1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * CPPC (Collaborative Processor Performance Control) methods used by CPUfreq drivers.
4 *
5 * (C) Copyright 2014, 2015 Linaro Ltd.
6 * Author: Ashwin Chaugule <ashwin.chaugule@linaro.org>
7 *
8 * CPPC describes a few methods for controlling CPU performance using
9 * information from a per CPU table called CPC. This table is described in
10 * the ACPI v5.0+ specification. The table consists of a list of
11 * registers which may be memory mapped or hardware registers and also may
12 * include some static integer values.
13 *
14 * CPU performance is on an abstract continuous scale as against a discretized
15 * P-state scale which is tied to CPU frequency only. In brief, the basic
16 * operation involves:
17 *
18 * - OS makes a CPU performance request. (Can provide min and max bounds)
19 *
20 * - Platform (such as BMC) is free to optimize request within requested bounds
21 * depending on power/thermal budgets etc.
22 *
23 * - Platform conveys its decision back to OS
24 *
25 * The communication between OS and platform occurs through another medium
26 * called (PCC) Platform Communication Channel. This is a generic mailbox like
27 * mechanism which includes doorbell semantics to indicate register updates.
28 * See drivers/mailbox/pcc.c for details on PCC.
29 *
30 * Finer details about the PCC and CPPC spec are available in the ACPI v5.1 and
31 * above specifications.
32 */
33
34#define pr_fmt(fmt) "ACPI CPPC: " fmt
35
36#include <linux/delay.h>
37#include <linux/iopoll.h>
38#include <linux/ktime.h>
39#include <linux/rwsem.h>
40#include <linux/wait.h>
41#include <linux/topology.h>
42
43#include <acpi/cppc_acpi.h>
44
45struct cppc_pcc_data {
46 struct pcc_mbox_chan *pcc_channel;
47 void __iomem *pcc_comm_addr;
48 bool pcc_channel_acquired;
49 unsigned int deadline_us;
50 unsigned int pcc_mpar, pcc_mrtt, pcc_nominal;
51
52 bool pending_pcc_write_cmd; /* Any pending/batched PCC write cmds? */
53 bool platform_owns_pcc; /* Ownership of PCC subspace */
54 unsigned int pcc_write_cnt; /* Running count of PCC write commands */
55
56 /*
57 * Lock to provide controlled access to the PCC channel.
58 *
59 * For performance critical usecases(currently cppc_set_perf)
60 * We need to take read_lock and check if channel belongs to OSPM
61 * before reading or writing to PCC subspace
62 * We need to take write_lock before transferring the channel
63 * ownership to the platform via a Doorbell
64 * This allows us to batch a number of CPPC requests if they happen
65 * to originate in about the same time
66 *
67 * For non-performance critical usecases(init)
68 * Take write_lock for all purposes which gives exclusive access
69 */
70 struct rw_semaphore pcc_lock;
71
72 /* Wait queue for CPUs whose requests were batched */
73 wait_queue_head_t pcc_write_wait_q;
74 ktime_t last_cmd_cmpl_time;
75 ktime_t last_mpar_reset;
76 int mpar_count;
77 int refcount;
78};
79
80/* Array to represent the PCC channel per subspace ID */
81static struct cppc_pcc_data *pcc_data[MAX_PCC_SUBSPACES];
82/* The cpu_pcc_subspace_idx contains per CPU subspace ID */
83static DEFINE_PER_CPU(int, cpu_pcc_subspace_idx);
84
85/*
86 * The cpc_desc structure contains the ACPI register details
87 * as described in the per CPU _CPC tables. The details
88 * include the type of register (e.g. PCC, System IO, FFH etc.)
89 * and destination addresses which lets us READ/WRITE CPU performance
90 * information using the appropriate I/O methods.
91 */
92static DEFINE_PER_CPU(struct cpc_desc *, cpc_desc_ptr);
93
94/* pcc mapped address + header size + offset within PCC subspace */
95#define GET_PCC_VADDR(offs, pcc_ss_id) (pcc_data[pcc_ss_id]->pcc_comm_addr + \
96 0x8 + (offs))
97
98/* Check if a CPC register is in PCC */
99#define CPC_IN_PCC(cpc) ((cpc)->type == ACPI_TYPE_BUFFER && \
100 (cpc)->cpc_entry.reg.space_id == \
101 ACPI_ADR_SPACE_PLATFORM_COMM)
102
103/* Check if a CPC register is in SystemMemory */
104#define CPC_IN_SYSTEM_MEMORY(cpc) ((cpc)->type == ACPI_TYPE_BUFFER && \
105 (cpc)->cpc_entry.reg.space_id == \
106 ACPI_ADR_SPACE_SYSTEM_MEMORY)
107
108/* Check if a CPC register is in SystemIo */
109#define CPC_IN_SYSTEM_IO(cpc) ((cpc)->type == ACPI_TYPE_BUFFER && \
110 (cpc)->cpc_entry.reg.space_id == \
111 ACPI_ADR_SPACE_SYSTEM_IO)
112
113/* Evaluates to True if reg is a NULL register descriptor */
114#define IS_NULL_REG(reg) ((reg)->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY && \
115 (reg)->address == 0 && \
116 (reg)->bit_width == 0 && \
117 (reg)->bit_offset == 0 && \
118 (reg)->access_width == 0)
119
120/* Evaluates to True if an optional cpc field is supported */
121#define CPC_SUPPORTED(cpc) ((cpc)->type == ACPI_TYPE_INTEGER ? \
122 !!(cpc)->cpc_entry.int_value : \
123 !IS_NULL_REG(&(cpc)->cpc_entry.reg))
124/*
125 * Arbitrary Retries in case the remote processor is slow to respond
126 * to PCC commands. Keeping it high enough to cover emulators where
127 * the processors run painfully slow.
128 */
129#define NUM_RETRIES 500ULL
130
131#define OVER_16BTS_MASK ~0xFFFFULL
132
133#define define_one_cppc_ro(_name) \
134static struct kobj_attribute _name = \
135__ATTR(_name, 0444, show_##_name, NULL)
136
137#define to_cpc_desc(a) container_of(a, struct cpc_desc, kobj)
138
139#define show_cppc_data(access_fn, struct_name, member_name) \
140 static ssize_t show_##member_name(struct kobject *kobj, \
141 struct kobj_attribute *attr, char *buf) \
142 { \
143 struct cpc_desc *cpc_ptr = to_cpc_desc(kobj); \
144 struct struct_name st_name = {0}; \
145 int ret; \
146 \
147 ret = access_fn(cpc_ptr->cpu_id, &st_name); \
148 if (ret) \
149 return ret; \
150 \
151 return sysfs_emit(buf, "%llu\n", \
152 (u64)st_name.member_name); \
153 } \
154 define_one_cppc_ro(member_name)
155
156show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, highest_perf);
157show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_perf);
158show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, nominal_perf);
159show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_nonlinear_perf);
160show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_freq);
161show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, nominal_freq);
162
163show_cppc_data(cppc_get_perf_ctrs, cppc_perf_fb_ctrs, reference_perf);
164show_cppc_data(cppc_get_perf_ctrs, cppc_perf_fb_ctrs, wraparound_time);
165
166static ssize_t show_feedback_ctrs(struct kobject *kobj,
167 struct kobj_attribute *attr, char *buf)
168{
169 struct cpc_desc *cpc_ptr = to_cpc_desc(kobj);
170 struct cppc_perf_fb_ctrs fb_ctrs = {0};
171 int ret;
172
173 ret = cppc_get_perf_ctrs(cpu: cpc_ptr->cpu_id, perf_fb_ctrs: &fb_ctrs);
174 if (ret)
175 return ret;
176
177 return sysfs_emit(buf, fmt: "ref:%llu del:%llu\n",
178 fb_ctrs.reference, fb_ctrs.delivered);
179}
180define_one_cppc_ro(feedback_ctrs);
181
182static struct attribute *cppc_attrs[] = {
183 &feedback_ctrs.attr,
184 &reference_perf.attr,
185 &wraparound_time.attr,
186 &highest_perf.attr,
187 &lowest_perf.attr,
188 &lowest_nonlinear_perf.attr,
189 &nominal_perf.attr,
190 &nominal_freq.attr,
191 &lowest_freq.attr,
192 NULL
193};
194ATTRIBUTE_GROUPS(cppc);
195
196static const struct kobj_type cppc_ktype = {
197 .sysfs_ops = &kobj_sysfs_ops,
198 .default_groups = cppc_groups,
199};
200
201static int check_pcc_chan(int pcc_ss_id, bool chk_err_bit)
202{
203 int ret, status;
204 struct cppc_pcc_data *pcc_ss_data = pcc_data[pcc_ss_id];
205 struct acpi_pcct_shared_memory __iomem *generic_comm_base =
206 pcc_ss_data->pcc_comm_addr;
207
208 if (!pcc_ss_data->platform_owns_pcc)
209 return 0;
210
211 /*
212 * Poll PCC status register every 3us(delay_us) for maximum of
213 * deadline_us(timeout_us) until PCC command complete bit is set(cond)
214 */
215 ret = readw_relaxed_poll_timeout(&generic_comm_base->status, status,
216 status & PCC_CMD_COMPLETE_MASK, 3,
217 pcc_ss_data->deadline_us);
218
219 if (likely(!ret)) {
220 pcc_ss_data->platform_owns_pcc = false;
221 if (chk_err_bit && (status & PCC_ERROR_MASK))
222 ret = -EIO;
223 }
224
225 if (unlikely(ret))
226 pr_err("PCC check channel failed for ss: %d. ret=%d\n",
227 pcc_ss_id, ret);
228
229 return ret;
230}
231
232/*
233 * This function transfers the ownership of the PCC to the platform
234 * So it must be called while holding write_lock(pcc_lock)
235 */
236static int send_pcc_cmd(int pcc_ss_id, u16 cmd)
237{
238 int ret = -EIO, i;
239 struct cppc_pcc_data *pcc_ss_data = pcc_data[pcc_ss_id];
240 struct acpi_pcct_shared_memory __iomem *generic_comm_base =
241 pcc_ss_data->pcc_comm_addr;
242 unsigned int time_delta;
243
244 /*
245 * For CMD_WRITE we know for a fact the caller should have checked
246 * the channel before writing to PCC space
247 */
248 if (cmd == CMD_READ) {
249 /*
250 * If there are pending cpc_writes, then we stole the channel
251 * before write completion, so first send a WRITE command to
252 * platform
253 */
254 if (pcc_ss_data->pending_pcc_write_cmd)
255 send_pcc_cmd(pcc_ss_id, CMD_WRITE);
256
257 ret = check_pcc_chan(pcc_ss_id, chk_err_bit: false);
258 if (ret)
259 goto end;
260 } else /* CMD_WRITE */
261 pcc_ss_data->pending_pcc_write_cmd = FALSE;
262
263 /*
264 * Handle the Minimum Request Turnaround Time(MRTT)
265 * "The minimum amount of time that OSPM must wait after the completion
266 * of a command before issuing the next command, in microseconds"
267 */
268 if (pcc_ss_data->pcc_mrtt) {
269 time_delta = ktime_us_delta(later: ktime_get(),
270 earlier: pcc_ss_data->last_cmd_cmpl_time);
271 if (pcc_ss_data->pcc_mrtt > time_delta)
272 udelay(pcc_ss_data->pcc_mrtt - time_delta);
273 }
274
275 /*
276 * Handle the non-zero Maximum Periodic Access Rate(MPAR)
277 * "The maximum number of periodic requests that the subspace channel can
278 * support, reported in commands per minute. 0 indicates no limitation."
