1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef _LINUX_MM_H
3#define _LINUX_MM_H
4
5#include <linux/errno.h>
6
7#ifdef __KERNEL__
8
9#include <linux/mmdebug.h>
10#include <linux/gfp.h>
11#include <linux/bug.h>
12#include <linux/list.h>
13#include <linux/mmzone.h>
14#include <linux/rbtree.h>
15#include <linux/atomic.h>
16#include <linux/debug_locks.h>
17#include <linux/mm_types.h>
18#include <linux/range.h>
19#include <linux/pfn.h>
20#include <linux/percpu-refcount.h>
21#include <linux/bit_spinlock.h>
22#include <linux/shrinker.h>
23#include <linux/resource.h>
24#include <linux/page_ext.h>
25#include <linux/err.h>
26#include <linux/page_ref.h>
27#include <linux/memremap.h>
28#include <linux/overflow.h>
29#include <linux/sizes.h>
30
31struct mempolicy;
32struct anon_vma;
33struct anon_vma_chain;
34struct file_ra_state;
35struct user_struct;
36struct writeback_control;
37struct bdi_writeback;
38
39void init_mm_internals(void);
40
41#ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
42extern unsigned long max_mapnr;
43
44static inline void set_max_mapnr(unsigned long limit)
45{
46 max_mapnr = limit;
47}
48#else
49static inline void set_max_mapnr(unsigned long limit) { }
50#endif
51
52extern atomic_long_t _totalram_pages;
53static inline unsigned long totalram_pages(void)
54{
55 return (unsigned long)atomic_long_read(&_totalram_pages);
56}
57
58static inline void totalram_pages_inc(void)
59{
60 atomic_long_inc(&_totalram_pages);
61}
62
63static inline void totalram_pages_dec(void)
64{
65 atomic_long_dec(&_totalram_pages);
66}
67
68static inline void totalram_pages_add(long count)
69{
70 atomic_long_add(count, &_totalram_pages);
71}
72
73static inline void totalram_pages_set(long val)
74{
75 atomic_long_set(&_totalram_pages, val);
76}
77
78extern void * high_memory;
79extern int page_cluster;
80
81#ifdef CONFIG_SYSCTL
82extern int sysctl_legacy_va_layout;
83#else
84#define sysctl_legacy_va_layout 0
85#endif
86
87#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
88extern const int mmap_rnd_bits_min;
89extern const int mmap_rnd_bits_max;
90extern int mmap_rnd_bits __read_mostly;
91#endif
92#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
93extern const int mmap_rnd_compat_bits_min;
94extern const int mmap_rnd_compat_bits_max;
95extern int mmap_rnd_compat_bits __read_mostly;
96#endif
97
98#include <asm/page.h>
99#include <asm/pgtable.h>
100#include <asm/processor.h>
101
102#ifndef __pa_symbol
103#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
104#endif
105
106#ifndef page_to_virt
107#define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
108#endif
109
110#ifndef lm_alias
111#define lm_alias(x) __va(__pa_symbol(x))
112#endif
113
114/*
115 * To prevent common memory management code establishing
116 * a zero page mapping on a read fault.
117 * This macro should be defined within <asm/pgtable.h>.
118 * s390 does this to prevent multiplexing of hardware bits
119 * related to the physical page in case of virtualization.
120 */
121#ifndef mm_forbids_zeropage
122#define mm_forbids_zeropage(X) (0)
123#endif
124
125/*
126 * On some architectures it is expensive to call memset() for small sizes.
127 * Those architectures should provide their own implementation of "struct page"
128 * zeroing by defining this macro in <asm/pgtable.h>.
129 */
130#ifndef mm_zero_struct_page
131#define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page)))
132#endif
133
134/*
135 * Default maximum number of active map areas, this limits the number of vmas
136 * per mm struct. Users can overwrite this number by sysctl but there is a
137 * problem.
138 *
139 * When a program's coredump is generated as ELF format, a section is created
140 * per a vma. In ELF, the number of sections is represented in unsigned short.
141 * This means the number of sections should be smaller than 65535 at coredump.
142 * Because the kernel adds some informative sections to a image of program at
143 * generating coredump, we need some margin. The number of extra sections is
144 * 1-3 now and depends on arch. We use "5" as safe margin, here.
145 *
146 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
147 * not a hard limit any more. Although some userspace tools can be surprised by
148 * that.
149 */
150#define MAPCOUNT_ELF_CORE_MARGIN (5)
151#define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
152
153extern int sysctl_max_map_count;
154
155extern unsigned long sysctl_user_reserve_kbytes;
156extern unsigned long sysctl_admin_reserve_kbytes;
157
158extern int sysctl_overcommit_memory;
159extern int sysctl_overcommit_ratio;
160extern unsigned long sysctl_overcommit_kbytes;
161
162extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
163 size_t *, loff_t *);
164extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
165 size_t *, loff_t *);
166
167#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
168
169/* to align the pointer to the (next) page boundary */
170#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
171
172/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
173#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
174
175#define lru_to_page(head) (list_entry((head)->prev, struct page, lru))
176
177/*
178 * Linux kernel virtual memory manager primitives.
179 * The idea being to have a "virtual" mm in the same way
180 * we have a virtual fs - giving a cleaner interface to the
181 * mm details, and allowing different kinds of memory mappings
182 * (from shared memory to executable loading to arbitrary
183 * mmap() functions).
184 */
185
186struct vm_area_struct *vm_area_alloc(struct mm_struct *);
187struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
188void vm_area_free(struct vm_area_struct *);
189
190#ifndef CONFIG_MMU
191extern struct rb_root nommu_region_tree;
192extern struct rw_semaphore nommu_region_sem;
193
194extern unsigned int kobjsize(const void *objp);
195#endif
196
197/*
198 * vm_flags in vm_area_struct, see mm_types.h.
199 * When changing, update also include/trace/events/mmflags.h
200 */
201#define VM_NONE 0x00000000
202
203#define VM_READ 0x00000001 /* currently active flags */
204#define VM_WRITE 0x00000002
205#define VM_EXEC 0x00000004
206#define VM_SHARED 0x00000008
207
208/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
209#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
210#define VM_MAYWRITE 0x00000020
211#define VM_MAYEXEC 0x00000040
212#define VM_MAYSHARE 0x00000080
213
214#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
215#define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
216#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
217#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
218#define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
219
220#define VM_LOCKED 0x00002000
221#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
222
223 /* Used by sys_madvise() */
224#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
225#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
226
227#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
228#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
229#define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
230#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
231#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
232#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
233#define VM_SYNC 0x00800000 /* Synchronous page faults */
234#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
235#define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */
236#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
237
238#ifdef CONFIG_MEM_SOFT_DIRTY
239# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
240#else
241# define VM_SOFTDIRTY 0
242#endif
243
244#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
245#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
246#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
247#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
248
249#ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
250#define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */
251#define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */
252#define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */
253#define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */
254#define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */
255#define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0)
256#define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1)
257#define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2)
258#define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3)
259#define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4)
260#endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
261
262#ifdef CONFIG_ARCH_HAS_PKEYS
263# define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
264# define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */
265# define VM_PKEY_BIT1 VM_HIGH_ARCH_1 /* on x86 and 5-bit value on ppc64 */
266# define VM_PKEY_BIT2 VM_HIGH_ARCH_2
267# define VM_PKEY_BIT3 VM_HIGH_ARCH_3
268#ifdef CONFIG_PPC
269# define VM_PKEY_BIT4 VM_HIGH_ARCH_4
270#else
271# define VM_PKEY_BIT4 0
272#endif
273#endif /* CONFIG_ARCH_HAS_PKEYS */
274
275#if defined(CONFIG_X86)
276# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
277#elif defined(CONFIG_PPC)
278# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
279#elif defined(CONFIG_PARISC)
280# define VM_GROWSUP VM_ARCH_1
281#elif defined(CONFIG_IA64)
282# define VM_GROWSUP VM_ARCH_1
283#elif defined(CONFIG_SPARC64)
284# define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */
285# define VM_ARCH_CLEAR VM_SPARC_ADI
286#elif !defined(CONFIG_MMU)
287# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
288#endif
289
290#if defined(CONFIG_X86_INTEL_MPX)
291/* MPX specific bounds table or bounds directory */
292# define VM_MPX VM_HIGH_ARCH_4
293#else
294# define VM_MPX VM_NONE
295#endif
296
297#ifndef VM_GROWSUP
298# define VM_GROWSUP VM_NONE
299#endif
300
301/* Bits set in the VMA until the stack is in its final location */
302#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
303
304#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
305#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
306#endif
307
308#ifdef CONFIG_STACK_GROWSUP
309#define VM_STACK VM_GROWSUP
310#else
311#define VM_STACK VM_GROWSDOWN
312#endif
313
314#define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
315
316/*
317 * Special vmas that are non-mergable, non-mlock()able.
318 * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
319 */
320#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
321
322/* This mask defines which mm->def_flags a process can inherit its parent */
323#define VM_INIT_DEF_MASK VM_NOHUGEPAGE
324
325/* This mask is used to clear all the VMA flags used by mlock */
326#define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT))
327
328/* Arch-specific flags to clear when updating VM flags on protection change */
329#ifndef VM_ARCH_CLEAR
330# define VM_ARCH_CLEAR VM_NONE
331#endif
332#define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
333
334/*
335 * mapping from the currently active vm_flags protection bits (the
336 * low four bits) to a page protection mask..
337 */
338extern pgprot_t protection_map[16];
339
340#define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
341#define FAULT_FLAG_MKWRITE 0x02 /* Fault was mkwrite of existing pte */
342#define FAULT_FLAG_ALLOW_RETRY 0x04 /* Retry fault if blocking */
343#define FAULT_FLAG_RETRY_NOWAIT 0x08 /* Don't drop mmap_sem and wait when retrying */
344#define FAULT_FLAG_KILLABLE 0x10 /* The fault task is in SIGKILL killable region */
345#define FAULT_FLAG_TRIED 0x20 /* Second try */
346#define FAULT_FLAG_USER 0x40 /* The fault originated in userspace */
347#define FAULT_FLAG_REMOTE 0x80 /* faulting for non current tsk/mm */
348#define FAULT_FLAG_INSTRUCTION 0x100 /* The fault was during an instruction fetch */
349
350#define FAULT_FLAG_TRACE \
351 { FAULT_FLAG_WRITE, "WRITE" }, \
352 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \
353 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \
354 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \
355 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \
356 { FAULT_FLAG_TRIED, "TRIED" }, \
357 { FAULT_FLAG_USER, "USER" }, \
358 { FAULT_FLAG_REMOTE, "REMOTE" }, \
359 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }
360
361/*
362 * vm_fault is filled by the the pagefault handler and passed to the vma's
363 * ->fault function. The vma's ->fault is responsible for returning a bitmask
364 * of VM_FAULT_xxx flags that give details about how the fault was handled.
