1/*
2 * Driver for STM32 DMA controller
3 *
4 * Inspired by dma-jz4740.c and tegra20-apb-dma.c
5 *
6 * Copyright (C) M'boumba Cedric Madianga 2015
7 * Author: M'boumba Cedric Madianga <cedric.madianga@gmail.com>
8 * Pierre-Yves Mordret <pierre-yves.mordret@st.com>
9 *
10 * License terms: GNU General Public License (GPL), version 2
11 */
12
13#include <linux/clk.h>
14#include <linux/delay.h>
15#include <linux/dmaengine.h>
16#include <linux/dma-mapping.h>
17#include <linux/err.h>
18#include <linux/init.h>
19#include <linux/jiffies.h>
20#include <linux/list.h>
21#include <linux/module.h>
22#include <linux/of.h>
23#include <linux/of_device.h>
24#include <linux/of_dma.h>
25#include <linux/platform_device.h>
26#include <linux/pm_runtime.h>
27#include <linux/reset.h>
28#include <linux/sched.h>
29#include <linux/slab.h>
30
31#include "virt-dma.h"
32
33#define STM32_DMA_LISR 0x0000 /* DMA Low Int Status Reg */
34#define STM32_DMA_HISR 0x0004 /* DMA High Int Status Reg */
35#define STM32_DMA_LIFCR 0x0008 /* DMA Low Int Flag Clear Reg */
36#define STM32_DMA_HIFCR 0x000c /* DMA High Int Flag Clear Reg */
37#define STM32_DMA_TCI BIT(5) /* Transfer Complete Interrupt */
38#define STM32_DMA_HTI BIT(4) /* Half Transfer Interrupt */
39#define STM32_DMA_TEI BIT(3) /* Transfer Error Interrupt */
40#define STM32_DMA_DMEI BIT(2) /* Direct Mode Error Interrupt */
41#define STM32_DMA_FEI BIT(0) /* FIFO Error Interrupt */
42#define STM32_DMA_MASKI (STM32_DMA_TCI \
43 | STM32_DMA_TEI \
44 | STM32_DMA_DMEI \
45 | STM32_DMA_FEI)
46
47/* DMA Stream x Configuration Register */
48#define STM32_DMA_SCR(x) (0x0010 + 0x18 * (x)) /* x = 0..7 */
49#define STM32_DMA_SCR_REQ(n) ((n & 0x7) << 25)
50#define STM32_DMA_SCR_MBURST_MASK GENMASK(24, 23)
51#define STM32_DMA_SCR_MBURST(n) ((n & 0x3) << 23)
52#define STM32_DMA_SCR_PBURST_MASK GENMASK(22, 21)
53#define STM32_DMA_SCR_PBURST(n) ((n & 0x3) << 21)
54#define STM32_DMA_SCR_PL_MASK GENMASK(17, 16)
55#define STM32_DMA_SCR_PL(n) ((n & 0x3) << 16)
56#define STM32_DMA_SCR_MSIZE_MASK GENMASK(14, 13)
57#define STM32_DMA_SCR_MSIZE(n) ((n & 0x3) << 13)
58#define STM32_DMA_SCR_PSIZE_MASK GENMASK(12, 11)
59#define STM32_DMA_SCR_PSIZE(n) ((n & 0x3) << 11)
60#define STM32_DMA_SCR_PSIZE_GET(n) ((n & STM32_DMA_SCR_PSIZE_MASK) >> 11)
61#define STM32_DMA_SCR_DIR_MASK GENMASK(7, 6)
62#define STM32_DMA_SCR_DIR(n) ((n & 0x3) << 6)
63#define STM32_DMA_SCR_CT BIT(19) /* Target in double buffer */
64#define STM32_DMA_SCR_DBM BIT(18) /* Double Buffer Mode */
65#define STM32_DMA_SCR_PINCOS BIT(15) /* Peripheral inc offset size */
66#define STM32_DMA_SCR_MINC BIT(10) /* Memory increment mode */
67#define STM32_DMA_SCR_PINC BIT(9) /* Peripheral increment mode */
68#define STM32_DMA_SCR_CIRC BIT(8) /* Circular mode */
69#define STM32_DMA_SCR_PFCTRL BIT(5) /* Peripheral Flow Controller */
70#define STM32_DMA_SCR_TCIE BIT(4) /* Transfer Complete Int Enable
71 */
72#define STM32_DMA_SCR_TEIE BIT(2) /* Transfer Error Int Enable */
73#define STM32_DMA_SCR_DMEIE BIT(1) /* Direct Mode Err Int Enable */
74#define STM32_DMA_SCR_EN BIT(0) /* Stream Enable */
75#define STM32_DMA_SCR_CFG_MASK (STM32_DMA_SCR_PINC \
76 | STM32_DMA_SCR_MINC \
77 | STM32_DMA_SCR_PINCOS \
78 | STM32_DMA_SCR_PL_MASK)
79#define STM32_DMA_SCR_IRQ_MASK (STM32_DMA_SCR_TCIE \
80 | STM32_DMA_SCR_TEIE \
81 | STM32_DMA_SCR_DMEIE)
82
83/* DMA Stream x number of data register */
84#define STM32_DMA_SNDTR(x) (0x0014 + 0x18 * (x))
85
86/* DMA stream peripheral address register */
87#define STM32_DMA_SPAR(x) (0x0018 + 0x18 * (x))
88
89/* DMA stream x memory 0 address register */
90#define STM32_DMA_SM0AR(x) (0x001c + 0x18 * (x))
91
92/* DMA stream x memory 1 address register */
93#define STM32_DMA_SM1AR(x) (0x0020 + 0x18 * (x))
94
95/* DMA stream x FIFO control register */
96#define STM32_DMA_SFCR(x) (0x0024 + 0x18 * (x))
97#define STM32_DMA_SFCR_FTH_MASK GENMASK(1, 0)
98#define STM32_DMA_SFCR_FTH(n) (n & STM32_DMA_SFCR_FTH_MASK)
99#define STM32_DMA_SFCR_FEIE BIT(7) /* FIFO error interrupt enable */
100#define STM32_DMA_SFCR_DMDIS BIT(2) /* Direct mode disable */
101#define STM32_DMA_SFCR_MASK (STM32_DMA_SFCR_FEIE \
102 | STM32_DMA_SFCR_DMDIS)
103
104/* DMA direction */
105#define STM32_DMA_DEV_TO_MEM 0x00
106#define STM32_DMA_MEM_TO_DEV 0x01
107#define STM32_DMA_MEM_TO_MEM 0x02
108
109/* DMA priority level */
110#define STM32_DMA_PRIORITY_LOW 0x00
111#define STM32_DMA_PRIORITY_MEDIUM 0x01
112#define STM32_DMA_PRIORITY_HIGH 0x02
113#define STM32_DMA_PRIORITY_VERY_HIGH 0x03
114
115/* DMA FIFO threshold selection */
116#define STM32_DMA_FIFO_THRESHOLD_1QUARTERFULL 0x00
117#define STM32_DMA_FIFO_THRESHOLD_HALFFULL 0x01
118#define STM32_DMA_FIFO_THRESHOLD_3QUARTERSFULL 0x02
119#define STM32_DMA_FIFO_THRESHOLD_FULL 0x03
120
121#define STM32_DMA_MAX_DATA_ITEMS 0xffff
122/*
123 * Valid transfer starts from @0 to @0xFFFE leading to unaligned scatter
124 * gather at boundary. Thus it's safer to round down this value on FIFO
