1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2014 Marvell Technology Group Ltd.
4 *
5 * Sebastian Hesselbarth <sebastian.hesselbarth@gmail.com>
6 * Alexandre Belloni <alexandre.belloni@free-electrons.com>
7 */
8#include <linux/clk-provider.h>
9#include <linux/io.h>
10#include <linux/kernel.h>
11#include <linux/of.h>
12#include <linux/of_address.h>
13#include <linux/slab.h>
14
15#include "berlin2-avpll.h"
16
17/*
18 * Berlin2 SoCs comprise up to two PLLs called AVPLL built upon a
19 * VCO with 8 channels each, channel 8 is the odd-one-out and does
20 * not provide mul/div.
21 *
22 * Unfortunately, its registers are not named but just numbered. To
23 * get in at least some kind of structure, we split each AVPLL into
24 * the VCOs and each channel into separate clock drivers.
25 *
26 * Also, here and there the VCO registers are a bit different with
27 * respect to bit shifts. Make sure to add a comment for those.
28 */
29#define NUM_CHANNELS 8
30
31#define AVPLL_CTRL(x) ((x) * 0x4)
32
33#define VCO_CTRL0 AVPLL_CTRL(0)
34/* BG2/BG2CDs VCO_B has an additional shift of 4 for its VCO_CTRL0 reg */
35#define VCO_RESET BIT(0)
36#define VCO_POWERUP BIT(1)
37#define VCO_INTERPOL_SHIFT 2
38#define VCO_INTERPOL_MASK (0xf << VCO_INTERPOL_SHIFT)
39#define VCO_REG1V45_SEL_SHIFT 6
40#define VCO_REG1V45_SEL(x) ((x) << VCO_REG1V45_SEL_SHIFT)
41#define VCO_REG1V45_SEL_1V40 VCO_REG1V45_SEL(0)
42#define VCO_REG1V45_SEL_1V45 VCO_REG1V45_SEL(1)
43#define VCO_REG1V45_SEL_1V50 VCO_REG1V45_SEL(2)
44#define VCO_REG1V45_SEL_1V55 VCO_REG1V45_SEL(3)
45#define VCO_REG1V45_SEL_MASK VCO_REG1V45_SEL(3)
46#define VCO_REG0V9_SEL_SHIFT 8
47#define VCO_REG0V9_SEL_MASK (0xf << VCO_REG0V9_SEL_SHIFT)
48#define VCO_VTHCAL_SHIFT 12
49#define VCO_VTHCAL(x) ((x) << VCO_VTHCAL_SHIFT)
50#define VCO_VTHCAL_0V90 VCO_VTHCAL(0)
51#define VCO_VTHCAL_0V95 VCO_VTHCAL(1)
52#define VCO_VTHCAL_1V00 VCO_VTHCAL(2)
53#define VCO_VTHCAL_1V05 VCO_VTHCAL(3)
54#define VCO_VTHCAL_MASK VCO_VTHCAL(3)
55#define VCO_KVCOEXT_SHIFT 14
56#define VCO_KVCOEXT_MASK (0x3 << VCO_KVCOEXT_SHIFT)
57#define VCO_KVCOEXT_ENABLE BIT(17)
58#define VCO_V2IEXT_SHIFT 18
59#define VCO_V2IEXT_MASK (0xf << VCO_V2IEXT_SHIFT)
60#define VCO_V2IEXT_ENABLE BIT(22)
61#define VCO_SPEED_SHIFT 23
62#define VCO_SPEED(x) ((x) << VCO_SPEED_SHIFT)
63#define VCO_SPEED_1G08_1G21 VCO_SPEED(0)
64#define VCO_SPEED_1G21_1G40 VCO_SPEED(1)
65#define VCO_SPEED_1G40_1G61 VCO_SPEED(2)
66#define VCO_SPEED_1G61_1G86 VCO_SPEED(3)
67#define VCO_SPEED_1G86_2G00 VCO_SPEED(4)
68#define VCO_SPEED_2G00_2G22 VCO_SPEED(5)
69#define VCO_SPEED_2G22 VCO_SPEED(6)
70#define VCO_SPEED_MASK VCO_SPEED(0x7)
71#define VCO_CLKDET_ENABLE BIT(26)
72#define VCO_CTRL1 AVPLL_CTRL(1)
73#define VCO_REFDIV_SHIFT 0
74#define VCO_REFDIV(x) ((x) << VCO_REFDIV_SHIFT)
75#define VCO_REFDIV_1 VCO_REFDIV(0)
76#define VCO_REFDIV_2 VCO_REFDIV(1)
77#define VCO_REFDIV_4 VCO_REFDIV(2)
78#define VCO_REFDIV_3 VCO_REFDIV(3)