365 *
366 * MM layer fills up gfp_mask for page allocations but fault handler might
367 * alter it if its implementation requires a different allocation context.
368 *
369 * pgoff should be used in favour of virtual_address, if possible.
370 */
371struct vm_fault {
372 struct vm_area_struct *vma; /* Target VMA */
373 unsigned int flags; /* FAULT_FLAG_xxx flags */
374 gfp_t gfp_mask; /* gfp mask to be used for allocations */
375 pgoff_t pgoff; /* Logical page offset based on vma */
376 unsigned long address; /* Faulting virtual address */
377 pmd_t *pmd; /* Pointer to pmd entry matching
378 * the 'address' */
379 pud_t *pud; /* Pointer to pud entry matching
380 * the 'address'
381 */
382 pte_t orig_pte; /* Value of PTE at the time of fault */
383
384 struct page *cow_page; /* Page handler may use for COW fault */
385 struct mem_cgroup *memcg; /* Cgroup cow_page belongs to */
386 struct page *page; /* ->fault handlers should return a
387 * page here, unless VM_FAULT_NOPAGE
388 * is set (which is also implied by
389 * VM_FAULT_ERROR).
390 */
391 /* These three entries are valid only while holding ptl lock */
392 pte_t *pte; /* Pointer to pte entry matching
393 * the 'address'. NULL if the page
394 * table hasn't been allocated.
395 */
396 spinlock_t *ptl; /* Page table lock.
397 * Protects pte page table if 'pte'
398 * is not NULL, otherwise pmd.
399 */
400 pgtable_t prealloc_pte; /* Pre-allocated pte page table.
401 * vm_ops->map_pages() calls
402 * alloc_set_pte() from atomic context.
403 * do_fault_around() pre-allocates
404 * page table to avoid allocation from
405 * atomic context.
406 */
407};
408
409/* page entry size for vm->huge_fault() */
410enum page_entry_size {
411 PE_SIZE_PTE = 0,
412 PE_SIZE_PMD,
413 PE_SIZE_PUD,
414};
415
416/*
417 * These are the virtual MM functions - opening of an area, closing and
418 * unmapping it (needed to keep files on disk up-to-date etc), pointer
419 * to the functions called when a no-page or a wp-page exception occurs.
420 */
421struct vm_operations_struct {
422 void (*open)(struct vm_area_struct * area);
423 void (*close)(struct vm_area_struct * area);
424 int (*split)(struct vm_area_struct * area, unsigned long addr);
425 int (*mremap)(struct vm_area_struct * area);
426 vm_fault_t (*fault)(struct vm_fault *vmf);
427 vm_fault_t (*huge_fault)(struct vm_fault *vmf,
428 enum page_entry_size pe_size);
429 void (*map_pages)(struct vm_fault *vmf,
430 pgoff_t start_pgoff, pgoff_t end_pgoff);
431 unsigned long (*pagesize)(struct vm_area_struct * area);
432
433 /* notification that a previously read-only page is about to become
434 * writable, if an error is returned it will cause a SIGBUS */
435 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
436
437 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
438 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
439
440 /* called by access_process_vm when get_user_pages() fails, typically
441 * for use by special VMAs that can switch between memory and hardware
442 */
443 int (*access)(struct vm_area_struct *vma, unsigned long addr,
444 void *buf, int len, int write);
445
446 /* Called by the /proc/PID/maps code to ask the vma whether it
447 * has a special name. Returning non-NULL will also cause this
448 * vma to be dumped unconditionally. */
449 const char *(*name)(struct vm_area_struct *vma);
450
451#ifdef CONFIG_NUMA
452 /*
453 * set_policy() op must add a reference to any non-NULL @new mempolicy
454 * to hold the policy upon return. Caller should pass NULL @new to
455 * remove a policy and fall back to surrounding context--i.e. do not
456 * install a MPOL_DEFAULT policy, nor the task or system default
457 * mempolicy.
458 */
459 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
460
461 /*
462 * get_policy() op must add reference [mpol_get()] to any policy at
463 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
464 * in mm/mempolicy.c will do this automatically.
465 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
466 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
467 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
468 * must return NULL--i.e., do not "fallback" to task or system default
469 * policy.
470 */
471 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
472 unsigned long addr);
473#endif
474 /*
475 * Called by vm_normal_page() for special PTEs to find the
476 * page for @addr. This is useful if the default behavior
477 * (using pte_page()) would not find the correct page.
478 */
479 struct page *(*find_special_page)(struct vm_area_struct *vma,
480 unsigned long addr);
481};
482
483static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
484{
485 static const struct vm_operations_struct dummy_vm_ops = {};
486
487 memset(vma, 0, sizeof(*vma));
488 vma->vm_mm = mm;
489 vma->vm_ops = &dummy_vm_ops;
490 INIT_LIST_HEAD(&vma->anon_vma_chain);
491}
492
493static inline void vma_set_anonymous(struct vm_area_struct *vma)
494{
495 vma->vm_ops = NULL;
496}
497
498/* flush_tlb_range() takes a vma, not a mm, and can care about flags */
499#define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
500
501struct mmu_gather;
502struct inode;
503
504#define page_private(page) ((page)->private)
505#define set_page_private(page, v) ((page)->private = (v))
506
507#if !defined(__HAVE_ARCH_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE)
508static inline int pmd_devmap(pmd_t pmd)
509{
510 return 0;
511}
512static inline int pud_devmap(pud_t pud)
513{
514 return 0;
515}
516static inline int pgd_devmap(pgd_t pgd)
517{
518 return 0;
519}
520#endif
521
522/*
523 * FIXME: take this include out, include page-flags.h in
524 * files which need it (119 of them)
525 */
526#include <linux/page-flags.h>
527#include <linux/huge_mm.h>
528
529/*
530 * Methods to modify the page usage count.
531 *
532 * What counts for a page usage:
533 * - cache mapping (page->mapping)
534 * - private data (page->private)
535 * - page mapped in a task's page tables, each mapping
536 * is counted separately
537 *
538 * Also, many kernel routines increase the page count before a critical
539 * routine so they can be sure the page doesn't go away from under them.
540 */
541
542/*
543 * Drop a ref, return true if the refcount fell to zero (the page has no users)
544 */
545static inline int put_page_testzero(struct page *page)
546{
547 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
548 return page_ref_dec_and_test(page);
549}
550
551/*
552 * Try to grab a ref unless the page has a refcount of zero, return false if
553 * that is the case.
554 * This can be called when MMU is off so it must not access
555 * any of the virtual mappings.
556 */
557static inline int get_page_unless_zero(struct page *page)
558{
559 return page_ref_add_unless(page, 1, 0);
560}
561
562extern int page_is_ram(unsigned long pfn);
563
564enum {
565 REGION_INTERSECTS,
566 REGION_DISJOINT,
567 REGION_MIXED,
568};
569
570int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
571 unsigned long desc);
572
573/* Support for virtually mapped pages */
574struct page *vmalloc_to_page(const void *addr);
575unsigned long vmalloc_to_pfn(const void *addr);
576
577/*
578 * Determine if an address is within the vmalloc range
579 *
580 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
581 * is no special casing required.
582 */
583static inline bool is_vmalloc_addr(const void *x)
584{
585#ifdef CONFIG_MMU
586 unsigned long addr = (unsigned long)x;
587
588 return addr >= VMALLOC_START && addr < VMALLOC_END;
589#else
590 return false;
591#endif
592}
593#ifdef CONFIG_MMU
594extern int is_vmalloc_or_module_addr(const void *x);
595#else
596static inline int is_vmalloc_or_module_addr(const void *x)
597{
598 return 0;
599}
600#endif
601
602extern void *kvmalloc_node(size_t size, gfp_t flags, int node);
603static inline void *kvmalloc(size_t size, gfp_t flags)
604{
605 return kvmalloc_node(size, flags, NUMA_NO_NODE);
606}
607static inline void *kvzalloc_node(size_t size, gfp_t flags, int node)
608{
609 return kvmalloc_node(size, flags | __GFP_ZERO, node);
610}
611static inline void *kvzalloc(size_t size, gfp_t flags)
612{
613 return kvmalloc(size, flags | __GFP_ZERO);
614}
615
616static inline void *kvmalloc_array(size_t n, size_t size, gfp_t flags)
617{
618 size_t bytes;
619
620 if (unlikely(check_mul_overflow(n, size, &bytes)))
621 return NULL;
622
623 return kvmalloc(bytes, flags);
624}
625
626static inline void *kvcalloc(size_t n, size_t size, gfp_t flags)
627{
628 return kvmalloc_array(n, size, flags | __GFP_ZERO);
629}
630
631extern void kvfree(const void *addr);
632
633static inline atomic_t *compound_mapcount_ptr(struct page *page)
634{
635 return &page[1].compound_mapcount;
636}
637
638static inline int compound_mapcount(struct page *page)
639{
640 VM_BUG_ON_PAGE(!PageCompound(page), page);
641 page = compound_head(page);
642 return atomic_read(compound_mapcount_ptr(page)) + 1;
643}
644
645/*
646 * The atomic page->_mapcount, starts from -1: so that transitions
647 * both from it and to it can be tracked, using atomic_inc_and_test
648 * and atomic_add_negative(-1).
649 */
650static inline void page_mapcount_reset(struct page *page)
651{
652 atomic_set(&(page)->_mapcount, -1);
653}
654
655int __page_mapcount(struct page *page);
656
657static inline int page_mapcount(struct page *page)
658{
659 VM_BUG_ON_PAGE(PageSlab(page), page);
660
661 if (unlikely(PageCompound(page)))
662 return __page_mapcount(page);
663 return atomic_read(&page->_mapcount) + 1;
664}
665
666#ifdef CONFIG_TRANSPARENT_HUGEPAGE
667int total_mapcount(struct page *page);
668int page_trans_huge_mapcount(struct page *page, int *total_mapcount);
669#else
670static inline int total_mapcount(struct page *page)
671{
672 return page_mapcount(page);
673}
674static inline int page_trans_huge_mapcount(struct page *page,
675 int *total_mapcount)
676{
677 int mapcount = page_mapcount(page);
678 if (total_mapcount)
679 *total_mapcount = mapcount;
680 return mapcount;
681}
682#endif
683
684static inline struct page *virt_to_head_page(const void *x)
685{
686 struct page *page = virt_to_page(x);
687
688 return compound_head(page);
689}
690
691void __put_page(struct page *page);
692
693void put_pages_list(struct list_head *pages);
694
695void split_page(struct page *page, unsigned int order);
696
697/*
698 * Compound pages have a destructor function. Provide a
699 * prototype for that function and accessor functions.
700 * These are _only_ valid on the head of a compound page.
