1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (C) 2014 STMicroelectronics R&D Ltd
4 */
5
6/*
7 * Authors:
8 * Stephen Gallimore <stephen.gallimore@st.com>,
9 * Pankaj Dev <pankaj.dev@st.com>.
10 */
11
12#include <linux/slab.h>
13#include <linux/of_address.h>
14#include <linux/clk.h>
15#include <linux/clk-provider.h>
16
17#include "clkgen.h"
18
19/*
20 * Maximum input clock to the PLL before we divide it down by 2
21 * although in reality in actual systems this has never been seen to
22 * be used.
23 */
24#define QUADFS_NDIV_THRESHOLD 30000000
25
26#define PLL_BW_GOODREF (0L)
27#define PLL_BW_VBADREF (1L)
28#define PLL_BW_BADREF (2L)
29#define PLL_BW_VGOODREF (3L)
30
31#define QUADFS_MAX_CHAN 4
32
33struct stm_fs {
34 unsigned long ndiv;
35 unsigned long mdiv;
36 unsigned long pe;
37 unsigned long sdiv;
38 unsigned long nsdiv;
39};
40
41struct clkgen_quadfs_data {
42 bool reset_present;
43 bool bwfilter_present;
44 bool lockstatus_present;
45 bool powerup_polarity;
46 bool standby_polarity;
47 bool nsdiv_present;
48 bool nrst_present;
49 struct clkgen_field ndiv;
50 struct clkgen_field ref_bw;
51 struct clkgen_field nreset;
52 struct clkgen_field npda;
53 struct clkgen_field lock_status;
54
55 struct clkgen_field nrst[QUADFS_MAX_CHAN];
56 struct clkgen_field nsb[QUADFS_MAX_CHAN];
57 struct clkgen_field en[QUADFS_MAX_CHAN];
58 struct clkgen_field mdiv[QUADFS_MAX_CHAN];
59 struct clkgen_field pe[QUADFS_MAX_CHAN];
60 struct clkgen_field sdiv[QUADFS_MAX_CHAN];
61 struct clkgen_field nsdiv[QUADFS_MAX_CHAN];
62
63 const struct clk_ops *pll_ops;
64 int (*get_params)(unsigned long, unsigned long, struct stm_fs *);
65 int (*get_rate)(unsigned long , const struct stm_fs *,
66 unsigned long *);
67};
68
69struct clkgen_clk_out {
70 const char *name;
71 unsigned long flags;
72};
73
74struct clkgen_quadfs_data_clks {
75 struct clkgen_quadfs_data *data;
76 const struct clkgen_clk_out *outputs;
77};
78
79static const struct clk_ops st_quadfs_pll_c32_ops;
80
81static int clk_fs660c32_dig_get_params(unsigned long input,
82 unsigned long output, struct stm_fs *fs);
83static int clk_fs660c32_dig_get_rate(unsigned long, const struct stm_fs *,
84 unsigned long *);
85
86static const struct clkgen_quadfs_data st_fs660c32_C = {
87 .nrst_present = true,
88 .nrst = { CLKGEN_FIELD(0x2f0, 0x1, 0),
89 CLKGEN_FIELD(0x2f0, 0x1, 1),
90 CLKGEN_FIELD(0x2f0, 0x1, 2),
91 CLKGEN_FIELD(0x2f0, 0x1, 3) },
92 .npda = CLKGEN_FIELD(0x2f0, 0x1, 12),
93 .nsb = { CLKGEN_FIELD(0x2f0, 0x1, 8),
94 CLKGEN_FIELD(0x2f0, 0x1, 9),
95 CLKGEN_FIELD(0x2f0, 0x1, 10),
96 CLKGEN_FIELD(0x2f0, 0x1, 11) },
97 .nsdiv_present = true,
98 .nsdiv = { CLKGEN_FIELD(0x304, 0x1, 24),
99 CLKGEN_FIELD(0x308, 0x1, 24),
100 CLKGEN_FIELD(0x30c, 0x1, 24),
101 CLKGEN_FIELD(0x310, 0x1, 24) },
102 .mdiv = { CLKGEN_FIELD(0x304, 0x1f, 15),
103 CLKGEN_FIELD(0x308, 0x1f, 15),
104 CLKGEN_FIELD(0x30c, 0x1f, 15),
105 CLKGEN_FIELD(0x310, 0x1f, 15) },
106 .en = { CLKGEN_FIELD(0x2fc, 0x1, 0),
107 CLKGEN_FIELD(0x2fc, 0x1, 1),
108 CLKGEN_FIELD(0x2fc, 0x1, 2),
109 CLKGEN_FIELD(0x2fc, 0x1, 3) },
110 .ndiv = CLKGEN_FIELD(0x2f4, 0x7, 16),
111 .pe = { CLKGEN_FIELD(0x304, 0x7fff, 0),
112 CLKGEN_FIELD(0x308, 0x7fff, 0),
113 CLKGEN_FIELD(0x30c, 0x7fff, 0),
114 CLKGEN_FIELD(0x310, 0x7fff, 0) },
115 .sdiv = { CLKGEN_FIELD(0x304, 0xf, 20),
116 CLKGEN_FIELD(0x308, 0xf, 20),
117 CLKGEN_FIELD(0x30c, 0xf, 20),
118 CLKGEN_FIELD(0x310, 0xf, 20) },
119 .lockstatus_present = true,
120 .lock_status = CLKGEN_FIELD(0x2f0, 0x1, 24),
121 .powerup_polarity = 1,
122 .standby_polarity = 1,
123 .pll_ops = &st_quadfs_pll_c32_ops,
124 .get_params = clk_fs660c32_dig_get_params,
125 .get_rate = clk_fs660c32_dig_get_rate,
126};
127
128static const struct clkgen_clk_out st_fs660c32_C_clks[] = {
129 { .name = "clk-s-c0-fs0-ch0", },