125 * size (16 Bytes)
126 */
127#define STM32_DMA_ALIGNED_MAX_DATA_ITEMS \
128 ALIGN_DOWN(STM32_DMA_MAX_DATA_ITEMS, 16)
129#define STM32_DMA_MAX_CHANNELS 0x08
130#define STM32_DMA_MAX_REQUEST_ID 0x08
131#define STM32_DMA_MAX_DATA_PARAM 0x03
132#define STM32_DMA_FIFO_SIZE 16 /* FIFO is 16 bytes */
133#define STM32_DMA_MIN_BURST 4
134#define STM32_DMA_MAX_BURST 16
135
136/* DMA Features */
137#define STM32_DMA_THRESHOLD_FTR_MASK GENMASK(1, 0)
138#define STM32_DMA_THRESHOLD_FTR_GET(n) ((n) & STM32_DMA_THRESHOLD_FTR_MASK)
139
140enum stm32_dma_width {
141 STM32_DMA_BYTE,
142 STM32_DMA_HALF_WORD,
143 STM32_DMA_WORD,
144};
145
146enum stm32_dma_burst_size {
147 STM32_DMA_BURST_SINGLE,
148 STM32_DMA_BURST_INCR4,
149 STM32_DMA_BURST_INCR8,
150 STM32_DMA_BURST_INCR16,
151};
152
153/**
154 * struct stm32_dma_cfg - STM32 DMA custom configuration
155 * @channel_id: channel ID
156 * @request_line: DMA request
157 * @stream_config: 32bit mask specifying the DMA channel configuration
158 * @features: 32bit mask specifying the DMA Feature list
159 */
160struct stm32_dma_cfg {
161 u32 channel_id;
162 u32 request_line;
163 u32 stream_config;
164 u32 features;
165};
166
167struct stm32_dma_chan_reg {
168 u32 dma_lisr;
169 u32 dma_hisr;
170 u32 dma_lifcr;
171 u32 dma_hifcr;
172 u32 dma_scr;
173 u32 dma_sndtr;
174 u32 dma_spar;
175 u32 dma_sm0ar;
176 u32 dma_sm1ar;
177 u32 dma_sfcr;
178};
179
180struct stm32_dma_sg_req {
181 u32 len;
182 struct stm32_dma_chan_reg chan_reg;
183};
184
185struct stm32_dma_desc {
186 struct virt_dma_desc vdesc;
187 bool cyclic;
188 u32 num_sgs;
189 struct stm32_dma_sg_req sg_req[];
190};
191
192struct stm32_dma_chan {
193 struct virt_dma_chan vchan;
194 bool config_init;
195 bool busy;
196 u32 id;
197 u32 irq;
198 struct stm32_dma_desc *desc;
199 u32 next_sg;
200 struct dma_slave_config dma_sconfig;
201 struct stm32_dma_chan_reg chan_reg;
202 u32 threshold;
203 u32 mem_burst;
204 u32 mem_width;
205};
206
207struct stm32_dma_device {
208 struct dma_device ddev;
209 void __iomem *base;
210 struct clk *clk;
211 struct reset_control *rst;
212 bool mem2mem;
213 struct stm32_dma_chan chan[STM32_DMA_MAX_CHANNELS];
214};
215
216static struct stm32_dma_device *stm32_dma_get_dev(struct stm32_dma_chan *chan)
217{
218 return container_of(chan->vchan.chan.device, struct stm32_dma_device,
219 ddev);
220}
221
222static struct stm32_dma_chan *to_stm32_dma_chan(struct dma_chan *c)
223{
224 return container_of(c, struct stm32_dma_chan, vchan.chan);
225}
226
227static struct stm32_dma_desc *to_stm32_dma_desc(struct virt_dma_desc *vdesc)
228{
229 return container_of(vdesc, struct stm32_dma_desc, vdesc);
230}
231
232static struct device *chan2dev(struct stm32_dma_chan *chan)
233{
234 return &chan->vchan.chan.dev->device;
235}
236
237static u32 stm32_dma_read(struct stm32_dma_device *dmadev, u32 reg)
238{
239 return readl_relaxed(dmadev->base + reg);
240}
241
242static void stm32_dma_write(struct stm32_dma_device *dmadev, u32 reg, u32 val)
243{
244 writel_relaxed(val, dmadev->base + reg);
245}
246
247static struct stm32_dma_desc *stm32_dma_alloc_desc(u32 num_sgs)
248{
249 return kzalloc(sizeof(struct stm32_dma_desc) +
250 sizeof(struct stm32_dma_sg_req) * num_sgs, GFP_NOWAIT);
251}
252
253static int stm32_dma_get_width(struct stm32_dma_chan *chan,
254 enum dma_slave_buswidth width)
255{
256 switch (width) {
257 case DMA_SLAVE_BUSWIDTH_1_BYTE:
258 return STM32_DMA_BYTE;
259 case DMA_SLAVE_BUSWIDTH_2_BYTES:
260 return STM32_DMA_HALF_WORD;
261 case DMA_SLAVE_BUSWIDTH_4_BYTES:
262 return STM32_DMA_WORD;
263 default:
264 dev_err(chan2dev(chan), "Dma bus width not supported\n");
265 return -EINVAL;
266 }
267}
268
269static enum dma_slave_buswidth stm32_dma_get_max_width(u32 buf_len,
270 u32 threshold)
271{
272 enum dma_slave_buswidth max_width;
273
274 if (threshold == STM32_DMA_FIFO_THRESHOLD_FULL)
275 max_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
276 else
277 max_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
278
279 while ((buf_len < max_width || buf_len % max_width) &&
280 max_width > DMA_SLAVE_BUSWIDTH_1_BYTE)
281 max_width = max_width >> 1;
282
283 return max_width;
284}
285
286static bool stm32_dma_fifo_threshold_is_allowed(u32 burst, u32 threshold,
287 enum dma_slave_buswidth width)
288{
289 u32 remaining;
290
291 if (width != DMA_SLAVE_BUSWIDTH_UNDEFINED) {
292 if (burst != 0) {
293 /*
294 * If number of beats fit in several whole bursts
295 * this configuration is allowed.
296 */
297 remaining = ((STM32_DMA_FIFO_SIZE / width) *
298 (threshold + 1) / 4) % burst;
299
300 if (remaining == 0)
301 return true;
302 } else {
303 return true;
304 }
305 }
306
307 return false;
308}
309
310static bool stm32_dma_is_burst_possible(u32 buf_len, u32 threshold)
311{
312 /*
313 * Buffer or period length has to be aligned on FIFO depth.
314 * Otherwise bytes may be stuck within FIFO at buffer or period
315 * length.