701 */
702typedef void compound_page_dtor(struct page *);
703
704/* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
705enum compound_dtor_id {
706 NULL_COMPOUND_DTOR,
707 COMPOUND_PAGE_DTOR,
708#ifdef CONFIG_HUGETLB_PAGE
709 HUGETLB_PAGE_DTOR,
710#endif
711#ifdef CONFIG_TRANSPARENT_HUGEPAGE
712 TRANSHUGE_PAGE_DTOR,
713#endif
714 NR_COMPOUND_DTORS,
715};
716extern compound_page_dtor * const compound_page_dtors[];
717
718static inline void set_compound_page_dtor(struct page *page,
719 enum compound_dtor_id compound_dtor)
720{
721 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
722 page[1].compound_dtor = compound_dtor;
723}
724
725static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
726{
727 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
728 return compound_page_dtors[page[1].compound_dtor];
729}
730
731static inline unsigned int compound_order(struct page *page)
732{
733 if (!PageHead(page))
734 return 0;
735 return page[1].compound_order;
736}
737
738static inline void set_compound_order(struct page *page, unsigned int order)
739{
740 page[1].compound_order = order;
741}
742
743void free_compound_page(struct page *page);
744
745#ifdef CONFIG_MMU
746/*
747 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
748 * servicing faults for write access. In the normal case, do always want
749 * pte_mkwrite. But get_user_pages can cause write faults for mappings
750 * that do not have writing enabled, when used by access_process_vm.
751 */
752static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
753{
754 if (likely(vma->vm_flags & VM_WRITE))
755 pte = pte_mkwrite(pte);
756 return pte;
757}
758
759vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
760 struct page *page);
761vm_fault_t finish_fault(struct vm_fault *vmf);
762vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf);
763#endif
764
765/*
766 * Multiple processes may "see" the same page. E.g. for untouched
767 * mappings of /dev/null, all processes see the same page full of
768 * zeroes, and text pages of executables and shared libraries have
769 * only one copy in memory, at most, normally.
770 *
771 * For the non-reserved pages, page_count(page) denotes a reference count.
772 * page_count() == 0 means the page is free. page->lru is then used for
773 * freelist management in the buddy allocator.
774 * page_count() > 0 means the page has been allocated.
775 *
776 * Pages are allocated by the slab allocator in order to provide memory
777 * to kmalloc and kmem_cache_alloc. In this case, the management of the
778 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
779 * unless a particular usage is carefully commented. (the responsibility of
780 * freeing the kmalloc memory is the caller's, of course).
781 *
782 * A page may be used by anyone else who does a __get_free_page().
783 * In this case, page_count still tracks the references, and should only
784 * be used through the normal accessor functions. The top bits of page->flags
785 * and page->virtual store page management information, but all other fields
786 * are unused and could be used privately, carefully. The management of this
787 * page is the responsibility of the one who allocated it, and those who have
788 * subsequently been given references to it.
789 *
790 * The other pages (we may call them "pagecache pages") are completely
791 * managed by the Linux memory manager: I/O, buffers, swapping etc.
792 * The following discussion applies only to them.
793 *
794 * A pagecache page contains an opaque `private' member, which belongs to the
795 * page's address_space. Usually, this is the address of a circular list of
796 * the page's disk buffers. PG_private must be set to tell the VM to call
797 * into the filesystem to release these pages.
798 *
799 * A page may belong to an inode's memory mapping. In this case, page->mapping
800 * is the pointer to the inode, and page->index is the file offset of the page,
801 * in units of PAGE_SIZE.
802 *
803 * If pagecache pages are not associated with an inode, they are said to be
804 * anonymous pages. These may become associated with the swapcache, and in that
805 * case PG_swapcache is set, and page->private is an offset into the swapcache.
806 *
807 * In either case (swapcache or inode backed), the pagecache itself holds one
808 * reference to the page. Setting PG_private should also increment the
809 * refcount. The each user mapping also has a reference to the page.
810 *
811 * The pagecache pages are stored in a per-mapping radix tree, which is
812 * rooted at mapping->i_pages, and indexed by offset.
813 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
814 * lists, we instead now tag pages as dirty/writeback in the radix tree.
815 *
816 * All pagecache pages may be subject to I/O:
817 * - inode pages may need to be read from disk,
818 * - inode pages which have been modified and are MAP_SHARED may need
819 * to be written back to the inode on disk,
820 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
821 * modified may need to be swapped out to swap space and (later) to be read
822 * back into memory.
823 */
824
825/*
826 * The zone field is never updated after free_area_init_core()
827 * sets it, so none of the operations on it need to be atomic.
828 */
829
830/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
831#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
832#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
833#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
834#define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
835#define KASAN_TAG_PGOFF (LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH)
836
837/*
838 * Define the bit shifts to access each section. For non-existent
839 * sections we define the shift as 0; that plus a 0 mask ensures
840 * the compiler will optimise away reference to them.
841 */
842#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
843#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
844#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
845#define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
846#define KASAN_TAG_PGSHIFT (KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0))
847
848/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
849#ifdef NODE_NOT_IN_PAGE_FLAGS
850#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
851#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
852 SECTIONS_PGOFF : ZONES_PGOFF)
853#else
854#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
855#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
856 NODES_PGOFF : ZONES_PGOFF)
857#endif
858
859#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
860
861#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
862#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
863#endif
864
865#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
866#define NODES_MASK ((1UL << NODES_WIDTH) - 1)
867#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
868#define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
869#define KASAN_TAG_MASK ((1UL << KASAN_TAG_WIDTH) - 1)
870#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
871
872static inline enum zone_type page_zonenum(const struct page *page)
873{
874 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
875}
876
877#ifdef CONFIG_ZONE_DEVICE
878static inline bool is_zone_device_page(const struct page *page)
879{
880 return page_zonenum(page) == ZONE_DEVICE;
881}
882extern void memmap_init_zone_device(struct zone *, unsigned long,
883 unsigned long, struct dev_pagemap *);
884#else
885static inline bool is_zone_device_page(const struct page *page)
886{
887 return false;
888}
889#endif
890
891#ifdef CONFIG_DEV_PAGEMAP_OPS
892void dev_pagemap_get_ops(void);
893void dev_pagemap_put_ops(void);
894void __put_devmap_managed_page(struct page *page);
895DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
896static inline bool put_devmap_managed_page(struct page *page)
897{
898 if (!static_branch_unlikely(&devmap_managed_key))
899 return false;
900 if (!is_zone_device_page(page))
901 return false;
902 switch (page->pgmap->type) {
903 case MEMORY_DEVICE_PRIVATE:
904 case MEMORY_DEVICE_PUBLIC:
905 case MEMORY_DEVICE_FS_DAX:
906 __put_devmap_managed_page(page);
907 return true;
908 default:
909 break;
910 }
911 return false;
912}
913
914static inline bool is_device_private_page(const struct page *page)
915{
916 return is_zone_device_page(page) &&
917 page->pgmap->type == MEMORY_DEVICE_PRIVATE;
918}
919
920static inline bool is_device_public_page(const struct page *page)
921{
922 return is_zone_device_page(page) &&
923 page->pgmap->type == MEMORY_DEVICE_PUBLIC;
924}
925
926#ifdef CONFIG_PCI_P2PDMA
927static inline bool is_pci_p2pdma_page(const struct page *page)
928{
929 return is_zone_device_page(page) &&
930 page->pgmap->type == MEMORY_DEVICE_PCI_P2PDMA;
931}
932#else /* CONFIG_PCI_P2PDMA */
933static inline bool is_pci_p2pdma_page(const struct page *page)
934{
935 return false;
936}
937#endif /* CONFIG_PCI_P2PDMA */
938
939#else /* CONFIG_DEV_PAGEMAP_OPS */
940static inline void dev_pagemap_get_ops(void)
941{
942}
943
944static inline void dev_pagemap_put_ops(void)
945{
946}
947
948static inline bool put_devmap_managed_page(struct page *page)
949{
950 return false;
951}
952
953static inline bool is_device_private_page(const struct page *page)
954{
955 return false;
956}
957
958static inline bool is_device_public_page(const struct page *page)
959{
960 return false;
961}
962
963static inline bool is_pci_p2pdma_page(const struct page *page)
964{
965 return false;
966}
967#endif /* CONFIG_DEV_PAGEMAP_OPS */
968
969static inline void get_page(struct page *page)
970{
971 page = compound_head(page);
972 /*
973 * Getting a normal page or the head of a compound page
974 * requires to already have an elevated page->_refcount.
975 */
976 VM_BUG_ON_PAGE(page_ref_count(page) <= 0, page);
977 page_ref_inc(page);
978}
979
980static inline void put_page(struct page *page)
981{
982 page = compound_head(page);
983
984 /*
985 * For devmap managed pages we need to catch refcount transition from
986 * 2 to 1, when refcount reach one it means the page is free and we
987 * need to inform the device driver through callback. See
988 * include/linux/memremap.h and HMM for details.
989 */
990 if (put_devmap_managed_page(page))
991 return;
992
993 if (put_page_testzero(page))
994 __put_page(page);
995}
996
997#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
998#define SECTION_IN_PAGE_FLAGS
999#endif
1000
1001/*
1002 * The identification function is mainly used by the buddy allocator for
1003 * determining if two pages could be buddies. We are not really identifying
1004 * the zone since we could be using the section number id if we do not have
1005 * node id available in page flags.
1006 * We only guarantee that it will return the same value for two combinable
1007 * pages in a zone.