130 { .name = "clk-s-c0-fs0-ch1", },
131 { .name = "clk-s-c0-fs0-ch2", },
132 { .name = "clk-s-c0-fs0-ch3", },
133};
134
135static const struct clkgen_quadfs_data_clks st_fs660c32_C_data = {
136 .data = (struct clkgen_quadfs_data *)&st_fs660c32_C,
137 .outputs = st_fs660c32_C_clks,
138};
139
140static const struct clkgen_quadfs_data st_fs660c32_D = {
141 .nrst_present = true,
142 .nrst = { CLKGEN_FIELD(0x2a0, 0x1, 0),
143 CLKGEN_FIELD(0x2a0, 0x1, 1),
144 CLKGEN_FIELD(0x2a0, 0x1, 2),
145 CLKGEN_FIELD(0x2a0, 0x1, 3) },
146 .ndiv = CLKGEN_FIELD(0x2a4, 0x7, 16),
147 .pe = { CLKGEN_FIELD(0x2b4, 0x7fff, 0),
148 CLKGEN_FIELD(0x2b8, 0x7fff, 0),
149 CLKGEN_FIELD(0x2bc, 0x7fff, 0),
150 CLKGEN_FIELD(0x2c0, 0x7fff, 0) },
151 .sdiv = { CLKGEN_FIELD(0x2b4, 0xf, 20),
152 CLKGEN_FIELD(0x2b8, 0xf, 20),
153 CLKGEN_FIELD(0x2bc, 0xf, 20),
154 CLKGEN_FIELD(0x2c0, 0xf, 20) },
155 .npda = CLKGEN_FIELD(0x2a0, 0x1, 12),
156 .nsb = { CLKGEN_FIELD(0x2a0, 0x1, 8),
157 CLKGEN_FIELD(0x2a0, 0x1, 9),
158 CLKGEN_FIELD(0x2a0, 0x1, 10),
159 CLKGEN_FIELD(0x2a0, 0x1, 11) },
160 .nsdiv_present = true,
161 .nsdiv = { CLKGEN_FIELD(0x2b4, 0x1, 24),
162 CLKGEN_FIELD(0x2b8, 0x1, 24),
163 CLKGEN_FIELD(0x2bc, 0x1, 24),
164 CLKGEN_FIELD(0x2c0, 0x1, 24) },
165 .mdiv = { CLKGEN_FIELD(0x2b4, 0x1f, 15),
166 CLKGEN_FIELD(0x2b8, 0x1f, 15),
167 CLKGEN_FIELD(0x2bc, 0x1f, 15),
168 CLKGEN_FIELD(0x2c0, 0x1f, 15) },
169 .en = { CLKGEN_FIELD(0x2ac, 0x1, 0),
170 CLKGEN_FIELD(0x2ac, 0x1, 1),
171 CLKGEN_FIELD(0x2ac, 0x1, 2),
172 CLKGEN_FIELD(0x2ac, 0x1, 3) },
173 .lockstatus_present = true,
174 .lock_status = CLKGEN_FIELD(0x2A0, 0x1, 24),
175 .powerup_polarity = 1,
176 .standby_polarity = 1,
177 .pll_ops = &st_quadfs_pll_c32_ops,
178 .get_params = clk_fs660c32_dig_get_params,
179 .get_rate = clk_fs660c32_dig_get_rate,};
180
181static const struct clkgen_quadfs_data_clks st_fs660c32_D_data = {
182 .data = (struct clkgen_quadfs_data *)&st_fs660c32_D,
183};
184
185static const struct clkgen_clk_out st_fs660c32_D0_clks[] = {
186 { .name = "clk-s-d0-fs0-ch0", },
187 { .name = "clk-s-d0-fs0-ch1", },
188 { .name = "clk-s-d0-fs0-ch2", },
189 { .name = "clk-s-d0-fs0-ch3", },
190};
191
192static const struct clkgen_quadfs_data_clks st_fs660c32_D0_data = {
193 .data = (struct clkgen_quadfs_data *)&st_fs660c32_D,
194 .outputs = st_fs660c32_D0_clks,
195};
196
197static const struct clkgen_clk_out st_fs660c32_D2_clks[] = {
198 { .name = "clk-s-d2-fs0-ch0", },
199 { .name = "clk-s-d2-fs0-ch1", },
200 { .name = "clk-s-d2-fs0-ch2", },
201 { .name = "clk-s-d2-fs0-ch3", },
202};
203
204static const struct clkgen_quadfs_data_clks st_fs660c32_D2_data = {
205 .data = (struct clkgen_quadfs_data *)&st_fs660c32_D,
206 .outputs = st_fs660c32_D2_clks,
207};
208
209static const struct clkgen_clk_out st_fs660c32_D3_clks[] = {
210 { .name = "clk-s-d3-fs0-ch0", },
211 { .name = "clk-s-d3-fs0-ch1", },
212 { .name = "clk-s-d3-fs0-ch2", },
213 { .name = "clk-s-d3-fs0-ch3", },
214};
215
216static const struct clkgen_quadfs_data_clks st_fs660c32_D3_data = {
217 .data = (struct clkgen_quadfs_data *)&st_fs660c32_D,
218 .outputs = st_fs660c32_D3_clks,
219};
220
221/**
222 * DOC: A Frequency Synthesizer that multiples its input clock by a fixed factor
223 *
224 * Traits of this clock:
225 * prepare - clk_(un)prepare only ensures parent is (un)prepared
226 * enable - clk_enable and clk_disable are functional & control the Fsyn
227 * rate - inherits rate from parent. set_rate/round_rate/recalc_rate
228 * parent - fixed parent. No clk_set_parent support
229 */
230
231/**
232 * struct st_clk_quadfs_pll - A pll which outputs a fixed multiplier of
233 * its parent clock, found inside a type of
234 * ST quad channel frequency synthesizer block
235 *
236 * @hw: handle between common and hardware-specific interfaces.