316 */
317 return ((buf_len % ((threshold + 1) * 4)) == 0);
318}
319
320static u32 stm32_dma_get_best_burst(u32 buf_len, u32 max_burst, u32 threshold,
321 enum dma_slave_buswidth width)
322{
323 u32 best_burst = max_burst;
324
325 if (best_burst == 1 || !stm32_dma_is_burst_possible(buf_len, threshold))
326 return 0;
327
328 while ((buf_len < best_burst * width && best_burst > 1) ||
329 !stm32_dma_fifo_threshold_is_allowed(best_burst, threshold,
330 width)) {
331 if (best_burst > STM32_DMA_MIN_BURST)
332 best_burst = best_burst >> 1;
333 else
334 best_burst = 0;
335 }
336
337 return best_burst;
338}
339
340static int stm32_dma_get_burst(struct stm32_dma_chan *chan, u32 maxburst)
341{
342 switch (maxburst) {
343 case 0:
344 case 1:
345 return STM32_DMA_BURST_SINGLE;
346 case 4:
347 return STM32_DMA_BURST_INCR4;
348 case 8:
349 return STM32_DMA_BURST_INCR8;
350 case 16:
351 return STM32_DMA_BURST_INCR16;
352 default:
353 dev_err(chan2dev(chan), "Dma burst size not supported\n");
354 return -EINVAL;
355 }
356}
357
358static void stm32_dma_set_fifo_config(struct stm32_dma_chan *chan,
359 u32 src_burst, u32 dst_burst)
360{
361 chan->chan_reg.dma_sfcr &= ~STM32_DMA_SFCR_MASK;
362 chan->chan_reg.dma_scr &= ~STM32_DMA_SCR_DMEIE;
363
364 if (!src_burst && !dst_burst) {
365 /* Using direct mode */
366 chan->chan_reg.dma_scr |= STM32_DMA_SCR_DMEIE;
367 } else {
368 /* Using FIFO mode */
369 chan->chan_reg.dma_sfcr |= STM32_DMA_SFCR_MASK;
370 }
371}
372
373static int stm32_dma_slave_config(struct dma_chan *c,
374 struct dma_slave_config *config)
375{
376 struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
377
378 memcpy(&chan->dma_sconfig, config, sizeof(*config));
379
380 chan->config_init = true;
381
382 return 0;
383}
384
385static u32 stm32_dma_irq_status(struct stm32_dma_chan *chan)
386{
387 struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
388 u32 flags, dma_isr;
389
390 /*
391 * Read "flags" from DMA_xISR register corresponding to the selected
392 * DMA channel at the correct bit offset inside that register.
393 *
394 * If (ch % 4) is 2 or 3, left shift the mask by 16 bits.
395 * If (ch % 4) is 1 or 3, additionally left shift the mask by 6 bits.
396 */
397
398 if (chan->id & 4)
399 dma_isr = stm32_dma_read(dmadev, STM32_DMA_HISR);
400 else
401 dma_isr = stm32_dma_read(dmadev, STM32_DMA_LISR);
402
403 flags = dma_isr >> (((chan->id & 2) << 3) | ((chan->id & 1) * 6));
404
405 return flags & STM32_DMA_MASKI;
406}
407
408static void stm32_dma_irq_clear(struct stm32_dma_chan *chan, u32 flags)
409{
410 struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
411 u32 dma_ifcr;
412
413 /*
414 * Write "flags" to the DMA_xIFCR register corresponding to the selected
415 * DMA channel at the correct bit offset inside that register.
416 *
417 * If (ch % 4) is 2 or 3, left shift the mask by 16 bits.
418 * If (ch % 4) is 1 or 3, additionally left shift the mask by 6 bits.
419 */
420 flags &= STM32_DMA_MASKI;
421 dma_ifcr = flags << (((chan->id & 2) << 3) | ((chan->id & 1) * 6));
422
423 if (chan->id & 4)
424 stm32_dma_write(dmadev, STM32_DMA_HIFCR, dma_ifcr);
425 else
426 stm32_dma_write(dmadev, STM32_DMA_LIFCR, dma_ifcr);
427}
428
429static int stm32_dma_disable_chan(struct stm32_dma_chan *chan)
430{
431 struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
432 unsigned long timeout = jiffies + msecs_to_jiffies(5000);
433 u32 dma_scr, id;
434
435 id = chan->id;
436 dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id));
437
438 if (dma_scr & STM32_DMA_SCR_EN) {
439 dma_scr &= ~STM32_DMA_SCR_EN;
440 stm32_dma_write(dmadev, STM32_DMA_SCR(id), dma_scr);
441
442 do {
443 dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id));
444 dma_scr &= STM32_DMA_SCR_EN;
445 if (!dma_scr)
446 break;
447
448 if (time_after_eq(jiffies, timeout)) {
449 dev_err(chan2dev(chan), "%s: timeout!\n",
450 __func__);
451 return -EBUSY;
452 }
453 cond_resched();
454 } while (1);
455 }
456
457 return 0;
458}
459
460static void stm32_dma_stop(struct stm32_dma_chan *chan)
461{
462 struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
463 u32 dma_scr, dma_sfcr, status;
464 int ret;
465
466 /* Disable interrupts */
467 dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id));
468 dma_scr &= ~STM32_DMA_SCR_IRQ_MASK;
469 stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), dma_scr);
470 dma_sfcr = stm32_dma_read(dmadev, STM32_DMA_SFCR(chan->id));
471 dma_sfcr &= ~STM32_DMA_SFCR_FEIE;
472 stm32_dma_write(dmadev, STM32_DMA_SFCR(chan->id), dma_sfcr);
473
474 /* Disable DMA */
475 ret = stm32_dma_disable_chan(chan);
476 if (ret < 0)
477 return;
478
479 /* Clear interrupt status if it is there */
480 status = stm32_dma_irq_status(chan);
481 if (status) {
482 dev_dbg(chan2dev(chan), "%s(): clearing interrupt: 0x%08x\n",
483 __func__, status);
484 stm32_dma_irq_clear(chan, status);
485 }
486
487 chan->busy = false;
488}
489
490static int stm32_dma_terminate_all(struct dma_chan *c)
491{
492 struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
493 unsigned long flags;
494 LIST_HEAD(head);
495
496 spin_lock_irqsave(&chan->vchan.lock, flags);
497
498 if (chan->busy) {
499 stm32_dma_stop(chan);
500 chan->desc = NULL;
501 }
502
503 vchan_get_all_descriptors(&chan->vchan, &head);
504 spin_unlock_irqrestore(&chan->vchan.lock, flags);
505 vchan_dma_desc_free_list(&chan->vchan, &head);
506
507 return 0;
508}
509
510static void stm32_dma_synchronize(struct dma_chan *c)
511{