1008 */
1009static inline int page_zone_id(struct page *page)
1010{
1011 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
1012}
1013
1014#ifdef NODE_NOT_IN_PAGE_FLAGS
1015extern int page_to_nid(const struct page *page);
1016#else
1017static inline int page_to_nid(const struct page *page)
1018{
1019 struct page *p = (struct page *)page;
1020
1021 return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK;
1022}
1023#endif
1024
1025#ifdef CONFIG_NUMA_BALANCING
1026static inline int cpu_pid_to_cpupid(int cpu, int pid)
1027{
1028 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
1029}
1030
1031static inline int cpupid_to_pid(int cpupid)
1032{
1033 return cpupid & LAST__PID_MASK;
1034}
1035
1036static inline int cpupid_to_cpu(int cpupid)
1037{
1038 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
1039}
1040
1041static inline int cpupid_to_nid(int cpupid)
1042{
1043 return cpu_to_node(cpupid_to_cpu(cpupid));
1044}
1045
1046static inline bool cpupid_pid_unset(int cpupid)
1047{
1048 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
1049}
1050
1051static inline bool cpupid_cpu_unset(int cpupid)
1052{
1053 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
1054}
1055
1056static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1057{
1058 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1059}
1060
1061#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
1062#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
1063static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1064{
1065 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
1066}
1067
1068static inline int page_cpupid_last(struct page *page)
1069{
1070 return page->_last_cpupid;
1071}
1072static inline void page_cpupid_reset_last(struct page *page)
1073{
1074 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
1075}
1076#else
1077static inline int page_cpupid_last(struct page *page)
1078{
1079 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
1080}
1081
1082extern int page_cpupid_xchg_last(struct page *page, int cpupid);
1083
1084static inline void page_cpupid_reset_last(struct page *page)
1085{
1086 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
1087}
1088#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
1089#else /* !CONFIG_NUMA_BALANCING */
1090static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1091{
1092 return page_to_nid(page); /* XXX */
1093}
1094
1095static inline int page_cpupid_last(struct page *page)
1096{
1097 return page_to_nid(page); /* XXX */
1098}
1099
1100static inline int cpupid_to_nid(int cpupid)
1101{
1102 return -1;
1103}
1104
1105static inline int cpupid_to_pid(int cpupid)
1106{
1107 return -1;
1108}
1109
1110static inline int cpupid_to_cpu(int cpupid)
1111{
1112 return -1;
1113}
1114
1115static inline int cpu_pid_to_cpupid(int nid, int pid)
1116{
1117 return -1;
1118}
1119
1120static inline bool cpupid_pid_unset(int cpupid)
1121{
1122 return 1;
1123}
1124
1125static inline void page_cpupid_reset_last(struct page *page)
1126{
1127}
1128
1129static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1130{
1131 return false;
1132}
1133#endif /* CONFIG_NUMA_BALANCING */
1134
1135#ifdef CONFIG_KASAN_SW_TAGS
1136static inline u8 page_kasan_tag(const struct page *page)
1137{
1138 return (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
1139}
1140
1141static inline void page_kasan_tag_set(struct page *page, u8 tag)
1142{
1143 page->flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
1144 page->flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
1145}
1146
1147static inline void page_kasan_tag_reset(struct page *page)
1148{
1149 page_kasan_tag_set(page, 0xff);
1150}
1151#else
1152static inline u8 page_kasan_tag(const struct page *page)
1153{
1154 return 0xff;
1155}
1156
1157static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
1158static inline void page_kasan_tag_reset(struct page *page) { }
1159#endif
1160
1161static inline struct zone *page_zone(const struct page *page)
1162{
1163 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1164}
1165
1166static inline pg_data_t *page_pgdat(const struct page *page)
1167{
1168 return NODE_DATA(page_to_nid(page));
1169}
1170
1171#ifdef SECTION_IN_PAGE_FLAGS
1172static inline void set_page_section(struct page *page, unsigned long section)
1173{
1174 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1175 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1176}
1177
1178static inline unsigned long page_to_section(const struct page *page)
1179{
1180 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1181}
1182#endif
1183
1184static inline void set_page_zone(struct page *page, enum zone_type zone)
1185{
1186 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
1187 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
1188}
1189
1190static inline void set_page_node(struct page *page, unsigned long node)
1191{
1192 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
1193 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1194}
1195
1196static inline void set_page_links(struct page *page, enum zone_type zone,
1197 unsigned long node, unsigned long pfn)
1198{
1199 set_page_zone(page, zone);
1200 set_page_node(page, node);
1201#ifdef SECTION_IN_PAGE_FLAGS
1202 set_page_section(page, pfn_to_section_nr(pfn));
1203#endif
1204}
1205
1206#ifdef CONFIG_MEMCG
1207static inline struct mem_cgroup *page_memcg(struct page *page)
1208{
1209 return page->mem_cgroup;
1210}
1211static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1212{
1213 WARN_ON_ONCE(!rcu_read_lock_held());
1214 return READ_ONCE(page->mem_cgroup);
1215}
1216#else
1217static inline struct mem_cgroup *page_memcg(struct page *page)
1218{
1219 return NULL;
1220}
1221static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1222{
1223 WARN_ON_ONCE(!rcu_read_lock_held());
1224 return NULL;
1225}
1226#endif
1227
1228/*
1229 * Some inline functions in vmstat.h depend on page_zone()
1230 */
1231#include <linux/vmstat.h>
1232
1233static __always_inline void *lowmem_page_address(const struct page *page)
1234{
1235 return page_to_virt(page);
1236}
1237
1238#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
1239#define HASHED_PAGE_VIRTUAL
1240#endif
1241
1242#if defined(WANT_PAGE_VIRTUAL)
1243static inline void *page_address(const struct page *page)
1244{
1245 return page->virtual;
1246}
1247static inline void set_page_address(struct page *page, void *address)
1248{
1249 page->virtual = address;
1250}
1251#define page_address_init() do { } while(0)
1252#endif
1253
1254#if defined(HASHED_PAGE_VIRTUAL)
1255void *page_address(const struct page *page);
1256void set_page_address(struct page *page, void *virtual);
1257void page_address_init(void);
1258#endif
1259
1260#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
1261#define page_address(page) lowmem_page_address(page)
1262#define set_page_address(page, address) do { } while(0)
1263#define page_address_init() do { } while(0)
1264#endif
1265
1266extern void *page_rmapping(struct page *page);
1267extern struct anon_vma *page_anon_vma(struct page *page);
1268extern struct address_space *page_mapping(struct page *page);
1269
1270extern struct address_space *__page_file_mapping(struct page *);
1271
1272static inline
1273struct address_space *page_file_mapping(struct page *page)
1274{
1275 if (unlikely(PageSwapCache(page)))
1276 return __page_file_mapping(page);
1277
1278 return page->mapping;
1279}
1280
1281extern pgoff_t __page_file_index(struct page *page);
1282
1283/*
1284 * Return the pagecache index of the passed page. Regular pagecache pages
1285 * use ->index whereas swapcache pages use swp_offset(->private)
1286 */
1287static inline pgoff_t page_index(struct page *page)
1288{
1289 if (unlikely(PageSwapCache(page)))
1290 return __page_file_index(page);
1291 return page->index;
1292}
1293
1294bool page_mapped(struct page *page);
1295struct address_space *page_mapping(struct page *page);
1296struct address_space *page_mapping_file(struct page *page);
1297
1298/*
1299 * Return true only if the page has been allocated with
1300 * ALLOC_NO_WATERMARKS and the low watermark was not
1301 * met implying that the system is under some pressure.
1302 */
1303static inline bool page_is_pfmemalloc(struct page *page)
1304{
1305 /*
1306 * Page index cannot be this large so this must be
1307 * a pfmemalloc page.
1308 */
1309 return page->index == -1UL;
1310}
1311
1312/*
1313 * Only to be called by the page allocator on a freshly allocated
1314 * page.
1315 */
1316static inline void set_page_pfmemalloc(struct page *page)
1317{
1318 page->index = -1UL;
1319}
1320
1321static inline void clear_page_pfmemalloc(struct page *page)
1322{
1323 page->index = 0;
1324}
1325
1326/*
1327 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1328 */
1329extern void pagefault_out_of_memory(void);
1330
1331#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
1332
1333/*
1334 * Flags passed to show_mem() and show_free_areas() to suppress output in
1335 * various contexts.
1336 */
1337#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
1338
1339extern void show_free_areas(unsigned int flags, nodemask_t *nodemask);
1340
1341extern bool can_do_mlock(void);
1342extern int user_shm_lock(size_t, struct user_struct *);
1343extern void user_shm_unlock(size_t, struct user_struct *);
1344
1345/*
1346 * Parameter block passed down to zap_pte_range in exceptional cases.
1347 */
1348struct zap_details {
1349 struct address_space *check_mapping; /* Check page->mapping if set */
1350 pgoff_t first_index; /* Lowest page->index to unmap */
1351 pgoff_t last_index; /* Highest page->index to unmap */
1352};
1353
1354struct page *_vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1355 pte_t pte, bool with_public_device);
1356#define vm_normal_page(vma, addr, pte) _vm_normal_page(vma, addr, pte, false)
1357
1358struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
1359 pmd_t pmd);
1360
1361void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1362 unsigned long size);
1363void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1364 unsigned long size);
1365void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1366 unsigned long start, unsigned long end);
1367
1368/**
1369 * mm_walk - callbacks for walk_page_range
1370 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
1371 * this handler should only handle pud_trans_huge() puds.
1372 * the pmd_entry or pte_entry callbacks will be used for
1373 * regular PUDs.
1374 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
1375 * this handler is required to be able to handle
1376 * pmd_trans_huge() pmds. They may simply choose to
1377 * split_huge_page() instead of handling it explicitly.
1378 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
1379 * @pte_hole: if set, called for each hole at all levels
1380 * @hugetlb_entry: if set, called for each hugetlb entry
1381 * @test_walk: caller specific callback function to determine whether
1382 * we walk over the current vma or not. Returning 0
1383 * value means "do page table walk over the current vma,"
1384 * and a negative one means "abort current page table walk
1385 * right now." 1 means "skip the current vma."