279 *
280 * This parameter should be ideally zero or large enough so that it can
281 * handle maximum number of requests that all the cores in the system can
282 * collectively generate. If it is not, we will follow the spec and just
283 * not send the request to the platform after hitting the MPAR limit in
284 * any 60s window
285 */
286 if (pcc_ss_data->pcc_mpar) {
287 if (pcc_ss_data->mpar_count == 0) {
288 time_delta = ktime_ms_delta(later: ktime_get(),
289 earlier: pcc_ss_data->last_mpar_reset);
290 if ((time_delta < 60 * MSEC_PER_SEC) && pcc_ss_data->last_mpar_reset) {
291 pr_debug("PCC cmd for subspace %d not sent due to MPAR limit",
292 pcc_ss_id);
293 ret = -EIO;
294 goto end;
295 }
296 pcc_ss_data->last_mpar_reset = ktime_get();
297 pcc_ss_data->mpar_count = pcc_ss_data->pcc_mpar;
298 }
299 pcc_ss_data->mpar_count--;
300 }
301
302 /* Write to the shared comm region. */
303 writew_relaxed(cmd, &generic_comm_base->command);
304
305 /* Flip CMD COMPLETE bit */
306 writew_relaxed(0, &generic_comm_base->status);
307
308 pcc_ss_data->platform_owns_pcc = true;
309
310 /* Ring doorbell */
311 ret = mbox_send_message(chan: pcc_ss_data->pcc_channel->mchan, mssg: &cmd);
312 if (ret < 0) {
313 pr_err("Err sending PCC mbox message. ss: %d cmd:%d, ret:%d\n",
314 pcc_ss_id, cmd, ret);
315 goto end;
316 }
317
318 /* wait for completion and check for PCC error bit */
319 ret = check_pcc_chan(pcc_ss_id, chk_err_bit: true);
320
321 if (pcc_ss_data->pcc_mrtt)
322 pcc_ss_data->last_cmd_cmpl_time = ktime_get();
323
324 if (pcc_ss_data->pcc_channel->mchan->mbox->txdone_irq)
325 mbox_chan_txdone(chan: pcc_ss_data->pcc_channel->mchan, r: ret);
326 else
327 mbox_client_txdone(chan: pcc_ss_data->pcc_channel->mchan, r: ret);
328
329end:
330 if (cmd == CMD_WRITE) {
331 if (unlikely(ret)) {
332 for_each_possible_cpu(i) {
333 struct cpc_desc *desc = per_cpu(cpc_desc_ptr, i);
334
335 if (!desc)
336 continue;
337
338 if (desc->write_cmd_id == pcc_ss_data->pcc_write_cnt)
339 desc->write_cmd_status = ret;
340 }
341 }
342 pcc_ss_data->pcc_write_cnt++;
343 wake_up_all(&pcc_ss_data->pcc_write_wait_q);
344 }
345
346 return ret;
347}
348
349static void cppc_chan_tx_done(struct mbox_client *cl, void *msg, int ret)
350{
351 if (ret < 0)
352 pr_debug("TX did not complete: CMD sent:%x, ret:%d\n",
353 *(u16 *)msg, ret);
354 else
355 pr_debug("TX completed. CMD sent:%x, ret:%d\n",
356 *(u16 *)msg, ret);
357}
358
359static struct mbox_client cppc_mbox_cl = {
360 .tx_done = cppc_chan_tx_done,
361 .knows_txdone = true,
362};
363
364static int acpi_get_psd(struct cpc_desc *cpc_ptr, acpi_handle handle)
365{
366 int result = -EFAULT;
367 acpi_status status = AE_OK;
368 struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
369 struct acpi_buffer format = {sizeof("NNNNN"), "NNNNN"};
370 struct acpi_buffer state = {0, NULL};
371 union acpi_object *psd = NULL;
372 struct acpi_psd_package *pdomain;
373
374 status = acpi_evaluate_object_typed(object: handle, pathname: "_PSD", NULL,
375 return_buffer: &buffer, ACPI_TYPE_PACKAGE);
376 if (status == AE_NOT_FOUND) /* _PSD is optional */
377 return 0;
378 if (ACPI_FAILURE(status))
379 return -ENODEV;
380
381 psd = buffer.pointer;
382 if (!psd || psd->package.count != 1) {
383 pr_debug("Invalid _PSD data\n");
384 goto end;
385 }
386
387 pdomain = &(cpc_ptr->domain_info);
388
389 state.length = sizeof(struct acpi_psd_package);
390 state.pointer = pdomain;
391
392 status = acpi_extract_package(package: &(psd->package.elements[0]),
393 format: &format, buffer: &state);
394 if (ACPI_FAILURE(status)) {
395 pr_debug("Invalid _PSD data for CPU:%d\n", cpc_ptr->cpu_id);
396 goto end;
397 }
398
399 if (pdomain->num_entries != ACPI_PSD_REV0_ENTRIES) {
400 pr_debug("Unknown _PSD:num_entries for CPU:%d\n", cpc_ptr->cpu_id);
401 goto end;
402 }
403
404 if (pdomain->revision != ACPI_PSD_REV0_REVISION) {
405 pr_debug("Unknown _PSD:revision for CPU: %d\n", cpc_ptr->cpu_id);
406 goto end;
407 }
408
409 if (pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ALL &&
410 pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ANY &&
411 pdomain->coord_type != DOMAIN_COORD_TYPE_HW_ALL) {
412 pr_debug("Invalid _PSD:coord_type for CPU:%d\n", cpc_ptr->cpu_id);
413 goto end;
414 }
415
416 result = 0;
417end:
418 kfree(objp: buffer.pointer);
419 return result;
420}
421
422bool acpi_cpc_valid(void)
423{
424 struct cpc_desc *cpc_ptr;
425 int cpu;
426
427 if (acpi_disabled)
428 return false;
429
430 for_each_present_cpu(cpu) {
431 cpc_ptr = per_cpu(cpc_desc_ptr, cpu);
432 if (!cpc_ptr)
433 return false;
434 }
435
436 return true;
437}
438EXPORT_SYMBOL_GPL(acpi_cpc_valid);
439
440bool cppc_allow_fast_switch(void)
441{
442 struct cpc_register_resource *desired_reg;
443 struct cpc_desc *cpc_ptr;
444 int cpu;
445
446 for_each_possible_cpu(cpu) {
447 cpc_ptr = per_cpu(cpc_desc_ptr, cpu);
448 desired_reg = &cpc_ptr->cpc_regs[DESIRED_PERF];
449 if (!CPC_IN_SYSTEM_MEMORY(desired_reg) &&
450 !CPC_IN_SYSTEM_IO(desired_reg))
451 return false;
452 }
453
454 return true;
455}
456EXPORT_SYMBOL_GPL(cppc_allow_fast_switch);
457
458/**
459 * acpi_get_psd_map - Map the CPUs in the freq domain of a given cpu
460 * @cpu: Find all CPUs that share a domain with cpu.