512 struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
513
514 vchan_synchronize(&chan->vchan);
515}
516
517static void stm32_dma_dump_reg(struct stm32_dma_chan *chan)
518{
519 struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
520 u32 scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id));
521 u32 ndtr = stm32_dma_read(dmadev, STM32_DMA_SNDTR(chan->id));
522 u32 spar = stm32_dma_read(dmadev, STM32_DMA_SPAR(chan->id));
523 u32 sm0ar = stm32_dma_read(dmadev, STM32_DMA_SM0AR(chan->id));
524 u32 sm1ar = stm32_dma_read(dmadev, STM32_DMA_SM1AR(chan->id));
525 u32 sfcr = stm32_dma_read(dmadev, STM32_DMA_SFCR(chan->id));
526
527 dev_dbg(chan2dev(chan), "SCR: 0x%08x\n", scr);
528 dev_dbg(chan2dev(chan), "NDTR: 0x%08x\n", ndtr);
529 dev_dbg(chan2dev(chan), "SPAR: 0x%08x\n", spar);
530 dev_dbg(chan2dev(chan), "SM0AR: 0x%08x\n", sm0ar);
531 dev_dbg(chan2dev(chan), "SM1AR: 0x%08x\n", sm1ar);
532 dev_dbg(chan2dev(chan), "SFCR: 0x%08x\n", sfcr);
533}
534
535static void stm32_dma_configure_next_sg(struct stm32_dma_chan *chan);
536
537static void stm32_dma_start_transfer(struct stm32_dma_chan *chan)
538{
539 struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
540 struct virt_dma_desc *vdesc;
541 struct stm32_dma_sg_req *sg_req;
542 struct stm32_dma_chan_reg *reg;
543 u32 status;
544 int ret;
545
546 ret = stm32_dma_disable_chan(chan);
547 if (ret < 0)
548 return;
549
550 if (!chan->desc) {
551 vdesc = vchan_next_desc(&chan->vchan);
552 if (!vdesc)
553 return;
554
555 chan->desc = to_stm32_dma_desc(vdesc);
556 chan->next_sg = 0;
557 }
558
559 if (chan->next_sg == chan->desc->num_sgs)
560 chan->next_sg = 0;
561
562 sg_req = &chan->desc->sg_req[chan->next_sg];
563 reg = &sg_req->chan_reg;
564
565 stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), reg->dma_scr);
566 stm32_dma_write(dmadev, STM32_DMA_SPAR(chan->id), reg->dma_spar);
567 stm32_dma_write(dmadev, STM32_DMA_SM0AR(chan->id), reg->dma_sm0ar);
568 stm32_dma_write(dmadev, STM32_DMA_SFCR(chan->id), reg->dma_sfcr);
569 stm32_dma_write(dmadev, STM32_DMA_SM1AR(chan->id), reg->dma_sm1ar);
570 stm32_dma_write(dmadev, STM32_DMA_SNDTR(chan->id), reg->dma_sndtr);
571
572 chan->next_sg++;
573
574 /* Clear interrupt status if it is there */
575 status = stm32_dma_irq_status(chan);
576 if (status)
577 stm32_dma_irq_clear(chan, status);
578
579 if (chan->desc->cyclic)
580 stm32_dma_configure_next_sg(chan);
581
582 stm32_dma_dump_reg(chan);
583
584 /* Start DMA */
585 reg->dma_scr |= STM32_DMA_SCR_EN;
586 stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), reg->dma_scr);
587
588 chan->busy = true;
589
590 dev_dbg(chan2dev(chan), "vchan %pK: started\n", &chan->vchan);
591}
592
593static void stm32_dma_configure_next_sg(struct stm32_dma_chan *chan)
594{
595 struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
596 struct stm32_dma_sg_req *sg_req;
597 u32 dma_scr, dma_sm0ar, dma_sm1ar, id;
598
599 id = chan->id;
600 dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id));
601
602 if (dma_scr & STM32_DMA_SCR_DBM) {
603 if (chan->next_sg == chan->desc->num_sgs)
604 chan->next_sg = 0;
605
606 sg_req = &chan->desc->sg_req[chan->next_sg];
607
608 if (dma_scr & STM32_DMA_SCR_CT) {
609 dma_sm0ar = sg_req->chan_reg.dma_sm0ar;
610 stm32_dma_write(dmadev, STM32_DMA_SM0AR(id), dma_sm0ar);
611 dev_dbg(chan2dev(chan), "CT=1 <=> SM0AR: 0x%08x\n",
612 stm32_dma_read(dmadev, STM32_DMA_SM0AR(id)));
613 } else {
614 dma_sm1ar = sg_req->chan_reg.dma_sm1ar;
615 stm32_dma_write(dmadev, STM32_DMA_SM1AR(id), dma_sm1ar);
616 dev_dbg(chan2dev(chan), "CT=0 <=> SM1AR: 0x%08x\n",
617 stm32_dma_read(dmadev, STM32_DMA_SM1AR(id)));
618 }
619 }
620}
621
622static void stm32_dma_handle_chan_done(struct stm32_dma_chan *chan)
623{
624 if (chan->desc) {
625 if (chan->desc->cyclic) {
626 vchan_cyclic_callback(&chan->desc->vdesc);
627 chan->next_sg++;
628 stm32_dma_configure_next_sg(chan);
629 } else {
630 chan->busy = false;
631 if (chan->next_sg == chan->desc->num_sgs) {
632 list_del(&chan->desc->vdesc.node);
633 vchan_cookie_complete(&chan->desc->vdesc);
634 chan->desc = NULL;
635 }
636 stm32_dma_start_transfer(chan);
637 }
638 }
639}
640
641static irqreturn_t stm32_dma_chan_irq(int irq, void *devid)
642{
643 struct stm32_dma_chan *chan = devid;
644 struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
645 u32 status, scr, sfcr;
646
647 spin_lock(&chan->vchan.lock);
648
649 status = stm32_dma_irq_status(chan);
650 scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id));
651 sfcr = stm32_dma_read(dmadev, STM32_DMA_SFCR(chan->id));
652
653 if (status & STM32_DMA_TCI) {
654 stm32_dma_irq_clear(chan, STM32_DMA_TCI);
655 if (scr & STM32_DMA_SCR_TCIE)
656 stm32_dma_handle_chan_done(chan);
657 status &= ~STM32_DMA_TCI;
658 }
659 if (status & STM32_DMA_HTI) {
660 stm32_dma_irq_clear(chan, STM32_DMA_HTI);
661 status &= ~STM32_DMA_HTI;
662 }
663 if (status & STM32_DMA_FEI) {
664 stm32_dma_irq_clear(chan, STM32_DMA_FEI);
665 status &= ~STM32_DMA_FEI;
666 if (sfcr & STM32_DMA_SFCR_FEIE) {
667 if (!(scr & STM32_DMA_SCR_EN))
668 dev_err(chan2dev(chan), "FIFO Error\n");
669 else
670 dev_dbg(chan2dev(chan), "FIFO over/underrun\n");
671 }
672 }
673 if (status) {
674 stm32_dma_irq_clear(chan, status);
675 dev_err(chan2dev(chan), "DMA error: status=0x%08x\n", status);
676 if (!(scr & STM32_DMA_SCR_EN))
677 dev_err(chan2dev(chan), "chan disabled by HW\n");
678 }
679
680 spin_unlock(&chan->vchan.lock);
681
682 return IRQ_HANDLED;
