1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * DMA driver for NVIDIA Tegra GPC DMA controller.
4 *
5 * Copyright (c) 2014-2022, NVIDIA CORPORATION. All rights reserved.
6 */
7
8#include <linux/bitfield.h>
9#include <linux/dmaengine.h>
10#include <linux/dma-mapping.h>
11#include <linux/interrupt.h>
12#include <linux/iommu.h>
13#include <linux/iopoll.h>
14#include <linux/minmax.h>
15#include <linux/module.h>
16#include <linux/of.h>
17#include <linux/of_dma.h>
18#include <linux/platform_device.h>
19#include <linux/reset.h>
20#include <linux/slab.h>
21#include <dt-bindings/memory/tegra186-mc.h>
22#include "virt-dma.h"
23
24/* CSR register */
25#define TEGRA_GPCDMA_CHAN_CSR 0x00
26#define TEGRA_GPCDMA_CSR_ENB BIT(31)
27#define TEGRA_GPCDMA_CSR_IE_EOC BIT(30)
28#define TEGRA_GPCDMA_CSR_ONCE BIT(27)
29
30#define TEGRA_GPCDMA_CSR_FC_MODE GENMASK(25, 24)
31#define TEGRA_GPCDMA_CSR_FC_MODE_NO_MMIO \
32 FIELD_PREP(TEGRA_GPCDMA_CSR_FC_MODE, 0)
33#define TEGRA_GPCDMA_CSR_FC_MODE_ONE_MMIO \
34 FIELD_PREP(TEGRA_GPCDMA_CSR_FC_MODE, 1)
35#define TEGRA_GPCDMA_CSR_FC_MODE_TWO_MMIO \
36 FIELD_PREP(TEGRA_GPCDMA_CSR_FC_MODE, 2)
37#define TEGRA_GPCDMA_CSR_FC_MODE_FOUR_MMIO \
38 FIELD_PREP(TEGRA_GPCDMA_CSR_FC_MODE, 3)
39
40#define TEGRA_GPCDMA_CSR_DMA GENMASK(23, 21)
41#define TEGRA_GPCDMA_CSR_DMA_IO2MEM_NO_FC \
42 FIELD_PREP(TEGRA_GPCDMA_CSR_DMA, 0)
43#define TEGRA_GPCDMA_CSR_DMA_IO2MEM_FC \
44 FIELD_PREP(TEGRA_GPCDMA_CSR_DMA, 1)
45#define TEGRA_GPCDMA_CSR_DMA_MEM2IO_NO_FC \
46 FIELD_PREP(TEGRA_GPCDMA_CSR_DMA, 2)
47#define TEGRA_GPCDMA_CSR_DMA_MEM2IO_FC \
48 FIELD_PREP(TEGRA_GPCDMA_CSR_DMA, 3)
49#define TEGRA_GPCDMA_CSR_DMA_MEM2MEM \
50 FIELD_PREP(TEGRA_GPCDMA_CSR_DMA, 4)
51#define TEGRA_GPCDMA_CSR_DMA_FIXED_PAT \
52 FIELD_PREP(TEGRA_GPCDMA_CSR_DMA, 6)
53
54#define TEGRA_GPCDMA_CSR_REQ_SEL_MASK GENMASK(20, 16)
55#define TEGRA_GPCDMA_CSR_REQ_SEL_UNUSED \
56 FIELD_PREP(TEGRA_GPCDMA_CSR_REQ_SEL_MASK, 4)
57#define TEGRA_GPCDMA_CSR_IRQ_MASK BIT(15)
58#define TEGRA_GPCDMA_CSR_WEIGHT GENMASK(13, 10)
59
60/* STATUS register */
61#define TEGRA_GPCDMA_CHAN_STATUS 0x004
62#define TEGRA_GPCDMA_STATUS_BUSY BIT(31)
63#define TEGRA_GPCDMA_STATUS_ISE_EOC BIT(30)
64#define TEGRA_GPCDMA_STATUS_PING_PONG BIT(28)
65#define TEGRA_GPCDMA_STATUS_DMA_ACTIVITY BIT(27)
66#define TEGRA_GPCDMA_STATUS_CHANNEL_PAUSE BIT(26)
67#define TEGRA_GPCDMA_STATUS_CHANNEL_RX BIT(25)