461 * @cpu_data: Pointer to CPU specific CPPC data including PSD info.
462 *
463 * Return: 0 for success or negative value for err.
464 */
465int acpi_get_psd_map(unsigned int cpu, struct cppc_cpudata *cpu_data)
466{
467 struct cpc_desc *cpc_ptr, *match_cpc_ptr;
468 struct acpi_psd_package *match_pdomain;
469 struct acpi_psd_package *pdomain;
470 int count_target, i;
471
472 /*
473 * Now that we have _PSD data from all CPUs, let's setup P-state
474 * domain info.
475 */
476 cpc_ptr = per_cpu(cpc_desc_ptr, cpu);
477 if (!cpc_ptr)
478 return -EFAULT;
479
480 pdomain = &(cpc_ptr->domain_info);
481 cpumask_set_cpu(cpu, dstp: cpu_data->shared_cpu_map);
482 if (pdomain->num_processors <= 1)
483 return 0;
484
485 /* Validate the Domain info */
486 count_target = pdomain->num_processors;
487 if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ALL)
488 cpu_data->shared_type = CPUFREQ_SHARED_TYPE_ALL;
489 else if (pdomain->coord_type == DOMAIN_COORD_TYPE_HW_ALL)
490 cpu_data->shared_type = CPUFREQ_SHARED_TYPE_HW;
491 else if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ANY)
492 cpu_data->shared_type = CPUFREQ_SHARED_TYPE_ANY;
493
494 for_each_possible_cpu(i) {
495 if (i == cpu)
496 continue;
497
498 match_cpc_ptr = per_cpu(cpc_desc_ptr, i);
499 if (!match_cpc_ptr)
500 goto err_fault;
501
502 match_pdomain = &(match_cpc_ptr->domain_info);
503 if (match_pdomain->domain != pdomain->domain)
504 continue;
505
506 /* Here i and cpu are in the same domain */
507 if (match_pdomain->num_processors != count_target)
508 goto err_fault;
509
510 if (pdomain->coord_type != match_pdomain->coord_type)
511 goto err_fault;
512
513 cpumask_set_cpu(cpu: i, dstp: cpu_data->shared_cpu_map);
514 }
515
516 return 0;
517
518err_fault:
519 /* Assume no coordination on any error parsing domain info */
520 cpumask_clear(dstp: cpu_data->shared_cpu_map);
521 cpumask_set_cpu(cpu, dstp: cpu_data->shared_cpu_map);
522 cpu_data->shared_type = CPUFREQ_SHARED_TYPE_NONE;
523
524 return -EFAULT;
525}
526EXPORT_SYMBOL_GPL(acpi_get_psd_map);
527
528static int register_pcc_channel(int pcc_ss_idx)
529{
530 struct pcc_mbox_chan *pcc_chan;
531 u64 usecs_lat;
532
533 if (pcc_ss_idx >= 0) {
534 pcc_chan = pcc_mbox_request_channel(cl: &cppc_mbox_cl, subspace_id: pcc_ss_idx);
535
536 if (IS_ERR(ptr: pcc_chan)) {
537 pr_err("Failed to find PCC channel for subspace %d\n",
538 pcc_ss_idx);
539 return -ENODEV;
540 }
541
542 pcc_data[pcc_ss_idx]->pcc_channel = pcc_chan;
543 /*
544 * cppc_ss->latency is just a Nominal value. In reality
545 * the remote processor could be much slower to reply.
546 * So add an arbitrary amount of wait on top of Nominal.
547 */
548 usecs_lat = NUM_RETRIES * pcc_chan->latency;
549 pcc_data[pcc_ss_idx]->deadline_us = usecs_lat;
550 pcc_data[pcc_ss_idx]->pcc_mrtt = pcc_chan->min_turnaround_time;
551 pcc_data[pcc_ss_idx]->pcc_mpar = pcc_chan->max_access_rate;
552 pcc_data[pcc_ss_idx]->pcc_nominal = pcc_chan->latency;
553
554 pcc_data[pcc_ss_idx]->pcc_comm_addr =
555 acpi_os_ioremap(phys: pcc_chan->shmem_base_addr,
556 size: pcc_chan->shmem_size);
557 if (!pcc_data[pcc_ss_idx]->pcc_comm_addr) {
558 pr_err("Failed to ioremap PCC comm region mem for %d\n",
559 pcc_ss_idx);
560 return -ENOMEM;
561 }
562
563 /* Set flag so that we don't come here for each CPU. */
564 pcc_data[pcc_ss_idx]->pcc_channel_acquired = true;
565 }
566
567 return 0;
568}
569
570/**
571 * cpc_ffh_supported() - check if FFH reading supported
572 *
573 * Check if the architecture has support for functional fixed hardware
574 * read/write capability.
575 *
576 * Return: true for supported, false for not supported
577 */
578bool __weak cpc_ffh_supported(void)
579{
580 return false;
581}
582
583/**
584 * cpc_supported_by_cpu() - check if CPPC is supported by CPU
585 *
586 * Check if the architectural support for CPPC is present even
587 * if the _OSC hasn't prescribed it
588 *
589 * Return: true for supported, false for not supported
590 */
591bool __weak cpc_supported_by_cpu(void)
592{
593 return false;
594}
595
596/**
597 * pcc_data_alloc() - Allocate the pcc_data memory for pcc subspace
598 * @pcc_ss_id: PCC Subspace index as in the PCC client ACPI package.
599 *
600 * Check and allocate the cppc_pcc_data memory.
601 * In some processor configurations it is possible that same subspace
602 * is shared between multiple CPUs. This is seen especially in CPUs
603 * with hardware multi-threading support.
604 *
605 * Return: 0 for success, errno for failure
606 */
607static int pcc_data_alloc(int pcc_ss_id)
608{
609 if (pcc_ss_id < 0 || pcc_ss_id >= MAX_PCC_SUBSPACES)
610 return -EINVAL;
611
612 if (pcc_data[pcc_ss_id]) {
613 pcc_data[pcc_ss_id]->refcount++;
614 } else {
615 pcc_data[pcc_ss_id] = kzalloc(size: sizeof(struct cppc_pcc_data),
616 GFP_KERNEL);
617 if (!pcc_data[pcc_ss_id])
618 return -ENOMEM;
619 pcc_data[pcc_ss_id]->refcount++;
620 }
621
622 return 0;
623}
624
625/*
626 * An example CPC table looks like the following.
627 *
628 * Name (_CPC, Package() {
629 * 17, // NumEntries
630 * 1, // Revision
631 * ResourceTemplate() {Register(PCC, 32, 0, 0x120, 2)}, // Highest Performance
632 * ResourceTemplate() {Register(PCC, 32, 0, 0x124, 2)}, // Nominal Performance
633 * ResourceTemplate() {Register(PCC, 32, 0, 0x128, 2)}, // Lowest Nonlinear Performance
634 * ResourceTemplate() {Register(PCC, 32, 0, 0x12C, 2)}, // Lowest Performance
635 * ResourceTemplate() {Register(PCC, 32, 0, 0x130, 2)}, // Guaranteed Performance Register
636 * ResourceTemplate() {Register(PCC, 32, 0, 0x110, 2)}, // Desired Performance Register
637 * ResourceTemplate() {Register(SystemMemory, 0, 0, 0, 0)},
638 * ...
639 * ...
640 * ...
641 * }
642 * Each Register() encodes how to access that specific register.
643 * e.g. a sample PCC entry has the following encoding:
644 *
645 * Register (
646 * PCC, // AddressSpaceKeyword
647 * 8, // RegisterBitWidth
648 * 8, // RegisterBitOffset
649 * 0x30, // RegisterAddress
650 * 9, // AccessSize (subspace ID)
651 * )
652 */
653
654#ifndef arch_init_invariance_cppc
655static inline void arch_init_invariance_cppc(void) { }
656#endif
657
658/**
659 * acpi_cppc_processor_probe - Search for per CPU _CPC objects.
660 * @pr: Ptr to acpi_processor containing this CPU's logical ID.
661 *
662 * Return: 0 for success or negative value for err.
