1 | /* |
2 | * Driver for STM32 DMA controller |
3 | * |
4 | * Inspired by dma-jz4740.c and tegra20-apb-dma.c |
5 | * |
6 | * Copyright (C) M'boumba Cedric Madianga 2015 |
7 | * Author: M'boumba Cedric Madianga <cedric.madianga@gmail.com> |
8 | * Pierre-Yves Mordret <pierre-yves.mordret@st.com> |
9 | * |
10 | * License terms: GNU General Public License (GPL), version 2 |
11 | */ |
12 | |
13 | #include <linux/clk.h> |
14 | #include <linux/delay.h> |
15 | #include <linux/dmaengine.h> |
16 | #include <linux/dma-mapping.h> |
17 | #include <linux/err.h> |
18 | #include <linux/init.h> |
19 | #include <linux/jiffies.h> |
20 | #include <linux/list.h> |
21 | #include <linux/module.h> |
22 | #include <linux/of.h> |
23 | #include <linux/of_device.h> |
24 | #include <linux/of_dma.h> |
25 | #include <linux/platform_device.h> |
26 | #include <linux/pm_runtime.h> |
27 | #include <linux/reset.h> |
28 | #include <linux/sched.h> |
29 | #include <linux/slab.h> |
30 | |
31 | #include "virt-dma.h" |
32 | |
33 | #define STM32_DMA_LISR 0x0000 /* DMA Low Int Status Reg */ |
34 | #define STM32_DMA_HISR 0x0004 /* DMA High Int Status Reg */ |
35 | #define STM32_DMA_LIFCR 0x0008 /* DMA Low Int Flag Clear Reg */ |
36 | #define STM32_DMA_HIFCR 0x000c /* DMA High Int Flag Clear Reg */ |
37 | #define STM32_DMA_TCI BIT(5) /* Transfer Complete Interrupt */ |
38 | #define STM32_DMA_HTI BIT(4) /* Half Transfer Interrupt */ |
39 | #define STM32_DMA_TEI BIT(3) /* Transfer Error Interrupt */ |
40 | #define STM32_DMA_DMEI BIT(2) /* Direct Mode Error Interrupt */ |
41 | #define STM32_DMA_FEI BIT(0) /* FIFO Error Interrupt */ |
42 | #define STM32_DMA_MASKI (STM32_DMA_TCI \ |
43 | | STM32_DMA_TEI \ |
44 | | STM32_DMA_DMEI \ |
45 | | STM32_DMA_FEI) |
46 | |
47 | /* DMA Stream x Configuration Register */ |
48 | #define STM32_DMA_SCR(x) (0x0010 + 0x18 * (x)) /* x = 0..7 */ |
49 | #define STM32_DMA_SCR_REQ(n) ((n & 0x7) << 25) |
50 | #define STM32_DMA_SCR_MBURST_MASK GENMASK(24, 23) |
51 | #define STM32_DMA_SCR_MBURST(n) ((n & 0x3) << 23) |
52 | #define STM32_DMA_SCR_PBURST_MASK GENMASK(22, 21) |
53 | #define STM32_DMA_SCR_PBURST(n) ((n & 0x3) << 21) |
54 | #define STM32_DMA_SCR_PL_MASK GENMASK(17, 16) |
55 | #define STM32_DMA_SCR_PL(n) ((n & 0x3) << 16) |
56 | #define STM32_DMA_SCR_MSIZE_MASK GENMASK(14, 13) |
57 | #define STM32_DMA_SCR_MSIZE(n) ((n & 0x3) << 13) |
58 | #define STM32_DMA_SCR_PSIZE_MASK GENMASK(12, 11) |
59 | #define STM32_DMA_SCR_PSIZE(n) ((n & 0x3) << 11) |
60 | #define STM32_DMA_SCR_PSIZE_GET(n) ((n & STM32_DMA_SCR_PSIZE_MASK) >> 11) |
61 | #define STM32_DMA_SCR_DIR_MASK GENMASK(7, 6) |
62 | #define STM32_DMA_SCR_DIR(n) ((n & 0x3) << 6) |
63 | #define STM32_DMA_SCR_CT BIT(19) /* Target in double buffer */ |
64 | #define STM32_DMA_SCR_DBM BIT(18) /* Double Buffer Mode */ |
65 | #define STM32_DMA_SCR_PINCOS BIT(15) /* Peripheral inc offset size */ |
66 | #define STM32_DMA_SCR_MINC BIT(10) /* Memory increment mode */ |
67 | #define STM32_DMA_SCR_PINC BIT(9) /* Peripheral increment mode */ |
68 | #define STM32_DMA_SCR_CIRC BIT(8) /* Circular mode */ |
69 | #define STM32_DMA_SCR_PFCTRL BIT(5) /* Peripheral Flow Controller */ |
70 | #define STM32_DMA_SCR_TCIE BIT(4) /* Transfer Complete Int Enable |
71 | */ |
72 | #define STM32_DMA_SCR_TEIE BIT(2) /* Transfer Error Int Enable */ |
73 | #define STM32_DMA_SCR_DMEIE BIT(1) /* Direct Mode Err Int Enable */ |
74 | #define STM32_DMA_SCR_EN BIT(0) /* Stream Enable */ |
75 | #define STM32_DMA_SCR_CFG_MASK (STM32_DMA_SCR_PINC \ |
76 | | STM32_DMA_SCR_MINC \ |
77 | | STM32_DMA_SCR_PINCOS \ |
78 | | STM32_DMA_SCR_PL_MASK) |
79 | #define STM32_DMA_SCR_IRQ_MASK (STM32_DMA_SCR_TCIE \ |
80 | | STM32_DMA_SCR_TEIE \ |
81 | | STM32_DMA_SCR_DMEIE) |
82 | |
83 | /* DMA Stream x number of data register */ |
84 | #define STM32_DMA_SNDTR(x) (0x0014 + 0x18 * (x)) |
85 | |
86 | /* DMA stream peripheral address register */ |
87 | #define STM32_DMA_SPAR(x) (0x0018 + 0x18 * (x)) |
88 | |
89 | /* DMA stream x memory 0 address register */ |
90 | #define STM32_DMA_SM0AR(x) (0x001c + 0x18 * (x)) |
91 | |
92 | /* DMA stream x memory 1 address register */ |
93 | #define STM32_DMA_SM1AR(x) (0x0020 + 0x18 * (x)) |
94 | |
95 | /* DMA stream x FIFO control register */ |
96 | #define STM32_DMA_SFCR(x) (0x0024 + 0x18 * (x)) |
97 | #define STM32_DMA_SFCR_FTH_MASK GENMASK(1, 0) |
98 | #define STM32_DMA_SFCR_FTH(n) (n & STM32_DMA_SFCR_FTH_MASK) |
99 | #define STM32_DMA_SFCR_FEIE BIT(7) /* FIFO error interrupt enable */ |
100 | #define STM32_DMA_SFCR_DMDIS BIT(2) /* Direct mode disable */ |
101 | #define STM32_DMA_SFCR_MASK (STM32_DMA_SFCR_FEIE \ |
102 | | STM32_DMA_SFCR_DMDIS) |
103 | |
104 | /* DMA direction */ |
105 | #define STM32_DMA_DEV_TO_MEM 0x00 |
106 | #define STM32_DMA_MEM_TO_DEV 0x01 |
107 | #define STM32_DMA_MEM_TO_MEM 0x02 |
108 | |
109 | /* DMA priority level */ |
110 | #define STM32_DMA_PRIORITY_LOW 0x00 |
111 | #define STM32_DMA_PRIORITY_MEDIUM 0x01 |
112 | #define STM32_DMA_PRIORITY_HIGH 0x02 |
113 | #define STM32_DMA_PRIORITY_VERY_HIGH 0x03 |
114 | |
115 | /* DMA FIFO threshold selection */ |
116 | #define STM32_DMA_FIFO_THRESHOLD_1QUARTERFULL 0x00 |
117 | #define STM32_DMA_FIFO_THRESHOLD_HALFFULL 0x01 |
118 | #define STM32_DMA_FIFO_THRESHOLD_3QUARTERSFULL 0x02 |
119 | #define STM32_DMA_FIFO_THRESHOLD_FULL 0x03 |
120 | |
121 | #define STM32_DMA_MAX_DATA_ITEMS 0xffff |
122 | /* |
123 | * Valid transfer starts from @0 to @0xFFFE leading to unaligned scatter |
124 | * gather at boundary. Thus it's safer to round down this value on FIFO |
125 | * size (16 Bytes) |
126 | */ |
127 | #define STM32_DMA_ALIGNED_MAX_DATA_ITEMS \ |
128 | ALIGN_DOWN(STM32_DMA_MAX_DATA_ITEMS, 16) |
129 | #define STM32_DMA_MAX_CHANNELS 0x08 |
130 | #define STM32_DMA_MAX_REQUEST_ID 0x08 |
131 | #define STM32_DMA_MAX_DATA_PARAM 0x03 |
132 | #define STM32_DMA_FIFO_SIZE 16 /* FIFO is 16 bytes */ |
133 | #define STM32_DMA_MIN_BURST 4 |
134 | #define STM32_DMA_MAX_BURST 16 |
135 | |
136 | /* DMA Features */ |
137 | #define STM32_DMA_THRESHOLD_FTR_MASK GENMASK(1, 0) |