68#define TEGRA_GPCDMA_STATUS_CHANNEL_TX BIT(24)
69#define TEGRA_GPCDMA_STATUS_IRQ_INTR_STA BIT(23)
70#define TEGRA_GPCDMA_STATUS_IRQ_STA BIT(21)
71#define TEGRA_GPCDMA_STATUS_IRQ_TRIG_STA BIT(20)
72
73#define TEGRA_GPCDMA_CHAN_CSRE 0x008
74#define TEGRA_GPCDMA_CHAN_CSRE_PAUSE BIT(31)
75
76/* Source address */
77#define TEGRA_GPCDMA_CHAN_SRC_PTR 0x00C
78
79/* Destination address */
80#define TEGRA_GPCDMA_CHAN_DST_PTR 0x010
81
82/* High address pointer */
83#define TEGRA_GPCDMA_CHAN_HIGH_ADDR_PTR 0x014
84#define TEGRA_GPCDMA_HIGH_ADDR_SRC_PTR GENMASK(7, 0)
85#define TEGRA_GPCDMA_HIGH_ADDR_DST_PTR GENMASK(23, 16)
86
87/* MC sequence register */
88#define TEGRA_GPCDMA_CHAN_MCSEQ 0x18
89#define TEGRA_GPCDMA_MCSEQ_DATA_SWAP BIT(31)
90#define TEGRA_GPCDMA_MCSEQ_REQ_COUNT GENMASK(30, 25)
91#define TEGRA_GPCDMA_MCSEQ_BURST GENMASK(24, 23)
92#define TEGRA_GPCDMA_MCSEQ_BURST_2 \
93 FIELD_PREP(TEGRA_GPCDMA_MCSEQ_BURST, 0)
94#define TEGRA_GPCDMA_MCSEQ_BURST_16 \
95 FIELD_PREP(TEGRA_GPCDMA_MCSEQ_BURST, 3)
96#define TEGRA_GPCDMA_MCSEQ_WRAP1 GENMASK(22, 20)
97#define TEGRA_GPCDMA_MCSEQ_WRAP0 GENMASK(19, 17)
98#define TEGRA_GPCDMA_MCSEQ_WRAP_NONE 0
99
100#define TEGRA_GPCDMA_MCSEQ_STREAM_ID1_MASK GENMASK(13, 7)
101#define TEGRA_GPCDMA_MCSEQ_STREAM_ID0_MASK GENMASK(6, 0)
102
103/* MMIO sequence register */
104#define TEGRA_GPCDMA_CHAN_MMIOSEQ 0x01c
105#define TEGRA_GPCDMA_MMIOSEQ_DBL_BUF BIT(31)
106#define TEGRA_GPCDMA_MMIOSEQ_BUS_WIDTH GENMASK(30, 28)
107#define TEGRA_GPCDMA_MMIOSEQ_BUS_WIDTH_8 \
108 FIELD_PREP(TEGRA_GPCDMA_MMIOSEQ_BUS_WIDTH, 0)
109#define TEGRA_GPCDMA_MMIOSEQ_BUS_WIDTH_16 \
110 FIELD_PREP(TEGRA_GPCDMA_MMIOSEQ_BUS_WIDTH, 1)
111#define TEGRA_GPCDMA_MMIOSEQ_BUS_WIDTH_32 \
112 FIELD_PREP(TEGRA_GPCDMA_MMIOSEQ_BUS_WIDTH, 2)
113#define TEGRA_GPCDMA_MMIOSEQ_DATA_SWAP BIT(27)
114#define TEGRA_GPCDMA_MMIOSEQ_BURST_SHIFT 23
115#define TEGRA_GPCDMA_MMIOSEQ_BURST_MIN 2U
116#define TEGRA_GPCDMA_MMIOSEQ_BURST_MAX 32U
117#define TEGRA_GPCDMA_MMIOSEQ_BURST(bs) \
118 (GENMASK((fls(bs) - 2), 0) << TEGRA_GPCDMA_MMIOSEQ_BURST_SHIFT)
119#define TEGRA_GPCDMA_MMIOSEQ_MASTER_ID GENMASK(22, 19)
120#define TEGRA_GPCDMA_MMIOSEQ_WRAP_WORD GENMASK(18, 16)
121#define TEGRA_GPCDMA_MMIOSEQ_MMIO_PROT GENMASK(8, 7)
122
123/* Channel WCOUNT */
124#define TEGRA_GPCDMA_CHAN_WCOUNT 0x20
125
126/* Transfer count */
127#define TEGRA_GPCDMA_CHAN_XFER_COUNT 0x24
128
129/* DMA byte count status */
