsp_func:
1283 reg = reg16to32[mips16inst.ri64.ry];
1284 goto writeDW;
1285
1286 case MIPS16e_sdrasp_func:
1287 reg = 29; /* GPRSP */
1288 goto writeDW;
1289 }
1290
1291 goto sigbus;
1292
1293 case MIPS16e_swsp_op:
1294 reg = reg16to32[mips16inst.ri.rx];
1295 if (extended && cpu_has_mips16e2)
1296 switch (mips16inst.ri.imm >> 5) {
1297 case 0: /* SWSP */
1298 case 1: /* SWGP */
1299 break;
1300 case 2: /* SHGP */
1301 opcode = MIPS16e_sh_op;
1302 break;
1303 default:
1304 goto sigbus;
1305 }
1306 break;
1307
1308 case MIPS16e_lwpc_op:
1309 reg = reg16to32[mips16inst.ri.rx];
1310 break;
1311
1312 case MIPS16e_lwsp_op:
1313 reg = reg16to32[mips16inst.ri.rx];
1314 if (extended && cpu_has_mips16e2)
1315 switch (mips16inst.ri.imm >> 5) {
1316 case 0: /* LWSP */
1317 case 1: /* LWGP */
1318 break;
1319 case 2: /* LHGP */
1320 opcode = MIPS16e_lh_op;
1321 break;
1322 case 4: /* LHUGP */
1323 opcode = MIPS16e_lhu_op;
1324 break;
1325 default:
1326 goto sigbus;
1327 }
1328 break;
1329
1330 case MIPS16e_i8_op:
1331 if (mips16inst.i8.func != MIPS16e_swrasp_func)
1332 goto sigbus;
1333 reg = 29; /* GPRSP */
1334 break;
1335
1336 default:
1337 reg = reg16to32[mips16inst.rri.ry];
1338 break;
1339 }
1340
1341 switch (opcode) {
1342
1343 case MIPS16e_lb_op:
1344 case MIPS16e_lbu_op:
1345 case MIPS16e_sb_op:
1346 goto sigbus;
1347
1348 case MIPS16e_lh_op:
1349 if (user && !access_ok(addr, 2))
1350 goto sigbus;
1351
1352 LoadHW(addr, value, res);
1353 if (res)
1354 goto fault;
1355 MIPS16e_compute_return_epc(regs, &oldinst);
1356 regs->regs[reg] = value;
1357 break;
1358
1359 case MIPS16e_lhu_op:
1360 if (user && !access_ok(addr, 2))
1361 goto sigbus;
1362
1363 LoadHWU(addr, value, res);
1364 if (res)
1365 goto fault;
1366 MIPS16e_compute_return_epc(regs, &oldinst);
1367 regs->regs[reg] = value;
1368 break;
1369
1370 case MIPS16e_lw_op:
1371 case MIPS16e_lwpc_op:
1372 case MIPS16e_lwsp_op:
1373 if (user && !access_ok(addr, 4))
1374 goto sigbus;
1375
1376 LoadW(addr, value, res);
1377 if (res)
1378 goto fault;
1379 MIPS16e_compute_return_epc(regs, &oldinst);
1380 regs->regs[reg] = value;
1381 break;
1382
1383 case MIPS16e_lwu_op:
1384#ifdef CONFIG_64BIT
1385 /*
1386 * A 32-bit kernel might be running on a 64-bit processor. But
1387 * if we're on a 32-bit processor and an i-cache incoherency
1388 * or race makes us see a 64-bit instruction here the sdl/sdr
1389 * would blow up, so for now we don't handle unaligned 64-bit
1390 * instructions on 32-bit kernels.
1391 */
1392 if (user && !access_ok(addr, 4))
1393 goto sigbus;
1394
1395 LoadWU(addr, value, res);
1396 if (res)
1397 goto fault;
1398 MIPS16e_compute_return_epc(regs, &oldinst);
1399 regs->regs[reg] = value;
1400 break;
1401#endif /* CONFIG_64BIT */
1402
1403 /* Cannot handle 64-bit instructions in 32-bit kernel */
1404 goto sigill;
1405
1406 case MIPS16e_ld_op:
1407loadDW:
1408#ifdef CONFIG_64BIT
1409 /*
1410 * A 32-bit kernel might be running on a 64-bit processor. But
1411 * if we're on a 32-bit processor and an i-cache incoherency
1412 * or race makes us see a 64-bit instruction here the sdl/sdr
1413 * would blow up, so for now we don't handle unaligned 64-bit
1414 * instructions on 32-bit kernels.
1415 */
1416 if (user && !access_ok(addr, 8))
1417 goto sigbus;
1418
1419 LoadDW(addr, value, res);
1420 if (res)
1421 goto fault;
1422 MIPS16e_compute_return_epc(regs, &oldinst);
1423 regs->regs[reg] = value;
1424 break;
1425#endif /* CONFIG_64BIT */
1426
1427 /* Cannot handle 64-bit instructions in 32-bit kernel */
1428 goto sigill;
1429
1430 case MIPS16e_sh_op:
1431 if (user && !access_ok(addr, 2))
1432 goto sigbus;
1433
1434 MIPS16e_compute_return_epc(regs, &oldinst);
1435 value = regs->regs[reg];
1436 StoreHW(addr, value, res);
1437 if (res)
1438 goto fault;
1439 break;
1440
1441 case MIPS16e_sw_op:
1442 case MIPS16e_swsp_op:
1443 case MIPS16e_i8_op: /* actually - MIPS16e_swrasp_func */
1444 if (user && !access_ok(addr, 4))
1445 goto sigbus;
1446
1447 MIPS16e_compute_return_epc(regs, &oldinst);
1448 value = regs->regs[reg];
1449 StoreW(addr, value, res);
1450 if (res)
1451 goto fault;
1452 break;
1453
1454 case MIPS16e_sd_op:
1455writeDW:
1456#ifdef CONFIG_64BIT
1457 /*
1458 * A 32-bit kernel might be running on a 64-bit processor. But
1459 * if we're on a 32-bit processor and an i-cache incoherency
1460 * or race makes us see a 64-bit instruction here the sdl/sdr
1461 * would blow up, so for now we don't handle unaligned 64-bit
1462 * instructions on 32-bit kernels.