138 | #define STM32_DMA_THRESHOLD_FTR_GET(n) ((n) & STM32_DMA_THRESHOLD_FTR_MASK) |
139 | |
140 | enum stm32_dma_width { |
141 | STM32_DMA_BYTE, |
142 | STM32_DMA_HALF_WORD, |
143 | STM32_DMA_WORD, |
144 | }; |
145 | |
146 | enum stm32_dma_burst_size { |
147 | STM32_DMA_BURST_SINGLE, |
148 | STM32_DMA_BURST_INCR4, |
149 | STM32_DMA_BURST_INCR8, |
150 | STM32_DMA_BURST_INCR16, |
151 | }; |
152 | |
153 | /** |
154 | * struct stm32_dma_cfg - STM32 DMA custom configuration |
155 | * @channel_id: channel ID |
156 | * @request_line: DMA request |
157 | * @stream_config: 32bit mask specifying the DMA channel configuration |
158 | * @features: 32bit mask specifying the DMA Feature list |
159 | */ |
160 | struct stm32_dma_cfg { |
161 | u32 channel_id; |
162 | u32 request_line; |
163 | u32 stream_config; |
164 | u32 features; |
165 | }; |
166 | |
167 | struct stm32_dma_chan_reg { |
168 | u32 dma_lisr; |
169 | u32 dma_hisr; |
170 | u32 dma_lifcr; |
171 | u32 dma_hifcr; |
172 | u32 dma_scr; |
173 | u32 dma_sndtr; |
174 | u32 dma_spar; |
175 | u32 dma_sm0ar; |
176 | u32 dma_sm1ar; |
177 | u32 dma_sfcr; |
178 | }; |
179 | |
180 | struct stm32_dma_sg_req { |
181 | u32 len; |
182 | struct stm32_dma_chan_reg chan_reg; |
183 | }; |
184 | |
185 | struct stm32_dma_desc { |
186 | struct virt_dma_desc vdesc; |
187 | bool cyclic; |
188 | u32 num_sgs; |
189 | struct stm32_dma_sg_req sg_req[]; |
190 | }; |
191 | |
192 | struct stm32_dma_chan { |
193 | struct virt_dma_chan vchan; |
194 | bool config_init; |
195 | bool busy; |
196 | u32 id; |
197 | u32 irq; |
198 | struct stm32_dma_desc *desc; |
199 | u32 next_sg; |
200 | struct dma_slave_config dma_sconfig; |
201 | struct stm32_dma_chan_reg chan_reg; |
202 | u32 threshold; |
203 | u32 mem_burst; |
204 | u32 mem_width; |
205 | }; |
206 | |
207 | struct stm32_dma_device { |
208 | struct dma_device ddev; |
209 | void __iomem *base; |
210 | struct clk *clk; |
211 | struct reset_control *rst; |
212 | bool mem2mem; |
213 | struct stm32_dma_chan chan[STM32_DMA_MAX_CHANNELS]; |
214 | }; |
215 | |
216 | static struct stm32_dma_device *stm32_dma_get_dev(struct stm32_dma_chan *chan) |
217 | { |
218 | return container_of(chan->vchan.chan.device, struct stm32_dma_device, |
219 | ddev); |
220 | } |
221 | |
222 | static struct stm32_dma_chan *to_stm32_dma_chan(struct dma_chan *c) |
223 | { |
224 | return container_of(c, struct stm32_dma_chan, vchan.chan); |
225 | } |
226 | |
227 | static struct stm32_dma_desc *to_stm32_dma_desc(struct virt_dma_desc *vdesc) |
228 | { |
229 | return container_of(vdesc, struct stm32_dma_desc, vdesc); |
230 | } |
231 | |
232 | static struct device *chan2dev(struct stm32_dma_chan *chan) |
233 | { |
234 | return &chan->vchan.chan.dev->device; |
235 | } |
236 | |
237 | static u32 stm32_dma_read(struct stm32_dma_device *dmadev, u32 reg) |
238 | { |
239 | return readl_relaxed(dmadev->base + reg); |
240 | } |
241 | |
242 | static void stm32_dma_write(struct stm32_dma_device *dmadev, u32 reg, u32 val) |
243 | { |
244 | writel_relaxed(val, dmadev->base + reg); |
245 | } |
246 | |
247 | static struct stm32_dma_desc *stm32_dma_alloc_desc(u32 num_sgs) |
248 | { |
249 | return kzalloc(sizeof(struct stm32_dma_desc) + |
250 | sizeof(struct stm32_dma_sg_req) * num_sgs, GFP_NOWAIT); |
251 | } |
252 | |
253 | static int stm32_dma_get_width(struct stm32_dma_chan *chan, |
254 | enum dma_slave_buswidth width) |
255 | { |
256 | switch (width) { |
257 | case DMA_SLAVE_BUSWIDTH_1_BYTE: |
258 | return STM32_DMA_BYTE; |
259 | case DMA_SLAVE_BUSWIDTH_2_BYTES: |
260 | return STM32_DMA_HALF_WORD; |
261 | case DMA_SLAVE_BUSWIDTH_4_BYTES: |
262 | return STM32_DMA_WORD; |
263 | default: |
264 | dev_err(chan2dev(chan), "Dma bus width not supported\n" ); |
265 | return -EINVAL; |
266 | } |
267 | } |
268 | |
269 | static enum dma_slave_buswidth stm32_dma_get_max_width(u32 buf_len, |
270 | u32 threshold) |
271 | { |
272 | enum dma_slave_buswidth max_width; |
273 | |
274 | if (threshold == STM32_DMA_FIFO_THRESHOLD_FULL) |
275 | max_width = DMA_SLAVE_BUSWIDTH_4_BYTES; |
276 | else |
277 | max_width = DMA_SLAVE_BUSWIDTH_2_BYTES; |
278 | |
279 | while ((buf_len < max_width || buf_len % max_width) && |
280 | max_width > DMA_SLAVE_BUSWIDTH_1_BYTE) |
281 | max_width = max_width >> 1; |
282 | |
283 | return max_width; |
284 | } |
285 | |
286 | static bool stm32_dma_fifo_threshold_is_allowed(u32 burst, u32 threshold, |
287 | enum dma_slave_buswidth width) |
288 | { |
289 | u32 remaining; |
290 | |
291 | if (width != DMA_SLAVE_BUSWIDTH_UNDEFINED) { |
292 | if (burst != 0) { |
293 | /* |
294 | * If number of beats fit in several whole bursts |
295 | * this configuration is allowed. |
296 | */ |
297 | remaining = ((STM32_DMA_FIFO_SIZE / width) * |
298 | (threshold + 1) / 4) % burst; |
299 | |
300 | if (remaining == 0) |
301 | return true; |
302 | } else { |
303 | return true; |
304 | } |
305 | } |
306 | |
307 | return false; |
308 | } |
309 | |
310 | static bool stm32_dma_is_burst_possible(u32 buf_len, u32 threshold) |
311 | { |
312 | /* |
313 | * Buffer or period length has to be aligned on FIFO depth. |
314 | * Otherwise bytes may be stuck within FIFO at buffer or period |
315 | * length. |
316 | */ |
317 | return ((buf_len % ((threshold + 1) * 4)) == 0); |
318 | } |
319 | |
320 | static u32 stm32_dma_get_best_burst(u32 buf_len, u32 max_burst, u32 threshold, |
321 | enum dma_slave_buswidth width) |
322 | { |
323 | u32 best_burst = max_burst; |
324 | |
325 | if (best_burst == 1 || !stm32_dma_is_burst_possible(buf_len, threshold)) |
326 | return 0; |
327 | |
328 | while ((buf_len < best_burst * width && best_burst > 1) || |
329 | !stm32_dma_fifo_threshold_is_allowed(best_burst, threshold, |
330 | width)) { |
331 | if (best_burst > STM32_DMA_MIN_BURST) |
332 | best_burst = best_burst >> 1; |
333 | else |
334 | best_burst = 0; |
335 | } |
336 | |
337 | return best_burst; |
338 | } |
339 | |
340 | static int stm32_dma_get_burst(struct stm32_dma_chan *chan, u32 maxburst) |
341 | { |
342 | switch (maxburst) { |
343 | case 0: |
344 | case 1: |