130#define TEGRA_GPCDMA_CHAN_DMA_BYTE_STATUS 0x28
131
132/* Error Status Register */
133#define TEGRA_GPCDMA_CHAN_ERR_STATUS 0x30
134#define TEGRA_GPCDMA_CHAN_ERR_TYPE_SHIFT 8
135#define TEGRA_GPCDMA_CHAN_ERR_TYPE_MASK 0xF
136#define TEGRA_GPCDMA_CHAN_ERR_TYPE(err) ( \
137 ((err) >> TEGRA_GPCDMA_CHAN_ERR_TYPE_SHIFT) & \
138 TEGRA_GPCDMA_CHAN_ERR_TYPE_MASK)
139#define TEGRA_DMA_BM_FIFO_FULL_ERR 0xF
140#define TEGRA_DMA_PERIPH_FIFO_FULL_ERR 0xE
141#define TEGRA_DMA_PERIPH_ID_ERR 0xD
142#define TEGRA_DMA_STREAM_ID_ERR 0xC
143#define TEGRA_DMA_MC_SLAVE_ERR 0xB
144#define TEGRA_DMA_MMIO_SLAVE_ERR 0xA
145
146/* Fixed Pattern */
147#define TEGRA_GPCDMA_CHAN_FIXED_PATTERN 0x34
148
149#define TEGRA_GPCDMA_CHAN_TZ 0x38
150#define TEGRA_GPCDMA_CHAN_TZ_MMIO_PROT_1 BIT(0)
151#define TEGRA_GPCDMA_CHAN_TZ_MC_PROT_1 BIT(1)
152
153#define TEGRA_GPCDMA_CHAN_SPARE 0x3c
154#define TEGRA_GPCDMA_CHAN_SPARE_EN_LEGACY_FC BIT(16)
155
156/*
157 * If any burst is in flight and DMA paused then this is the time to complete
158 * on-flight burst and update DMA status register.
159 */
160#define TEGRA_GPCDMA_BURST_COMPLETE_TIME 10
161#define TEGRA_GPCDMA_BURST_COMPLETION_TIMEOUT 5000 /* 5 msec */
162
163/* Channel base address offset from GPCDMA base address */
164#define TEGRA_GPCDMA_CHANNEL_BASE_ADDR_OFFSET 0x10000
165
166/* Default channel mask reserving channel0 */
167#define TEGRA_GPCDMA_DEFAULT_CHANNEL_MASK 0xfffffffe
168
169struct tegra_dma;
170struct tegra_dma_channel;
171
172/*
173 * tegra_dma_chip_data Tegra chip specific DMA data
174 * @nr_channels: Number of channels available in the controller.
175 * @channel_reg_size: Channel register size.
176 * @max_dma_count: Maximum DMA transfer count supported by DMA controller.
177 * @hw_support_pause: DMA HW engine support pause of the channel.
178 */
179struct tegra_dma_chip_data {
180 bool hw_support_pause;
181 unsigned int nr_channels;
182 unsigned int channel_reg_size;
183 unsigned int max_dma_count;
184 int (*terminate)(struct tegra_dma_channel *tdc);
185};
186
187/* DMA channel registers */
188struct tegra_dma_channel_regs {
189 u32 csr;
190 u32 src_ptr;
191 u32 dst_ptr;
192 u32 high_addr_ptr;
193 u32 mc_seq;
194 u32 mmio_seq;
195 u32 wcount;
196 u32 fixed_pattern;
197};
198
199/*
200 * tegra_dma_sg_req: DMA request details to configure hardware. This
201 * contains the details for one transfer to configure DMA hw.