1463 */
1464 if (user && !access_ok(addr, 8))
1465 goto sigbus;
1466
1467 MIPS16e_compute_return_epc(regs, &oldinst);
1468 value = regs->regs[reg];
1469 StoreDW(addr, value, res);
1470 if (res)
1471 goto fault;
1472 break;
1473#endif /* CONFIG_64BIT */
1474
1475 /* Cannot handle 64-bit instructions in 32-bit kernel */
1476 goto sigill;
1477
1478 default:
1479 /*
1480 * Pheeee... We encountered an yet unknown instruction or
1481 * cache coherence problem. Die sucker, die ...
1482 */
1483 goto sigill;
1484 }
1485
1486#ifdef CONFIG_DEBUG_FS
1487 unaligned_instructions++;
1488#endif
1489
1490 return;
1491
1492fault:
1493 /* roll back jump/branch */
1494 regs->cp0_epc = origpc;
1495 regs->regs[31] = orig31;
1496 /* Did we have an exception handler installed? */
1497 if (fixup_exception(regs))
1498 return;
1499
1500 die_if_kernel("Unhandled kernel unaligned access", regs);
1501 force_sig(SIGSEGV);
1502
1503 return;
1504
1505sigbus:
1506 die_if_kernel("Unhandled kernel unaligned access", regs);
1507 force_sig(SIGBUS);
1508
1509 return;
1510
1511sigill:
1512 die_if_kernel
1513 ("Unhandled kernel unaligned access or invalid instruction", regs);
1514 force_sig(SIGILL);
1515}
1516
1517asmlinkage void do_ade(struct pt_regs *regs)
1518{
1519 enum ctx_state prev_state;
1520 unsigned int *pc;
1521
1522 prev_state = exception_enter();
1523 perf_sw_event(event_id: PERF_COUNT_SW_ALIGNMENT_FAULTS,
1524 nr: 1, regs, addr: regs->cp0_badvaddr);
1525
1526#ifdef CONFIG_64BIT
1527 /*
1528 * check, if we are hitting space between CPU implemented maximum
1529 * virtual user address and 64bit maximum virtual user address
1530 * and do exception handling to get EFAULTs for get_user/put_user
1531 */
1532 if ((regs->cp0_badvaddr >= (1UL << cpu_vmbits)) &&
1533 (regs->cp0_badvaddr < XKSSEG)) {
1534 if (fixup_exception(regs)) {
1535 current->thread.cp0_baduaddr = regs->cp0_badvaddr;
1536 return;
1537 }
1538 goto sigbus;
1539 }
1540#endif
1541
1542 /*
1543 * Did we catch a fault trying to load an instruction?
1544 */
1545 if (regs->cp0_badvaddr == regs->cp0_epc)
1546 goto sigbus;
1547
1548 if (user_mode(regs) && !test_thread_flag(TIF_FIXADE))
1549 goto sigbus;
1550 if (unaligned_action == UNALIGNED_ACTION_SIGNAL)
1551 goto sigbus;
1552
1553 /*
1554 * Do branch emulation only if we didn't forward the exception.
1555 * This is all so but ugly ...
1556 */
1557
1558 /*
1559 * Are we running in microMIPS mode?
1560 */
1561 if (get_isa16_mode(regs->cp0_epc)) {
1562 /*
1563 * Did we catch a fault trying to load an instruction in
1564 * 16-bit mode?
1565 */
1566 if (regs->cp0_badvaddr == msk_isa16_mode(regs->cp0_epc))
1567 goto sigbus;
1568 if (unaligned_action == UNALIGNED_ACTION_SHOW)
1569 show_registers(regs);
1570
1571 if (cpu_has_mmips) {
1572 emulate_load_store_microMIPS(regs,
1573 addr: (void __user *)regs->cp0_badvaddr);
1574 return;
1575 }
1576
1577 if (cpu_has_mips16) {
1578 emulate_load_store_MIPS16e(regs,
1579 addr: (void __user *)regs->cp0_badvaddr);
1580 return;
1581 }
1582
1583 goto sigbus;
1584 }
1585
1586 if (unaligned_action == UNALIGNED_ACTION_SHOW)
1587 show_registers(regs);
1588 pc = (unsigned int *)exception_epc(regs);
1589
1590 emulate_load_store_insn(regs, addr: (void __user *)regs->cp0_badvaddr, pc);
1591
1592 return;
1593
1594sigbus:
1595 die_if_kernel("Kernel unaligned instruction access", regs);
1596 force_sig(SIGBUS);
1597
1598 /*
1599 * XXX On return from the signal handler we should advance the epc
1600 */
1601 exception_exit(prev_ctx: prev_state);
1602}
1603
1604#ifdef CONFIG_DEBUG_FS
1605static int __init debugfs_unaligned(void)
1606{
1607 debugfs_create_u32("unaligned_instructions", S_IRUGO, mips_debugfs_dir,
1608 &unaligned_instructions);
1609 debugfs_create_u32("unaligned_action", S_IRUGO | S_IWUSR,
1610 mips_debugfs_dir, &unaligned_action);
1611 return 0;
1612}
1613arch_initcall(debugfs_unaligned);
1614#endif
1615

source code of linux/arch/mips/kernel/unaligned.c