1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Copyright (C) 2000,2001,2002,2003,2004 Broadcom Corporation
4 */
5#include <linux/kernel.h>
6#include <linux/init.h>
7#include <linux/linkage.h>
8#include <linux/interrupt.h>
9#include <linux/smp.h>
10#include <linux/spinlock.h>
11#include <linux/mm.h>
12#include <linux/kernel_stat.h>
13
14#include <asm/errno.h>
15#include <asm/irq_regs.h>
16#include <asm/signal.h>
17#include <asm/io.h>
18
19#include <asm/sibyte/bcm1480_regs.h>
20#include <asm/sibyte/bcm1480_int.h>
21#include <asm/sibyte/bcm1480_scd.h>
22
23#include <asm/sibyte/sb1250_uart.h>
24#include <asm/sibyte/sb1250.h>
25
26/*
27 * These are the routines that handle all the low level interrupt stuff.
28 * Actions handled here are: initialization of the interrupt map, requesting of
29 * interrupt lines by handlers, dispatching if interrupts to handlers, probing
30 * for interrupt lines
31 */
32
33#ifdef CONFIG_PCI
34extern unsigned long ht_eoi_space;
35#endif
36
37/* Store the CPU id (not the logical number) */
38int bcm1480_irq_owner[BCM1480_NR_IRQS];
39
40static DEFINE_RAW_SPINLOCK(bcm1480_imr_lock);
41
42void bcm1480_mask_irq(int cpu, int irq)
43{
44 unsigned long flags, hl_spacing;
45 u64 cur_ints;
46
47 raw_spin_lock_irqsave(&bcm1480_imr_lock, flags);
48 hl_spacing = 0;
49 if ((irq >= BCM1480_NR_IRQS_HALF) && (irq <= BCM1480_NR_IRQS)) {
50 hl_spacing = BCM1480_IMR_HL_SPACING;
51 irq -= BCM1480_NR_IRQS_HALF;
52 }
53 cur_ints = ____raw_readq(IOADDR(A_BCM1480_IMR_MAPPER(cpu) + R_BCM1480_IMR_INTERRUPT_MASK_H + hl_spacing));
54 cur_ints |= (((u64) 1) << irq);
55 ____raw_writeq(cur_ints, IOADDR(A_BCM1480_IMR_MAPPER(cpu) + R_BCM1480_IMR_INTERRUPT_MASK_H + hl_spacing));
56 raw_spin_unlock_irqrestore(&bcm1480_imr_lock, flags);
57}
58
59void bcm1480_unmask_irq(int cpu, int irq)
60{
61 unsigned long flags, hl_spacing;
62 u64 cur_ints;
63
64 raw_spin_lock_irqsave(&bcm1480_imr_lock, flags);
65 hl_spacing = 0;
66 if ((irq >= BCM1480_NR_IRQS_HALF) && (irq <= BCM1480_NR_IRQS)) {
67 hl_spacing = BCM1480_IMR_HL_SPACING;
68 irq -= BCM1480_NR_IRQS_HALF;
69 }
70 cur_ints = ____raw_readq(IOADDR(A_BCM1480_IMR_MAPPER(cpu) + R_BCM1480_IMR_INTERRUPT_MASK_H + hl_spacing));
71 cur_ints &= ~(((u64) 1) << irq);
72 ____raw_writeq(cur_ints, IOADDR(A_BCM1480_IMR_MAPPER(cpu) + R_BCM1480_IMR_INTERRUPT_MASK_H + hl_spacing));
73 raw_spin_unlock_irqrestore(&bcm1480_imr_lock, flags);
74}
75
76#ifdef CONFIG_SMP
77static int bcm1480_set_affinity(struct irq_data *d, const struct cpumask *mask,
78 bool force)
79{
80 unsigned int irq_dirty, irq = d->irq;
81 int i = 0, old_cpu, cpu, int_on, k;
82 u64 cur_ints;
83 unsigned long flags;
84
85 i = cpumask_first_and(srcp1: mask, cpu_online_mask);
86
87 /* Convert logical CPU to physical CPU */
88 cpu = cpu_logical_map(i);
89
90 /* Protect against other affinity changers and IMR manipulation */
91 raw_spin_lock_irqsave(&bcm1480_imr_lock, flags);
92
93 /* Swizzle each CPU's IMR (but leave the IP selection alone) */
94 old_cpu = bcm1480_irq_owner[irq];