1386 * @mm: mm_struct representing the target process of page table walk
1387 * @vma: vma currently walked (NULL if walking outside vmas)
1388 * @private: private data for callbacks' usage
1389 *
1390 * (see the comment on walk_page_range() for more details)
1391 */
1392struct mm_walk {
1393 int (*pud_entry)(pud_t *pud, unsigned long addr,
1394 unsigned long next, struct mm_walk *walk);
1395 int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
1396 unsigned long next, struct mm_walk *walk);
1397 int (*pte_entry)(pte_t *pte, unsigned long addr,
1398 unsigned long next, struct mm_walk *walk);
1399 int (*pte_hole)(unsigned long addr, unsigned long next,
1400 struct mm_walk *walk);
1401 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
1402 unsigned long addr, unsigned long next,
1403 struct mm_walk *walk);
1404 int (*test_walk)(unsigned long addr, unsigned long next,
1405 struct mm_walk *walk);
1406 struct mm_struct *mm;
1407 struct vm_area_struct *vma;
1408 void *private;
1409};
1410
1411struct mmu_notifier_range;
1412
1413int walk_page_range(unsigned long addr, unsigned long end,
1414 struct mm_walk *walk);
1415int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk);
1416void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
1417 unsigned long end, unsigned long floor, unsigned long ceiling);
1418int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1419 struct vm_area_struct *vma);
1420int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
1421 struct mmu_notifier_range *range,
1422 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp);
1423int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1424 unsigned long *pfn);
1425int follow_phys(struct vm_area_struct *vma, unsigned long address,
1426 unsigned int flags, unsigned long *prot, resource_size_t *phys);
1427int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1428 void *buf, int len, int write);
1429
1430extern void truncate_pagecache(struct inode *inode, loff_t new);
1431extern void truncate_setsize(struct inode *inode, loff_t newsize);
1432void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
1433void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
1434int truncate_inode_page(struct address_space *mapping, struct page *page);
1435int generic_error_remove_page(struct address_space *mapping, struct page *page);
1436int invalidate_inode_page(struct page *page);
1437
1438#ifdef CONFIG_MMU
1439extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
1440 unsigned long address, unsigned int flags);
1441extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1442 unsigned long address, unsigned int fault_flags,
1443 bool *unlocked);
1444void unmap_mapping_pages(struct address_space *mapping,
1445 pgoff_t start, pgoff_t nr, bool even_cows);
1446void unmap_mapping_range(struct address_space *mapping,
1447 loff_t const holebegin, loff_t const holelen, int even_cows);
1448#else
1449static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
1450 unsigned long address, unsigned int flags)
1451{
1452 /* should never happen if there's no MMU */
1453 BUG();
1454 return VM_FAULT_SIGBUS;
1455}
1456static inline int fixup_user_fault(struct task_struct *tsk,
1457 struct mm_struct *mm, unsigned long address,
1458 unsigned int fault_flags, bool *unlocked)
1459{
1460 /* should never happen if there's no MMU */
1461 BUG();
1462 return -EFAULT;
1463}
1464static inline void unmap_mapping_pages(struct address_space *mapping,
1465 pgoff_t start, pgoff_t nr, bool even_cows) { }
1466static inline void unmap_mapping_range(struct address_space *mapping,
1467 loff_t const holebegin, loff_t const holelen, int even_cows) { }
1468#endif
1469
1470static inline void unmap_shared_mapping_range(struct address_space *mapping,
1471 loff_t const holebegin, loff_t const holelen)
1472{
1473 unmap_mapping_range(mapping, holebegin, holelen, 0);
1474}
1475
1476extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
1477 void *buf, int len, unsigned int gup_flags);
1478extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1479 void *buf, int len, unsigned int gup_flags);
1480extern int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
1481 unsigned long addr, void *buf, int len, unsigned int gup_flags);
1482
1483long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
1484 unsigned long start, unsigned long nr_pages,
1485 unsigned int gup_flags, struct page **pages,
1486 struct vm_area_struct **vmas, int *locked);
1487long get_user_pages(unsigned long start, unsigned long nr_pages,
1488 unsigned int gup_flags, struct page **pages,
1489 struct vm_area_struct **vmas);
1490long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
1491 unsigned int gup_flags, struct page **pages, int *locked);
1492long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1493 struct page **pages, unsigned int gup_flags);
1494
1495#if defined(CONFIG_FS_DAX) || defined(CONFIG_CMA)
1496long get_user_pages_longterm(unsigned long start, unsigned long nr_pages,
1497 unsigned int gup_flags, struct page **pages,
1498 struct vm_area_struct **vmas);
1499#else
1500static inline long get_user_pages_longterm(unsigned long start,
1501 unsigned long nr_pages, unsigned int gup_flags,
1502 struct page **pages, struct vm_area_struct **vmas)
1503{
1504 return get_user_pages(start, nr_pages, gup_flags, pages, vmas);
1505}
1506#endif /* CONFIG_FS_DAX */
1507
1508int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1509 struct page **pages);
1510
1511/* Container for pinned pfns / pages */
1512struct frame_vector {
1513 unsigned int nr_allocated; /* Number of frames we have space for */
1514 unsigned int nr_frames; /* Number of frames stored in ptrs array */
1515 bool got_ref; /* Did we pin pages by getting page ref? */
1516 bool is_pfns; /* Does array contain pages or pfns? */
1517 void *ptrs[0]; /* Array of pinned pfns / pages. Use
1518 * pfns_vector_pages() or pfns_vector_pfns()
1519 * for access */
1520};
1521
1522struct frame_vector *frame_vector_create(unsigned int nr_frames);
1523void frame_vector_destroy(struct frame_vector *vec);
1524int get_vaddr_frames(unsigned long start, unsigned int nr_pfns,
1525 unsigned int gup_flags, struct frame_vector *vec);
1526void put_vaddr_frames(struct frame_vector *vec);
1527int frame_vector_to_pages(struct frame_vector *vec);
1528void frame_vector_to_pfns(struct frame_vector *vec);
1529
1530static inline unsigned int frame_vector_count(struct frame_vector *vec)
1531{
1532 return vec->nr_frames;
1533}
1534
1535static inline struct page **frame_vector_pages(struct frame_vector *vec)
1536{
1537 if (vec->is_pfns) {
1538 int err = frame_vector_to_pages(vec);
1539
1540 if (err)
1541 return ERR_PTR(err);
1542 }
1543 return (struct page **)(vec->ptrs);
1544}
1545
1546static inline unsigned long *frame_vector_pfns(struct frame_vector *vec)
1547{
1548 if (!vec->is_pfns)
1549 frame_vector_to_pfns(vec);
1550 return (unsigned long *)(vec->ptrs);
1551}
1552
1553struct kvec;
1554int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1555 struct page **pages);
1556int get_kernel_page(unsigned long start, int write, struct page **pages);
1557struct page *get_dump_page(unsigned long addr);
1558
1559extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1560extern void do_invalidatepage(struct page *page, unsigned int offset,
1561 unsigned int length);
1562
1563void __set_page_dirty(struct page *, struct address_space *, int warn);
1564int __set_page_dirty_nobuffers(struct page *page);
1565int __set_page_dirty_no_writeback(struct page *page);
1566int redirty_page_for_writepage(struct writeback_control *wbc,
1567 struct page *page);
1568void account_page_dirtied(struct page *page, struct address_space *mapping);
1569void account_page_cleaned(struct page *page, struct address_space *mapping,
1570 struct bdi_writeback *wb);
1571int set_page_dirty(struct page *page);
1572int set_page_dirty_lock(struct page *page);
1573void __cancel_dirty_page(struct page *page);
1574static inline void cancel_dirty_page(struct page *page)
1575{
1576 /* Avoid atomic ops, locking, etc. when not actually needed. */
1577 if (PageDirty(page))
1578 __cancel_dirty_page(page);
1579}
1580int clear_page_dirty_for_io(struct page *page);
1581
1582int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1583
1584static inline bool vma_is_anonymous(struct vm_area_struct *vma)
1585{
1586 return !vma->vm_ops;
1587}
1588
1589#ifdef CONFIG_SHMEM
1590/*
1591 * The vma_is_shmem is not inline because it is used only by slow
1592 * paths in userfault.
1593 */
1594bool vma_is_shmem(struct vm_area_struct *vma);
1595#else
1596static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
1597#endif
1598
1599int vma_is_stack_for_current(struct vm_area_struct *vma);
1600
1601extern unsigned long move_page_tables(struct vm_area_struct *vma,
1602 unsigned long old_addr, struct vm_area_struct *new_vma,
1603 unsigned long new_addr, unsigned long len,
1604 bool need_rmap_locks);
1605extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1606 unsigned long end, pgprot_t newprot,
1607 int dirty_accountable, int prot_numa);
1608extern int mprotect_fixup(struct vm_area_struct *vma,
1609 struct vm_area_struct **pprev, unsigned long start,
1610 unsigned long end, unsigned long newflags);
1611
1612/*
1613 * doesn't attempt to fault and will return short.
1614 */
1615int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1616 struct page **pages);
1617/*
1618 * per-process(per-mm_struct) statistics.
1619 */
1620static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1621{
1622 long val = atomic_long_read(&mm->rss_stat.count[member]);
1623
1624#ifdef SPLIT_RSS_COUNTING
1625 /*
1626 * counter is updated in asynchronous manner and may go to minus.
1627 * But it's never be expected number for users.
1628 */
1629 if (val < 0)
1630 val = 0;
1631#endif
1632 return (unsigned long)val;
1633}
1634
1635static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1636{
1637 atomic_long_add(value, &mm->rss_stat.count[member]);
1638}
1639
1640static inline void inc_mm_counter(struct mm_struct *mm, int member)
1641{
1642 atomic_long_inc(&mm->rss_stat.count[member]);
1643}
1644
1645static inline void dec_mm_counter(struct mm_struct *mm, int member)
1646{
1647 atomic_long_dec(&mm->rss_stat.count[member]);
1648}
1649
1650/* Optimized variant when page is already known not to be PageAnon */
1651static inline int mm_counter_file(struct page *page)
1652{
1653 if (PageSwapBacked(page))
1654 return MM_SHMEMPAGES;
1655 return MM_FILEPAGES;
1656}
1657
1658static inline int mm_counter(struct page *page)
1659{
1660 if (PageAnon(page))
1661 return MM_ANONPAGES;
1662 return mm_counter_file(page);
1663}
1664
1665static inline unsigned long get_mm_rss(struct mm_struct *mm)
1666{
1667 return get_mm_counter(mm, MM_FILEPAGES) +
1668 get_mm_counter(mm, MM_ANONPAGES) +
1669 get_mm_counter(mm, MM_SHMEMPAGES);
1670}
1671
1672static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1673{
1674 return max(mm->hiwater_rss, get_mm_rss(mm));
1675}
1676
1677static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1678{
1679 return max(mm->hiwater_vm, mm->total_vm);
1680}
1681
1682static inline void update_hiwater_rss(struct mm_struct *mm)
1683{
1684 unsigned long _rss = get_mm_rss(mm);
1685
1686 if ((mm)->hiwater_rss < _rss)
1687 (mm)->hiwater_rss = _rss;
1688}
1689
1690static inline void update_hiwater_vm(struct mm_struct *mm)
1691{
1692 if (mm->hiwater_vm < mm->total_vm)
1693 mm->hiwater_vm = mm->total_vm;
1694}
1695
1696static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
1697{
1698 mm->hiwater_rss = get_mm_rss(mm);
1699}
1700
1701static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1702 struct mm_struct *mm)
1703{
1704 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1705
1706 if (*maxrss < hiwater_rss)
1707 *maxrss = hiwater_rss;
1708}
1709
1710#if defined(SPLIT_RSS_COUNTING)
1711void sync_mm_rss(struct mm_struct *mm);
1712#else
1713static inline void sync_mm_rss(struct mm_struct *mm)
1714{
1715}
1716#endif
1717
1718#ifndef __HAVE_ARCH_PTE_DEVMAP
1719static inline int pte_devmap(pte_t pte)
1720{
1721 return 0;
1722}
1723#endif
1724
1725int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
1726
1727extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1728 spinlock_t **ptl);
1729static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1730 spinlock_t **ptl)
1731{
1732 pte_t *ptep;
1733 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1734 return ptep;
1735}
1736
1737#ifdef __PAGETABLE_P4D_FOLDED
1738static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
1739 unsigned long address)
1740{
1741 return 0;
1742}
1743#else
1744int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1745#endif
1746
1747#if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
1748static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
1749 unsigned long address)
1750{
1751 return 0;
1752}
1753static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
1754static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
1755
1756#else
1757int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
1758
1759static inline void mm_inc_nr_puds(struct mm_struct *mm)
1760{
1761 if (mm_pud_folded(mm))
1762 return;
1763 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
1764}
1765
1766static inline void mm_dec_nr_puds(struct mm_struct *mm)
1767{
1768 if (mm_pud_folded(mm))
1769 return;
1770 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
1771}
1772#endif
1773
1774#if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
1775static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1776 unsigned long address)
1777{
1778 return 0;
1779}
1780
1781static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
1782static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
1783
1784#else
1785int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
1786
1787static inline void mm_inc_nr_pmds(struct mm_struct *mm)
1788{
1789 if (mm_pmd_folded(mm))
1790 return;
1791 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
1792}
1793
1794static inline void mm_dec_nr_pmds(struct mm_struct *mm)
1795{
1796 if (mm_pmd_folded(mm))
1797 return;
1798 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
1799}
1800#endif
1801
1802#ifdef CONFIG_MMU
1803static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
1804{
1805 atomic_long_set(&mm->pgtables_bytes, 0);
1806}
1807
1808static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
1809{
1810 return atomic_long_read(&mm->pgtables_bytes);
1811}
1812
1813static inline void mm_inc_nr_ptes(struct mm_struct *mm)
1814{
1815 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
1816}
1817
1818static inline void mm_dec_nr_ptes(struct mm_struct *mm)
1819{
1820 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
1821}
1822#else
1823
1824static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
1825static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
1826{
1827 return 0;
1828}
1829
1830static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
1831static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
1832#endif
1833
1834int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
1835int __pte_alloc_kernel(pmd_t *pmd);
1836
1837/*
1838 * The following ifdef needed to get the 4level-fixup.h header to work.