237 * @regs_base: base address of the configuration registers.
238 * @lock: spinlock.
239 * @data: local driver data
240 * @ndiv: regmap field for the ndiv control.
241 */
242struct st_clk_quadfs_pll {
243 struct clk_hw hw;
244 void __iomem *regs_base;
245 spinlock_t *lock;
246 struct clkgen_quadfs_data *data;
247 u32 ndiv;
248};
249
250#define to_quadfs_pll(_hw) container_of(_hw, struct st_clk_quadfs_pll, hw)
251
252static int quadfs_pll_enable(struct clk_hw *hw)
253{
254 struct st_clk_quadfs_pll *pll = to_quadfs_pll(hw);
255 unsigned long flags = 0, timeout = jiffies + msecs_to_jiffies(m: 10);
256
257 if (pll->lock)
258 spin_lock_irqsave(pll->lock, flags);
259
260 /*
261 * Bring block out of reset if we have reset control.
262 */
263 if (pll->data->reset_present)
264 CLKGEN_WRITE(pll, nreset, 1);
265
266 /*
267 * Use a fixed input clock noise bandwidth filter for the moment
268 */
269 if (pll->data->bwfilter_present)
270 CLKGEN_WRITE(pll, ref_bw, PLL_BW_GOODREF);
271
272
273 CLKGEN_WRITE(pll, ndiv, pll->ndiv);
274
275 /*
276 * Power up the PLL
277 */
278 CLKGEN_WRITE(pll, npda, !pll->data->powerup_polarity);
279
280 if (pll->lock)
281 spin_unlock_irqrestore(lock: pll->lock, flags);
282
283 if (pll->data->lockstatus_present)
284 while (!CLKGEN_READ(pll, lock_status)) {
285 if (time_after(jiffies, timeout))
286 return -ETIMEDOUT;
287 cpu_relax();
288 }
289
290 return 0;
291}
292
293static void quadfs_pll_disable(struct clk_hw *hw)
294{
295 struct st_clk_quadfs_pll *pll = to_quadfs_pll(hw);
296 unsigned long flags = 0;
297
298 if (pll->lock)
299 spin_lock_irqsave(pll->lock, flags);
300
301 /*
302 * Powerdown the PLL and then put block into soft reset if we have
303 * reset control.
304 */
305 CLKGEN_WRITE(pll, npda, pll->data->powerup_polarity);
306
307 if (pll->data->reset_present)
308 CLKGEN_WRITE(pll, nreset, 0);
309
310 if (pll->lock)
311 spin_unlock_irqrestore(lock: pll->lock, flags);
312}
313
314static int quadfs_pll_is_enabled(struct clk_hw *hw)
315{
316 struct st_clk_quadfs_pll *pll = to_quadfs_pll(hw);
317 u32 npda = CLKGEN_READ(pll, npda);
318
319 return pll->data->powerup_polarity ? !npda : !!npda;
320}
321
322static int clk_fs660c32_vco_get_rate(unsigned long input, struct stm_fs *fs,
323 unsigned long *rate)
324{
325 unsigned long nd = fs->ndiv + 16; /* ndiv value */
326
327 *rate = input * nd;
328
329 return 0;
330}
331
332static unsigned long quadfs_pll_fs660c32_recalc_rate(struct clk_hw *hw,
333 unsigned long parent_rate)
334{
335 struct st_clk_quadfs_pll *pll = to_quadfs_pll(hw);
336 unsigned long rate = 0;
337 struct stm_fs params;
338
339 params.ndiv = CLKGEN_READ(pll, ndiv);
340 if (clk_fs660c32_vco_get_rate(input: parent_rate, fs: &params, rate: &rate))
341 pr_err("%s:%s error calculating rate\n",
342 clk_hw_get_name(hw), __func__);
343
344 pll->ndiv = params.ndiv;
345
346 return rate;
347}
348
349static int clk_fs660c32_vco_get_params(unsigned long input,
350 unsigned long output, struct stm_fs *fs)
351{
352/* Formula
353 VCO frequency = (fin x ndiv) / pdiv
354 ndiv = VCOfreq * pdiv / fin
355 */
356 unsigned long pdiv = 1, n;
357
358 /* Output clock range: 384Mhz to 660Mhz */
359 if (output < 384000000 || output > 660000000)
360 return -EINVAL;
361
362 if (input > 40000000)
363 /* This means that PDIV would be 2 instead of 1.