95 irq_dirty = irq;
96 if ((irq_dirty >= BCM1480_NR_IRQS_HALF) && (irq_dirty <= BCM1480_NR_IRQS)) {
97 irq_dirty -= BCM1480_NR_IRQS_HALF;
98 }
99
100 for (k=0; k<2; k++) { /* Loop through high and low interrupt mask register */
101 cur_ints = ____raw_readq(IOADDR(A_BCM1480_IMR_MAPPER(old_cpu) + R_BCM1480_IMR_INTERRUPT_MASK_H + (k*BCM1480_IMR_HL_SPACING)));
102 int_on = !(cur_ints & (((u64) 1) << irq_dirty));
103 if (int_on) {
104 /* If it was on, mask it */
105 cur_ints |= (((u64) 1) << irq_dirty);
106 ____raw_writeq(cur_ints, IOADDR(A_BCM1480_IMR_MAPPER(old_cpu) + R_BCM1480_IMR_INTERRUPT_MASK_H + (k*BCM1480_IMR_HL_SPACING)));
107 }
108 bcm1480_irq_owner[irq] = cpu;
109 if (int_on) {
110 /* unmask for the new CPU */
111 cur_ints = ____raw_readq(IOADDR(A_BCM1480_IMR_MAPPER(cpu) + R_BCM1480_IMR_INTERRUPT_MASK_H + (k*BCM1480_IMR_HL_SPACING)));
112 cur_ints &= ~(((u64) 1) << irq_dirty);
113 ____raw_writeq(cur_ints, IOADDR(A_BCM1480_IMR_MAPPER(cpu) + R_BCM1480_IMR_INTERRUPT_MASK_H + (k*BCM1480_IMR_HL_SPACING)));
114 }
115 }
116 raw_spin_unlock_irqrestore(&bcm1480_imr_lock, flags);
117
118 return 0;
119}
120#endif
121
122
123/*****************************************************************************/
124
125static void disable_bcm1480_irq(struct irq_data *d)
126{
127 unsigned int irq = d->irq;
128
129 bcm1480_mask_irq(cpu: bcm1480_irq_owner[irq], irq);
130}
131
132static void enable_bcm1480_irq(struct irq_data *d)
133{
134 unsigned int irq = d->irq;
135
136 bcm1480_unmask_irq(cpu: bcm1480_irq_owner[irq], irq);
137}
138
139
140static void ack_bcm1480_irq(struct irq_data *d)
141{
142 unsigned int irq_dirty, irq = d->irq;
143 u64 pending;
144 int k;
145
146 /*
147 * If the interrupt was an HT interrupt, now is the time to
148 * clear it. NOTE: we assume the HT bridge was set up to
149 * deliver the interrupts to all CPUs (which makes affinity
150 * changing easier for us)
151 */
152 irq_dirty = irq;
153 if ((irq_dirty >= BCM1480_NR_IRQS_HALF) && (irq_dirty <= BCM1480_NR_IRQS)) {
154 irq_dirty -= BCM1480_NR_IRQS_HALF;
155 }
156 for (k=0; k<2; k++) { /* Loop through high and low LDT interrupts */
157 pending = __raw_readq(IOADDR(A_BCM1480_IMR_REGISTER(bcm1480_irq_owner[irq],
158 R_BCM1480_IMR_LDT_INTERRUPT_H + (k*BCM1480_IMR_HL_SPACING))));
159 pending &= ((u64)1 << (irq_dirty));
160 if (pending) {
161#ifdef CONFIG_SMP
162 int i;
163 for (i=0; i<NR_CPUS; i++) {
164 /*
165 * Clear for all CPUs so an affinity switch
166 * doesn't find an old status
167 */
168 __raw_writeq(pending, IOADDR(A_BCM1480_IMR_REGISTER(cpu_logical_map(i),
169 R_BCM1480_IMR_LDT_INTERRUPT_CLR_H + (k*BCM1480_IMR_HL_SPACING))));
170 }
171#else
172 __raw_writeq(pending, IOADDR(A_BCM1480_IMR_REGISTER(0, R_BCM1480_IMR_LDT_INTERRUPT_CLR_H + (k*BCM1480_IMR_HL_SPACING))));
173#endif
174
175 /*
176 * Generate EOI. For Pass 1 parts, EOI is a nop. For
177 * Pass 2, the LDT world may be edge-triggered, but
178 * this EOI shouldn't hurt. If they are
179 * level-sensitive, the EOI is required.