1839 * Remove it when 4level-fixup.h has been removed.
1840 */
1841#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1842
1843#ifndef __ARCH_HAS_5LEVEL_HACK
1844static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
1845 unsigned long address)
1846{
1847 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
1848 NULL : p4d_offset(pgd, address);
1849}
1850
1851static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
1852 unsigned long address)
1853{
1854 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
1855 NULL : pud_offset(p4d, address);
1856}
1857#endif /* !__ARCH_HAS_5LEVEL_HACK */
1858
1859static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1860{
1861 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1862 NULL: pmd_offset(pud, address);
1863}
1864#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1865
1866#if USE_SPLIT_PTE_PTLOCKS
1867#if ALLOC_SPLIT_PTLOCKS
1868void __init ptlock_cache_init(void);
1869extern bool ptlock_alloc(struct page *page);
1870extern void ptlock_free(struct page *page);
1871
1872static inline spinlock_t *ptlock_ptr(struct page *page)
1873{
1874 return page->ptl;
1875}
1876#else /* ALLOC_SPLIT_PTLOCKS */
1877static inline void ptlock_cache_init(void)
1878{
1879}
1880
1881static inline bool ptlock_alloc(struct page *page)
1882{
1883 return true;
1884}
1885
1886static inline void ptlock_free(struct page *page)
1887{
1888}
1889
1890static inline spinlock_t *ptlock_ptr(struct page *page)
1891{
1892 return &page->ptl;
1893}
1894#endif /* ALLOC_SPLIT_PTLOCKS */
1895
1896static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1897{
1898 return ptlock_ptr(pmd_page(*pmd));
1899}
1900
1901static inline bool ptlock_init(struct page *page)
1902{
1903 /*
1904 * prep_new_page() initialize page->private (and therefore page->ptl)
1905 * with 0. Make sure nobody took it in use in between.
1906 *
1907 * It can happen if arch try to use slab for page table allocation:
1908 * slab code uses page->slab_cache, which share storage with page->ptl.
1909 */
1910 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
1911 if (!ptlock_alloc(page))
1912 return false;
1913 spin_lock_init(ptlock_ptr(page));
1914 return true;
1915}
1916
1917#else /* !USE_SPLIT_PTE_PTLOCKS */
1918/*
1919 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1920 */
1921static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1922{
1923 return &mm->page_table_lock;
1924}
1925static inline void ptlock_cache_init(void) {}
1926static inline bool ptlock_init(struct page *page) { return true; }
1927static inline void ptlock_free(struct page *page) {}
1928#endif /* USE_SPLIT_PTE_PTLOCKS */
1929
1930static inline void pgtable_init(void)
1931{
1932 ptlock_cache_init();
1933 pgtable_cache_init();
1934}
1935
1936static inline bool pgtable_page_ctor(struct page *page)
1937{
1938 if (!ptlock_init(page))
1939 return false;
1940 __SetPageTable(page);
1941 inc_zone_page_state(page, NR_PAGETABLE);
1942 return true;
1943}
1944
1945static inline void pgtable_page_dtor(struct page *page)
1946{
1947 ptlock_free(page);
1948 __ClearPageTable(page);
1949 dec_zone_page_state(page, NR_PAGETABLE);
1950}
1951
1952#define pte_offset_map_lock(mm, pmd, address, ptlp) \
1953({ \
1954 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
1955 pte_t *__pte = pte_offset_map(pmd, address); \
1956 *(ptlp) = __ptl; \
1957 spin_lock(__ptl); \
1958 __pte; \
1959})
1960
1961#define pte_unmap_unlock(pte, ptl) do { \
1962 spin_unlock(ptl); \
1963 pte_unmap(pte); \
1964} while (0)
1965
1966#define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
1967
1968#define pte_alloc_map(mm, pmd, address) \
1969 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
1970
1971#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
1972 (pte_alloc(mm, pmd) ? \
1973 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
1974
1975#define pte_alloc_kernel(pmd, address) \
1976 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
1977 NULL: pte_offset_kernel(pmd, address))
1978
1979#if USE_SPLIT_PMD_PTLOCKS
1980
1981static struct page *pmd_to_page(pmd_t *pmd)
1982{
1983 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
1984 return virt_to_page((void *)((unsigned long) pmd & mask));
1985}
1986
1987static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1988{
1989 return ptlock_ptr(pmd_to_page(pmd));
1990}
1991
1992static inline bool pgtable_pmd_page_ctor(struct page *page)
1993{
1994#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1995 page->pmd_huge_pte = NULL;
1996#endif
1997 return ptlock_init(page);
1998}
1999
2000static inline void pgtable_pmd_page_dtor(struct page *page)
2001{
2002#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2003 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
2004#endif
2005 ptlock_free(page);
2006}
2007
2008#define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
2009
2010#else
2011
2012static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2013{
2014 return &mm->page_table_lock;
2015}
2016
2017static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
2018static inline void pgtable_pmd_page_dtor(struct page *page) {}
2019
2020#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
2021
2022#endif
2023
2024static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
2025{
2026 spinlock_t *ptl = pmd_lockptr(mm, pmd);
2027 spin_lock(ptl);
2028 return ptl;
2029}
2030
2031/*
2032 * No scalability reason to split PUD locks yet, but follow the same pattern
2033 * as the PMD locks to make it easier if we decide to. The VM should not be
2034 * considered ready to switch to split PUD locks yet; there may be places
2035 * which need to be converted from page_table_lock.
2036 */
2037static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
2038{
2039 return &mm->page_table_lock;
2040}
2041
2042static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
2043{
2044 spinlock_t *ptl = pud_lockptr(mm, pud);
2045
2046 spin_lock(ptl);
2047 return ptl;
2048}
2049
2050extern void __init pagecache_init(void);
2051extern void free_area_init(unsigned long * zones_size);
2052extern void __init free_area_init_node(int nid, unsigned long * zones_size,
2053 unsigned long zone_start_pfn, unsigned long *zholes_size);
2054extern void free_initmem(void);
2055
2056/*
2057 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
2058 * into the buddy system. The freed pages will be poisoned with pattern
2059 * "poison" if it's within range [0, UCHAR_MAX].
2060 * Return pages freed into the buddy system.
2061 */
2062extern unsigned long free_reserved_area(void *start, void *end,
2063 int poison, const char *s);
2064
2065#ifdef CONFIG_HIGHMEM
2066/*
2067 * Free a highmem page into the buddy system, adjusting totalhigh_pages
2068 * and totalram_pages.
2069 */
2070extern void free_highmem_page(struct page *page);
2071#endif
2072
2073extern void adjust_managed_page_count(struct page *page, long count);
2074extern void mem_init_print_info(const char *str);
2075
2076extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
2077
2078/* Free the reserved page into the buddy system, so it gets managed. */
2079static inline void __free_reserved_page(struct page *page)
2080{
2081 ClearPageReserved(page);
2082 init_page_count(page);
2083 __free_page(page);
2084}
2085
2086static inline void free_reserved_page(struct page *page)
2087{
2088 __free_reserved_page(page);
2089 adjust_managed_page_count(page, 1);
2090}
2091
2092static inline void mark_page_reserved(struct page *page)
2093{
2094 SetPageReserved(page);
2095 adjust_managed_page_count(page, -1);
2096}
2097
2098/*
2099 * Default method to free all the __init memory into the buddy system.
2100 * The freed pages will be poisoned with pattern "poison" if it's within
2101 * range [0, UCHAR_MAX].
2102 * Return pages freed into the buddy system.
2103 */
2104static inline unsigned long free_initmem_default(int poison)
2105{
2106 extern char __init_begin[], __init_end[];
2107
2108 return free_reserved_area(&__init_begin, &__init_end,
2109 poison, "unused kernel");
2110}
2111
2112static inline unsigned long get_num_physpages(void)
2113{
2114 int nid;
2115 unsigned long phys_pages = 0;
2116
2117 for_each_online_node(nid)
2118 phys_pages += node_present_pages(nid);
2119
2120 return phys_pages;
2121}
2122
2123#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
2124/*
2125 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
2126 * zones, allocate the backing mem_map and account for memory holes in a more
2127 * architecture independent manner. This is a substitute for creating the
2128 * zone_sizes[] and zholes_size[] arrays and passing them to
2129 * free_area_init_node()
2130 *
2131 * An architecture is expected to register range of page frames backed by
2132 * physical memory with memblock_add[_node]() before calling
2133 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
2134 * usage, an architecture is expected to do something like
2135 *
2136 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
2137 * max_highmem_pfn};
2138 * for_each_valid_physical_page_range()
2139 * memblock_add_node(base, size, nid)
2140 * free_area_init_nodes(max_zone_pfns);
2141 *
2142 * free_bootmem_with_active_regions() calls free_bootmem_node() for each
2143 * registered physical page range. Similarly
2144 * sparse_memory_present_with_active_regions() calls memory_present() for
2145 * each range when SPARSEMEM is enabled.