345 | return STM32_DMA_BURST_SINGLE; |
346 | case 4: |
347 | return STM32_DMA_BURST_INCR4; |
348 | case 8: |
349 | return STM32_DMA_BURST_INCR8; |
350 | case 16: |
351 | return STM32_DMA_BURST_INCR16; |
352 | default: |
353 | dev_err(chan2dev(chan), "Dma burst size not supported\n" ); |
354 | return -EINVAL; |
355 | } |
356 | } |
357 | |
358 | static void stm32_dma_set_fifo_config(struct stm32_dma_chan *chan, |
359 | u32 src_burst, u32 dst_burst) |
360 | { |
361 | chan->chan_reg.dma_sfcr &= ~STM32_DMA_SFCR_MASK; |
362 | chan->chan_reg.dma_scr &= ~STM32_DMA_SCR_DMEIE; |
363 | |
364 | if (!src_burst && !dst_burst) { |
365 | /* Using direct mode */ |
366 | chan->chan_reg.dma_scr |= STM32_DMA_SCR_DMEIE; |
367 | } else { |
368 | /* Using FIFO mode */ |
369 | chan->chan_reg.dma_sfcr |= STM32_DMA_SFCR_MASK; |
370 | } |
371 | } |
372 | |
373 | static int stm32_dma_slave_config(struct dma_chan *c, |
374 | struct dma_slave_config *config) |
375 | { |
376 | struct stm32_dma_chan *chan = to_stm32_dma_chan(c); |
377 | |
378 | memcpy(&chan->dma_sconfig, config, sizeof(*config)); |
379 | |
380 | chan->config_init = true; |
381 | |
382 | return 0; |
383 | } |
384 | |
385 | static u32 stm32_dma_irq_status(struct stm32_dma_chan *chan) |
386 | { |
387 | struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan); |
388 | u32 flags, dma_isr; |
389 | |
390 | /* |
391 | * Read "flags" from DMA_xISR register corresponding to the selected |
392 | * DMA channel at the correct bit offset inside that register. |
393 | * |
394 | * If (ch % 4) is 2 or 3, left shift the mask by 16 bits. |
395 | * If (ch % 4) is 1 or 3, additionally left shift the mask by 6 bits. |
396 | */ |
397 | |
398 | if (chan->id & 4) |
399 | dma_isr = stm32_dma_read(dmadev, STM32_DMA_HISR); |
400 | else |
401 | dma_isr = stm32_dma_read(dmadev, STM32_DMA_LISR); |
402 | |
403 | flags = dma_isr >> (((chan->id & 2) << 3) | ((chan->id & 1) * 6)); |
404 | |
405 | return flags & STM32_DMA_MASKI; |
406 | } |
407 | |
408 | static void stm32_dma_irq_clear(struct stm32_dma_chan *chan, u32 flags) |
409 | { |
410 | struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan); |
411 | u32 dma_ifcr; |
412 | |
413 | /* |
414 | * Write "flags" to the DMA_xIFCR register corresponding to the selected |
415 | * DMA channel at the correct bit offset inside that register. |
416 | * |
417 | * If (ch % 4) is 2 or 3, left shift the mask by 16 bits. |
418 | * If (ch % 4) is 1 or 3, additionally left shift the mask by 6 bits. |
419 | */ |
420 | flags &= STM32_DMA_MASKI; |
421 | dma_ifcr = flags << (((chan->id & 2) << 3) | ((chan->id & 1) * 6)); |
422 | |
423 | if (chan->id & 4) |
424 | stm32_dma_write(dmadev, STM32_DMA_HIFCR, dma_ifcr); |
425 | else |
426 | stm32_dma_write(dmadev, STM32_DMA_LIFCR, dma_ifcr); |
427 | } |
428 | |
429 | static int stm32_dma_disable_chan(struct stm32_dma_chan *chan) |
430 | { |
431 | struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan); |
432 | unsigned long timeout = jiffies + msecs_to_jiffies(5000); |
433 | u32 dma_scr, id; |
434 | |
435 | id = chan->id; |
436 | dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id)); |
437 | |
438 | if (dma_scr & STM32_DMA_SCR_EN) { |
439 | dma_scr &= ~STM32_DMA_SCR_EN; |
440 | stm32_dma_write(dmadev, STM32_DMA_SCR(id), dma_scr); |
441 | |
442 | do { |
443 | dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id)); |
444 | dma_scr &= STM32_DMA_SCR_EN; |
445 | if (!dma_scr) |
446 | break; |
447 | |
448 | if (time_after_eq(jiffies, timeout)) { |
449 | dev_err(chan2dev(chan), "%s: timeout!\n" , |
450 | __func__); |
451 | return -EBUSY; |
452 | } |
453 | cond_resched(); |
454 | } while (1); |
455 | } |
456 | |
457 | return 0; |
458 | } |
459 | |
460 | static void stm32_dma_stop(struct stm32_dma_chan *chan) |
461 | { |
462 | struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan); |
463 | u32 dma_scr, dma_sfcr, status; |
464 | int ret; |
465 | |
466 | /* Disable interrupts */ |
467 | dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id)); |
468 | dma_scr &= ~STM32_DMA_SCR_IRQ_MASK; |
469 | stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), dma_scr); |
470 | dma_sfcr = stm32_dma_read(dmadev, STM32_DMA_SFCR(chan->id)); |
471 | dma_sfcr &= ~STM32_DMA_SFCR_FEIE; |
472 | stm32_dma_write(dmadev, STM32_DMA_SFCR(chan->id), dma_sfcr); |
473 | |
474 | /* Disable DMA */ |
475 | ret = stm32_dma_disable_chan(chan); |
476 | if (ret < 0) |
477 | return; |
478 | |
479 | /* Clear interrupt status if it is there */ |
480 | status = stm32_dma_irq_status(chan); |
481 | if (status) { |
482 | dev_dbg(chan2dev(chan), "%s(): clearing interrupt: 0x%08x\n" , |
483 | __func__, status); |
484 | stm32_dma_irq_clear(chan, status); |
485 | } |
486 | |
487 | chan->busy = false; |
488 | } |
489 | |
490 | static int stm32_dma_terminate_all(struct dma_chan *c) |
491 | { |
492 | struct stm32_dma_chan *chan = to_stm32_dma_chan(c); |
493 | unsigned long flags; |
494 | LIST_HEAD(head); |
495 | |
496 | spin_lock_irqsave(&chan->vchan.lock, flags); |
497 | |
498 | if (chan->busy) { |
499 | stm32_dma_stop(chan); |
500 | chan->desc = NULL; |
501 | } |
502 | |
503 | vchan_get_all_descriptors(&chan->vchan, &head); |
504 | spin_unlock_irqrestore(&chan->vchan.lock, flags); |
505 | vchan_dma_desc_free_list(&chan->vchan, &head); |
506 | |
507 | return 0; |
508 | } |
509 | |
510 | static void stm32_dma_synchronize(struct dma_chan *c) |
511 | { |
512 | struct stm32_dma_chan *chan = to_stm32_dma_chan(c); |
513 | |
514 | vchan_synchronize(&chan->vchan); |
515 | } |
516 | |
517 | static void stm32_dma_dump_reg(struct stm32_dma_chan *chan) |
518 | { |
519 | struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan); |
520 | u32 scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id)); |
521 | u32 ndtr = stm32_dma_read(dmadev, STM32_DMA_SNDTR(chan->id)); |
522 | u32 spar = stm32_dma_read(dmadev, STM32_DMA_SPAR(chan->id)); |
523 | u32 sm0ar = stm32_dma_read(dmadev, STM32_DMA_SM0AR(chan->id)); |
524 | u32 sm1ar = stm32_dma_read(dmadev, STM32_DMA_SM1AR(chan->id)); |