663 */
664int acpi_cppc_processor_probe(struct acpi_processor *pr)
665{
666 struct acpi_buffer output = {ACPI_ALLOCATE_BUFFER, NULL};
667 union acpi_object *out_obj, *cpc_obj;
668 struct cpc_desc *cpc_ptr;
669 struct cpc_reg *gas_t;
670 struct device *cpu_dev;
671 acpi_handle handle = pr->handle;
672 unsigned int num_ent, i, cpc_rev;
673 int pcc_subspace_id = -1;
674 acpi_status status;
675 int ret = -ENODATA;
676
677 if (!osc_sb_cppc2_support_acked) {
678 pr_debug("CPPC v2 _OSC not acked\n");
679 if (!cpc_supported_by_cpu())
680 return -ENODEV;
681 }
682
683 /* Parse the ACPI _CPC table for this CPU. */
684 status = acpi_evaluate_object_typed(object: handle, pathname: "_CPC", NULL, return_buffer: &output,
685 ACPI_TYPE_PACKAGE);
686 if (ACPI_FAILURE(status)) {
687 ret = -ENODEV;
688 goto out_buf_free;
689 }
690
691 out_obj = (union acpi_object *) output.pointer;
692
693 cpc_ptr = kzalloc(size: sizeof(struct cpc_desc), GFP_KERNEL);
694 if (!cpc_ptr) {
695 ret = -ENOMEM;
696 goto out_buf_free;
697 }
698
699 /* First entry is NumEntries. */
700 cpc_obj = &out_obj->package.elements[0];
701 if (cpc_obj->type == ACPI_TYPE_INTEGER) {
702 num_ent = cpc_obj->integer.value;
703 if (num_ent <= 1) {
704 pr_debug("Unexpected _CPC NumEntries value (%d) for CPU:%d\n",
705 num_ent, pr->id);
706 goto out_free;
707 }
708 } else {
709 pr_debug("Unexpected _CPC NumEntries entry type (%d) for CPU:%d\n",
710 cpc_obj->type, pr->id);
711 goto out_free;
712 }
713
714 /* Second entry should be revision. */
715 cpc_obj = &out_obj->package.elements[1];
716 if (cpc_obj->type == ACPI_TYPE_INTEGER) {
717 cpc_rev = cpc_obj->integer.value;
718 } else {
719 pr_debug("Unexpected _CPC Revision entry type (%d) for CPU:%d\n",
720 cpc_obj->type, pr->id);
721 goto out_free;
722 }
723
724 if (cpc_rev < CPPC_V2_REV) {
725 pr_debug("Unsupported _CPC Revision (%d) for CPU:%d\n", cpc_rev,
726 pr->id);
727 goto out_free;
728 }
729
730 /*
731 * Disregard _CPC if the number of entries in the return pachage is not
732 * as expected, but support future revisions being proper supersets of
733 * the v3 and only causing more entries to be returned by _CPC.
734 */
735 if ((cpc_rev == CPPC_V2_REV && num_ent != CPPC_V2_NUM_ENT) ||
736 (cpc_rev == CPPC_V3_REV && num_ent != CPPC_V3_NUM_ENT) ||
737 (cpc_rev > CPPC_V3_REV && num_ent <= CPPC_V3_NUM_ENT)) {
738 pr_debug("Unexpected number of _CPC return package entries (%d) for CPU:%d\n",
739 num_ent, pr->id);
740 goto out_free;
741 }
742 if (cpc_rev > CPPC_V3_REV) {
743 num_ent = CPPC_V3_NUM_ENT;
744 cpc_rev = CPPC_V3_REV;
745 }
746
747 cpc_ptr->num_entries = num_ent;
748 cpc_ptr->version = cpc_rev;
749
750 /* Iterate through remaining entries in _CPC */
751 for (i = 2; i < num_ent; i++) {
752 cpc_obj = &out_obj->package.elements[i];
753
754 if (cpc_obj->type == ACPI_TYPE_INTEGER) {
755 cpc_ptr->cpc_regs[i-2].type = ACPI_TYPE_INTEGER;
756 cpc_ptr->cpc_regs[i-2].cpc_entry.int_value = cpc_obj->integer.value;
757 } else if (cpc_obj->type == ACPI_TYPE_BUFFER) {
758 gas_t = (struct cpc_reg *)
759 cpc_obj->buffer.pointer;
760
761 /*
762 * The PCC Subspace index is encoded inside
763 * the CPC table entries. The same PCC index
764 * will be used for all the PCC entries,
765 * so extract it only once.
766 */
767 if (gas_t->space_id == ACPI_ADR_SPACE_PLATFORM_COMM) {
768 if (pcc_subspace_id < 0) {
769 pcc_subspace_id = gas_t->access_width;
770 if (pcc_data_alloc(pcc_ss_id: pcc_subspace_id))
771 goto out_free;
772 } else if (pcc_subspace_id != gas_t->access_width) {
773 pr_debug("Mismatched PCC ids in _CPC for CPU:%d\n",
774 pr->id);
775 goto out_free;
776 }
777 } else if (gas_t->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
778 if (gas_t->address) {
779 void __iomem *addr;
780
781 if (!osc_cpc_flexible_adr_space_confirmed) {
782 pr_debug("Flexible address space capability not supported\n");
783 if (!cpc_supported_by_cpu())
784 goto out_free;
785 }
786
787 addr = ioremap(offset: gas_t->address, size: gas_t->bit_width/8);
788 if (!addr)
789 goto out_free;
790 cpc_ptr->cpc_regs[i-2].sys_mem_vaddr = addr;
791 }
792 } else if (gas_t->space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
793 if (gas_t->access_width < 1 || gas_t->access_width > 3) {
794 /*
795 * 1 = 8-bit, 2 = 16-bit, and 3 = 32-bit.
796 * SystemIO doesn't implement 64-bit
797 * registers.
798 */
799 pr_debug("Invalid access width %d for SystemIO register in _CPC\n",
800 gas_t->access_width);
801 goto out_free;
802 }
803 if (gas_t->address & OVER_16BTS_MASK) {
804 /* SystemIO registers use 16-bit integer addresses */
805 pr_debug("Invalid IO port %llu for SystemIO register in _CPC\n",
806 gas_t->address);
807 goto out_free;
808 }
809 if (!osc_cpc_flexible_adr_space_confirmed) {
810 pr_debug("Flexible address space capability not supported\n");
811 if (!cpc_supported_by_cpu())
812 goto out_free;
813 }
814 } else {
815 if (gas_t->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE || !cpc_ffh_supported()) {
816 /* Support only PCC, SystemMemory, SystemIO, and FFH type regs. */
817 pr_debug("Unsupported register type (%d) in _CPC\n",
818 gas_t->space_id);
819 goto out_free;
820 }
821 }
822
823 cpc_ptr->cpc_regs[i-2].type = ACPI_TYPE_BUFFER;
824 memcpy(&cpc_ptr->cpc_regs[i-2].cpc_entry.reg, gas_t, sizeof(*gas_t));
825 } else {
826 pr_debug("Invalid entry type (%d) in _CPC for CPU:%d\n",
827 i, pr->id);
828 goto out_free;
829 }
830 }
831 per_cpu(cpu_pcc_subspace_idx, pr->id) = pcc_subspace_id;
832
833 /*
834 * Initialize the remaining cpc_regs as unsupported.
835 * Example: In case FW exposes CPPC v2, the below loop will initialize
836 * LOWEST_FREQ and NOMINAL_FREQ regs as unsupported
837 */
838 for (i = num_ent - 2; i < MAX_CPC_REG_ENT; i++) {
839 cpc_ptr->cpc_regs[i].type = ACPI_TYPE_INTEGER;
840 cpc_ptr->cpc_regs[i].cpc_entry.int_value = 0;
841 }
842
843
844 /* Store CPU Logical ID */
845 cpc_ptr->cpu_id = pr->id;
846
847 /* Parse PSD data for this CPU */
848 ret = acpi_get_psd(cpc_ptr, handle);
849 if (ret)
850 goto out_free;
851
852 /* Register PCC channel once for all PCC subspace ID. */
853 if (pcc_subspace_id >= 0 && !pcc_data[pcc_subspace_id]->pcc_channel_acquired) {
854 ret = register_pcc_channel(pcc_ss_idx: pcc_subspace_id);
855 if (ret)
856 goto out_free;
857
858 init_rwsem(&pcc_data[pcc_subspace_id]->pcc_lock);
859 init_waitqueue_head(&pcc_data[pcc_subspace_id]->pcc_write_wait_q);
860 }
861
862 /* Everything looks okay */
863 pr_debug("Parsed CPC struct for CPU: %d\n", pr->id);
864
865 /* Add per logical CPU nodes for reading its feedback counters. */
866 cpu_dev = get_cpu_device(cpu: pr->id);
867 if (!cpu_dev) {
868 ret = -EINVAL;
869 goto out_free;
870 }
871
872 /* Plug PSD data into this CPU's CPC descriptor. */
873 per_cpu(cpc_desc_ptr, pr->id) = cpc_ptr;
874
875 ret = kobject_init_and_add(kobj: &cpc_ptr->kobj, ktype: &cppc_ktype, parent: &cpu_dev->kobj,
876 fmt: "acpi_cppc");
877 if (ret) {
878 per_cpu(cpc_desc_ptr, pr->id) = NULL;
879 kobject_put(kobj: &cpc_ptr->kobj);
880 goto out_free;
881 }
882
883 arch_init_invariance_cppc();
884
885 kfree(objp: output.pointer);
886 return 0;
887
888out_free:
889 /* Free all the mapped sys mem areas for this CPU */
890 for (i = 2; i < cpc_ptr->num_entries; i++) {
891 void __iomem *addr = cpc_ptr->cpc_regs[i-2].sys_mem_vaddr;
892
893 if (addr)
894 iounmap(addr);
895 }
896 kfree(objp: cpc_ptr);
897
898out_buf_free:
899 kfree(objp: output.pointer);
900 return ret;
901}
902EXPORT_SYMBOL_GPL(acpi_cppc_processor_probe);
903
904/**
905 * acpi_cppc_processor_exit - Cleanup CPC structs.