364 Not supported today. */
365 return -EINVAL;
366
367 input /= 1000;
368 output /= 1000;
369
370 n = output * pdiv / input;
371 if (n < 16)
372 n = 16;
373 fs->ndiv = n - 16; /* Converting formula value to reg value */
374
375 return 0;
376}
377
378static long quadfs_pll_fs660c32_round_rate(struct clk_hw *hw,
379 unsigned long rate,
380 unsigned long *prate)
381{
382 struct stm_fs params;
383
384 if (clk_fs660c32_vco_get_params(input: *prate, output: rate, fs: &params))
385 return rate;
386
387 clk_fs660c32_vco_get_rate(input: *prate, fs: &params, rate: &rate);
388
389 pr_debug("%s: %s new rate %ld [ndiv=%u]\n",
390 __func__, clk_hw_get_name(hw),
391 rate, (unsigned int)params.ndiv);
392
393 return rate;
394}
395
396static int quadfs_pll_fs660c32_set_rate(struct clk_hw *hw, unsigned long rate,
397 unsigned long parent_rate)
398{
399 struct st_clk_quadfs_pll *pll = to_quadfs_pll(hw);
400 struct stm_fs params;
401 long hwrate = 0;
402 unsigned long flags = 0;
403 int ret;
404
405 if (!rate || !parent_rate)
406 return -EINVAL;
407
408 ret = clk_fs660c32_vco_get_params(input: parent_rate, output: rate, fs: &params);
409 if (ret)
410 return ret;
411
412 clk_fs660c32_vco_get_rate(input: parent_rate, fs: &params, rate: &hwrate);
413
414 pr_debug("%s: %s new rate %ld [ndiv=0x%x]\n",
415 __func__, clk_hw_get_name(hw),
416 hwrate, (unsigned int)params.ndiv);
417
418 if (!hwrate)
419 return -EINVAL;
420
421 pll->ndiv = params.ndiv;
422
423 if (pll->lock)
424 spin_lock_irqsave(pll->lock, flags);
425
426 CLKGEN_WRITE(pll, ndiv, pll->ndiv);
427
428 if (pll->lock)
429 spin_unlock_irqrestore(lock: pll->lock, flags);
430
431 return 0;
432}
433
434static const struct clk_ops st_quadfs_pll_c32_ops = {
435 .enable = quadfs_pll_enable,
436 .disable = quadfs_pll_disable,
437 .is_enabled = quadfs_pll_is_enabled,
438 .recalc_rate = quadfs_pll_fs660c32_recalc_rate,
439 .round_rate = quadfs_pll_fs660c32_round_rate,
440 .set_rate = quadfs_pll_fs660c32_set_rate,
441};
442
443static struct clk * __init st_clk_register_quadfs_pll(
444 const char *name, const char *parent_name,
445 struct clkgen_quadfs_data *quadfs, void __iomem *reg,
446 spinlock_t *lock)
447{
448 struct st_clk_quadfs_pll *pll;
449 struct clk *clk;
450 struct clk_init_data init;
451
452 /*
453 * Sanity check required pointers.
454 */
455 if (WARN_ON(!name || !parent_name))
456 return ERR_PTR(error: -EINVAL);
457
458 pll = kzalloc(size: sizeof(*pll), GFP_KERNEL);
459 if (!pll)
460 return ERR_PTR(error: -ENOMEM);
461
462 init.name = name;
463 init.ops = quadfs->pll_ops;
464 init.flags = CLK_GET_RATE_NOCACHE;
465 init.parent_names = &parent_name;
466 init.num_parents = 1;
467
468 pll->data = quadfs;
469 pll->regs_base = reg;
470 pll->lock = lock;
471 pll->hw.init = &init;
472
473 clk = clk_register(NULL, hw: &pll->hw);
474
475 if (IS_ERR(ptr: clk))
476 kfree(objp: pll);
477
478 return clk;
479}
480
481/**
482 * DOC: A digital frequency synthesizer
483 *
484 * Traits of this clock:
485 * prepare - clk_(un)prepare only ensures parent is (un)prepared
486 * enable - clk_enable and clk_disable are functional
487 * rate - set rate is functional
488 * parent - fixed parent. No clk_set_parent support
489 */
490
491/*
492 * struct st_clk_quadfs_fsynth - One clock output from a four channel digital
493 * frequency synthesizer (fsynth) block.
494 *
495 * @hw: handle between common and hardware-specific interfaces
496 *
497 * @nsb: regmap field in the output control register for the digital
498 * standby of this fsynth channel. This control is active low so
499 * the channel is in standby when the control bit is cleared.
500 *
501 * @nsdiv: regmap field in the output control register for
502 * for the optional divide by 3 of this fsynth channel. This control
503 * is active low so the divide by 3 is active when the control bit is
504 * cleared and the divide is bypassed when the bit is set.