525 | u32 sfcr = stm32_dma_read(dmadev, STM32_DMA_SFCR(chan->id)); |
526 | |
527 | dev_dbg(chan2dev(chan), "SCR: 0x%08x\n" , scr); |
528 | dev_dbg(chan2dev(chan), "NDTR: 0x%08x\n" , ndtr); |
529 | dev_dbg(chan2dev(chan), "SPAR: 0x%08x\n" , spar); |
530 | dev_dbg(chan2dev(chan), "SM0AR: 0x%08x\n" , sm0ar); |
531 | dev_dbg(chan2dev(chan), "SM1AR: 0x%08x\n" , sm1ar); |
532 | dev_dbg(chan2dev(chan), "SFCR: 0x%08x\n" , sfcr); |
533 | } |
534 | |
535 | static void stm32_dma_configure_next_sg(struct stm32_dma_chan *chan); |
536 | |
537 | static void stm32_dma_start_transfer(struct stm32_dma_chan *chan) |
538 | { |
539 | struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan); |
540 | struct virt_dma_desc *vdesc; |
541 | struct stm32_dma_sg_req *sg_req; |
542 | struct stm32_dma_chan_reg *reg; |
543 | u32 status; |
544 | int ret; |
545 | |
546 | ret = stm32_dma_disable_chan(chan); |
547 | if (ret < 0) |
548 | return; |
549 | |
550 | if (!chan->desc) { |
551 | vdesc = vchan_next_desc(&chan->vchan); |
552 | if (!vdesc) |
553 | return; |
554 | |
555 | chan->desc = to_stm32_dma_desc(vdesc); |
556 | chan->next_sg = 0; |
557 | } |
558 | |
559 | if (chan->next_sg == chan->desc->num_sgs) |
560 | chan->next_sg = 0; |
561 | |
562 | sg_req = &chan->desc->sg_req[chan->next_sg]; |
563 | reg = &sg_req->chan_reg; |
564 | |
565 | stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), reg->dma_scr); |
566 | stm32_dma_write(dmadev, STM32_DMA_SPAR(chan->id), reg->dma_spar); |
567 | stm32_dma_write(dmadev, STM32_DMA_SM0AR(chan->id), reg->dma_sm0ar); |
568 | stm32_dma_write(dmadev, STM32_DMA_SFCR(chan->id), reg->dma_sfcr); |
569 | stm32_dma_write(dmadev, STM32_DMA_SM1AR(chan->id), reg->dma_sm1ar); |
570 | stm32_dma_write(dmadev, STM32_DMA_SNDTR(chan->id), reg->dma_sndtr); |
571 | |
572 | chan->next_sg++; |
573 | |
574 | /* Clear interrupt status if it is there */ |
575 | status = stm32_dma_irq_status(chan); |
576 | if (status) |
577 | stm32_dma_irq_clear(chan, status); |
578 | |
579 | if (chan->desc->cyclic) |
580 | stm32_dma_configure_next_sg(chan); |
581 | |
582 | stm32_dma_dump_reg(chan); |
583 | |
584 | /* Start DMA */ |
585 | reg->dma_scr |= STM32_DMA_SCR_EN; |
586 | stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), reg->dma_scr); |
587 | |
588 | chan->busy = true; |
589 | |
590 | dev_dbg(chan2dev(chan), "vchan %pK: started\n" , &chan->vchan); |
591 | } |
592 | |
593 | static void stm32_dma_configure_next_sg(struct stm32_dma_chan *chan) |
594 | { |
595 | struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan); |
596 | struct stm32_dma_sg_req *sg_req; |
597 | u32 dma_scr, dma_sm0ar, dma_sm1ar, id; |
598 | |
599 | id = chan->id; |
600 | dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id)); |
601 | |
602 | if (dma_scr & STM32_DMA_SCR_DBM) { |
603 | if (chan->next_sg == chan->desc->num_sgs) |
604 | chan->next_sg = 0; |
605 | |
606 | sg_req = &chan->desc->sg_req[chan->next_sg]; |
607 | |
608 | if (dma_scr & STM32_DMA_SCR_CT) { |
609 | dma_sm0ar = sg_req->chan_reg.dma_sm0ar; |
610 | stm32_dma_write(dmadev, STM32_DMA_SM0AR(id), dma_sm0ar); |
611 | dev_dbg(chan2dev(chan), "CT=1 <=> SM0AR: 0x%08x\n" , |
612 | stm32_dma_read(dmadev, STM32_DMA_SM0AR(id))); |
613 | } else { |
614 | dma_sm1ar = sg_req->chan_reg.dma_sm1ar; |
615 | stm32_dma_write(dmadev, STM32_DMA_SM1AR(id), dma_sm1ar); |
616 | dev_dbg(chan2dev(chan), "CT=0 <=> SM1AR: 0x%08x\n" , |
617 | stm32_dma_read(dmadev, STM32_DMA_SM1AR(id))); |
618 | } |
619 | } |
620 | } |
621 | |
622 | static void stm32_dma_handle_chan_done(struct stm32_dma_chan *chan) |
623 | { |
624 | if (chan->desc) { |
625 | if (chan->desc->cyclic) { |
626 | vchan_cyclic_callback(&chan->desc->vdesc); |
627 | chan->next_sg++; |
628 | stm32_dma_configure_next_sg(chan); |
629 | } else { |
630 | chan->busy = false; |
631 | if (chan->next_sg == chan->desc->num_sgs) { |
632 | list_del(&chan->desc->vdesc.node); |
633 | vchan_cookie_complete(&chan->desc->vdesc); |
634 | chan->desc = NULL; |
635 | } |
636 | stm32_dma_start_transfer(chan); |
637 | } |
638 | } |
639 | } |
640 | |
641 | static irqreturn_t stm32_dma_chan_irq(int irq, void *devid) |
642 | { |
643 | struct stm32_dma_chan *chan = devid; |
644 | struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan); |
645 | u32 status, scr, sfcr; |
646 | |
647 | spin_lock(&chan->vchan.lock); |
648 | |
649 | status = stm32_dma_irq_status(chan); |
650 | scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id)); |
651 | sfcr = stm32_dma_read(dmadev, STM32_DMA_SFCR(chan->id)); |
652 | |
653 | if (status & STM32_DMA_TCI) { |
654 | stm32_dma_irq_clear(chan, STM32_DMA_TCI); |
655 | if (scr & STM32_DMA_SCR_TCIE) |
656 | stm32_dma_handle_chan_done(chan); |
657 | status &= ~STM32_DMA_TCI; |
658 | } |
659 | if (status & STM32_DMA_HTI) { |
660 | stm32_dma_irq_clear(chan, STM32_DMA_HTI); |
661 | status &= ~STM32_DMA_HTI; |
662 | } |
663 | if (status & STM32_DMA_FEI) { |
664 | stm32_dma_irq_clear(chan, STM32_DMA_FEI); |
665 | status &= ~STM32_DMA_FEI; |
666 | if (sfcr & STM32_DMA_SFCR_FEIE) { |
667 | if (!(scr & STM32_DMA_SCR_EN)) |
668 | dev_err(chan2dev(chan), "FIFO Error\n" ); |
669 | else |
670 | dev_dbg(chan2dev(chan), "FIFO over/underrun\n" ); |
671 | } |
672 | } |
673 | if (status) { |
674 | stm32_dma_irq_clear(chan, status); |
675 | dev_err(chan2dev(chan), "DMA error: status=0x%08x\n" , status); |
676 | if (!(scr & STM32_DMA_SCR_EN)) |
677 | dev_err(chan2dev(chan), "chan disabled by HW\n" ); |
678 | } |
679 | |
680 | spin_unlock(&chan->vchan.lock); |
681 | |
682 | return IRQ_HANDLED; |
683 | } |
684 | |
685 | static void stm32_dma_issue_pending(struct dma_chan *c) |
686 | { |
687 | struct stm32_dma_chan *chan = to_stm32_dma_chan(c); |
688 | unsigned long flags; |
689 | |
690 | spin_lock_irqsave(&chan->vchan.lock, flags); |
691 | if (vchan_issue_pending(&chan->vchan) && !chan->desc && !chan->busy) { |
692 | dev_dbg(chan2dev(chan), "vchan %pK: issued\n" , &chan->vchan); |
693 | stm32_dma_start_transfer(chan); |
694 | |
695 | } |
696 | spin_unlock_irqrestore(&chan->vchan.lock, flags); |