683}
684
685static void stm32_dma_issue_pending(struct dma_chan *c)
686{
687 struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
688 unsigned long flags;
689
690 spin_lock_irqsave(&chan->vchan.lock, flags);
691 if (vchan_issue_pending(&chan->vchan) && !chan->desc && !chan->busy) {
692 dev_dbg(chan2dev(chan), "vchan %pK: issued\n", &chan->vchan);
693 stm32_dma_start_transfer(chan);
694
695 }
696 spin_unlock_irqrestore(&chan->vchan.lock, flags);
697}
698
699static int stm32_dma_set_xfer_param(struct stm32_dma_chan *chan,
700 enum dma_transfer_direction direction,
701 enum dma_slave_buswidth *buswidth,
702 u32 buf_len)
703{
704 enum dma_slave_buswidth src_addr_width, dst_addr_width;
705 int src_bus_width, dst_bus_width;
706 int src_burst_size, dst_burst_size;
707 u32 src_maxburst, dst_maxburst, src_best_burst, dst_best_burst;
708 u32 dma_scr, threshold;
709
710 src_addr_width = chan->dma_sconfig.src_addr_width;
711 dst_addr_width = chan->dma_sconfig.dst_addr_width;
712 src_maxburst = chan->dma_sconfig.src_maxburst;
713 dst_maxburst = chan->dma_sconfig.dst_maxburst;
714 threshold = chan->threshold;
715
716 switch (direction) {
717 case DMA_MEM_TO_DEV:
718 /* Set device data size */
719 dst_bus_width = stm32_dma_get_width(chan, dst_addr_width);
720 if (dst_bus_width < 0)
721 return dst_bus_width;
722
723 /* Set device burst size */
724 dst_best_burst = stm32_dma_get_best_burst(buf_len,
725 dst_maxburst,
726 threshold,
727 dst_addr_width);
728
729 dst_burst_size = stm32_dma_get_burst(chan, dst_best_burst);
730 if (dst_burst_size < 0)
731 return dst_burst_size;
732
733 /* Set memory data size */
734 src_addr_width = stm32_dma_get_max_width(buf_len, threshold);
735 chan->mem_width = src_addr_width;
736 src_bus_width = stm32_dma_get_width(chan, src_addr_width);
737 if (src_bus_width < 0)
738 return src_bus_width;
739
740 /* Set memory burst size */
741 src_maxburst = STM32_DMA_MAX_BURST;
742 src_best_burst = stm32_dma_get_best_burst(buf_len,
743 src_maxburst,
744 threshold,
745 src_addr_width);
746 src_burst_size = stm32_dma_get_burst(chan, src_best_burst);
747 if (src_burst_size < 0)
748 return src_burst_size;
749
750 dma_scr = STM32_DMA_SCR_DIR(STM32_DMA_MEM_TO_DEV) |
751 STM32_DMA_SCR_PSIZE(dst_bus_width) |
752 STM32_DMA_SCR_MSIZE(src_bus_width) |
753 STM32_DMA_SCR_PBURST(dst_burst_size) |
754 STM32_DMA_SCR_MBURST(src_burst_size);
755
756 /* Set FIFO threshold */
757 chan->chan_reg.dma_sfcr &= ~STM32_DMA_SFCR_FTH_MASK;
758 chan->chan_reg.dma_sfcr |= STM32_DMA_SFCR_FTH(threshold);
759
760 /* Set peripheral address */
761 chan->chan_reg.dma_spar = chan->dma_sconfig.dst_addr;
762 *buswidth = dst_addr_width;
763 break;
764
765 case DMA_DEV_TO_MEM:
766 /* Set device data size */
767 src_bus_width = stm32_dma_get_width(chan, src_addr_width);
768 if (src_bus_width < 0)
769 return src_bus_width;
770
771 /* Set device burst size */
772 src_best_burst = stm32_dma_get_best_burst(buf_len,
773 src_maxburst,
774 threshold,
775 src_addr_width);
776 chan->mem_burst = src_best_burst;
777 src_burst_size = stm32_dma_get_burst(chan, src_best_burst);
778 if (src_burst_size < 0)
779 return src_burst_size;
780
781 /* Set memory data size */
782 dst_addr_width = stm32_dma_get_max_width(buf_len, threshold);
783 chan->mem_width = dst_addr_width;
784 dst_bus_width = stm32_dma_get_width(chan, dst_addr_width);
785 if (dst_bus_width < 0)
786 return dst_bus_width;
787
788 /* Set memory burst size */
789 dst_maxburst = STM32_DMA_MAX_BURST;
790 dst_best_burst = stm32_dma_get_best_burst(buf_len,
791 dst_maxburst,
792 threshold,
793 dst_addr_width);
794 chan->mem_burst = dst_best_burst;
795 dst_burst_size = stm32_dma_get_burst(chan, dst_best_burst);
796 if (dst_burst_size < 0)
797 return dst_burst_size;
798
799 dma_scr = STM32_DMA_SCR_DIR(STM32_DMA_DEV_TO_MEM) |
800 STM32_DMA_SCR_PSIZE(src_bus_width) |
801 STM32_DMA_SCR_MSIZE(dst_bus_width) |
802 STM32_DMA_SCR_PBURST(src_burst_size) |
803 STM32_DMA_SCR_MBURST(dst_burst_size);
804
805 /* Set FIFO threshold */
806 chan->chan_reg.dma_sfcr &= ~STM32_DMA_SFCR_FTH_MASK;
807 chan->chan_reg.dma_sfcr |= STM32_DMA_SFCR_FTH(threshold);
808
809 /* Set peripheral address */
810 chan->chan_reg.dma_spar = chan->dma_sconfig.src_addr;
811 *buswidth = chan->dma_sconfig.src_addr_width;
812 break;
813
814 default:
815 dev_err(chan2dev(chan), "Dma direction is not supported\n");
816 return -EINVAL;
817 }
818
819 stm32_dma_set_fifo_config(chan, src_best_burst, dst_best_burst);
820
821 /* Set DMA control register */
822 chan->chan_reg.dma_scr &= ~(STM32_DMA_SCR_DIR_MASK |
823 STM32_DMA_SCR_PSIZE_MASK | STM32_DMA_SCR_MSIZE_MASK |
824 STM32_DMA_SCR_PBURST_MASK | STM32_DMA_SCR_MBURST_MASK);
825 chan->chan_reg.dma_scr |= dma_scr;
826
827 return 0;
828}
829
830static void stm32_dma_clear_reg(struct stm32_dma_chan_reg *regs)
831{
832 memset(regs, 0, sizeof(struct stm32_dma_chan_reg));
833}
834
835static struct dma_async_tx_descriptor *stm32_dma_prep_slave_sg(
836 struct dma_chan *c, struct scatterlist *sgl,
837 u32 sg_len, enum dma_transfer_direction direction,
838 unsigned long flags, void *context)
839{
840 struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
841 struct stm32_dma_desc *desc;
842 struct scatterlist *sg;
843 enum dma_slave_buswidth buswidth;
844 u32 nb_data_items;
845 int i, ret;
846
847 if (!chan->config_init) {
848 dev_err(chan2dev(chan), "dma channel is not configured\n");
849 return NULL;
850 }
851
852 if (sg_len < 1) {