202 * The client's request for data transfer can be broken into multiple
203 * sub-transfer as per requester details and hw support. This sub transfer
204 * get added as an array in Tegra DMA desc which manages the transfer details.
205 */
206struct tegra_dma_sg_req {
207 unsigned int len;
208 struct tegra_dma_channel_regs ch_regs;
209};
210
211/*
212 * tegra_dma_desc: Tegra DMA descriptors which uses virt_dma_desc to
213 * manage client request and keep track of transfer status, callbacks
214 * and request counts etc.
215 */
216struct tegra_dma_desc {
217 bool cyclic;
218 unsigned int bytes_req;
219 unsigned int bytes_xfer;
220 unsigned int sg_idx;
221 unsigned int sg_count;
222 struct virt_dma_desc vd;
223 struct tegra_dma_channel *tdc;
224 struct tegra_dma_sg_req sg_req[] __counted_by(sg_count);
225};
226
227/*
228 * tegra_dma_channel: Channel specific information
229 */
230struct tegra_dma_channel {
231 bool config_init;
232 char name[30];
233 enum dma_transfer_direction sid_dir;
234 int id;
235 int irq;
236 int slave_id;
237 struct tegra_dma *tdma;
238 struct virt_dma_chan vc;
239 struct tegra_dma_desc *dma_desc;
240 struct dma_slave_config dma_sconfig;
241 unsigned int stream_id;
242 unsigned long chan_base_offset;
243};
244
245/*
246 * tegra_dma: Tegra DMA specific information
247 */
248struct tegra_dma {
249 const struct tegra_dma_chip_data *chip_data;
250 unsigned long sid_m2d_reserved;
251 unsigned long sid_d2m_reserved;
252 u32 chan_mask;
253 void __iomem *base_addr;
254 struct device *dev;
255 struct dma_device dma_dev;
256 struct reset_control *rst;
257 struct tegra_dma_channel channels[];
258};
259
260static inline void tdc_write(struct tegra_dma_channel *tdc,
261 u32 reg, u32 val)
262{
263 writel_relaxed(val, tdc->tdma->base_addr + tdc->chan_base_offset + reg);
264}
265
266static inline u32 tdc_read(struct tegra_dma_channel *tdc, u32 reg)
267{
268 return readl_relaxed(tdc->tdma->base_addr + tdc->chan_base_offset + reg);
269}
270
271static inline struct tegra_dma_channel *to_tegra_dma_chan(struct dma_chan *dc)
272{
273 return container_of(dc, struct tegra_dma_channel, vc.chan);
274}
275
276static inline struct tegra_dma_desc *vd_to_tegra_dma_desc(struct virt_dma_desc *vd)
277{
278 return container_of(vd, struct tegra_dma_desc, vd);
279}
280
281static inline struct device *tdc2dev(struct tegra_dma_channel *tdc)
282{
283 return tdc->vc.chan.device->dev;
284}
285
286static void tegra_dma_dump_chan_regs(struct tegra_dma_channel *tdc)
287{
288 dev_dbg(tdc2dev(tdc), "DMA Channel %d name %s register dump:\n",
289 tdc->id, tdc->name);
290 dev_dbg(tdc2dev(tdc), "CSR %x STA %x CSRE %x SRC %x DST %x\n",
291 tdc_read(tdc, TEGRA_GPCDMA_CHAN_CSR),
292 tdc_read(tdc, TEGRA_GPCDMA_CHAN_STATUS),