697 | } |
698 | |
699 | static int stm32_dma_set_xfer_param(struct stm32_dma_chan *chan, |
700 | enum dma_transfer_direction direction, |
701 | enum dma_slave_buswidth *buswidth, |
702 | u32 buf_len) |
703 | { |
704 | enum dma_slave_buswidth src_addr_width, dst_addr_width; |
705 | int src_bus_width, dst_bus_width; |
706 | int src_burst_size, dst_burst_size; |
707 | u32 src_maxburst, dst_maxburst, src_best_burst, dst_best_burst; |
708 | u32 dma_scr, threshold; |
709 | |
710 | src_addr_width = chan->dma_sconfig.src_addr_width; |
711 | dst_addr_width = chan->dma_sconfig.dst_addr_width; |
712 | src_maxburst = chan->dma_sconfig.src_maxburst; |
713 | dst_maxburst = chan->dma_sconfig.dst_maxburst; |
714 | threshold = chan->threshold; |
715 | |
716 | switch (direction) { |
717 | case DMA_MEM_TO_DEV: |
718 | /* Set device data size */ |
719 | dst_bus_width = stm32_dma_get_width(chan, dst_addr_width); |
720 | if (dst_bus_width < 0) |
721 | return dst_bus_width; |
722 | |
723 | /* Set device burst size */ |
724 | dst_best_burst = stm32_dma_get_best_burst(buf_len, |
725 | dst_maxburst, |
726 | threshold, |
727 | dst_addr_width); |
728 | |
729 | dst_burst_size = stm32_dma_get_burst(chan, dst_best_burst); |
730 | if (dst_burst_size < 0) |
731 | return dst_burst_size; |
732 | |
733 | /* Set memory data size */ |
734 | src_addr_width = stm32_dma_get_max_width(buf_len, threshold); |
735 | chan->mem_width = src_addr_width; |
736 | src_bus_width = stm32_dma_get_width(chan, src_addr_width); |
737 | if (src_bus_width < 0) |
738 | return src_bus_width; |
739 | |
740 | /* Set memory burst size */ |
741 | src_maxburst = STM32_DMA_MAX_BURST; |
742 | src_best_burst = stm32_dma_get_best_burst(buf_len, |
743 | src_maxburst, |
744 | threshold, |
745 | src_addr_width); |
746 | src_burst_size = stm32_dma_get_burst(chan, src_best_burst); |
747 | if (src_burst_size < 0) |
748 | return src_burst_size; |
749 | |
750 | dma_scr = STM32_DMA_SCR_DIR(STM32_DMA_MEM_TO_DEV) | |
751 | STM32_DMA_SCR_PSIZE(dst_bus_width) | |
752 | STM32_DMA_SCR_MSIZE(src_bus_width) | |
753 | STM32_DMA_SCR_PBURST(dst_burst_size) | |
754 | STM32_DMA_SCR_MBURST(src_burst_size); |
755 | |
756 | /* Set FIFO threshold */ |
757 | chan->chan_reg.dma_sfcr &= ~STM32_DMA_SFCR_FTH_MASK; |
758 | chan->chan_reg.dma_sfcr |= STM32_DMA_SFCR_FTH(threshold); |
759 | |
760 | /* Set peripheral address */ |
761 | chan->chan_reg.dma_spar = chan->dma_sconfig.dst_addr; |
762 | *buswidth = dst_addr_width; |
763 | break; |
764 | |
765 | case DMA_DEV_TO_MEM: |
766 | /* Set device data size */ |
767 | src_bus_width = stm32_dma_get_width(chan, src_addr_width); |
768 | if (src_bus_width < 0) |
769 | return src_bus_width; |
770 | |
771 | /* Set device burst size */ |
772 | src_best_burst = stm32_dma_get_best_burst(buf_len, |
773 | src_maxburst, |
774 | threshold, |
775 | src_addr_width); |
776 | chan->mem_burst = src_best_burst; |
777 | src_burst_size = stm32_dma_get_burst(chan, src_best_burst); |
778 | if (src_burst_size < 0) |
779 | return src_burst_size; |
780 | |
781 | /* Set memory data size */ |
782 | dst_addr_width = stm32_dma_get_max_width(buf_len, threshold); |
783 | chan->mem_width = dst_addr_width; |
784 | dst_bus_width = stm32_dma_get_width(chan, dst_addr_width); |
785 | if (dst_bus_width < 0) |
786 | return dst_bus_width; |
787 | |
788 | /* Set memory burst size */ |
789 | dst_maxburst = STM32_DMA_MAX_BURST; |
790 | dst_best_burst = stm32_dma_get_best_burst(buf_len, |
791 | dst_maxburst, |
792 | threshold, |
793 | dst_addr_width); |
794 | chan->mem_burst = dst_best_burst; |
795 | dst_burst_size = stm32_dma_get_burst(chan, dst_best_burst); |
796 | if (dst_burst_size < 0) |
797 | return dst_burst_size; |
798 | |
799 | dma_scr = STM32_DMA_SCR_DIR(STM32_DMA_DEV_TO_MEM) | |
800 | STM32_DMA_SCR_PSIZE(src_bus_width) | |
801 | STM32_DMA_SCR_MSIZE(dst_bus_width) | |
802 | STM32_DMA_SCR_PBURST(src_burst_size) | |
803 | STM32_DMA_SCR_MBURST(dst_burst_size); |
804 | |
805 | /* Set FIFO threshold */ |
806 | chan->chan_reg.dma_sfcr &= ~STM32_DMA_SFCR_FTH_MASK; |
807 | chan->chan_reg.dma_sfcr |= STM32_DMA_SFCR_FTH(threshold); |
808 | |
809 | /* Set peripheral address */ |
810 | chan->chan_reg.dma_spar = chan->dma_sconfig.src_addr; |
811 | *buswidth = chan->dma_sconfig.src_addr_width; |
812 | break; |
813 | |
814 | default: |
815 | dev_err(chan2dev(chan), "Dma direction is not supported\n" ); |
816 | return -EINVAL; |
817 | } |
818 | |
819 | stm32_dma_set_fifo_config(chan, src_best_burst, dst_best_burst); |
820 | |
821 | /* Set DMA control register */ |
822 | chan->chan_reg.dma_scr &= ~(STM32_DMA_SCR_DIR_MASK | |
823 | STM32_DMA_SCR_PSIZE_MASK | STM32_DMA_SCR_MSIZE_MASK | |
824 | STM32_DMA_SCR_PBURST_MASK | STM32_DMA_SCR_MBURST_MASK); |
825 | chan->chan_reg.dma_scr |= dma_scr; |
826 | |
827 | return 0; |
828 | } |
829 | |
830 | static void stm32_dma_clear_reg(struct stm32_dma_chan_reg *regs) |
831 | { |
832 | memset(regs, 0, sizeof(struct stm32_dma_chan_reg)); |
833 | } |
834 | |
835 | static struct dma_async_tx_descriptor *stm32_dma_prep_slave_sg( |
836 | struct dma_chan *c, struct scatterlist *sgl, |
837 | u32 sg_len, enum dma_transfer_direction direction, |
838 | unsigned long flags, void *context) |
839 | { |
840 | struct stm32_dma_chan *chan = to_stm32_dma_chan(c); |
841 | struct stm32_dma_desc *desc; |
842 | struct scatterlist *sg; |
843 | enum dma_slave_buswidth buswidth; |
844 | u32 nb_data_items; |
845 | int i, ret; |
846 | |
847 | if (!chan->config_init) { |
848 | dev_err(chan2dev(chan), "dma channel is not configured\n" ); |
849 | return NULL; |
850 | } |
851 | |
852 | if (sg_len < 1) { |
853 | dev_err(chan2dev(chan), "Invalid segment length %d\n" , sg_len); |
854 | return NULL; |
855 | } |
856 | |
857 | desc = stm32_dma_alloc_desc(sg_len); |
858 | if (!desc) |
859 | return NULL; |
860 | |
861 | /* Set peripheral flow controller */ |
862 | if (chan->dma_sconfig.device_fc) |
863 | chan->chan_reg.dma_scr |= STM32_DMA_SCR_PFCTRL; |
864 | else |
865 | chan->chan_reg.dma_scr &= ~STM32_DMA_SCR_PFCTRL; |
866 | |