906 * @pr: Ptr to acpi_processor containing this CPU's logical ID.
907 *
908 * Return: Void
909 */
910void acpi_cppc_processor_exit(struct acpi_processor *pr)
911{
912 struct cpc_desc *cpc_ptr;
913 unsigned int i;
914 void __iomem *addr;
915 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, pr->id);
916
917 if (pcc_ss_id >= 0 && pcc_data[pcc_ss_id]) {
918 if (pcc_data[pcc_ss_id]->pcc_channel_acquired) {
919 pcc_data[pcc_ss_id]->refcount--;
920 if (!pcc_data[pcc_ss_id]->refcount) {
921 pcc_mbox_free_channel(chan: pcc_data[pcc_ss_id]->pcc_channel);
922 kfree(objp: pcc_data[pcc_ss_id]);
923 pcc_data[pcc_ss_id] = NULL;
924 }
925 }
926 }
927
928 cpc_ptr = per_cpu(cpc_desc_ptr, pr->id);
929 if (!cpc_ptr)
930 return;
931
932 /* Free all the mapped sys mem areas for this CPU */
933 for (i = 2; i < cpc_ptr->num_entries; i++) {
934 addr = cpc_ptr->cpc_regs[i-2].sys_mem_vaddr;
935 if (addr)
936 iounmap(addr);
937 }
938
939 kobject_put(kobj: &cpc_ptr->kobj);
940 kfree(objp: cpc_ptr);
941}
942EXPORT_SYMBOL_GPL(acpi_cppc_processor_exit);
943
944/**
945 * cpc_read_ffh() - Read FFH register
946 * @cpunum: CPU number to read
947 * @reg: cppc register information
948 * @val: place holder for return value
949 *
950 * Read bit_width bits from a specified address and bit_offset
951 *
952 * Return: 0 for success and error code
953 */
954int __weak cpc_read_ffh(int cpunum, struct cpc_reg *reg, u64 *val)
955{
956 return -ENOTSUPP;
957}
958
959/**
960 * cpc_write_ffh() - Write FFH register
961 * @cpunum: CPU number to write
962 * @reg: cppc register information
963 * @val: value to write
964 *
965 * Write value of bit_width bits to a specified address and bit_offset
966 *
967 * Return: 0 for success and error code
968 */
969int __weak cpc_write_ffh(int cpunum, struct cpc_reg *reg, u64 val)
970{
971 return -ENOTSUPP;
972}
973
974/*
975 * Since cpc_read and cpc_write are called while holding pcc_lock, it should be
976 * as fast as possible. We have already mapped the PCC subspace during init, so
977 * we can directly write to it.
978 */
979
980static int cpc_read(int cpu, struct cpc_register_resource *reg_res, u64 *val)
981{
982 void __iomem *vaddr = NULL;
983 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
984 struct cpc_reg *reg = &reg_res->cpc_entry.reg;
985
986 if (reg_res->type == ACPI_TYPE_INTEGER) {
987 *val = reg_res->cpc_entry.int_value;
988 return 0;
989 }
990
991 *val = 0;
992
993 if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
994 u32 width = 8 << (reg->access_width - 1);
995 u32 val_u32;
996 acpi_status status;
997
998 status = acpi_os_read_port(address: (acpi_io_address)reg->address,
999 value: &val_u32, width);
1000 if (ACPI_FAILURE(status)) {
1001 pr_debug("Error: Failed to read SystemIO port %llx\n",
1002 reg->address);
1003 return -EFAULT;
1004 }
1005
1006 *val = val_u32;
1007 return 0;
1008 } else if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM && pcc_ss_id >= 0)
1009 vaddr = GET_PCC_VADDR(reg->address, pcc_ss_id);
1010 else if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
1011 vaddr = reg_res->sys_mem_vaddr;
1012 else if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE)
1013 return cpc_read_ffh(cpunum: cpu, reg, val);
1014 else
1015 return acpi_os_read_memory(address: (acpi_physical_address)reg->address,
1016 value: val, width: reg->bit_width);
1017
1018 switch (reg->bit_width) {
1019 case 8:
1020 *val = readb_relaxed(vaddr);
1021 break;
1022 case 16:
1023 *val = readw_relaxed(vaddr);
1024 break;
1025 case 32:
1026 *val = readl_relaxed(vaddr);
1027 break;
1028 case 64:
1029 *val = readq_relaxed(vaddr);
1030 break;
1031 default:
1032 pr_debug("Error: Cannot read %u bit width from PCC for ss: %d\n",
1033 reg->bit_width, pcc_ss_id);
1034 return -EFAULT;
1035 }
1036
1037 return 0;
1038}
1039
1040static int cpc_write(int cpu, struct cpc_register_resource *reg_res, u64 val)
1041{
1042 int ret_val = 0;
1043 void __iomem *vaddr = NULL;
1044 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
1045 struct cpc_reg *reg = &reg_res->cpc_entry.reg;
1046
1047 if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
1048 u32 width = 8 << (reg->access_width - 1);
1049 acpi_status status;
1050
1051 status = acpi_os_write_port(address: (acpi_io_address)reg->address,
1052 value: (u32)val, width);
1053 if (ACPI_FAILURE(status)) {
1054 pr_debug("Error: Failed to write SystemIO port %llx\n",
1055 reg->address);
1056 return -EFAULT;
1057 }
1058
1059 return 0;
1060 } else if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM && pcc_ss_id >= 0)
1061 vaddr = GET_PCC_VADDR(reg->address, pcc_ss_id);
1062 else if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
1063 vaddr = reg_res->sys_mem_vaddr;
1064 else if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE)
1065 return cpc_write_ffh(cpunum: cpu, reg, val);
1066 else
1067 return acpi_os_write_memory(address: (acpi_physical_address)reg->address,
1068 value: val, width: reg->bit_width);
1069
1070 switch (reg->bit_width) {
1071 case 8:
1072 writeb_relaxed(val, vaddr);
1073 break;
1074 case 16:
1075 writew_relaxed(val, vaddr);
1076 break;
1077 case 32:
1078 writel_relaxed(val, vaddr);
1079 break;
1080 case 64:
1081 writeq_relaxed(val, vaddr);
1082 break;
1083 default:
1084 pr_debug("Error: Cannot write %u bit width to PCC for ss: %d\n",
1085 reg->bit_width, pcc_ss_id);
1086 ret_val = -EFAULT;
1087 break;
1088 }
1089
1090 return ret_val;
1091}
1092
1093static int cppc_get_perf(int cpunum, enum cppc_regs reg_idx, u64 *perf)
1094{
1095 struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
1096 struct cpc_register_resource *reg;
1097
1098 if (!cpc_desc) {
1099 pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
1100 return -ENODEV;
1101 }
1102
1103 reg = &cpc_desc->cpc_regs[reg_idx];
1104
1105 if (CPC_IN_PCC(reg)) {
1106 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
1107 struct cppc_pcc_data *pcc_ss_data = NULL;
1108 int ret = 0;
1109
1110 if (pcc_ss_id < 0)
1111 return -EIO;
1112
1113 pcc_ss_data = pcc_data[pcc_ss_id];
1114
1115 down_write(sem: &pcc_ss_data->pcc_lock);
1116
1117 if (send_pcc_cmd(pcc_ss_id, CMD_READ) >= 0)
1118 cpc_read(cpu: cpunum, reg_res: reg, val: perf);
1119 else
1120 ret = -EIO;
1121
1122 up_write(sem: &pcc_ss_data->pcc_lock);
1123
1124 return ret;
1125 }
1126
1127 cpc_read(cpu: cpunum, reg_res: reg, val: perf);
1128
1129 return 0;
1130}
1131
1132/**
1133 * cppc_get_desired_perf - Get the desired performance register value.
1134 * @cpunum: CPU from which to get desired performance.
1135 * @desired_perf: Return address.
1136 *
1137 * Return: 0 for success, -EIO otherwise.
1138 */
1139int cppc_get_desired_perf(int cpunum, u64 *desired_perf)
1140{
1141 return cppc_get_perf(cpunum, reg_idx: DESIRED_PERF, perf: desired_perf);
1142}
1143EXPORT_SYMBOL_GPL(cppc_get_desired_perf);
1144
1145/**
1146 * cppc_get_nominal_perf - Get the nominal performance register value.
1147 * @cpunum: CPU from which to get nominal performance.
1148 * @nominal_perf: Return address.
1149 *
1150 * Return: 0 for success, -EIO otherwise.
1151 */
1152int cppc_get_nominal_perf(int cpunum, u64 *nominal_perf)
1153{
1154 return cppc_get_perf(cpunum, reg_idx: NOMINAL_PERF, perf: nominal_perf);
1155}
1156
1157/**
1158 * cppc_get_epp_perf - Get the epp register value.
1159 * @cpunum: CPU from which to get epp preference value.
1160 * @epp_perf: Return address.
1161 *
1162 * Return: 0 for success, -EIO otherwise.
1163 */
1164int cppc_get_epp_perf(int cpunum, u64 *epp_perf)
1165{
1166 return cppc_get_perf(cpunum, reg_idx: ENERGY_PERF, perf: epp_perf);
1167}
1168EXPORT_SYMBOL_GPL(cppc_get_epp_perf);
1169
1170/**
1171 * cppc_get_perf_caps - Get a CPU's performance capabilities.