180 */
181#ifdef CONFIG_PCI
182 if (ht_eoi_space)
183 *(uint32_t *)(ht_eoi_space+(irq<<16)+(7<<2)) = 0;
184#endif
185 }
186 }
187 bcm1480_mask_irq(cpu: bcm1480_irq_owner[irq], irq);
188}
189
190static struct irq_chip bcm1480_irq_type = {
191 .name = "BCM1480-IMR",
192 .irq_mask_ack = ack_bcm1480_irq,
193 .irq_mask = disable_bcm1480_irq,
194 .irq_unmask = enable_bcm1480_irq,
195#ifdef CONFIG_SMP
196 .irq_set_affinity = bcm1480_set_affinity
197#endif
198};
199
200void __init init_bcm1480_irqs(void)
201{
202 int i;
203
204 for (i = 0; i < BCM1480_NR_IRQS; i++) {
205 irq_set_chip_and_handler(i, &bcm1480_irq_type,
206 handle_level_irq);
207 bcm1480_irq_owner[i] = 0;
208 }
209}
210
211/*
212 * init_IRQ is called early in the boot sequence from init/main.c. It
213 * is responsible for setting up the interrupt mapper and installing the
214 * handler that will be responsible for dispatching interrupts to the
215 * "right" place.
216 */
217/*
218 * For now, map all interrupts to IP[2]. We could save
219 * some cycles by parceling out system interrupts to different
220 * IP lines, but keep it simple for bringup. We'll also direct
221 * all interrupts to a single CPU; we should probably route
222 * PCI and LDT to one cpu and everything else to the other
223 * to balance the load a bit.
224 *
225 * On the second cpu, everything is set to IP5, which is
226 * ignored, EXCEPT the mailbox interrupt. That one is
227 * set to IP[2] so it is handled. This is needed so we
228 * can do cross-cpu function calls, as required by SMP
229 */
230
231#define IMR_IP2_VAL K_BCM1480_INT_MAP_I0
232#define IMR_IP3_VAL K_BCM1480_INT_MAP_I1
233#define IMR_IP4_VAL K_BCM1480_INT_MAP_I2
234#define IMR_IP5_VAL K_BCM1480_INT_MAP_I3
235#define IMR_IP6_VAL K_BCM1480_INT_MAP_I4
236
237void __init arch_init_irq(void)
238{
239 unsigned int i, cpu;
240 u64 tmp;
241 unsigned int imask = STATUSF_IP4 | STATUSF_IP3 | STATUSF_IP2 |
242 STATUSF_IP1 | STATUSF_IP0;
243
244 /* Default everything to IP2 */
245 /* Start with _high registers which has no bit 0 interrupt source */
246 for (i = 1; i < BCM1480_NR_IRQS_HALF; i++) { /* was I0 */
247 for (cpu = 0; cpu < 4; cpu++) {
248 __raw_writeq(IMR_IP2_VAL,
249 IOADDR(A_BCM1480_IMR_REGISTER(cpu,
250 R_BCM1480_IMR_INTERRUPT_MAP_BASE_H) + (i << 3)));
251 }
252 }
253
254 /* Now do _low registers */
255 for (i = 0; i < BCM1480_NR_IRQS_HALF; i++) {
256 for (cpu = 0; cpu < 4; cpu++) {
257 __raw_writeq(IMR_IP2_VAL,
258 IOADDR(A_BCM1480_IMR_REGISTER(cpu,
259 R_BCM1480_IMR_INTERRUPT_MAP_BASE_L) + (i << 3)));
260 }
261 }
262
263 init_bcm1480_irqs();
264
265 /*