505 */
506struct st_clk_quadfs_fsynth {
507 struct clk_hw hw;
508 void __iomem *regs_base;
509 spinlock_t *lock;
510 struct clkgen_quadfs_data *data;
511
512 u32 chan;
513 /*
514 * Cached hardware values from set_rate so we can program the
515 * hardware in enable. There are two reasons for this:
516 *
517 * 1. The registers may not be writable until the parent has been
518 * enabled.
519 *
520 * 2. It restores the clock rate when a driver does an enable
521 * on PM restore, after a suspend to RAM has lost the hardware
522 * setup.
523 */
524 u32 md;
525 u32 pe;
526 u32 sdiv;
527 u32 nsdiv;
528};
529
530#define to_quadfs_fsynth(_hw) \
531 container_of(_hw, struct st_clk_quadfs_fsynth, hw)
532
533static void quadfs_fsynth_program_enable(struct st_clk_quadfs_fsynth *fs)
534{
535 /*
536 * Pulse the program enable register lsb to make the hardware take
537 * notice of the new md/pe values with a glitchless transition.
538 */
539 CLKGEN_WRITE(fs, en[fs->chan], 1);
540 CLKGEN_WRITE(fs, en[fs->chan], 0);
541}
542
543static void quadfs_fsynth_program_rate(struct st_clk_quadfs_fsynth *fs)
544{
545 unsigned long flags = 0;
546
547 /*
548 * Ensure the md/pe parameters are ignored while we are
549 * reprogramming them so we can get a glitchless change
550 * when fine tuning the speed of a running clock.
551 */
552 CLKGEN_WRITE(fs, en[fs->chan], 0);
553
554 CLKGEN_WRITE(fs, mdiv[fs->chan], fs->md);
555 CLKGEN_WRITE(fs, pe[fs->chan], fs->pe);
556 CLKGEN_WRITE(fs, sdiv[fs->chan], fs->sdiv);
557
558 if (fs->lock)
559 spin_lock_irqsave(fs->lock, flags);
560
561 if (fs->data->nsdiv_present)
562 CLKGEN_WRITE(fs, nsdiv[fs->chan], fs->nsdiv);
563
564 if (fs->lock)
565 spin_unlock_irqrestore(lock: fs->lock, flags);
566}
567
568static int quadfs_fsynth_enable(struct clk_hw *hw)
569{
570 struct st_clk_quadfs_fsynth *fs = to_quadfs_fsynth(hw);
571 unsigned long flags = 0;
572
573 pr_debug("%s: %s\n", __func__, clk_hw_get_name(hw));
574
575 quadfs_fsynth_program_rate(fs);
576
577 if (fs->lock)
578 spin_lock_irqsave(fs->lock, flags);
579
580 CLKGEN_WRITE(fs, nsb[fs->chan], !fs->data->standby_polarity);
581
582 if (fs->data->nrst_present)
583 CLKGEN_WRITE(fs, nrst[fs->chan], 0);
584
585 if (fs->lock)
586 spin_unlock_irqrestore(lock: fs->lock, flags);
587
588 quadfs_fsynth_program_enable(fs);
589
590 return 0;
591}
592
593static void quadfs_fsynth_disable(struct clk_hw *hw)
594{
595 struct st_clk_quadfs_fsynth *fs = to_quadfs_fsynth(hw);
596 unsigned long flags = 0;
597
598 pr_debug("%s: %s\n", __func__, clk_hw_get_name(hw));
599
600 if (fs->lock)
601 spin_lock_irqsave(fs->lock, flags);
602
603 CLKGEN_WRITE(fs, nsb[fs->chan], fs->data->standby_polarity);
604
605 if (fs->lock)
606 spin_unlock_irqrestore(lock: fs->lock, flags);
607}
608
609static int quadfs_fsynth_is_enabled(struct clk_hw *hw)
610{
611 struct st_clk_quadfs_fsynth *fs = to_quadfs_fsynth(hw);
612 u32 nsb = CLKGEN_READ(fs, nsb[fs->chan]);
613
614 pr_debug("%s: %s enable bit = 0x%x\n",
615 __func__, clk_hw_get_name(hw), nsb);
616
617 return fs->data->standby_polarity ? !nsb : !!nsb;
618}
619
620#define P20 (uint64_t)(1 << 20)
621
622static int clk_fs660c32_dig_get_rate(unsigned long input,
623 const struct stm_fs *fs, unsigned long *rate)
624{
625 unsigned long s = (1 << fs->sdiv);
626 unsigned long ns;
627 uint64_t res;
628
629 /*
630 * 'nsdiv' is a register value ('BIN') which is translated
631 * to a decimal value according to following rules.