853 dev_err(chan2dev(chan), "Invalid segment length %d\n", sg_len);
854 return NULL;
855 }
856
857 desc = stm32_dma_alloc_desc(sg_len);
858 if (!desc)
859 return NULL;
860
861 /* Set peripheral flow controller */
862 if (chan->dma_sconfig.device_fc)
863 chan->chan_reg.dma_scr |= STM32_DMA_SCR_PFCTRL;
864 else
865 chan->chan_reg.dma_scr &= ~STM32_DMA_SCR_PFCTRL;
866
867 for_each_sg(sgl, sg, sg_len, i) {
868 ret = stm32_dma_set_xfer_param(chan, direction, &buswidth,
869 sg_dma_len(sg));
870 if (ret < 0)
871 goto err;
872
873 desc->sg_req[i].len = sg_dma_len(sg);
874
875 nb_data_items = desc->sg_req[i].len / buswidth;
876 if (nb_data_items > STM32_DMA_ALIGNED_MAX_DATA_ITEMS) {
877 dev_err(chan2dev(chan), "nb items not supported\n");
878 goto err;
879 }
880
881 stm32_dma_clear_reg(&desc->sg_req[i].chan_reg);
882 desc->sg_req[i].chan_reg.dma_scr = chan->chan_reg.dma_scr;
883 desc->sg_req[i].chan_reg.dma_sfcr = chan->chan_reg.dma_sfcr;
884 desc->sg_req[i].chan_reg.dma_spar = chan->chan_reg.dma_spar;
885 desc->sg_req[i].chan_reg.dma_sm0ar = sg_dma_address(sg);
886 desc->sg_req[i].chan_reg.dma_sm1ar = sg_dma_address(sg);
887 desc->sg_req[i].chan_reg.dma_sndtr = nb_data_items;
888 }
889
890 desc->num_sgs = sg_len;
891 desc->cyclic = false;
892
893 return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
894
895err:
896 kfree(desc);
897 return NULL;
898}
899
900static struct dma_async_tx_descriptor *stm32_dma_prep_dma_cyclic(
901 struct dma_chan *c, dma_addr_t buf_addr, size_t buf_len,
902 size_t period_len, enum dma_transfer_direction direction,
903 unsigned long flags)
904{
905 struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
906 struct stm32_dma_desc *desc;
907 enum dma_slave_buswidth buswidth;
908 u32 num_periods, nb_data_items;
909 int i, ret;
910
911 if (!buf_len || !period_len) {
912 dev_err(chan2dev(chan), "Invalid buffer/period len\n");
913 return NULL;
914 }
915
916 if (!chan->config_init) {
917 dev_err(chan2dev(chan), "dma channel is not configured\n");
918 return NULL;
919 }
920
921 if (buf_len % period_len) {
922 dev_err(chan2dev(chan), "buf_len not multiple of period_len\n");
923 return NULL;
924 }
925
926 /*
927 * We allow to take more number of requests till DMA is
928 * not started. The driver will loop over all requests.
929 * Once DMA is started then new requests can be queued only after
930 * terminating the DMA.
931 */
932 if (chan->busy) {
933 dev_err(chan2dev(chan), "Request not allowed when dma busy\n");
934 return NULL;
935 }
936
937 ret = stm32_dma_set_xfer_param(chan, direction, &buswidth, period_len);
938 if (ret < 0)
939 return NULL;
940
941 nb_data_items = period_len / buswidth;
942 if (nb_data_items > STM32_DMA_ALIGNED_MAX_DATA_ITEMS) {
943 dev_err(chan2dev(chan), "number of items not supported\n");
944 return NULL;
945 }
946
947 /* Enable Circular mode or double buffer mode */
948 if (buf_len == period_len)
949 chan->chan_reg.dma_scr |= STM32_DMA_SCR_CIRC;
950 else
951 chan->chan_reg.dma_scr |= STM32_DMA_SCR_DBM;
952
953 /* Clear periph ctrl if client set it */
954 chan->chan_reg.dma_scr &= ~STM32_DMA_SCR_PFCTRL;
955
956 num_periods = buf_len / period_len;
957
958 desc = stm32_dma_alloc_desc(num_periods);
959 if (!desc)
960 return NULL;
961
962 for (i = 0; i < num_periods; i++) {
963 desc->sg_req[i].len = period_len;
964
965 stm32_dma_clear_reg(&desc->sg_req[i].chan_reg);
966 desc->sg_req[i].chan_reg.dma_scr = chan->chan_reg.dma_scr;
967 desc->sg_req[i].chan_reg.dma_sfcr = chan->chan_reg.dma_sfcr;
968 desc->sg_req[i].chan_reg.dma_spar = chan->chan_reg.dma_spar;
969 desc->sg_req[i].chan_reg.dma_sm0ar = buf_addr;
970 desc->sg_req[i].chan_reg.dma_sm1ar = buf_addr;
971 desc->sg_req[i].chan_reg.dma_sndtr = nb_data_items;
972 buf_addr += period_len;
973 }
974
975 desc->num_sgs = num_periods;
976 desc->cyclic = true;
977
978 return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
979}
980
981static struct dma_async_tx_descriptor *stm32_dma_prep_dma_memcpy(
982 struct dma_chan *c, dma_addr_t dest,
983 dma_addr_t src, size_t len, unsigned long flags)
984{
985 struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
986 enum dma_slave_buswidth max_width;
987 struct stm32_dma_desc *desc;
988 size_t xfer_count, offset;
989 u32 num_sgs, best_burst, dma_burst, threshold;
990 int i;
991
992 num_sgs = DIV_ROUND_UP(len, STM32_DMA_ALIGNED_MAX_DATA_ITEMS);
993 desc = stm32_dma_alloc_desc(num_sgs);
994 if (!desc)
995 return NULL;
996
997 threshold = chan->threshold;
998
999 for (offset = 0, i = 0; offset < len; offset += xfer_count, i++) {
1000 xfer_count = min_t(size_t, len - offset,
1001 STM32_DMA_ALIGNED_MAX_DATA_ITEMS);
1002
1003 /* Compute best burst size */
1004 max_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1005 best_burst = stm32_dma_get_best_burst(len, STM32_DMA_MAX_BURST,
1006 threshold, max_width);
1007 dma_burst = stm32_dma_get_burst(chan, best_burst);
1008
1009 stm32_dma_clear_reg(&desc->sg_req[i].chan_reg);
1010 desc->sg_req[i].chan_reg.dma_scr =
1011 STM32_DMA_SCR_DIR(STM32_DMA_MEM_TO_MEM) |
1012 STM32_DMA_SCR_PBURST(dma_burst) |
1013 STM32_DMA_SCR_MBURST(dma_burst) |
1014 STM32_DMA_SCR_MINC |
1015 STM32_DMA_SCR_PINC |
1016 STM32_DMA_SCR_TCIE |
1017 STM32_DMA_SCR_TEIE;
1018 desc->sg_req[i].chan_reg.dma_sfcr |= STM32_DMA_SFCR_MASK;
1019 desc->sg_req[i].chan_reg.dma_sfcr |=
1020 STM32_DMA_SFCR_FTH(threshold);
1021 desc->sg_req[i].chan_reg.dma_spar = src + offset;
1022 desc->sg_req[i].chan_reg.dma_sm0ar = dest + offset;