1172 * @cpunum: CPU from which to get capabilities info.
1173 * @perf_caps: ptr to cppc_perf_caps. See cppc_acpi.h
1174 *
1175 * Return: 0 for success with perf_caps populated else -ERRNO.
1176 */
1177int cppc_get_perf_caps(int cpunum, struct cppc_perf_caps *perf_caps)
1178{
1179 struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
1180 struct cpc_register_resource *highest_reg, *lowest_reg,
1181 *lowest_non_linear_reg, *nominal_reg, *guaranteed_reg,
1182 *low_freq_reg = NULL, *nom_freq_reg = NULL;
1183 u64 high, low, guaranteed, nom, min_nonlinear, low_f = 0, nom_f = 0;
1184 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
1185 struct cppc_pcc_data *pcc_ss_data = NULL;
1186 int ret = 0, regs_in_pcc = 0;
1187
1188 if (!cpc_desc) {
1189 pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
1190 return -ENODEV;
1191 }
1192
1193 highest_reg = &cpc_desc->cpc_regs[HIGHEST_PERF];
1194 lowest_reg = &cpc_desc->cpc_regs[LOWEST_PERF];
1195 lowest_non_linear_reg = &cpc_desc->cpc_regs[LOW_NON_LINEAR_PERF];
1196 nominal_reg = &cpc_desc->cpc_regs[NOMINAL_PERF];
1197 low_freq_reg = &cpc_desc->cpc_regs[LOWEST_FREQ];
1198 nom_freq_reg = &cpc_desc->cpc_regs[NOMINAL_FREQ];
1199 guaranteed_reg = &cpc_desc->cpc_regs[GUARANTEED_PERF];
1200
1201 /* Are any of the regs PCC ?*/
1202 if (CPC_IN_PCC(highest_reg) || CPC_IN_PCC(lowest_reg) ||
1203 CPC_IN_PCC(lowest_non_linear_reg) || CPC_IN_PCC(nominal_reg) ||
1204 CPC_IN_PCC(low_freq_reg) || CPC_IN_PCC(nom_freq_reg)) {
1205 if (pcc_ss_id < 0) {
1206 pr_debug("Invalid pcc_ss_id\n");
1207 return -ENODEV;
1208 }
1209 pcc_ss_data = pcc_data[pcc_ss_id];
1210 regs_in_pcc = 1;
1211 down_write(sem: &pcc_ss_data->pcc_lock);
1212 /* Ring doorbell once to update PCC subspace */
1213 if (send_pcc_cmd(pcc_ss_id, CMD_READ) < 0) {
1214 ret = -EIO;
1215 goto out_err;
1216 }
1217 }
1218
1219 cpc_read(cpu: cpunum, reg_res: highest_reg, val: &high);
1220 perf_caps->highest_perf = high;
1221
1222 cpc_read(cpu: cpunum, reg_res: lowest_reg, val: &low);
1223 perf_caps->lowest_perf = low;
1224
1225 cpc_read(cpu: cpunum, reg_res: nominal_reg, val: &nom);
1226 perf_caps->nominal_perf = nom;
1227
1228 if (guaranteed_reg->type != ACPI_TYPE_BUFFER ||
1229 IS_NULL_REG(&guaranteed_reg->cpc_entry.reg)) {
1230 perf_caps->guaranteed_perf = 0;
1231 } else {
1232 cpc_read(cpu: cpunum, reg_res: guaranteed_reg, val: &guaranteed);
1233 perf_caps->guaranteed_perf = guaranteed;
1234 }
1235
1236 cpc_read(cpu: cpunum, reg_res: lowest_non_linear_reg, val: &min_nonlinear);
1237 perf_caps->lowest_nonlinear_perf = min_nonlinear;
1238
1239 if (!high || !low || !nom || !min_nonlinear)
1240 ret = -EFAULT;
1241
1242 /* Read optional lowest and nominal frequencies if present */
1243 if (CPC_SUPPORTED(low_freq_reg))
1244 cpc_read(cpu: cpunum, reg_res: low_freq_reg, val: &low_f);
1245
1246 if (CPC_SUPPORTED(nom_freq_reg))
1247 cpc_read(cpu: cpunum, reg_res: nom_freq_reg, val: &nom_f);
1248
1249 perf_caps->lowest_freq = low_f;
1250 perf_caps->nominal_freq = nom_f;
1251
1252
1253out_err:
1254 if (regs_in_pcc)
1255 up_write(sem: &pcc_ss_data->pcc_lock);
1256 return ret;
1257}
1258EXPORT_SYMBOL_GPL(cppc_get_perf_caps);
1259
1260/**
1261 * cppc_perf_ctrs_in_pcc - Check if any perf counters are in a PCC region.
1262 *
1263 * CPPC has flexibility about how CPU performance counters are accessed.
1264 * One of the choices is PCC regions, which can have a high access latency. This
1265 * routine allows callers of cppc_get_perf_ctrs() to know this ahead of time.
1266 *
1267 * Return: true if any of the counters are in PCC regions, false otherwise
1268 */
1269bool cppc_perf_ctrs_in_pcc(void)
1270{
1271 int cpu;
1272
1273 for_each_present_cpu(cpu) {
1274 struct cpc_register_resource *ref_perf_reg;
1275 struct cpc_desc *cpc_desc;
1276
1277 cpc_desc = per_cpu(cpc_desc_ptr, cpu);
1278
1279 if (CPC_IN_PCC(&cpc_desc->cpc_regs[DELIVERED_CTR]) ||
1280 CPC_IN_PCC(&cpc_desc->cpc_regs[REFERENCE_CTR]) ||
1281 CPC_IN_PCC(&cpc_desc->cpc_regs[CTR_WRAP_TIME]))
1282 return true;
1283
1284
1285 ref_perf_reg = &cpc_desc->cpc_regs[REFERENCE_PERF];
1286
1287 /*
1288 * If reference perf register is not supported then we should
1289 * use the nominal perf value
1290 */
1291 if (!CPC_SUPPORTED(ref_perf_reg))
1292 ref_perf_reg = &cpc_desc->cpc_regs[NOMINAL_PERF];
1293
1294 if (CPC_IN_PCC(ref_perf_reg))
1295 return true;
1296 }
1297
1298 return false;
1299}
1300EXPORT_SYMBOL_GPL(cppc_perf_ctrs_in_pcc);
1301
1302/**
1303 * cppc_get_perf_ctrs - Read a CPU's performance feedback counters.
1304 * @cpunum: CPU from which to read counters.
1305 * @perf_fb_ctrs: ptr to cppc_perf_fb_ctrs. See cppc_acpi.h
1306 *
1307 * Return: 0 for success with perf_fb_ctrs populated else -ERRNO.