632 *
633 * nsdiv ns.dec
634 * 0 3
635 * 1 1
636 */
637 ns = (fs->nsdiv == 1) ? 1 : 3;
638
639 res = (P20 * (32 + fs->mdiv) + 32 * fs->pe) * s * ns;
640 *rate = (unsigned long)div64_u64(dividend: input * P20 * 32, divisor: res);
641
642 return 0;
643}
644
645
646static int clk_fs660c32_get_pe(int m, int si, unsigned long *deviation,
647 signed long input, unsigned long output, uint64_t *p,
648 struct stm_fs *fs)
649{
650 unsigned long new_freq, new_deviation;
651 struct stm_fs fs_tmp;
652 uint64_t val;
653
654 val = (uint64_t)output << si;
655
656 *p = (uint64_t)input * P20 - (32LL + (uint64_t)m) * val * (P20 / 32LL);
657
658 *p = div64_u64(dividend: *p, divisor: val);
659
660 if (*p > 32767LL)
661 return 1;
662
663 fs_tmp.mdiv = (unsigned long) m;
664 fs_tmp.pe = (unsigned long)*p;
665 fs_tmp.sdiv = si;
666 fs_tmp.nsdiv = 1;
667
668 clk_fs660c32_dig_get_rate(input, fs: &fs_tmp, rate: &new_freq);
669
670 new_deviation = abs(output - new_freq);
671
672 if (new_deviation < *deviation) {
673 fs->mdiv = m;
674 fs->pe = (unsigned long)*p;
675 fs->sdiv = si;
676 fs->nsdiv = 1;
677 *deviation = new_deviation;
678 }
679 return 0;
680}
681
682static int clk_fs660c32_dig_get_params(unsigned long input,
683 unsigned long output, struct stm_fs *fs)
684{
685 int si; /* sdiv_reg (8 downto 0) */
686 int m; /* md value */
687 unsigned long new_freq, new_deviation;
688 /* initial condition to say: "infinite deviation" */
689 unsigned long deviation = ~0;
690 uint64_t p, p1, p2; /* pe value */
691 int r1, r2;
692
693 struct stm_fs fs_tmp;
694
695 for (si = 0; (si <= 8) && deviation; si++) {
696
697 /* Boundary test to avoid useless iteration */
698 r1 = clk_fs660c32_get_pe(m: 0, si, deviation: &deviation,
699 input, output, p: &p1, fs);
700 r2 = clk_fs660c32_get_pe(m: 31, si, deviation: &deviation,
701 input, output, p: &p2, fs);
702
703 /* No solution */
704 if (r1 && r2 && (p1 > p2))
705 continue;
706
707 /* Try to find best deviation */
708 for (m = 1; (m < 31) && deviation; m++)
709 clk_fs660c32_get_pe(m, si, deviation: &deviation,
710 input, output, p: &p, fs);
711
712 }
713
714 if (deviation == ~0) /* No solution found */
715 return -1;
716
717 /* pe fine tuning if deviation not 0: +/- 2 around computed pe value */
718 if (deviation) {
719 fs_tmp.mdiv = fs->mdiv;
720 fs_tmp.sdiv = fs->sdiv;
721 fs_tmp.nsdiv = fs->nsdiv;
722
723 if (fs->pe > 2)
724 p2 = fs->pe - 2;
725 else
726 p2 = 0;
727
728 for (; p2 < 32768ll && (p2 <= (fs->pe + 2)); p2++) {
729 fs_tmp.pe = (unsigned long)p2;
730
731 clk_fs660c32_dig_get_rate(input, fs: &fs_tmp, rate: &new_freq);
732
733 new_deviation = abs(output - new_freq);
734
735 /* Check if this is a better solution */
736 if (new_deviation < deviation) {
737 fs->pe = (unsigned long)p2;
738 deviation = new_deviation;
739
740 }
741 }
742 }
743 return 0;
744}
745
746static int quadfs_fsynt_get_hw_value_for_recalc(struct st_clk_quadfs_fsynth *fs,
747 struct stm_fs *params)
748{
749 /*
750 * Get the initial hardware values for recalc_rate
751 */
752 params->mdiv = CLKGEN_READ(fs, mdiv[fs->chan]);
753 params->pe = CLKGEN_READ(fs, pe[fs->chan]);
754 params->sdiv = CLKGEN_READ(fs, sdiv[fs->chan]);
755
756 if (fs->data->nsdiv_present)
757 params->nsdiv = CLKGEN_READ(fs, nsdiv[fs->chan]);
758 else
759 params->nsdiv = 1;
760
761 /*
762 * If All are NULL then assume no clock rate is programmed.