1023 desc->sg_req[i].chan_reg.dma_sndtr = xfer_count;
1024 desc->sg_req[i].len = xfer_count;
1025 }
1026
1027 desc->num_sgs = num_sgs;
1028 desc->cyclic = false;
1029
1030 return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
1031}
1032
1033static u32 stm32_dma_get_remaining_bytes(struct stm32_dma_chan *chan)
1034{
1035 u32 dma_scr, width, ndtr;
1036 struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
1037
1038 dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id));
1039 width = STM32_DMA_SCR_PSIZE_GET(dma_scr);
1040 ndtr = stm32_dma_read(dmadev, STM32_DMA_SNDTR(chan->id));
1041
1042 return ndtr << width;
1043}
1044
1045static size_t stm32_dma_desc_residue(struct stm32_dma_chan *chan,
1046 struct stm32_dma_desc *desc,
1047 u32 next_sg)
1048{
1049 u32 modulo, burst_size;
1050 u32 residue = 0;
1051 int i;
1052
1053 /*
1054 * In cyclic mode, for the last period, residue = remaining bytes from
1055 * NDTR
1056 */
1057 if (chan->desc->cyclic && next_sg == 0) {
1058 residue = stm32_dma_get_remaining_bytes(chan);
1059 goto end;
1060 }
1061
1062 /*
1063 * For all other periods in cyclic mode, and in sg mode,
1064 * residue = remaining bytes from NDTR + remaining periods/sg to be
1065 * transferred
1066 */
1067 for (i = next_sg; i < desc->num_sgs; i++)
1068 residue += desc->sg_req[i].len;
1069 residue += stm32_dma_get_remaining_bytes(chan);
1070
1071end:
1072 if (!chan->mem_burst)
1073 return residue;
1074
1075 burst_size = chan->mem_burst * chan->mem_width;
1076 modulo = residue % burst_size;
1077 if (modulo)
1078 residue = residue - modulo + burst_size;
1079
1080 return residue;
1081}
1082
1083static enum dma_status stm32_dma_tx_status(struct dma_chan *c,
1084 dma_cookie_t cookie,
1085 struct dma_tx_state *state)
1086{
1087 struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
1088 struct virt_dma_desc *vdesc;
1089 enum dma_status status;
1090 unsigned long flags;
1091 u32 residue = 0;
1092
1093 status = dma_cookie_status(c, cookie, state);
1094 if (status == DMA_COMPLETE || !state)
1095 return status;
1096
1097 spin_lock_irqsave(&chan->vchan.lock, flags);
1098 vdesc = vchan_find_desc(&chan->vchan, cookie);
1099 if (chan->desc && cookie == chan->desc->vdesc.tx.cookie)
1100 residue = stm32_dma_desc_residue(chan, chan->desc,
1101 chan->next_sg);
1102 else if (vdesc)
1103 residue = stm32_dma_desc_residue(chan,
1104 to_stm32_dma_desc(vdesc), 0);
1105 dma_set_residue(state, residue);
1106
1107 spin_unlock_irqrestore(&chan->vchan.lock, flags);
1108
1109 return status;
1110}
1111
1112static int stm32_dma_alloc_chan_resources(struct dma_chan *c)
1113{
1114 struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
1115 struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
1116 int ret;
1117
1118 chan->config_init = false;
1119
1120 ret = pm_runtime_get_sync(dmadev->ddev.dev);
1121 if (ret < 0)
1122 return ret;
1123
1124 ret = stm32_dma_disable_chan(chan);
1125 if (ret < 0)
1126 pm_runtime_put(dmadev->ddev.dev);
1127
1128 return ret;
1129}
1130
1131static void stm32_dma_free_chan_resources(struct dma_chan *c)
1132{
1133 struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
1134 struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
1135 unsigned long flags;
1136
1137 dev_dbg(chan2dev(chan), "Freeing channel %d\n", chan->id);
1138
1139 if (chan->busy) {
1140 spin_lock_irqsave(&chan->vchan.lock, flags);
1141 stm32_dma_stop(chan);
1142 chan->desc = NULL;
1143 spin_unlock_irqrestore(&chan->vchan.lock, flags);
1144 }
1145
1146 pm_runtime_put(dmadev->ddev.dev);
1147
1148 vchan_free_chan_resources(to_virt_chan(c));
1149}
1150
1151static void stm32_dma_desc_free(struct virt_dma_desc *vdesc)
1152{
1153 kfree(container_of(vdesc, struct stm32_dma_desc, vdesc));
1154}
1155
1156static void stm32_dma_set_config(struct stm32_dma_chan *chan,
1157 struct stm32_dma_cfg *cfg)
1158{
1159 stm32_dma_clear_reg(&chan->chan_reg);
1160
1161 chan->chan_reg.dma_scr = cfg->stream_config & STM32_DMA_SCR_CFG_MASK;
1162 chan->chan_reg.dma_scr |= STM32_DMA_SCR_REQ(cfg->request_line);
1163
1164 /* Enable Interrupts */
1165 chan->chan_reg.dma_scr |= STM32_DMA_SCR_TEIE | STM32_DMA_SCR_TCIE;
1166
1167 chan->threshold = STM32_DMA_THRESHOLD_FTR_GET(cfg->features);
1168}
1169
1170static struct dma_chan *stm32_dma_of_xlate(struct of_phandle_args *dma_spec,
1171 struct of_dma *ofdma)
1172{
1173 struct stm32_dma_device *dmadev = ofdma->of_dma_data;
1174 struct device *dev = dmadev->ddev.dev;
1175 struct stm32_dma_cfg cfg;
1176 struct stm32_dma_chan *chan;
1177 struct dma_chan *c;
1178
1179 if (dma_spec->args_count < 4) {
1180 dev_err(dev, "Bad number of cells\n");
1181 return NULL;
1182 }
1183
1184 cfg.channel_id = dma_spec->args[0];
1185 cfg.request_line = dma_spec->args[1];
1186 cfg.stream_config = dma_spec->args[2];
1187 cfg.features = dma_spec->args[3];
1188
1189 if (cfg.channel_id >= STM32_DMA_MAX_CHANNELS ||
1190 cfg.request_line >= STM32_DMA_MAX_REQUEST_ID) {
1191 dev_err(dev, "Bad channel and/or request id\n");
1192 return NULL;
1193 }
1194
1195 chan = &dmadev->chan[cfg.channel_id];
1196
1197 c = dma_get_slave_channel(&chan->vchan.chan);
1198 if (!c) {
1199 dev_err(dev, "No more channels available\n");
1200 return NULL;
1201 }
1202
1203 stm32_dma_set_config(chan, &cfg);
1204
1205 return c;
1206}
1207
1208static const struct of_device_id stm32_dma_of_match[] = {
1209 { .compatible = "st,stm32-dma", },
1210 { /* sentinel */ },
1211};
1212MODULE_DEVICE_TABLE(of, stm32_dma_of_match);