266 * Map the high 16 bits of mailbox_0 registers to IP[3], for
267 * inter-cpu messages
268 */
269 /* Was I1 */
270 for (cpu = 0; cpu < 4; cpu++) {
271 __raw_writeq(IMR_IP3_VAL, IOADDR(A_BCM1480_IMR_REGISTER(cpu, R_BCM1480_IMR_INTERRUPT_MAP_BASE_H) +
272 (K_BCM1480_INT_MBOX_0_0 << 3)));
273 }
274
275
276 /* Clear the mailboxes. The firmware may leave them dirty */
277 for (cpu = 0; cpu < 4; cpu++) {
278 __raw_writeq(0xffffffffffffffffULL,
279 IOADDR(A_BCM1480_IMR_REGISTER(cpu, R_BCM1480_IMR_MAILBOX_0_CLR_CPU)));
280 __raw_writeq(0xffffffffffffffffULL,
281 IOADDR(A_BCM1480_IMR_REGISTER(cpu, R_BCM1480_IMR_MAILBOX_1_CLR_CPU)));
282 }
283
284
285 /* Mask everything except the high 16 bit of mailbox_0 registers for all cpus */
286 tmp = ~((u64) 0) ^ ( (((u64) 1) << K_BCM1480_INT_MBOX_0_0));
287 for (cpu = 0; cpu < 4; cpu++) {
288 __raw_writeq(tmp, IOADDR(A_BCM1480_IMR_REGISTER(cpu, R_BCM1480_IMR_INTERRUPT_MASK_H)));
289 }
290 tmp = ~((u64) 0);
291 for (cpu = 0; cpu < 4; cpu++) {
292 __raw_writeq(tmp, IOADDR(A_BCM1480_IMR_REGISTER(cpu, R_BCM1480_IMR_INTERRUPT_MASK_L)));
293 }
294
295 /*
296 * Note that the timer interrupts are also mapped, but this is
297 * done in bcm1480_time_init(). Also, the profiling driver
298 * does its own management of IP7.
299 */
300
301 /* Enable necessary IPs, disable the rest */
302 change_c0_status(ST0_IM, imask);
303}
304
305extern void bcm1480_mailbox_interrupt(void);
306
307static inline void dispatch_ip2(void)
308{
309 unsigned long long mask_h, mask_l;
310 unsigned int cpu = smp_processor_id();
311 unsigned long base;
312
313 /*
314 * Default...we've hit an IP[2] interrupt, which means we've got to
315 * check the 1480 interrupt registers to figure out what to do. Need
316 * to detect which CPU we're on, now that smp_affinity is supported.
317 */
318 base = A_BCM1480_IMR_MAPPER(cpu);
319 mask_h = __raw_readq(
320 IOADDR(base + R_BCM1480_IMR_INTERRUPT_STATUS_BASE_H));
321 mask_l = __raw_readq(
322 IOADDR(base + R_BCM1480_IMR_INTERRUPT_STATUS_BASE_L));
323
324 if (mask_h) {
325 if (mask_h ^ 1)
326 do_IRQ(fls64(x: mask_h) - 1);
327 else if (mask_l)
328 do_IRQ(63 + fls64(x: mask_l));
329 }
330}
331
332asmlinkage void plat_irq_dispatch(void)
333{
334 unsigned int cpu = smp_processor_id();
335 unsigned int pending;
336
337 pending = read_c0_cause() & read_c0_status();
338
339 if (pending & CAUSEF_IP4)
340 do_IRQ(K_BCM1480_INT_TIMER_0 + cpu);
341#ifdef CONFIG_SMP
342 else if (pending & CAUSEF_IP3)
343 bcm1480_mailbox_interrupt();
344#endif
345
346 else if (pending & CAUSEF_IP2)
347 dispatch_ip2();
348}
349

source code of linux/arch/mips/sibyte/bcm1480/irq.c