763 */
764 if (!params->mdiv && !params->pe && !params->sdiv)
765 return 1;
766
767 fs->md = params->mdiv;
768 fs->pe = params->pe;
769 fs->sdiv = params->sdiv;
770 fs->nsdiv = params->nsdiv;
771
772 return 0;
773}
774
775static long quadfs_find_best_rate(struct clk_hw *hw, unsigned long drate,
776 unsigned long prate, struct stm_fs *params)
777{
778 struct st_clk_quadfs_fsynth *fs = to_quadfs_fsynth(hw);
779 int (*clk_fs_get_rate)(unsigned long ,
780 const struct stm_fs *, unsigned long *);
781 int (*clk_fs_get_params)(unsigned long, unsigned long, struct stm_fs *);
782 unsigned long rate = 0;
783
784 clk_fs_get_rate = fs->data->get_rate;
785 clk_fs_get_params = fs->data->get_params;
786
787 if (!clk_fs_get_params(prate, drate, params))
788 clk_fs_get_rate(prate, params, &rate);
789
790 return rate;
791}
792
793static unsigned long quadfs_recalc_rate(struct clk_hw *hw,
794 unsigned long parent_rate)
795{
796 struct st_clk_quadfs_fsynth *fs = to_quadfs_fsynth(hw);
797 unsigned long rate = 0;
798 struct stm_fs params;
799 int (*clk_fs_get_rate)(unsigned long ,
800 const struct stm_fs *, unsigned long *);
801
802 clk_fs_get_rate = fs->data->get_rate;
803
804 if (quadfs_fsynt_get_hw_value_for_recalc(fs, params: &params))
805 return 0;
806
807 if (clk_fs_get_rate(parent_rate, &params, &rate)) {
808 pr_err("%s:%s error calculating rate\n",
809 clk_hw_get_name(hw), __func__);
810 }
811
812 pr_debug("%s:%s rate %lu\n", clk_hw_get_name(hw), __func__, rate);
813
814 return rate;
815}
816
817static long quadfs_round_rate(struct clk_hw *hw, unsigned long rate,
818 unsigned long *prate)
819{
820 struct stm_fs params;
821
822 rate = quadfs_find_best_rate(hw, drate: rate, prate: *prate, params: &params);
823
824 pr_debug("%s: %s new rate %ld [sdiv=0x%x,md=0x%x,pe=0x%x,nsdiv3=%u]\n",
825 __func__, clk_hw_get_name(hw),
826 rate, (unsigned int)params.sdiv, (unsigned int)params.mdiv,
827 (unsigned int)params.pe, (unsigned int)params.nsdiv);
828
829 return rate;
830}
831
832
833static void quadfs_program_and_enable(struct st_clk_quadfs_fsynth *fs,
834 struct stm_fs *params)
835{
836 fs->md = params->mdiv;
837 fs->pe = params->pe;
838 fs->sdiv = params->sdiv;
839 fs->nsdiv = params->nsdiv;
840
841 /*
842 * In some integrations you can only change the fsynth programming when
843 * the parent entity containing it is enabled.
844 */
845 quadfs_fsynth_program_rate(fs);
846 quadfs_fsynth_program_enable(fs);
847}
848
849static int quadfs_set_rate(struct clk_hw *hw, unsigned long rate,
850 unsigned long parent_rate)
851{
852 struct st_clk_quadfs_fsynth *fs = to_quadfs_fsynth(hw);
853 struct stm_fs params;
854 long hwrate;
855
856 if (!rate || !parent_rate)
857 return -EINVAL;
858
859 memset(&params, 0, sizeof(struct stm_fs));
860
861 hwrate = quadfs_find_best_rate(hw, drate: rate, prate: parent_rate, params: &params);
862 if (!hwrate)
863 return -EINVAL;
864
865 quadfs_program_and_enable(fs, params: &params);
866
867 return 0;
868}
869
870
871
872static const struct clk_ops st_quadfs_ops = {
873 .enable = quadfs_fsynth_enable,
874 .disable = quadfs_fsynth_disable,
875 .is_enabled = quadfs_fsynth_is_enabled,
876 .round_rate = quadfs_round_rate,
877 .set_rate = quadfs_set_rate,
878 .recalc_rate = quadfs_recalc_rate,
879};
880
881static struct clk * __init st_clk_register_quadfs_fsynth(
882 const char *name, const char *parent_name,
883 struct clkgen_quadfs_data *quadfs, void __iomem *reg, u32 chan,
884 unsigned long flags, spinlock_t *lock)
885{
886 struct st_clk_quadfs_fsynth *fs;
887 struct clk *clk;
888 struct clk_init_data init;
889
890 /*
891 * Sanity check required pointers, note that nsdiv3 is optional.
892 */
893 if (WARN_ON(!name || !parent_name))
894 return ERR_PTR(error: -EINVAL);
895
896 fs = kzalloc(size: sizeof(*fs), GFP_KERNEL);
897 if (!fs)
898 return ERR_PTR(error: -ENOMEM);
899
900 init.name = name;
901 init.ops = &st_quadfs_ops;
902 init.flags = flags | CLK_GET_RATE_NOCACHE;
903 init.parent_names = &parent_name;
904 init.num_parents = 1;
905
906 fs->data = quadfs;
907 fs->regs_base = reg;
908 fs->chan = chan;
909 fs->lock = lock;
910 fs->hw.init = &init;
911
912 clk = clk_register(NULL, hw: &fs->hw);
913
914 if (IS_ERR(ptr: clk))
915 kfree(objp: fs);
916
917 return clk;
918}
919
920static void __init st_of_create_quadfs_fsynths(
921 struct device_node *np, const char *pll_name,
922 struct clkgen_quadfs_data_clks *quadfs, void __iomem *reg,
923 spinlock_t *lock)
924{
925 struct clk_onecell_data *clk_data;
926 int fschan;
927
928 clk_data = kzalloc(size: sizeof(*clk_data), GFP_KERNEL);
929 if (!clk_data)
930 return;
931
932 clk_data->clk_num = QUADFS_MAX_CHAN;
933 clk_data->clks = kcalloc(QUADFS_MAX_CHAN, size: sizeof(struct clk *),
934 GFP_KERNEL);
935
936 if (!clk_data->clks) {
937 kfree(objp: clk_data);
938 return;
939 }
940
941 for (fschan = 0; fschan < QUADFS_MAX_CHAN; fschan++) {
942 struct clk *clk;
943 const char *clk_name;
944 unsigned long flags = 0;
945
946 if (quadfs->outputs) {
947 clk_name = quadfs->outputs[fschan].name;
948 flags = quadfs->outputs[fschan].flags;
949 } else {
950 if (of_property_read_string_index(np,
951 propname: "clock-output-names",
952 index: fschan, output: &clk_name))
953 break;
954 of_clk_detect_critical(np, index: fschan, flags: &flags);
955 }
956
957 /*
958 * If we read an empty clock name then the channel is unused
959 */
960 if (*clk_name == '\0')
961 continue;
962
963 clk = st_clk_register_quadfs_fsynth(name: clk_name, parent_name: pll_name,
964 quadfs: quadfs->data, reg, chan: fschan,
965 flags, lock);
966
967 /*
968 * If there was an error registering this clock output, clean
969 * up and move on to the next one.