2146 *
2147 * See mm/page_alloc.c for more information on each function exposed by
2148 * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
2149 */
2150extern void free_area_init_nodes(unsigned long *max_zone_pfn);
2151unsigned long node_map_pfn_alignment(void);
2152unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
2153 unsigned long end_pfn);
2154extern unsigned long absent_pages_in_range(unsigned long start_pfn,
2155 unsigned long end_pfn);
2156extern void get_pfn_range_for_nid(unsigned int nid,
2157 unsigned long *start_pfn, unsigned long *end_pfn);
2158extern unsigned long find_min_pfn_with_active_regions(void);
2159extern void free_bootmem_with_active_regions(int nid,
2160 unsigned long max_low_pfn);
2161extern void sparse_memory_present_with_active_regions(int nid);
2162
2163#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
2164
2165#if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
2166 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
2167static inline int __early_pfn_to_nid(unsigned long pfn,
2168 struct mminit_pfnnid_cache *state)
2169{
2170 return 0;
2171}
2172#else
2173/* please see mm/page_alloc.c */
2174extern int __meminit early_pfn_to_nid(unsigned long pfn);
2175/* there is a per-arch backend function. */
2176extern int __meminit __early_pfn_to_nid(unsigned long pfn,
2177 struct mminit_pfnnid_cache *state);
2178#endif
2179
2180#if !defined(CONFIG_FLAT_NODE_MEM_MAP)
2181void zero_resv_unavail(void);
2182#else
2183static inline void zero_resv_unavail(void) {}
2184#endif
2185
2186extern void set_dma_reserve(unsigned long new_dma_reserve);
2187extern void memmap_init_zone(unsigned long, int, unsigned long, unsigned long,
2188 enum memmap_context, struct vmem_altmap *);
2189extern void setup_per_zone_wmarks(void);
2190extern int __meminit init_per_zone_wmark_min(void);
2191extern void mem_init(void);
2192extern void __init mmap_init(void);
2193extern void show_mem(unsigned int flags, nodemask_t *nodemask);
2194extern long si_mem_available(void);
2195extern void si_meminfo(struct sysinfo * val);
2196extern void si_meminfo_node(struct sysinfo *val, int nid);
2197#ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
2198extern unsigned long arch_reserved_kernel_pages(void);
2199#endif
2200
2201extern __printf(3, 4)
2202void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
2203
2204extern void setup_per_cpu_pageset(void);
2205
2206extern void zone_pcp_update(struct zone *zone);
2207extern void zone_pcp_reset(struct zone *zone);
2208
2209/* page_alloc.c */
2210extern int min_free_kbytes;
2211extern int watermark_boost_factor;
2212extern int watermark_scale_factor;
2213
2214/* nommu.c */
2215extern atomic_long_t mmap_pages_allocated;
2216extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
2217
2218/* interval_tree.c */
2219void vma_interval_tree_insert(struct vm_area_struct *node,
2220 struct rb_root_cached *root);
2221void vma_interval_tree_insert_after(struct vm_area_struct *node,
2222 struct vm_area_struct *prev,
2223 struct rb_root_cached *root);
2224void vma_interval_tree_remove(struct vm_area_struct *node,
2225 struct rb_root_cached *root);
2226struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
2227 unsigned long start, unsigned long last);
2228struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
2229 unsigned long start, unsigned long last);
2230
2231#define vma_interval_tree_foreach(vma, root, start, last) \
2232 for (vma = vma_interval_tree_iter_first(root, start, last); \
2233 vma; vma = vma_interval_tree_iter_next(vma, start, last))
2234
2235void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
2236 struct rb_root_cached *root);
2237void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
2238 struct rb_root_cached *root);
2239struct anon_vma_chain *
2240anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
2241 unsigned long start, unsigned long last);
2242struct anon_vma_chain *anon_vma_interval_tree_iter_next(
2243 struct anon_vma_chain *node, unsigned long start, unsigned long last);
2244#ifdef CONFIG_DEBUG_VM_RB
2245void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
2246#endif
2247
2248#define anon_vma_interval_tree_foreach(avc, root, start, last) \
2249 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
2250 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
2251
2252/* mmap.c */
2253extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
2254extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
2255 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
2256 struct vm_area_struct *expand);
2257static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start,
2258 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
2259{
2260 return __vma_adjust(vma, start, end, pgoff, insert, NULL);
2261}
2262extern struct vm_area_struct *vma_merge(struct mm_struct *,
2263 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
2264 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
2265 struct mempolicy *, struct vm_userfaultfd_ctx);
2266extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
2267extern int __split_vma(struct mm_struct *, struct vm_area_struct *,
2268 unsigned long addr, int new_below);
2269extern int split_vma(struct mm_struct *, struct vm_area_struct *,
2270 unsigned long addr, int new_below);
2271extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
2272extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
2273 struct rb_node **, struct rb_node *);
2274extern void unlink_file_vma(struct vm_area_struct *);
2275extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
2276 unsigned long addr, unsigned long len, pgoff_t pgoff,
2277 bool *need_rmap_locks);
2278extern void exit_mmap(struct mm_struct *);
2279
2280static inline int check_data_rlimit(unsigned long rlim,
2281 unsigned long new,
2282 unsigned long start,
2283 unsigned long end_data,
2284 unsigned long start_data)
2285{
2286 if (rlim < RLIM_INFINITY) {
2287 if (((new - start) + (end_data - start_data)) > rlim)
2288 return -ENOSPC;
2289 }
2290
2291 return 0;
2292}
2293
2294extern int mm_take_all_locks(struct mm_struct *mm);
2295extern void mm_drop_all_locks(struct mm_struct *mm);
2296
2297extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
2298extern struct file *get_mm_exe_file(struct mm_struct *mm);
2299extern struct file *get_task_exe_file(struct task_struct *task);
2300
2301extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
2302extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
2303
2304extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
2305 const struct vm_special_mapping *sm);
2306extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
2307 unsigned long addr, unsigned long len,
2308 unsigned long flags,
2309 const struct vm_special_mapping *spec);
2310/* This is an obsolete alternative to _install_special_mapping. */
2311extern int install_special_mapping(struct mm_struct *mm,
2312 unsigned long addr, unsigned long len,
2313 unsigned long flags, struct page **pages);
2314
2315extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
2316
2317extern unsigned long mmap_region(struct file *file, unsigned long addr,
2318 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2319 struct list_head *uf);
2320extern unsigned long do_mmap(struct file *file, unsigned long addr,
2321 unsigned long len, unsigned long prot, unsigned long flags,
2322 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate,
2323 struct list_head *uf);
2324extern int __do_munmap(struct mm_struct *, unsigned long, size_t,
2325 struct list_head *uf, bool downgrade);
2326extern int do_munmap(struct mm_struct *, unsigned long, size_t,
2327 struct list_head *uf);
2328
2329static inline unsigned long
2330do_mmap_pgoff(struct file *file, unsigned long addr,
2331 unsigned long len, unsigned long prot, unsigned long flags,
2332 unsigned long pgoff, unsigned long *populate,
2333 struct list_head *uf)
2334{
2335 return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate, uf);
2336}
2337
2338#ifdef CONFIG_MMU
2339extern int __mm_populate(unsigned long addr, unsigned long len,
2340 int ignore_errors);
2341static inline void mm_populate(unsigned long addr, unsigned long len)
2342{
2343 /* Ignore errors */
2344 (void) __mm_populate(addr, len, 1);
2345}
2346#else
2347static inline void mm_populate(unsigned long addr, unsigned long len) {}
2348#endif
2349
2350/* These take the mm semaphore themselves */
2351extern int __must_check vm_brk(unsigned long, unsigned long);
2352extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
2353extern int vm_munmap(unsigned long, size_t);
2354extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
2355 unsigned long, unsigned long,
2356 unsigned long, unsigned long);
2357
2358struct vm_unmapped_area_info {
2359#define VM_UNMAPPED_AREA_TOPDOWN 1
2360 unsigned long flags;
2361 unsigned long length;
2362 unsigned long low_limit;
2363 unsigned long high_limit;
2364 unsigned long align_mask;
2365 unsigned long align_offset;
2366};
2367
2368extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
2369extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
2370
2371/*
2372 * Search for an unmapped address range.
2373 *
2374 * We are looking for a range that:
2375 * - does not intersect with any VMA;
2376 * - is contained within the [low_limit, high_limit) interval;
2377 * - is at least the desired size.
2378 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
2379 */
2380static inline unsigned long
2381vm_unmapped_area(struct vm_unmapped_area_info *info)
2382{
2383 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
2384 return unmapped_area_topdown(info);
2385 else
2386 return unmapped_area(info);
2387}
2388
2389/* truncate.c */
2390extern void truncate_inode_pages(struct address_space *, loff_t);
2391extern void truncate_inode_pages_range(struct address_space *,
2392 loff_t lstart, loff_t lend);
2393extern void truncate_inode_pages_final(struct address_space *);
2394
2395/* generic vm_area_ops exported for stackable file systems */
2396extern vm_fault_t filemap_fault(struct vm_fault *vmf);
2397extern void filemap_map_pages(struct vm_fault *vmf,
2398 pgoff_t start_pgoff, pgoff_t end_pgoff);
2399extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
2400
2401/* mm/page-writeback.c */
2402int __must_check write_one_page(struct page *page);
2403void task_dirty_inc(struct task_struct *tsk);
2404
2405/* readahead.c */
2406#define VM_READAHEAD_PAGES (SZ_128K / PAGE_SIZE)
2407
2408int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
2409 pgoff_t offset, unsigned long nr_to_read);
2410
2411void page_cache_sync_readahead(struct address_space *mapping,
2412 struct file_ra_state *ra,
2413 struct file *filp,
2414 pgoff_t offset,
2415 unsigned long size);
2416
2417void page_cache_async_readahead(struct address_space *mapping,
2418 struct file_ra_state *ra,
2419 struct file *filp,
2420 struct page *pg,
2421 pgoff_t offset,
2422 unsigned long size);
2423
2424extern unsigned long stack_guard_gap;
2425/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
2426extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
2427
2428/* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
2429extern int expand_downwards(struct vm_area_struct *vma,
2430 unsigned long address);
2431#if VM_GROWSUP
2432extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
2433#else
2434 #define expand_upwards(vma, address) (0)
2435#endif
2436
2437/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2438extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2439extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2440 struct vm_area_struct **pprev);
2441
2442/* Look up the first VMA which intersects the interval start_addr..end_addr-1,
2443 NULL if none. Assume start_addr < end_addr. */
2444static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