867 | for_each_sg(sgl, sg, sg_len, i) { |
868 | ret = stm32_dma_set_xfer_param(chan, direction, &buswidth, |
869 | sg_dma_len(sg)); |
870 | if (ret < 0) |
871 | goto err; |
872 | |
873 | desc->sg_req[i].len = sg_dma_len(sg); |
874 | |
875 | nb_data_items = desc->sg_req[i].len / buswidth; |
876 | if (nb_data_items > STM32_DMA_ALIGNED_MAX_DATA_ITEMS) { |
877 | dev_err(chan2dev(chan), "nb items not supported\n" ); |
878 | goto err; |
879 | } |
880 | |
881 | stm32_dma_clear_reg(&desc->sg_req[i].chan_reg); |
882 | desc->sg_req[i].chan_reg.dma_scr = chan->chan_reg.dma_scr; |
883 | desc->sg_req[i].chan_reg.dma_sfcr = chan->chan_reg.dma_sfcr; |
884 | desc->sg_req[i].chan_reg.dma_spar = chan->chan_reg.dma_spar; |
885 | desc->sg_req[i].chan_reg.dma_sm0ar = sg_dma_address(sg); |
886 | desc->sg_req[i].chan_reg.dma_sm1ar = sg_dma_address(sg); |
887 | desc->sg_req[i].chan_reg.dma_sndtr = nb_data_items; |
888 | } |
889 | |
890 | desc->num_sgs = sg_len; |
891 | desc->cyclic = false; |
892 | |
893 | return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags); |
894 | |
895 | err: |
896 | kfree(desc); |
897 | return NULL; |
898 | } |
899 | |
900 | static struct dma_async_tx_descriptor *stm32_dma_prep_dma_cyclic( |
901 | struct dma_chan *c, dma_addr_t buf_addr, size_t buf_len, |
902 | size_t period_len, enum dma_transfer_direction direction, |
903 | unsigned long flags) |
904 | { |
905 | struct stm32_dma_chan *chan = to_stm32_dma_chan(c); |
906 | struct stm32_dma_desc *desc; |
907 | enum dma_slave_buswidth buswidth; |
908 | u32 num_periods, nb_data_items; |
909 | int i, ret; |
910 | |
911 | if (!buf_len || !period_len) { |
912 | dev_err(chan2dev(chan), "Invalid buffer/period len\n" ); |
913 | return NULL; |
914 | } |
915 | |
916 | if (!chan->config_init) { |
917 | dev_err(chan2dev(chan), "dma channel is not configured\n" ); |
918 | return NULL; |
919 | } |
920 | |
921 | if (buf_len % period_len) { |
922 | dev_err(chan2dev(chan), "buf_len not multiple of period_len\n" ); |
923 | return NULL; |
924 | } |
925 | |
926 | /* |
927 | * We allow to take more number of requests till DMA is |
928 | * not started. The driver will loop over all requests. |
929 | * Once DMA is started then new requests can be queued only after |
930 | * terminating the DMA. |
931 | */ |
932 | if (chan->busy) { |
933 | dev_err(chan2dev(chan), "Request not allowed when dma busy\n" ); |
934 | return NULL; |
935 | } |
936 | |
937 | ret = stm32_dma_set_xfer_param(chan, direction, &buswidth, period_len); |
938 | if (ret < 0) |
939 | return NULL; |
940 | |
941 | nb_data_items = period_len / buswidth; |
942 | if (nb_data_items > STM32_DMA_ALIGNED_MAX_DATA_ITEMS) { |
943 | dev_err(chan2dev(chan), "number of items not supported\n" ); |
944 | return NULL; |
945 | } |
946 | |
947 | /* Enable Circular mode or double buffer mode */ |
948 | if (buf_len == period_len) |
949 | chan->chan_reg.dma_scr |= STM32_DMA_SCR_CIRC; |
950 | else |
951 | chan->chan_reg.dma_scr |= STM32_DMA_SCR_DBM; |
952 | |
953 | /* Clear periph ctrl if client set it */ |
954 | chan->chan_reg.dma_scr &= ~STM32_DMA_SCR_PFCTRL; |
955 | |
956 | num_periods = buf_len / period_len; |
957 | |
958 | desc = stm32_dma_alloc_desc(num_periods); |
959 | if (!desc) |
960 | return NULL; |
961 | |
962 | for (i = 0; i < num_periods; i++) { |
963 | desc->sg_req[i].len = period_len; |
964 | |
965 | stm32_dma_clear_reg(&desc->sg_req[i].chan_reg); |
966 | desc->sg_req[i].chan_reg.dma_scr = chan->chan_reg.dma_scr; |
967 | desc->sg_req[i].chan_reg.dma_sfcr = chan->chan_reg.dma_sfcr; |
968 | desc->sg_req[i].chan_reg.dma_spar = chan->chan_reg.dma_spar; |
969 | desc->sg_req[i].chan_reg.dma_sm0ar = buf_addr; |
970 | desc->sg_req[i].chan_reg.dma_sm1ar = buf_addr; |
971 | desc->sg_req[i].chan_reg.dma_sndtr = nb_data_items; |
972 | buf_addr += period_len; |
973 | } |
974 | |
975 | desc->num_sgs = num_periods; |
976 | desc->cyclic = true; |
977 | |
978 | return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags); |
979 | } |
980 | |
981 | static struct dma_async_tx_descriptor *stm32_dma_prep_dma_memcpy( |
982 | struct dma_chan *c, dma_addr_t dest, |
983 | dma_addr_t src, size_t len, unsigned long flags) |
984 | { |
985 | struct stm32_dma_chan *chan = to_stm32_dma_chan(c); |
986 | enum dma_slave_buswidth max_width; |
987 | struct stm32_dma_desc *desc; |
988 | size_t xfer_count, offset; |
989 | u32 num_sgs, best_burst, dma_burst, threshold; |
990 | int i; |
991 | |
992 | num_sgs = DIV_ROUND_UP(len, STM32_DMA_ALIGNED_MAX_DATA_ITEMS); |
993 | desc = stm32_dma_alloc_desc(num_sgs); |
994 | if (!desc) |
995 | return NULL; |
996 | |
997 | threshold = chan->threshold; |
998 | |
999 | for (offset = 0, i = 0; offset < len; offset += xfer_count, i++) { |
1000 | xfer_count = min_t(size_t, len - offset, |
1001 | STM32_DMA_ALIGNED_MAX_DATA_ITEMS); |
1002 | |
1003 | /* Compute best burst size */ |
1004 | max_width = DMA_SLAVE_BUSWIDTH_1_BYTE; |
1005 | best_burst = stm32_dma_get_best_burst(len, STM32_DMA_MAX_BURST, |
1006 | threshold, max_width); |
1007 | dma_burst = stm32_dma_get_burst(chan, best_burst); |
1008 | |
1009 | stm32_dma_clear_reg(&desc->sg_req[i].chan_reg); |
1010 | desc->sg_req[i].chan_reg.dma_scr = |
1011 | STM32_DMA_SCR_DIR(STM32_DMA_MEM_TO_MEM) | |
1012 | STM32_DMA_SCR_PBURST(dma_burst) | |
1013 | STM32_DMA_SCR_MBURST(dma_burst) | |
1014 | STM32_DMA_SCR_MINC | |
1015 | STM32_DMA_SCR_PINC | |
1016 | STM32_DMA_SCR_TCIE | |
1017 | STM32_DMA_SCR_TEIE; |
1018 | desc->sg_req[i].chan_reg.dma_sfcr |= STM32_DMA_SFCR_MASK; |
1019 | desc->sg_req[i].chan_reg.dma_sfcr |= |
1020 | STM32_DMA_SFCR_FTH(threshold); |
1021 | desc->sg_req[i].chan_reg.dma_spar = src + offset; |
1022 | desc->sg_req[i].chan_reg.dma_sm0ar = dest + offset; |
1023 | desc->sg_req[i].chan_reg.dma_sndtr = xfer_count; |
1024 | desc->sg_req[i].len = xfer_count; |
1025 | } |
1026 | |
1027 | desc->num_sgs = num_sgs; |
1028 | desc->cyclic = false; |
1029 | |
1030 | return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags); |
1031 | } |
1032 | |
1033 | static u32 stm32_dma_get_remaining_bytes(struct stm32_dma_chan *chan) |