79#define VCO_REFDIV_MASK VCO_REFDIV(0x3f)
80#define VCO_FBDIV_SHIFT 6
81#define VCO_FBDIV(x) ((x) << VCO_FBDIV_SHIFT)
82#define VCO_FBDIV_MASK VCO_FBDIV(0xff)
83#define VCO_ICP_SHIFT 14
84/* PLL Charge Pump Current = 10uA * (x + 1) */
85#define VCO_ICP(x) ((x) << VCO_ICP_SHIFT)
86#define VCO_ICP_MASK VCO_ICP(0xf)
87#define VCO_LOAD_CAP BIT(18)
88#define VCO_CALIBRATION_START BIT(19)
89#define VCO_FREQOFFSETn(x) AVPLL_CTRL(3 + (x))
90#define VCO_FREQOFFSET_MASK 0x7ffff
91#define VCO_CTRL10 AVPLL_CTRL(10)
92#define VCO_POWERUP_CH1 BIT(20)
93#define VCO_CTRL11 AVPLL_CTRL(11)
94#define VCO_CTRL12 AVPLL_CTRL(12)
95#define VCO_CTRL13 AVPLL_CTRL(13)
96#define VCO_CTRL14 AVPLL_CTRL(14)
97#define VCO_CTRL15 AVPLL_CTRL(15)
98#define VCO_SYNC1n(x) AVPLL_CTRL(15 + (x))
99#define VCO_SYNC1_MASK 0x1ffff
100#define VCO_SYNC2n(x) AVPLL_CTRL(23 + (x))
101#define VCO_SYNC2_MASK 0x1ffff
102#define VCO_CTRL30 AVPLL_CTRL(30)
103#define VCO_DPLL_CH1_ENABLE BIT(17)
104
105struct berlin2_avpll_vco {
106 struct clk_hw hw;
107 void __iomem *base;
108 u8 flags;
109};
110
111#define to_avpll_vco(hw) container_of(hw, struct berlin2_avpll_vco, hw)
112
113static int berlin2_avpll_vco_is_enabled(struct clk_hw *hw)
114{
115 struct berlin2_avpll_vco *vco = to_avpll_vco(hw);
116 u32 reg;
117
118 reg = readl_relaxed(vco->base + VCO_CTRL0);
119 if (vco->flags & BERLIN2_AVPLL_BIT_QUIRK)
120 reg >>= 4;
121
122 return !!(reg & VCO_POWERUP);
123}
124
125static int berlin2_avpll_vco_enable(struct clk_hw *hw)
126{
127 struct berlin2_avpll_vco *vco = to_avpll_vco(hw);
128 u32 reg;
129
130 reg = readl_relaxed(vco->base + VCO_CTRL0);
131 if (vco->flags & BERLIN2_AVPLL_BIT_QUIRK)
132 reg |= VCO_POWERUP << 4;
133 else
134 reg |= VCO_POWERUP;
135 writel_relaxed(reg, vco->base + VCO_CTRL0);
136
137 return 0;
138}
139
140static void berlin2_avpll_vco_disable(struct clk_hw *hw)
141{
142 struct berlin2_avpll_vco *vco = to_avpll_vco(hw);
143 u32 reg;
144
145 reg = readl_relaxed(vco->base + VCO_CTRL0);
146 if (vco->flags & BERLIN2_AVPLL_BIT_QUIRK)
147 reg &= ~(VCO_POWERUP << 4);
148 else
149 reg &= ~VCO_POWERUP;
150 writel_relaxed(reg, vco->base + VCO_CTRL0);
151}
152
153static u8 vco_refdiv[] = { 1, 2, 4, 3 };
154
155static unsigned long
156berlin2_avpll_vco_recalc_rate(struct clk_hw *hw, unsigned long parent_rate)
157{
158 struct berlin2_avpll_vco *vco = to_avpll_vco(hw);
159 u32 reg, refdiv, fbdiv;
160 u64 freq = parent_rate;
161
162 /* AVPLL VCO frequency: Fvco = (Fref / refdiv) * fbdiv */
163 reg = readl_relaxed(vco->base + VCO_CTRL1);
164 refdiv = (reg & VCO_REFDIV_MASK) >> VCO_REFDIV_SHIFT;
165 refdiv = vco_refdiv[refdiv];
166 fbdiv = (reg & VCO_FBDIV_MASK) >> VCO_FBDIV_SHIFT;
167 freq *= fbdiv;
168 do_div(freq, refdiv);
169
170 return (unsigned long)freq;
171}
172
173static const struct clk_ops berlin2_avpll_vco_ops = {
174 .is_enabled = berlin2_avpll_vco_is_enabled,
175 .enable = berlin2_avpll_vco_enable,