293 tdc_read(tdc, TEGRA_GPCDMA_CHAN_CSRE),
294 tdc_read(tdc, TEGRA_GPCDMA_CHAN_SRC_PTR),
295 tdc_read(tdc, TEGRA_GPCDMA_CHAN_DST_PTR)
296 );
297 dev_dbg(tdc2dev(tdc), "MCSEQ %x IOSEQ %x WCNT %x XFER %x BSTA %x\n",
298 tdc_read(tdc, TEGRA_GPCDMA_CHAN_MCSEQ),
299 tdc_read(tdc, TEGRA_GPCDMA_CHAN_MMIOSEQ),
300 tdc_read(tdc, TEGRA_GPCDMA_CHAN_WCOUNT),
301 tdc_read(tdc, TEGRA_GPCDMA_CHAN_XFER_COUNT),
302 tdc_read(tdc, TEGRA_GPCDMA_CHAN_DMA_BYTE_STATUS)
303 );
304 dev_dbg(tdc2dev(tdc), "DMA ERR_STA %x\n",
305 tdc_read(tdc, TEGRA_GPCDMA_CHAN_ERR_STATUS));
306}
307
308static int tegra_dma_sid_reserve(struct tegra_dma_channel *tdc,
309 enum dma_transfer_direction direction)
310{
311 struct tegra_dma *tdma = tdc->tdma;
312 int sid = tdc->slave_id;
313
314 if (!is_slave_direction(direction))
315 return 0;
316
317 switch (direction) {
318 case DMA_MEM_TO_DEV:
319 if (test_and_set_bit(nr: sid, addr: &tdma->sid_m2d_reserved)) {
320 dev_err(tdma->dev, "slave id already in use\n");
321 return -EINVAL;
322 }
323 break;
324 case DMA_DEV_TO_MEM:
325 if (test_and_set_bit(nr: sid, addr: &tdma->sid_d2m_reserved)) {
326 dev_err(tdma->dev, "slave id already in use\n");
327 return -EINVAL;
328 }
329 break;
330 default:
331 break;
332 }
333
334 tdc->sid_dir = direction;
335
336 return 0;
337}
338
339static void tegra_dma_sid_free(struct tegra_dma_channel *tdc)
340{
341 struct tegra_dma *tdma = tdc->tdma;
342 int sid = tdc->slave_id;
343
344 switch (tdc->sid_dir) {
345 case DMA_MEM_TO_DEV:
346 clear_bit(nr: sid, addr: &tdma->sid_m2d_reserved);
347 break;
348 case DMA_DEV_TO_MEM:
349 clear_bit(nr: sid, addr: &tdma->sid_d2m_reserved);
350 break;
351 default:
352 break;
353 }
354
355 tdc->sid_dir = DMA_TRANS_NONE;
356}
357
358static void tegra_dma_desc_free(struct virt_dma_desc *vd)
359{
360 kfree(container_of(vd, struct tegra_dma_desc, vd));
361}
362
363static int tegra_dma_slave_config(struct dma_chan *dc,
364 struct dma_slave_config *sconfig)
365{
366 struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
367
368 memcpy(&tdc->dma_sconfig, sconfig, sizeof(*sconfig));
369 tdc->config_init = true;
370
371 return 0;
372}
373
374static int tegra_dma_pause(struct tegra_dma_channel *tdc)
375{
376 int ret;
377 u32 val;
378
379 val = tdc_read(tdc, TEGRA_GPCDMA_CHAN_CSRE);
380 val |= TEGRA_GPCDMA_CHAN_CSRE_PAUSE;
381 tdc_write(tdc, TEGRA_GPCDMA_CHAN_CSRE, val);
382
383 /* Wait until busy bit is de-asserted */
384 ret = readl_relaxed_poll_timeout_atomic(tdc->tdma->base_addr +
385 tdc->chan_base_offset + TEGRA_GPCDMA_CHAN_STATUS,
386 val,
387 !(val & TEGRA_GPCDMA_STATUS_BUSY),
388 TEGRA_GPCDMA_BURST_COMPLETE_TIME,
389 TEGRA_GPCDMA_BURST_COMPLETION_TIMEOUT);
390
391 if (ret) {
392 dev_err(tdc2dev(tdc), "DMA pause timed out\n");