1034 | { |
1035 | u32 dma_scr, width, ndtr; |
1036 | struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan); |
1037 | |
1038 | dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id)); |
1039 | width = STM32_DMA_SCR_PSIZE_GET(dma_scr); |
1040 | ndtr = stm32_dma_read(dmadev, STM32_DMA_SNDTR(chan->id)); |
1041 | |
1042 | return ndtr << width; |
1043 | } |
1044 | |
1045 | static size_t stm32_dma_desc_residue(struct stm32_dma_chan *chan, |
1046 | struct stm32_dma_desc *desc, |
1047 | u32 next_sg) |
1048 | { |
1049 | u32 modulo, burst_size; |
1050 | u32 residue = 0; |
1051 | int i; |
1052 | |
1053 | /* |
1054 | * In cyclic mode, for the last period, residue = remaining bytes from |
1055 | * NDTR |
1056 | */ |
1057 | if (chan->desc->cyclic && next_sg == 0) { |
1058 | residue = stm32_dma_get_remaining_bytes(chan); |
1059 | goto end; |
1060 | } |
1061 | |
1062 | /* |
1063 | * For all other periods in cyclic mode, and in sg mode, |
1064 | * residue = remaining bytes from NDTR + remaining periods/sg to be |
1065 | * transferred |
1066 | */ |
1067 | for (i = next_sg; i < desc->num_sgs; i++) |
1068 | residue += desc->sg_req[i].len; |
1069 | residue += stm32_dma_get_remaining_bytes(chan); |
1070 | |
1071 | end: |
1072 | if (!chan->mem_burst) |
1073 | return residue; |
1074 | |
1075 | burst_size = chan->mem_burst * chan->mem_width; |
1076 | modulo = residue % burst_size; |
1077 | if (modulo) |
1078 | residue = residue - modulo + burst_size; |
1079 | |
1080 | return residue; |
1081 | } |
1082 | |
1083 | static enum dma_status stm32_dma_tx_status(struct dma_chan *c, |
1084 | dma_cookie_t cookie, |
1085 | struct dma_tx_state *state) |
1086 | { |
1087 | struct stm32_dma_chan *chan = to_stm32_dma_chan(c); |
1088 | struct virt_dma_desc *vdesc; |
1089 | enum dma_status status; |
1090 | unsigned long flags; |
1091 | u32 residue = 0; |
1092 | |
1093 | status = dma_cookie_status(c, cookie, state); |
1094 | if (status == DMA_COMPLETE || !state) |
1095 | return status; |
1096 | |
1097 | spin_lock_irqsave(&chan->vchan.lock, flags); |
1098 | vdesc = vchan_find_desc(&chan->vchan, cookie); |
1099 | if (chan->desc && cookie == chan->desc->vdesc.tx.cookie) |
1100 | residue = stm32_dma_desc_residue(chan, chan->desc, |
1101 | chan->next_sg); |
1102 | else if (vdesc) |
1103 | residue = stm32_dma_desc_residue(chan, |
1104 | to_stm32_dma_desc(vdesc), 0); |
1105 | dma_set_residue(state, residue); |
1106 | |
1107 | spin_unlock_irqrestore(&chan->vchan.lock, flags); |
1108 | |
1109 | return status; |
1110 | } |
1111 | |
1112 | static int stm32_dma_alloc_chan_resources(struct dma_chan *c) |
1113 | { |
1114 | struct stm32_dma_chan *chan = to_stm32_dma_chan(c); |
1115 | struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan); |
1116 | int ret; |
1117 | |
1118 | chan->config_init = false; |
1119 | |
1120 | ret = pm_runtime_get_sync(dmadev->ddev.dev); |
1121 | if (ret < 0) |
1122 | return ret; |
1123 | |
1124 | ret = stm32_dma_disable_chan(chan); |
1125 | if (ret < 0) |
1126 | pm_runtime_put(dmadev->ddev.dev); |
1127 | |
1128 | return ret; |
1129 | } |
1130 | |
1131 | static void stm32_dma_free_chan_resources(struct dma_chan *c) |
1132 | { |
1133 | struct stm32_dma_chan *chan = to_stm32_dma_chan(c); |
1134 | struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan); |
1135 | unsigned long flags; |
1136 | |
1137 | dev_dbg(chan2dev(chan), "Freeing channel %d\n" , chan->id); |
1138 | |
1139 | if (chan->busy) { |
1140 | spin_lock_irqsave(&chan->vchan.lock, flags); |
1141 | stm32_dma_stop(chan); |
1142 | chan->desc = NULL; |
1143 | spin_unlock_irqrestore(&chan->vchan.lock, flags); |
1144 | } |
1145 | |
1146 | pm_runtime_put(dmadev->ddev.dev); |
1147 | |
1148 | vchan_free_chan_resources(to_virt_chan(c)); |
1149 | } |
1150 | |
1151 | static void stm32_dma_desc_free(struct virt_dma_desc *vdesc) |
1152 | { |
1153 | kfree(container_of(vdesc, struct stm32_dma_desc, vdesc)); |
1154 | } |
1155 | |
1156 | static void stm32_dma_set_config(struct stm32_dma_chan *chan, |
1157 | struct stm32_dma_cfg *cfg) |
1158 | { |
1159 | stm32_dma_clear_reg(&chan->chan_reg); |
1160 | |
1161 | chan->chan_reg.dma_scr = cfg->stream_config & STM32_DMA_SCR_CFG_MASK; |
1162 | chan->chan_reg.dma_scr |= STM32_DMA_SCR_REQ(cfg->request_line); |
1163 | |
1164 | /* Enable Interrupts */ |
1165 | chan->chan_reg.dma_scr |= STM32_DMA_SCR_TEIE | STM32_DMA_SCR_TCIE; |
1166 | |
1167 | chan->threshold = STM32_DMA_THRESHOLD_FTR_GET(cfg->features); |
1168 | } |
1169 | |
1170 | static struct dma_chan *stm32_dma_of_xlate(struct of_phandle_args *dma_spec, |
1171 | struct of_dma *ofdma) |
1172 | { |
1173 | struct stm32_dma_device *dmadev = ofdma->of_dma_data; |
1174 | struct device *dev = dmadev->ddev.dev; |
1175 | struct stm32_dma_cfg cfg; |
1176 | struct stm32_dma_chan *chan; |
1177 | struct dma_chan *c; |
1178 | |
1179 | if (dma_spec->args_count < 4) { |
1180 | dev_err(dev, "Bad number of cells\n" ); |
1181 | return NULL; |
1182 | } |
1183 | |
1184 | cfg.channel_id = dma_spec->args[0]; |
1185 | cfg.request_line = dma_spec->args[1]; |
1186 | cfg.stream_config = dma_spec->args[2]; |
1187 | cfg.features = dma_spec->args[3]; |
1188 | |
1189 | if (cfg.channel_id >= STM32_DMA_MAX_CHANNELS || |
1190 | cfg.request_line >= STM32_DMA_MAX_REQUEST_ID) { |
1191 | dev_err(dev, "Bad channel and/or request id\n" ); |
1192 | return NULL; |
1193 | } |
1194 | |
1195 | chan = &dmadev->chan[cfg.channel_id]; |
1196 | |
1197 | c = dma_get_slave_channel(&chan->vchan.chan); |
1198 | if (!c) { |
1199 | dev_err(dev, "No more channels available\n" ); |
1200 | return NULL; |
1201 | } |
1202 | |
1203 | stm32_dma_set_config(chan, &cfg); |
1204 | |
1205 | return c; |
1206 | } |
1207 | |
1208 | static const struct of_device_id stm32_dma_of_match[] = { |
1209 | { .compatible = "st,stm32-dma" , }, |
1210 | { /* sentinel */ }, |
1211 | }; |
1212 | MODULE_DEVICE_TABLE(of, stm32_dma_of_match); |
1213 | |
1214 | static int stm32_dma_probe(struct platform_device *pdev) |
1215 | { |
1216 | struct stm32_dma_chan *chan; |