1308 */
1309int cppc_get_perf_ctrs(int cpunum, struct cppc_perf_fb_ctrs *perf_fb_ctrs)
1310{
1311 struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
1312 struct cpc_register_resource *delivered_reg, *reference_reg,
1313 *ref_perf_reg, *ctr_wrap_reg;
1314 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
1315 struct cppc_pcc_data *pcc_ss_data = NULL;
1316 u64 delivered, reference, ref_perf, ctr_wrap_time;
1317 int ret = 0, regs_in_pcc = 0;
1318
1319 if (!cpc_desc) {
1320 pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
1321 return -ENODEV;
1322 }
1323
1324 delivered_reg = &cpc_desc->cpc_regs[DELIVERED_CTR];
1325 reference_reg = &cpc_desc->cpc_regs[REFERENCE_CTR];
1326 ref_perf_reg = &cpc_desc->cpc_regs[REFERENCE_PERF];
1327 ctr_wrap_reg = &cpc_desc->cpc_regs[CTR_WRAP_TIME];
1328
1329 /*
1330 * If reference perf register is not supported then we should
1331 * use the nominal perf value
1332 */
1333 if (!CPC_SUPPORTED(ref_perf_reg))
1334 ref_perf_reg = &cpc_desc->cpc_regs[NOMINAL_PERF];
1335
1336 /* Are any of the regs PCC ?*/
1337 if (CPC_IN_PCC(delivered_reg) || CPC_IN_PCC(reference_reg) ||
1338 CPC_IN_PCC(ctr_wrap_reg) || CPC_IN_PCC(ref_perf_reg)) {
1339 if (pcc_ss_id < 0) {
1340 pr_debug("Invalid pcc_ss_id\n");
1341 return -ENODEV;
1342 }
1343 pcc_ss_data = pcc_data[pcc_ss_id];
1344 down_write(sem: &pcc_ss_data->pcc_lock);
1345 regs_in_pcc = 1;
1346 /* Ring doorbell once to update PCC subspace */
1347 if (send_pcc_cmd(pcc_ss_id, CMD_READ) < 0) {
1348 ret = -EIO;
1349 goto out_err;
1350 }
1351 }
1352
1353 cpc_read(cpu: cpunum, reg_res: delivered_reg, val: &delivered);
1354 cpc_read(cpu: cpunum, reg_res: reference_reg, val: &reference);
1355 cpc_read(cpu: cpunum, reg_res: ref_perf_reg, val: &ref_perf);
1356
1357 /*
1358 * Per spec, if ctr_wrap_time optional register is unsupported, then the
1359 * performance counters are assumed to never wrap during the lifetime of
1360 * platform
1361 */
1362 ctr_wrap_time = (u64)(~((u64)0));
1363 if (CPC_SUPPORTED(ctr_wrap_reg))
1364 cpc_read(cpu: cpunum, reg_res: ctr_wrap_reg, val: &ctr_wrap_time);
1365
1366 if (!delivered || !reference || !ref_perf) {
1367 ret = -EFAULT;
1368 goto out_err;
1369 }
1370
1371 perf_fb_ctrs->delivered = delivered;
1372 perf_fb_ctrs->reference = reference;
1373 perf_fb_ctrs->reference_perf = ref_perf;
1374 perf_fb_ctrs->wraparound_time = ctr_wrap_time;
1375out_err:
1376 if (regs_in_pcc)
1377 up_write(sem: &pcc_ss_data->pcc_lock);
1378 return ret;
1379}
1380EXPORT_SYMBOL_GPL(cppc_get_perf_ctrs);
1381
1382/*
1383 * Set Energy Performance Preference Register value through
1384 * Performance Controls Interface
1385 */
1386int cppc_set_epp_perf(int cpu, struct cppc_perf_ctrls *perf_ctrls, bool enable)
1387{
1388 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
1389 struct cpc_register_resource *epp_set_reg;
1390 struct cpc_register_resource *auto_sel_reg;
1391 struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpu);
1392 struct cppc_pcc_data *pcc_ss_data = NULL;
1393 int ret;
1394
1395 if (!cpc_desc) {
1396 pr_debug("No CPC descriptor for CPU:%d\n", cpu);
1397 return -ENODEV;
1398 }
1399
1400 auto_sel_reg = &cpc_desc->cpc_regs[AUTO_SEL_ENABLE];
1401 epp_set_reg = &cpc_desc->cpc_regs[ENERGY_PERF];
1402
1403 if (CPC_IN_PCC(epp_set_reg) || CPC_IN_PCC(auto_sel_reg)) {
1404 if (pcc_ss_id < 0) {
1405 pr_debug("Invalid pcc_ss_id for CPU:%d\n", cpu);
1406 return -ENODEV;
1407 }
1408
1409 if (CPC_SUPPORTED(auto_sel_reg)) {
1410 ret = cpc_write(cpu, reg_res: auto_sel_reg, val: enable);
1411 if (ret)
1412 return ret;
1413 }
1414
1415 if (CPC_SUPPORTED(epp_set_reg)) {
1416 ret = cpc_write(cpu, reg_res: epp_set_reg, val: perf_ctrls->energy_perf);
1417 if (ret)
1418 return ret;
1419 }
1420
1421 pcc_ss_data = pcc_data[pcc_ss_id];
1422
1423 down_write(sem: &pcc_ss_data->pcc_lock);
1424 /* after writing CPC, transfer the ownership of PCC to platform */
1425 ret = send_pcc_cmd(pcc_ss_id, CMD_WRITE);
1426 up_write(sem: &pcc_ss_data->pcc_lock);
1427 } else {
1428 ret = -ENOTSUPP;
1429 pr_debug("_CPC in PCC is not supported\n");
1430 }
1431
1432 return ret;
1433}
1434EXPORT_SYMBOL_GPL(cppc_set_epp_perf);
1435
1436/**
1437 * cppc_get_auto_sel_caps - Read autonomous selection register.
1438 * @cpunum : CPU from which to read register.
1439 * @perf_caps : struct where autonomous selection register value is updated.
1440 */
1441int cppc_get_auto_sel_caps(int cpunum, struct cppc_perf_caps *perf_caps)
1442{
1443 struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
1444 struct cpc_register_resource *auto_sel_reg;
1445 u64 auto_sel;
1446
1447 if (!cpc_desc) {
1448 pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
1449 return -ENODEV;
1450 }
1451
1452 auto_sel_reg = &cpc_desc->cpc_regs[AUTO_SEL_ENABLE];
1453
1454 if (!CPC_SUPPORTED(auto_sel_reg))
1455 pr_warn_once("Autonomous mode is not unsupported!\n");
1456
1457 if (CPC_IN_PCC(auto_sel_reg)) {
1458 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
1459 struct cppc_pcc_data *pcc_ss_data = NULL;
1460 int ret = 0;
1461
1462 if (pcc_ss_id < 0)
1463 return -ENODEV;
1464
1465 pcc_ss_data = pcc_data[pcc_ss_id];
1466
1467 down_write(sem: &pcc_ss_data->pcc_lock);
1468
1469 if (send_pcc_cmd(pcc_ss_id, CMD_READ) >= 0) {
1470 cpc_read(cpu: cpunum, reg_res: auto_sel_reg, val: &auto_sel);
1471 perf_caps->auto_sel = (bool)auto_sel;
1472 } else {
1473 ret = -EIO;
1474 }
1475
1476 up_write(sem: &pcc_ss_data->pcc_lock);
1477
1478 return ret;
1479 }
1480
1481 return 0;
1482}
1483EXPORT_SYMBOL_GPL(cppc_get_auto_sel_caps);
1484
1485/**
1486 * cppc_set_auto_sel - Write autonomous selection register.
1487 * @cpu : CPU to which to write register.
1488 * @enable : the desired value of autonomous selection resiter to be updated.
1489 */
1490int cppc_set_auto_sel(int cpu, bool enable)
1491{
1492 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
1493 struct cpc_register_resource *auto_sel_reg;
1494 struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpu);
1495 struct cppc_pcc_data *pcc_ss_data = NULL;
1496 int ret = -EINVAL;
1497
1498 if (!cpc_desc) {
1499 pr_debug("No CPC descriptor for CPU:%d\n", cpu);
1500 return -ENODEV;
1501 }
1502
1503 auto_sel_reg = &cpc_desc->cpc_regs[AUTO_SEL_ENABLE];
1504
1505 if (CPC_IN_PCC(auto_sel_reg)) {
1506 if (pcc_ss_id < 0) {
1507 pr_debug("Invalid pcc_ss_id\n");
1508 return -ENODEV;
1509 }
1510
1511 if (CPC_SUPPORTED(auto_sel_reg)) {
1512 ret = cpc_write(cpu, reg_res: auto_sel_reg, val: enable);
1513 if (ret)
1514 return ret;
1515 }
1516
1517 pcc_ss_data = pcc_data[pcc_ss_id];
1518
1519 down_write(sem: &pcc_ss_data->pcc_lock);
1520 /* after writing CPC, transfer the ownership of PCC to platform */
1521 ret = send_pcc_cmd(pcc_ss_id, CMD_WRITE);
1522 up_write(sem: &pcc_ss_data->pcc_lock);
1523 } else {
1524 ret = -ENOTSUPP;
1525 pr_debug("_CPC in PCC is not supported\n");
1526 }
1527
1528 return ret;
1529}
1530EXPORT_SYMBOL_GPL(cppc_set_auto_sel);
1531
1532/**
1533 * cppc_set_enable - Set to enable CPPC on the processor by writing the
1534 * Continuous Performance Control package EnableRegister field.
1535 * @cpu: CPU for which to enable CPPC register.
1536 * @enable: 0 - disable, 1 - enable CPPC feature on the processor.
1537 *
1538 * Return: 0 for success, -ERRNO or -EIO otherwise.
1539 */
1540int cppc_set_enable(int cpu, bool enable)
1541{
1542 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
1543 struct cpc_register_resource *enable_reg;
1544 struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpu);
1545 struct cppc_pcc_data *pcc_ss_data = NULL;
1546 int ret = -EINVAL;
1547
1548 if (!cpc_desc) {
1549 pr_debug("No CPC descriptor for CPU:%d\n", cpu);
1550 return -EINVAL;
1551 }
1552
1553 enable_reg = &cpc_desc->cpc_regs[ENABLE];
1554
1555 if (CPC_IN_PCC(enable_reg)) {
1556
1557 if (pcc_ss_id < 0)
1558 return -EIO;
1559
1560 ret = cpc_write(cpu, reg_res: enable_reg, val: enable);
1561 if (ret)
1562 return ret;
1563
1564 pcc_ss_data = pcc_data[pcc_ss_id];
1565
1566 down_write(sem: &pcc_ss_data->pcc_lock);
1567 /* after writing CPC, transfer the ownership of PCC to platfrom */
1568 ret = send_pcc_cmd(pcc_ss_id, CMD_WRITE);
1569 up_write(sem: &pcc_ss_data->pcc_lock);
1570 return ret;
1571 }
1572
1573 return cpc_write(cpu, reg_res: enable_reg, val: enable);
1574}
1575EXPORT_SYMBOL_GPL(cppc_set_enable);
1576
1577/**
1578 * cppc_set_perf - Set a CPU's performance controls.
1579 * @cpu: CPU for which to set performance controls.
1580 * @perf_ctrls: ptr to cppc_perf_ctrls. See cppc_acpi.h
1581 *
1582 * Return: 0 for success, -ERRNO otherwise.