393 tegra_dma_dump_chan_regs(tdc);
394 }
395
396 return ret;
397}
398
399static int tegra_dma_device_pause(struct dma_chan *dc)
400{
401 struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
402 unsigned long flags;
403 int ret;
404
405 if (!tdc->tdma->chip_data->hw_support_pause)
406 return -ENOSYS;
407
408 spin_lock_irqsave(&tdc->vc.lock, flags);
409 ret = tegra_dma_pause(tdc);
410 spin_unlock_irqrestore(lock: &tdc->vc.lock, flags);
411
412 return ret;
413}
414
415static void tegra_dma_resume(struct tegra_dma_channel *tdc)
416{
417 u32 val;
418
419 val = tdc_read(tdc, TEGRA_GPCDMA_CHAN_CSRE);
420 val &= ~TEGRA_GPCDMA_CHAN_CSRE_PAUSE;
421 tdc_write(tdc, TEGRA_GPCDMA_CHAN_CSRE, val);
422}
423
424static int tegra_dma_device_resume(struct dma_chan *dc)
425{
426 struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
427 unsigned long flags;
428
429 if (!tdc->tdma->chip_data->hw_support_pause)
430 return -ENOSYS;
431
432 spin_lock_irqsave(&tdc->vc.lock, flags);
433 tegra_dma_resume(tdc);
434 spin_unlock_irqrestore(lock: &tdc->vc.lock, flags);
435
436 return 0;
437}
438
439static inline int tegra_dma_pause_noerr(struct tegra_dma_channel *tdc)
440{
441 /* Return 0 irrespective of PAUSE status.
442 * This is useful to recover channels that can exit out of flush
443 * state when the channel is disabled.
444 */
445
446 tegra_dma_pause(tdc);
447 return 0;
448}
449
450static void tegra_dma_disable(struct tegra_dma_channel *tdc)
451{
452 u32 csr, status;
453
454 csr = tdc_read(tdc, TEGRA_GPCDMA_CHAN_CSR);
455
456 /* Disable interrupts */
457 csr &= ~TEGRA_GPCDMA_CSR_IE_EOC;
458
459 /* Disable DMA */
460 csr &= ~TEGRA_GPCDMA_CSR_ENB;
461 tdc_write(tdc, TEGRA_GPCDMA_CHAN_CSR, val: csr);
462
463 /* Clear interrupt status if it is there */
464 status = tdc_read(tdc, TEGRA_GPCDMA_CHAN_STATUS);
465 if (status & TEGRA_GPCDMA_STATUS_ISE_EOC) {
466 dev_dbg(tdc2dev(tdc), "%s():clearing interrupt\n", __func__);
467 tdc_write(tdc, TEGRA_GPCDMA_CHAN_STATUS, val: status);
468 }
469}
470
471static void tegra_dma_configure_next_sg(struct tegra_dma_channel *tdc)
472{
473 struct tegra_dma_desc *dma_desc = tdc->dma_desc;
474 struct tegra_dma_channel_regs *ch_regs;
475 int ret;
476 u32 val;
477
478 dma_desc->sg_idx++;
479
480 /* Reset the sg index for cyclic transfers */
481 if (dma_desc->sg_idx == dma_desc->sg_count)
482 dma_desc->sg_idx = 0;
483
484 /* Configure next transfer immediately after DMA is busy */
485 ret = readl_relaxed_poll_timeout_atomic(tdc->tdma->base_addr +
486 tdc->chan_base_offset + TEGRA_GPCDMA_CHAN_STATUS,
487 val,
488 (val & TEGRA_GPCDMA_STATUS_BUSY), 0,
489 TEGRA_GPCDMA_BURST_COMPLETION_TIMEOUT);
490 if (ret)
491 return;
492
493 ch_regs = &dma_desc->sg_req[dma_desc->sg_idx].ch_regs;
494