970 */
971 if (!IS_ERR(ptr: clk)) {
972 clk_data->clks[fschan] = clk;
973 pr_debug("%s: parent %s rate %u\n",
974 __clk_get_name(clk),
975 __clk_get_name(clk_get_parent(clk)),
976 (unsigned int)clk_get_rate(clk));
977 }
978 }
979
980 of_clk_add_provider(np, clk_src_get: of_clk_src_onecell_get, data: clk_data);
981}
982
983static void __init st_of_quadfs_setup(struct device_node *np,
984 struct clkgen_quadfs_data_clks *datac)
985{
986 struct clk *clk;
987 const char *pll_name, *clk_parent_name;
988 void __iomem *reg;
989 spinlock_t *lock;
990 struct device_node *parent_np;
991
992 /*
993 * First check for reg property within the node to keep backward
994 * compatibility, then if reg doesn't exist look at the parent node
995 */
996 reg = of_iomap(node: np, index: 0);
997 if (!reg) {
998 parent_np = of_get_parent(node: np);
999 reg = of_iomap(node: parent_np, index: 0);
1000 of_node_put(node: parent_np);
1001 if (!reg) {
1002 pr_err("%s: Failed to get base address\n", __func__);
1003 return;
1004 }
1005 }
1006
1007 clk_parent_name = of_clk_get_parent_name(np, index: 0);
1008 if (!clk_parent_name)
1009 return;
1010
1011 pll_name = kasprintf(GFP_KERNEL, fmt: "%pOFn.pll", np);
1012 if (!pll_name)
1013 return;
1014
1015 lock = kzalloc(size: sizeof(*lock), GFP_KERNEL);
1016 if (!lock)
1017 goto err_exit;
1018
1019 spin_lock_init(lock);
1020
1021 clk = st_clk_register_quadfs_pll(name: pll_name, parent_name: clk_parent_name, quadfs: datac->data,
1022 reg, lock);
1023 if (IS_ERR(ptr: clk)) {
1024 kfree(objp: lock);
1025 goto err_exit;
1026 } else
1027 pr_debug("%s: parent %s rate %u\n",
1028 __clk_get_name(clk),
1029 __clk_get_name(clk_get_parent(clk)),
1030 (unsigned int)clk_get_rate(clk));
1031
1032 st_of_create_quadfs_fsynths(np, pll_name, quadfs: datac, reg, lock);
1033
1034err_exit:
1035 kfree(objp: pll_name); /* No longer need local copy of the PLL name */
1036}
1037
1038static void __init st_of_quadfs660C_setup(struct device_node *np)
1039{
1040 st_of_quadfs_setup(np,
1041 datac: (struct clkgen_quadfs_data_clks *) &st_fs660c32_C_data);
1042}
1043CLK_OF_DECLARE(quadfs660C, "st,quadfs-pll", st_of_quadfs660C_setup);
1044
1045static void __init st_of_quadfs660D_setup(struct device_node *np)
1046{
1047 st_of_quadfs_setup(np,
1048 datac: (struct clkgen_quadfs_data_clks *) &st_fs660c32_D_data);
1049}
1050CLK_OF_DECLARE(quadfs660D, "st,quadfs", st_of_quadfs660D_setup);
1051
1052static void __init st_of_quadfs660D0_setup(struct device_node *np)
1053{
1054 st_of_quadfs_setup(np,
1055 datac: (struct clkgen_quadfs_data_clks *) &st_fs660c32_D0_data);
1056}
1057CLK_OF_DECLARE(quadfs660D0, "st,quadfs-d0", st_of_quadfs660D0_setup);
1058
1059static void __init st_of_quadfs660D2_setup(struct device_node *np)
1060{
1061 st_of_quadfs_setup(np,
1062 datac: (struct clkgen_quadfs_data_clks *) &st_fs660c32_D2_data);
1063}
1064CLK_OF_DECLARE(quadfs660D2, "st,quadfs-d2", st_of_quadfs660D2_setup);
1065
1066static void __init st_of_quadfs660D3_setup(struct device_node *np)
1067{
1068 st_of_quadfs_setup(np,
1069 datac: (struct clkgen_quadfs_data_clks *) &st_fs660c32_D3_data);
1070}
1071CLK_OF_DECLARE(quadfs660D3, "st,quadfs-d3", st_of_quadfs660D3_setup);
1072

source code of linux/drivers/clk/st/clkgen-fsyn.c