1213
1214static int stm32_dma_probe(struct platform_device *pdev)
1215{
1216 struct stm32_dma_chan *chan;
1217 struct stm32_dma_device *dmadev;
1218 struct dma_device *dd;
1219 const struct of_device_id *match;
1220 struct resource *res;
1221 int i, ret;
1222
1223 match = of_match_device(stm32_dma_of_match, &pdev->dev);
1224 if (!match) {
1225 dev_err(&pdev->dev, "Error: No device match found\n");
1226 return -ENODEV;
1227 }
1228
1229 dmadev = devm_kzalloc(&pdev->dev, sizeof(*dmadev), GFP_KERNEL);
1230 if (!dmadev)
1231 return -ENOMEM;
1232
1233 dd = &dmadev->ddev;
1234
1235 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1236 dmadev->base = devm_ioremap_resource(&pdev->dev, res);
1237 if (IS_ERR(dmadev->base))
1238 return PTR_ERR(dmadev->base);
1239
1240 dmadev->clk = devm_clk_get(&pdev->dev, NULL);
1241 if (IS_ERR(dmadev->clk)) {
1242 dev_err(&pdev->dev, "Error: Missing controller clock\n");
1243 return PTR_ERR(dmadev->clk);
1244 }
1245
1246 ret = clk_prepare_enable(dmadev->clk);
1247 if (ret < 0) {
1248 dev_err(&pdev->dev, "clk_prep_enable error: %d\n", ret);
1249 return ret;
1250 }
1251
1252 dmadev->mem2mem = of_property_read_bool(pdev->dev.of_node,
1253 "st,mem2mem");
1254
1255 dmadev->rst = devm_reset_control_get(&pdev->dev, NULL);
1256 if (!IS_ERR(dmadev->rst)) {
1257 reset_control_assert(dmadev->rst);
1258 udelay(2);
1259 reset_control_deassert(dmadev->rst);
1260 }
1261
1262 dma_cap_set(DMA_SLAVE, dd->cap_mask);
1263 dma_cap_set(DMA_PRIVATE, dd->cap_mask);
1264 dma_cap_set(DMA_CYCLIC, dd->cap_mask);
1265 dd->device_alloc_chan_resources = stm32_dma_alloc_chan_resources;
1266 dd->device_free_chan_resources = stm32_dma_free_chan_resources;
1267 dd->device_tx_status = stm32_dma_tx_status;
1268 dd->device_issue_pending = stm32_dma_issue_pending;
1269 dd->device_prep_slave_sg = stm32_dma_prep_slave_sg;
1270 dd->device_prep_dma_cyclic = stm32_dma_prep_dma_cyclic;
1271 dd->device_config = stm32_dma_slave_config;
1272 dd->device_terminate_all = stm32_dma_terminate_all;
1273 dd->device_synchronize = stm32_dma_synchronize;
1274 dd->src_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
1275 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
1276 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
1277 dd->dst_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
1278 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
1279 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
1280 dd->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
1281 dd->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1282 dd->max_burst = STM32_DMA_MAX_BURST;
1283 dd->dev = &pdev->dev;
1284 INIT_LIST_HEAD(&dd->channels);
1285
1286 if (dmadev->mem2mem) {
1287 dma_cap_set(DMA_MEMCPY, dd->cap_mask);
1288 dd->device_prep_dma_memcpy = stm32_dma_prep_dma_memcpy;
1289 dd->directions |= BIT(DMA_MEM_TO_MEM);
1290 }
1291
1292 for (i = 0; i < STM32_DMA_MAX_CHANNELS; i++) {
1293 chan = &dmadev->chan[i];
1294 chan->id = i;
1295 chan->vchan.desc_free = stm32_dma_desc_free;
1296 vchan_init(&chan->vchan, dd);
1297 }
1298
1299 ret = dma_async_device_register(dd);
1300 if (ret)
1301 goto clk_free;
1302
1303 for (i = 0; i < STM32_DMA_MAX_CHANNELS; i++) {
1304 chan = &dmadev->chan[i];
1305 res = platform_get_resource(pdev, IORESOURCE_IRQ, i);
1306 if (!res) {
1307 ret = -EINVAL;
1308 dev_err(&pdev->dev, "No irq resource for chan %d\n", i);
1309 goto err_unregister;
1310 }
1311 chan->irq = res->start;
1312 ret = devm_request_irq(&pdev->dev, chan->irq,
1313 stm32_dma_chan_irq, 0,
1314 dev_name(chan2dev(chan)), chan);
1315 if (ret) {
1316 dev_err(&pdev->dev,
1317 "request_irq failed with err %d channel %d\n",
1318 ret, i);
1319 goto err_unregister;
1320 }
1321 }
1322
1323 ret = of_dma_controller_register(pdev->dev.of_node,
1324 stm32_dma_of_xlate, dmadev);
1325 if (ret < 0) {
1326 dev_err(&pdev->dev,
1327 "STM32 DMA DMA OF registration failed %d\n", ret);
1328 goto err_unregister;
1329 }
1330
1331 platform_set_drvdata(pdev, dmadev);
1332
1333 pm_runtime_set_active(&pdev->dev);
1334 pm_runtime_enable(&pdev->dev);
1335 pm_runtime_get_noresume(&pdev->dev);
1336 pm_runtime_put(&pdev->dev);
1337
1338 dev_info(&pdev->dev, "STM32 DMA driver registered\n");
1339
1340 return 0;
1341
1342err_unregister:
1343 dma_async_device_unregister(dd);
1344clk_free:
1345 clk_disable_unprepare(dmadev->clk);
1346
1347 return ret;
1348}
1349
1350#ifdef CONFIG_PM
1351static int stm32_dma_runtime_suspend(struct device *dev)
1352{
1353 struct stm32_dma_device *dmadev = dev_get_drvdata(dev);
1354
1355 clk_disable_unprepare(dmadev->clk);
1356
1357 return 0;
1358}
1359
1360static int stm32_dma_runtime_resume(struct device *dev)
1361{
1362 struct stm32_dma_device *dmadev = dev_get_drvdata(dev);
1363 int ret;
1364
1365 ret = clk_prepare_enable(dmadev->clk);
1366 if (ret) {
1367 dev_err(dev, "failed to prepare_enable clock\n");
1368 return ret;
1369 }
1370
1371 return 0;
1372}
1373#endif
1374
1375static const struct dev_pm_ops stm32_dma_pm_ops = {
1376 SET_RUNTIME_PM_OPS(stm32_dma_runtime_suspend,
1377 stm32_dma_runtime_resume, NULL)
1378};
1379
1380static struct platform_driver stm32_dma_driver = {
1381 .driver = {
1382 .name = "stm32-dma",
1383 .of_match_table = stm32_dma_of_match,
1384 .pm = &stm32_dma_pm_ops,
1385 },
1386};
1387
1388static int __init stm32_dma_init(void)
1389{
1390 return platform_driver_probe(&stm32_dma_driver, stm32_dma_probe);
1391}
1392subsys_initcall(stm32_dma_init);
1393