176 .disable = berlin2_avpll_vco_disable,
177 .recalc_rate = berlin2_avpll_vco_recalc_rate,
178};
179
180int __init berlin2_avpll_vco_register(void __iomem *base,
181 const char *name, const char *parent_name,
182 u8 vco_flags, unsigned long flags)
183{
184 struct berlin2_avpll_vco *vco;
185 struct clk_init_data init;
186
187 vco = kzalloc(size: sizeof(*vco), GFP_KERNEL);
188 if (!vco)
189 return -ENOMEM;
190
191 vco->base = base;
192 vco->flags = vco_flags;
193 vco->hw.init = &init;
194 init.name = name;
195 init.ops = &berlin2_avpll_vco_ops;
196 init.parent_names = &parent_name;
197 init.num_parents = 1;
198 init.flags = flags;
199
200 return clk_hw_register(NULL, hw: &vco->hw);
201}
202
203struct berlin2_avpll_channel {
204 struct clk_hw hw;
205 void __iomem *base;
206 u8 flags;
207 u8 index;
208};
209
210#define to_avpll_channel(hw) container_of(hw, struct berlin2_avpll_channel, hw)
211
212static int berlin2_avpll_channel_is_enabled(struct clk_hw *hw)
213{
214 struct berlin2_avpll_channel *ch = to_avpll_channel(hw);
215 u32 reg;
216
217 if (ch->index == 7)
218 return 1;
219
220 reg = readl_relaxed(ch->base + VCO_CTRL10);
221 reg &= VCO_POWERUP_CH1 << ch->index;
222
223 return !!reg;
224}
225
226static int berlin2_avpll_channel_enable(struct clk_hw *hw)
227{
228 struct berlin2_avpll_channel *ch = to_avpll_channel(hw);
229 u32 reg;
230
231 reg = readl_relaxed(ch->base + VCO_CTRL10);
232 reg |= VCO_POWERUP_CH1 << ch->index;
233 writel_relaxed(reg, ch->base + VCO_CTRL10);
234
235 return 0;
236}
237
238static void berlin2_avpll_channel_disable(struct clk_hw *hw)
239{
240 struct berlin2_avpll_channel *ch = to_avpll_channel(hw);
241 u32 reg;
242
243 reg = readl_relaxed(ch->base + VCO_CTRL10);
244 reg &= ~(VCO_POWERUP_CH1 << ch->index);
245 writel_relaxed(reg, ch->base + VCO_CTRL10);
246}
247
248static const u8 div_hdmi[] = { 1, 2, 4, 6 };
249static const u8 div_av1[] = { 1, 2, 5, 5 };
250
251static unsigned long
252berlin2_avpll_channel_recalc_rate(struct clk_hw *hw, unsigned long parent_rate)
253{
254 struct berlin2_avpll_channel *ch = to_avpll_channel(hw);
255 u32 reg, div_av2, div_av3, divider = 1;
256 u64 freq = parent_rate;
257
258 reg = readl_relaxed(ch->base + VCO_CTRL30);
259 if ((reg & (VCO_DPLL_CH1_ENABLE << ch->index)) == 0)
260 goto skip_div;
261
262 /*
263 * Fch = (Fref * sync2) /
264 * (sync1 * div_hdmi * div_av1 * div_av2 * div_av3)
265 */
266
267 reg = readl_relaxed(ch->base + VCO_SYNC1n(ch->index));
268 /* BG2/BG2CDs SYNC1 reg on AVPLL_B channel 1 is shifted by 4 */
269 if (ch->flags & BERLIN2_AVPLL_BIT_QUIRK && ch->index == 0)
270 reg >>= 4;
271 divider = reg & VCO_SYNC1_MASK;
272
273 reg = readl_relaxed(ch->base + VCO_SYNC2n(ch->index));
274 freq *= reg & VCO_SYNC2_MASK;
275
276 /* Channel 8 has no dividers */
277 if (ch->index == 7)
278 goto skip_div;
279
280 /*
281 * HDMI divider start at VCO_CTRL11, bit 7; MSB is enable, lower 2 bit
282 * determine divider.