1583 */
1584int cppc_set_perf(int cpu, struct cppc_perf_ctrls *perf_ctrls)
1585{
1586 struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpu);
1587 struct cpc_register_resource *desired_reg, *min_perf_reg, *max_perf_reg;
1588 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
1589 struct cppc_pcc_data *pcc_ss_data = NULL;
1590 int ret = 0;
1591
1592 if (!cpc_desc) {
1593 pr_debug("No CPC descriptor for CPU:%d\n", cpu);
1594 return -ENODEV;
1595 }
1596
1597 desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF];
1598 min_perf_reg = &cpc_desc->cpc_regs[MIN_PERF];
1599 max_perf_reg = &cpc_desc->cpc_regs[MAX_PERF];
1600
1601 /*
1602 * This is Phase-I where we want to write to CPC registers
1603 * -> We want all CPUs to be able to execute this phase in parallel
1604 *
1605 * Since read_lock can be acquired by multiple CPUs simultaneously we
1606 * achieve that goal here
1607 */
1608 if (CPC_IN_PCC(desired_reg) || CPC_IN_PCC(min_perf_reg) || CPC_IN_PCC(max_perf_reg)) {
1609 if (pcc_ss_id < 0) {
1610 pr_debug("Invalid pcc_ss_id\n");
1611 return -ENODEV;
1612 }
1613 pcc_ss_data = pcc_data[pcc_ss_id];
1614 down_read(sem: &pcc_ss_data->pcc_lock); /* BEGIN Phase-I */
1615 if (pcc_ss_data->platform_owns_pcc) {
1616 ret = check_pcc_chan(pcc_ss_id, chk_err_bit: false);
1617 if (ret) {
1618 up_read(sem: &pcc_ss_data->pcc_lock);
1619 return ret;
1620 }
1621 }
1622 /*
1623 * Update the pending_write to make sure a PCC CMD_READ will not
1624 * arrive and steal the channel during the switch to write lock
1625 */
1626 pcc_ss_data->pending_pcc_write_cmd = true;
1627 cpc_desc->write_cmd_id = pcc_ss_data->pcc_write_cnt;
1628 cpc_desc->write_cmd_status = 0;
1629 }
1630
1631 cpc_write(cpu, reg_res: desired_reg, val: perf_ctrls->desired_perf);
1632
1633 /*
1634 * Only write if min_perf and max_perf not zero. Some drivers pass zero
1635 * value to min and max perf, but they don't mean to set the zero value,
1636 * they just don't want to write to those registers.
1637 */
1638 if (perf_ctrls->min_perf)
1639 cpc_write(cpu, reg_res: min_perf_reg, val: perf_ctrls->min_perf);
1640 if (perf_ctrls->max_perf)
1641 cpc_write(cpu, reg_res: max_perf_reg, val: perf_ctrls->max_perf);
1642
1643 if (CPC_IN_PCC(desired_reg) || CPC_IN_PCC(min_perf_reg) || CPC_IN_PCC(max_perf_reg))
1644 up_read(sem: &pcc_ss_data->pcc_lock); /* END Phase-I */
1645 /*
1646 * This is Phase-II where we transfer the ownership of PCC to Platform
1647 *
1648 * Short Summary: Basically if we think of a group of cppc_set_perf
1649 * requests that happened in short overlapping interval. The last CPU to
1650 * come out of Phase-I will enter Phase-II and ring the doorbell.
1651 *
1652 * We have the following requirements for Phase-II:
1653 * 1. We want to execute Phase-II only when there are no CPUs
1654 * currently executing in Phase-I
1655 * 2. Once we start Phase-II we want to avoid all other CPUs from
1656 * entering Phase-I.
1657 * 3. We want only one CPU among all those who went through Phase-I
1658 * to run phase-II
1659 *
1660 * If write_trylock fails to get the lock and doesn't transfer the
1661 * PCC ownership to the platform, then one of the following will be TRUE
1662 * 1. There is at-least one CPU in Phase-I which will later execute
1663 * write_trylock, so the CPUs in Phase-I will be responsible for
1664 * executing the Phase-II.
1665 * 2. Some other CPU has beaten this CPU to successfully execute the
1666 * write_trylock and has already acquired the write_lock. We know for a
1667 * fact it (other CPU acquiring the write_lock) couldn't have happened
1668 * before this CPU's Phase-I as we held the read_lock.
1669 * 3. Some other CPU executing pcc CMD_READ has stolen the
1670 * down_write, in which case, send_pcc_cmd will check for pending
1671 * CMD_WRITE commands by checking the pending_pcc_write_cmd.
1672 * So this CPU can be certain that its request will be delivered
1673 * So in all cases, this CPU knows that its request will be delivered
1674 * by another CPU and can return
1675 *
1676 * After getting the down_write we still need to check for
1677 * pending_pcc_write_cmd to take care of the following scenario
1678 * The thread running this code could be scheduled out between
1679 * Phase-I and Phase-II. Before it is scheduled back on, another CPU
1680 * could have delivered the request to Platform by triggering the
1681 * doorbell and transferred the ownership of PCC to platform. So this
1682 * avoids triggering an unnecessary doorbell and more importantly before
1683 * triggering the doorbell it makes sure that the PCC channel ownership
1684 * is still with OSPM.
1685 * pending_pcc_write_cmd can also be cleared by a different CPU, if
1686 * there was a pcc CMD_READ waiting on down_write and it steals the lock
1687 * before the pcc CMD_WRITE is completed. send_pcc_cmd checks for this
1688 * case during a CMD_READ and if there are pending writes it delivers
1689 * the write command before servicing the read command
1690 */
1691 if (CPC_IN_PCC(desired_reg) || CPC_IN_PCC(min_perf_reg) || CPC_IN_PCC(max_perf_reg)) {
1692 if (down_write_trylock(sem: &pcc_ss_data->pcc_lock)) {/* BEGIN Phase-II */
1693 /* Update only if there are pending write commands */
1694 if (pcc_ss_data->pending_pcc_write_cmd)
1695 send_pcc_cmd(pcc_ss_id, CMD_WRITE);
1696 up_write(sem: &pcc_ss_data->pcc_lock); /* END Phase-II */
1697 } else
1698 /* Wait until pcc_write_cnt is updated by send_pcc_cmd */
1699 wait_event(pcc_ss_data->pcc_write_wait_q,
1700 cpc_desc->write_cmd_id != pcc_ss_data->pcc_write_cnt);
1701
1702 /* send_pcc_cmd updates the status in case of failure */
1703 ret = cpc_desc->write_cmd_status;
1704 }
1705 return ret;
1706}
1707EXPORT_SYMBOL_GPL(cppc_set_perf);
1708
1709/**
1710 * cppc_get_transition_latency - returns frequency transition latency in ns
1711 * @cpu_num: CPU number for per_cpu().
1712 *
1713 * ACPI CPPC does not explicitly specify how a platform can specify the
1714 * transition latency for performance change requests. The closest we have
1715 * is the timing information from the PCCT tables which provides the info
1716 * on the number and frequency of PCC commands the platform can handle.
1717 *
1718 * If desired_reg is in the SystemMemory or SystemIo ACPI address space,
1719 * then assume there is no latency.
1720 */
1721unsigned int cppc_get_transition_latency(int cpu_num)
1722{
1723 /*
1724 * Expected transition latency is based on the PCCT timing values
1725 * Below are definition from ACPI spec:
1726 * pcc_nominal- Expected latency to process a command, in microseconds
1727 * pcc_mpar - The maximum number of periodic requests that the subspace
1728 * channel can support, reported in commands per minute. 0
1729 * indicates no limitation.
1730 * pcc_mrtt - The minimum amount of time that OSPM must wait after the
1731 * completion of a command before issuing the next command,
1732 * in microseconds.
1733 */
1734 unsigned int latency_ns = 0;
1735 struct cpc_desc *cpc_desc;
1736 struct cpc_register_resource *desired_reg;
1737 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu_num);
1738 struct cppc_pcc_data *pcc_ss_data;
1739
1740 cpc_desc = per_cpu(cpc_desc_ptr, cpu_num);
1741 if (!cpc_desc)
1742 return CPUFREQ_ETERNAL;
1743
1744 desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF];
1745 if (CPC_IN_SYSTEM_MEMORY(desired_reg) || CPC_IN_SYSTEM_IO(desired_reg))
1746 return 0;
1747 else if (!CPC_IN_PCC(desired_reg))
1748 return CPUFREQ_ETERNAL;
1749
1750 if (pcc_ss_id < 0)
1751 return CPUFREQ_ETERNAL;
1752
1753 pcc_ss_data = pcc_data[pcc_ss_id];
1754 if (pcc_ss_data->pcc_mpar)
1755 latency_ns = 60 * (1000 * 1000 * 1000 / pcc_ss_data->pcc_mpar);
1756
1757 latency_ns = max(latency_ns, pcc_ss_data->pcc_nominal * 1000);
1758 latency_ns = max(latency_ns, pcc_ss_data->pcc_mrtt * 1000);
1759
1760 return latency_ns;
1761}
1762EXPORT_SYMBOL_GPL(cppc_get_transition_latency);
1763

source code of linux/drivers/acpi/cppc_acpi.c