1217 | struct stm32_dma_device *dmadev; |
1218 | struct dma_device *dd; |
1219 | const struct of_device_id *match; |
1220 | struct resource *res; |
1221 | int i, ret; |
1222 | |
1223 | match = of_match_device(stm32_dma_of_match, &pdev->dev); |
1224 | if (!match) { |
1225 | dev_err(&pdev->dev, "Error: No device match found\n" ); |
1226 | return -ENODEV; |
1227 | } |
1228 | |
1229 | dmadev = devm_kzalloc(&pdev->dev, sizeof(*dmadev), GFP_KERNEL); |
1230 | if (!dmadev) |
1231 | return -ENOMEM; |
1232 | |
1233 | dd = &dmadev->ddev; |
1234 | |
1235 | res = platform_get_resource(pdev, IORESOURCE_MEM, 0); |
1236 | dmadev->base = devm_ioremap_resource(&pdev->dev, res); |
1237 | if (IS_ERR(dmadev->base)) |
1238 | return PTR_ERR(dmadev->base); |
1239 | |
1240 | dmadev->clk = devm_clk_get(&pdev->dev, NULL); |
1241 | if (IS_ERR(dmadev->clk)) { |
1242 | dev_err(&pdev->dev, "Error: Missing controller clock\n" ); |
1243 | return PTR_ERR(dmadev->clk); |
1244 | } |
1245 | |
1246 | ret = clk_prepare_enable(dmadev->clk); |
1247 | if (ret < 0) { |
1248 | dev_err(&pdev->dev, "clk_prep_enable error: %d\n" , ret); |
1249 | return ret; |
1250 | } |
1251 | |
1252 | dmadev->mem2mem = of_property_read_bool(pdev->dev.of_node, |
1253 | "st,mem2mem" ); |
1254 | |
1255 | dmadev->rst = devm_reset_control_get(&pdev->dev, NULL); |
1256 | if (!IS_ERR(dmadev->rst)) { |
1257 | reset_control_assert(dmadev->rst); |
1258 | udelay(2); |
1259 | reset_control_deassert(dmadev->rst); |
1260 | } |
1261 | |
1262 | dma_cap_set(DMA_SLAVE, dd->cap_mask); |
1263 | dma_cap_set(DMA_PRIVATE, dd->cap_mask); |
1264 | dma_cap_set(DMA_CYCLIC, dd->cap_mask); |
1265 | dd->device_alloc_chan_resources = stm32_dma_alloc_chan_resources; |
1266 | dd->device_free_chan_resources = stm32_dma_free_chan_resources; |
1267 | dd->device_tx_status = stm32_dma_tx_status; |
1268 | dd->device_issue_pending = stm32_dma_issue_pending; |
1269 | dd->device_prep_slave_sg = stm32_dma_prep_slave_sg; |
1270 | dd->device_prep_dma_cyclic = stm32_dma_prep_dma_cyclic; |
1271 | dd->device_config = stm32_dma_slave_config; |
1272 | dd->device_terminate_all = stm32_dma_terminate_all; |
1273 | dd->device_synchronize = stm32_dma_synchronize; |
1274 | dd->src_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | |
1275 | BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | |
1276 | BIT(DMA_SLAVE_BUSWIDTH_4_BYTES); |
1277 | dd->dst_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | |
1278 | BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | |
1279 | BIT(DMA_SLAVE_BUSWIDTH_4_BYTES); |
1280 | dd->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV); |
1281 | dd->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST; |
1282 | dd->max_burst = STM32_DMA_MAX_BURST; |
1283 | dd->dev = &pdev->dev; |
1284 | INIT_LIST_HEAD(&dd->channels); |
1285 | |
1286 | if (dmadev->mem2mem) { |
1287 | dma_cap_set(DMA_MEMCPY, dd->cap_mask); |
1288 | dd->device_prep_dma_memcpy = stm32_dma_prep_dma_memcpy; |
1289 | dd->directions |= BIT(DMA_MEM_TO_MEM); |
1290 | } |
1291 | |
1292 | for (i = 0; i < STM32_DMA_MAX_CHANNELS; i++) { |
1293 | chan = &dmadev->chan[i]; |
1294 | chan->id = i; |
1295 | chan->vchan.desc_free = stm32_dma_desc_free; |
1296 | vchan_init(&chan->vchan, dd); |
1297 | } |
1298 | |
1299 | ret = dma_async_device_register(dd); |
1300 | if (ret) |
1301 | goto clk_free; |
1302 | |
1303 | for (i = 0; i < STM32_DMA_MAX_CHANNELS; i++) { |
1304 | chan = &dmadev->chan[i]; |
1305 | res = platform_get_resource(pdev, IORESOURCE_IRQ, i); |
1306 | if (!res) { |
1307 | ret = -EINVAL; |
1308 | dev_err(&pdev->dev, "No irq resource for chan %d\n" , i); |
1309 | goto err_unregister; |
1310 | } |
1311 | chan->irq = res->start; |
1312 | ret = devm_request_irq(&pdev->dev, chan->irq, |
1313 | stm32_dma_chan_irq, 0, |
1314 | dev_name(chan2dev(chan)), chan); |
1315 | if (ret) { |
1316 | dev_err(&pdev->dev, |
1317 | "request_irq failed with err %d channel %d\n" , |
1318 | ret, i); |
1319 | goto err_unregister; |
1320 | } |
1321 | } |
1322 | |
1323 | ret = of_dma_controller_register(pdev->dev.of_node, |
1324 | stm32_dma_of_xlate, dmadev); |
1325 | if (ret < 0) { |
1326 | dev_err(&pdev->dev, |
1327 | "STM32 DMA DMA OF registration failed %d\n" , ret); |
1328 | goto err_unregister; |
1329 | } |
1330 | |
1331 | platform_set_drvdata(pdev, dmadev); |
1332 | |
1333 | pm_runtime_set_active(&pdev->dev); |
1334 | pm_runtime_enable(&pdev->dev); |
1335 | pm_runtime_get_noresume(&pdev->dev); |
1336 | pm_runtime_put(&pdev->dev); |
1337 | |
1338 | dev_info(&pdev->dev, "STM32 DMA driver registered\n" ); |
1339 | |
1340 | return 0; |
1341 | |
1342 | err_unregister: |
1343 | dma_async_device_unregister(dd); |
1344 | clk_free: |
1345 | clk_disable_unprepare(dmadev->clk); |
1346 | |
1347 | return ret; |
1348 | } |
1349 | |
1350 | #ifdef CONFIG_PM |
1351 | static int stm32_dma_runtime_suspend(struct device *dev) |
1352 | { |
1353 | struct stm32_dma_device *dmadev = dev_get_drvdata(dev); |
1354 | |
1355 | clk_disable_unprepare(dmadev->clk); |
1356 | |
1357 | return 0; |
1358 | } |
1359 | |
1360 | static int stm32_dma_runtime_resume(struct device *dev) |
1361 | { |
1362 | struct stm32_dma_device *dmadev = dev_get_drvdata(dev); |
1363 | int ret; |
1364 | |
1365 | ret = clk_prepare_enable(dmadev->clk); |
1366 | if (ret) { |
1367 | dev_err(dev, "failed to prepare_enable clock\n" ); |
1368 | return ret; |
1369 | } |
1370 | |
1371 | return 0; |
1372 | } |
1373 | #endif |
1374 | |
1375 | static const struct dev_pm_ops stm32_dma_pm_ops = { |
1376 | SET_RUNTIME_PM_OPS(stm32_dma_runtime_suspend, |
1377 | stm32_dma_runtime_resume, NULL) |
1378 | }; |
1379 | |
1380 | static struct platform_driver stm32_dma_driver = { |
1381 | .driver = { |
1382 | .name = "stm32-dma" , |
1383 | .of_match_table = stm32_dma_of_match, |
1384 | .pm = &stm32_dma_pm_ops, |
1385 | }, |
1386 | }; |
1387 | |
1388 | static int __init stm32_dma_init(void) |
1389 | { |
1390 | return platform_driver_probe(&stm32_dma_driver, stm32_dma_probe); |
1391 | } |
1392 | subsys_initcall(stm32_dma_init); |
1393 | |