283 */
284 reg = readl_relaxed(ch->base + VCO_CTRL11) >> 7;
285 reg = (reg >> (ch->index * 3));
286 if (reg & BIT(2))
287 divider *= div_hdmi[reg & 0x3];
288
289 /*
290 * AV1 divider start at VCO_CTRL11, bit 28; MSB is enable, lower 2 bit
291 * determine divider.
292 */
293 if (ch->index == 0) {
294 reg = readl_relaxed(ch->base + VCO_CTRL11);
295 reg >>= 28;
296 } else {
297 reg = readl_relaxed(ch->base + VCO_CTRL12);
298 reg >>= (ch->index-1) * 3;
299 }
300 if (reg & BIT(2))
301 divider *= div_av1[reg & 0x3];
302
303 /*
304 * AV2 divider start at VCO_CTRL12, bit 18; each 7 bits wide,
305 * zero is not a valid value.
306 */
307 if (ch->index < 2) {
308 reg = readl_relaxed(ch->base + VCO_CTRL12);
309 reg >>= 18 + (ch->index * 7);
310 } else if (ch->index < 7) {
311 reg = readl_relaxed(ch->base + VCO_CTRL13);
312 reg >>= (ch->index - 2) * 7;
313 } else {
314 reg = readl_relaxed(ch->base + VCO_CTRL14);
315 }
316 div_av2 = reg & 0x7f;
317 if (div_av2)
318 divider *= div_av2;
319
320 /*
321 * AV3 divider start at VCO_CTRL14, bit 7; each 4 bits wide.
322 * AV2/AV3 form a fractional divider, where only specfic values for AV3
323 * are allowed. AV3 != 0 divides by AV2/2, AV3=0 is bypass.
324 */
325 if (ch->index < 6) {
326 reg = readl_relaxed(ch->base + VCO_CTRL14);
327 reg >>= 7 + (ch->index * 4);
328 } else {
329 reg = readl_relaxed(ch->base + VCO_CTRL15);
330 }
331 div_av3 = reg & 0xf;
332 if (div_av2 && div_av3)
333 freq *= 2;
334
335skip_div:
336 do_div(freq, divider);
337 return (unsigned long)freq;
338}
339
340static const struct clk_ops berlin2_avpll_channel_ops = {
341 .is_enabled = berlin2_avpll_channel_is_enabled,
342 .enable = berlin2_avpll_channel_enable,
343 .disable = berlin2_avpll_channel_disable,
344 .recalc_rate = berlin2_avpll_channel_recalc_rate,
345};
346
347/*
348 * Another nice quirk:
349 * On some production SoCs, AVPLL channels are scrambled with respect
350 * to the channel numbering in the registers but still referenced by
351 * their original channel numbers. We deal with it by having a flag
352 * and a translation table for the index.
353 */
354static const u8 quirk_index[] __initconst = { 0, 6, 5, 4, 3, 2, 1, 7 };
355
356int __init berlin2_avpll_channel_register(void __iomem *base,
357 const char *name, u8 index, const char *parent_name,
358 u8 ch_flags, unsigned long flags)
359{
360 struct berlin2_avpll_channel *ch;
361 struct clk_init_data init;
362
363 ch = kzalloc(size: sizeof(*ch), GFP_KERNEL);
364 if (!ch)
365 return -ENOMEM;
366
367 ch->base = base;
368 if (ch_flags & BERLIN2_AVPLL_SCRAMBLE_QUIRK)
369 ch->index = quirk_index[index];
370 else
371 ch->index = index;
372
373 ch->flags = ch_flags;
374 ch->hw.init = &init;
375 init.name = name;
376 init.ops = &berlin2_avpll_channel_ops;
377 init.parent_names = &parent_name;
378 init.num_parents = 1;
379 init.flags = flags;
380
381 return clk_hw_register(NULL, hw: &ch->hw);
382}
383

source code of linux/drivers/clk/berlin/berlin2-avpll.c