2445{
2446 struct vm_area_struct * vma = find_vma(mm,start_addr);
2447
2448 if (vma && end_addr <= vma->vm_start)
2449 vma = NULL;
2450 return vma;
2451}
2452
2453static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
2454{
2455 unsigned long vm_start = vma->vm_start;
2456
2457 if (vma->vm_flags & VM_GROWSDOWN) {
2458 vm_start -= stack_guard_gap;
2459 if (vm_start > vma->vm_start)
2460 vm_start = 0;
2461 }
2462 return vm_start;
2463}
2464
2465static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
2466{
2467 unsigned long vm_end = vma->vm_end;
2468
2469 if (vma->vm_flags & VM_GROWSUP) {
2470 vm_end += stack_guard_gap;
2471 if (vm_end < vma->vm_end)
2472 vm_end = -PAGE_SIZE;
2473 }
2474 return vm_end;
2475}
2476
2477static inline unsigned long vma_pages(struct vm_area_struct *vma)
2478{
2479 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2480}
2481
2482/* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2483static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2484 unsigned long vm_start, unsigned long vm_end)
2485{
2486 struct vm_area_struct *vma = find_vma(mm, vm_start);
2487
2488 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2489 vma = NULL;
2490
2491 return vma;
2492}
2493
2494static inline bool range_in_vma(struct vm_area_struct *vma,
2495 unsigned long start, unsigned long end)
2496{
2497 return (vma && vma->vm_start <= start && end <= vma->vm_end);
2498}
2499
2500#ifdef CONFIG_MMU
2501pgprot_t vm_get_page_prot(unsigned long vm_flags);
2502void vma_set_page_prot(struct vm_area_struct *vma);
2503#else
2504static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2505{
2506 return __pgprot(0);
2507}
2508static inline void vma_set_page_prot(struct vm_area_struct *vma)
2509{
2510 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2511}
2512#endif
2513
2514#ifdef CONFIG_NUMA_BALANCING
2515unsigned long change_prot_numa(struct vm_area_struct *vma,
2516 unsigned long start, unsigned long end);
2517#endif
2518
2519struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
2520int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2521 unsigned long pfn, unsigned long size, pgprot_t);
2522int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
2523vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2524 unsigned long pfn);
2525vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2526 unsigned long pfn, pgprot_t pgprot);
2527vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2528 pfn_t pfn);
2529vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2530 unsigned long addr, pfn_t pfn);
2531int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2532
2533static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
2534 unsigned long addr, struct page *page)
2535{
2536 int err = vm_insert_page(vma, addr, page);
2537
2538 if (err == -ENOMEM)
2539 return VM_FAULT_OOM;
2540 if (err < 0 && err != -EBUSY)
2541 return VM_FAULT_SIGBUS;
2542
2543 return VM_FAULT_NOPAGE;
2544}
2545
2546static inline vm_fault_t vmf_error(int err)
2547{
2548 if (err == -ENOMEM)
2549 return VM_FAULT_OOM;
2550 return VM_FAULT_SIGBUS;
2551}
2552
2553struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
2554 unsigned int foll_flags);
2555
2556#define FOLL_WRITE 0x01 /* check pte is writable */
2557#define FOLL_TOUCH 0x02 /* mark page accessed */
2558#define FOLL_GET 0x04 /* do get_page on page */
2559#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
2560#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
2561#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
2562 * and return without waiting upon it */
2563#define FOLL_POPULATE 0x40 /* fault in page */
2564#define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
2565#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
2566#define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
2567#define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
2568#define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
2569#define FOLL_MLOCK 0x1000 /* lock present pages */
2570#define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */
2571#define FOLL_COW 0x4000 /* internal GUP flag */
2572#define FOLL_ANON 0x8000 /* don't do file mappings */
2573
2574static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
2575{
2576 if (vm_fault & VM_FAULT_OOM)
2577 return -ENOMEM;
2578 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
2579 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
2580 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
2581 return -EFAULT;
2582 return 0;
2583}
2584
2585typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
2586 void *data);
2587extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2588 unsigned long size, pte_fn_t fn, void *data);
2589
2590
2591#ifdef CONFIG_PAGE_POISONING
2592extern bool page_poisoning_enabled(void);
2593extern void kernel_poison_pages(struct page *page, int numpages, int enable);
2594#else
2595static inline bool page_poisoning_enabled(void) { return false; }
2596static inline void kernel_poison_pages(struct page *page, int numpages,
2597 int enable) { }
2598#endif
2599
2600#ifdef CONFIG_DEBUG_PAGEALLOC
2601extern bool _debug_pagealloc_enabled;
2602extern void __kernel_map_pages(struct page *page, int numpages, int enable);
2603
2604static inline bool debug_pagealloc_enabled(void)
2605{
2606 return _debug_pagealloc_enabled;
2607}
2608
2609static inline void
2610kernel_map_pages(struct page *page, int numpages, int enable)
2611{
2612 if (!debug_pagealloc_enabled())
2613 return;
2614
2615 __kernel_map_pages(page, numpages, enable);
2616}
2617#ifdef CONFIG_HIBERNATION
2618extern bool kernel_page_present(struct page *page);
2619#endif /* CONFIG_HIBERNATION */
2620#else /* CONFIG_DEBUG_PAGEALLOC */
2621static inline void
2622kernel_map_pages(struct page *page, int numpages, int enable) {}
2623#ifdef CONFIG_HIBERNATION
2624static inline bool kernel_page_present(struct page *page) { return true; }
2625#endif /* CONFIG_HIBERNATION */
2626static inline bool debug_pagealloc_enabled(void)
2627{
2628 return false;
2629}
2630#endif /* CONFIG_DEBUG_PAGEALLOC */
2631
2632#ifdef __HAVE_ARCH_GATE_AREA
2633extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
2634extern int in_gate_area_no_mm(unsigned long addr);
2635extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
2636#else
2637static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2638{
2639 return NULL;
2640}
2641static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
2642static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2643{
2644 return 0;
2645}
2646#endif /* __HAVE_ARCH_GATE_AREA */
2647
2648extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
2649
2650#ifdef CONFIG_SYSCTL
2651extern int sysctl_drop_caches;
2652int drop_caches_sysctl_handler(struct ctl_table *, int,
2653 void __user *, size_t *, loff_t *);
2654#endif
2655
2656void drop_slab(void);
2657void drop_slab_node(int nid);
2658
2659#ifndef CONFIG_MMU
2660#define randomize_va_space 0
2661#else
2662extern int randomize_va_space;
2663#endif
2664
2665const char * arch_vma_name(struct vm_area_struct *vma);
2666void print_vma_addr(char *prefix, unsigned long rip);
2667
2668void *sparse_buffer_alloc(unsigned long size);
2669struct page *sparse_mem_map_populate(unsigned long pnum, int nid,
2670 struct vmem_altmap *altmap);
2671pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
2672p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
2673pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
2674pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
2675pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
2676void *vmemmap_alloc_block(unsigned long size, int node);
2677struct vmem_altmap;
2678void *vmemmap_alloc_block_buf(unsigned long size, int node);
2679void *altmap_alloc_block_buf(unsigned long size, struct vmem_altmap *altmap);
2680void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
2681int vmemmap_populate_basepages(unsigned long start, unsigned long end,
2682 int node);
2683int vmemmap_populate(unsigned long start, unsigned long end, int node,
2684 struct vmem_altmap *altmap);
2685void vmemmap_populate_print_last(void);
2686#ifdef CONFIG_MEMORY_HOTPLUG
2687void vmemmap_free(unsigned long start, unsigned long end,
2688 struct vmem_altmap *altmap);
2689#endif
2690void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
2691 unsigned long nr_pages);
2692
2693enum mf_flags {
2694 MF_COUNT_INCREASED = 1 << 0,
2695 MF_ACTION_REQUIRED = 1 << 1,
2696 MF_MUST_KILL = 1 << 2,
2697 MF_SOFT_OFFLINE = 1 << 3,
2698};
2699extern int memory_failure(unsigned long pfn, int flags);
2700extern void memory_failure_queue(unsigned long pfn, int flags);
2701extern int unpoison_memory(unsigned long pfn);
2702extern int get_hwpoison_page(struct page *page);
2703#define put_hwpoison_page(page) put_page(page)
2704extern int sysctl_memory_failure_early_kill;
2705extern int sysctl_memory_failure_recovery;
2706extern void shake_page(struct page *p, int access);
2707extern atomic_long_t num_poisoned_pages __read_mostly;
2708extern int soft_offline_page(struct page *page, int flags);
2709
2710
2711/*
2712 * Error handlers for various types of pages.
2713 */
2714enum mf_result {
2715 MF_IGNORED, /* Error: cannot be handled */
2716 MF_FAILED, /* Error: handling failed */
2717 MF_DELAYED, /* Will be handled later */
2718 MF_RECOVERED, /* Successfully recovered */
2719};
2720
2721enum mf_action_page_type {
2722 MF_MSG_KERNEL,
2723 MF_MSG_KERNEL_HIGH_ORDER,
2724 MF_MSG_SLAB,
2725 MF_MSG_DIFFERENT_COMPOUND,
2726 MF_MSG_POISONED_HUGE,
2727 MF_MSG_HUGE,
2728 MF_MSG_FREE_HUGE,
2729 MF_MSG_NON_PMD_HUGE,
2730 MF_MSG_UNMAP_FAILED,
2731 MF_MSG_DIRTY_SWAPCACHE,
2732 MF_MSG_CLEAN_SWAPCACHE,
2733 MF_MSG_DIRTY_MLOCKED_LRU,
2734 MF_MSG_CLEAN_MLOCKED_LRU,
2735 MF_MSG_DIRTY_UNEVICTABLE_LRU,
2736 MF_MSG_CLEAN_UNEVICTABLE_LRU,
2737 MF_MSG_DIRTY_LRU,
2738 MF_MSG_CLEAN_LRU,
2739 MF_MSG_TRUNCATED_LRU,
2740 MF_MSG_BUDDY,
2741 MF_MSG_BUDDY_2ND,
2742 MF_MSG_DAX,
2743 MF_MSG_UNKNOWN,
2744};
2745
2746#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
2747extern void clear_huge_page(struct page *page,
2748 unsigned long addr_hint,
2749 unsigned int pages_per_huge_page);
2750extern void copy_user_huge_page(struct page *dst, struct page *src,
2751 unsigned long addr_hint,
2752 struct vm_area_struct *vma,
2753 unsigned int pages_per_huge_page);
2754extern long copy_huge_page_from_user(struct page *dst_page,
2755 const void __user *usr_src,
2756 unsigned int pages_per_huge_page,
2757 bool allow_pagefault);
2758#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
2759
2760extern struct page_ext_operations debug_guardpage_ops;
2761
2762#ifdef CONFIG_DEBUG_PAGEALLOC
2763extern unsigned int _debug_guardpage_minorder;
2764extern bool _debug_guardpage_enabled;
2765
2766static inline unsigned int debug_guardpage_minorder(void)
2767{
2768 return _debug_guardpage_minorder;
2769}
2770
2771static inline bool debug_guardpage_enabled(void)
2772{
2773 return _debug_guardpage_enabled;
2774}
2775
2776static inline bool page_is_guard(struct page *page)
2777{
2778 struct page_ext *page_ext;
2779
2780 if (!debug_guardpage_enabled())
2781 return false;
2782
2783 page_ext = lookup_page_ext(page);
2784 if (unlikely(!page_ext))
2785 return false;
2786
2787 return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
2788}
2789#else
2790static inline unsigned int debug_guardpage_minorder(void) { return 0; }
2791static inline bool debug_guardpage_enabled(void) { return false; }
2792static inline bool page_is_guard(struct page *page) { return false; }
2793#endif /* CONFIG_DEBUG_PAGEALLOC */
2794
2795#if MAX_NUMNODES > 1
2796void __init setup_nr_node_ids(void);
2797#else
2798static inline void setup_nr_node_ids(void) {}
2799#endif
2800
2801#endif /* __KERNEL__ */
2802#endif /* _LINUX_MM_H */
2803