495 tdc_write(tdc, TEGRA_GPCDMA_CHAN_WCOUNT, val: ch_regs->wcount);
496 tdc_write(tdc, TEGRA_GPCDMA_CHAN_SRC_PTR, val: ch_regs->src_ptr);
497 tdc_write(tdc, TEGRA_GPCDMA_CHAN_DST_PTR, val: ch_regs->dst_ptr);
498 tdc_write(tdc, TEGRA_GPCDMA_CHAN_HIGH_ADDR_PTR, val: ch_regs->high_addr_ptr);
499
500 /* Start DMA */
501 tdc_write(tdc, TEGRA_GPCDMA_CHAN_CSR,
502 val: ch_regs->csr | TEGRA_GPCDMA_CSR_ENB);
503}
504
505static void tegra_dma_start(struct tegra_dma_channel *tdc)
506{
507 struct tegra_dma_desc *dma_desc = tdc->dma_desc;
508 struct tegra_dma_channel_regs *ch_regs;
509 struct virt_dma_desc *vdesc;
510
511 if (!dma_desc) {
512 vdesc = vchan_next_desc(vc: &tdc->vc);
513 if (!vdesc)
514 return;
515
516 dma_desc = vd_to_tegra_dma_desc(vd: vdesc);
517 list_del(entry: &vdesc->node);
518 dma_desc->tdc = tdc;
519 tdc->dma_desc = dma_desc;
520
521 tegra_dma_resume(tdc);
522 }
523
524 ch_regs = &dma_desc->sg_req[dma_desc->sg_idx].ch_regs;
525
526 tdc_write(tdc, TEGRA_GPCDMA_CHAN_WCOUNT, val: ch_regs->wcount);
527 tdc_write(tdc, TEGRA_GPCDMA_CHAN_CSR, val: 0);
528 tdc_write(tdc, TEGRA_GPCDMA_CHAN_SRC_PTR, val: ch_regs->src_ptr);
529 tdc_write(tdc, TEGRA_GPCDMA_CHAN_DST_PTR, val: ch_regs->dst_ptr);
530 tdc_write(tdc, TEGRA_GPCDMA_CHAN_HIGH_ADDR_PTR, val: ch_regs->high_addr_ptr);
531 tdc_write(tdc, TEGRA_GPCDMA_CHAN_FIXED_PATTERN, val: ch_regs->fixed_pattern);
532 tdc_write(tdc, TEGRA_GPCDMA_CHAN_MMIOSEQ, val: ch_regs->mmio_seq);
533 tdc_write(tdc, TEGRA_GPCDMA_CHAN_MCSEQ, val: ch_regs->mc_seq);
534 tdc_write(tdc, TEGRA_GPCDMA_CHAN_CSR, val: ch_regs->csr);
535
536 /* Start DMA */
537 tdc_write(tdc, TEGRA_GPCDMA_CHAN_CSR,
538 val: ch_regs->csr | TEGRA_GPCDMA_CSR_ENB);
539}
540
541static void tegra_dma_xfer_complete(struct tegra_dma_channel *tdc)
542{
543 vchan_cookie_complete(vd: &tdc->dma_desc->vd);
544
545 tegra_dma_sid_free(tdc);
546 tdc->dma_desc = NULL;
547}
548
549static void tegra_dma_chan_decode_error(struct tegra_dma_channel *tdc,
550 unsigned int err_status)
551{
552 switch (TEGRA_GPCDMA_CHAN_ERR_TYPE(err_status)) {
553 case TEGRA_DMA_BM_FIFO_FULL_ERR:
554 dev_err(tdc->tdma->dev,
555 "GPCDMA CH%d bm fifo full\n", tdc->id);
556 break;
557
558 case TEGRA_DMA_PERIPH_FIFO_FULL_ERR:
559 dev_err(tdc->tdma->dev,
560 "GPCDMA CH%d peripheral fifo full\n", tdc->id);
561 break;
562
563 case TEGRA_DMA_PERIPH_ID_ERR:
564 dev_err(tdc->tdma->dev,
565 "GPCDMA CH%d illegal peripheral id\n", tdc->id);
566 break;
567
568 case TEGRA_DMA_STREAM_ID_ERR:
569 dev_err(tdc->tdma->dev,
570 "GPCDMA CH%d illegal stream id\n", tdc->id);
571 break;
572
573 case TEGRA_DMA_MC_SLAVE_ERR:
574 dev_err(tdc->tdma->dev,
575 "GPCDMA CH%d mc slave error\n", tdc->id);
576 break;
577
578 case TEGRA_DMA_MMIO_SLAVE_ERR:
579 dev_err(tdc->tdma->dev,
580 "GPCDMA CH%d mmio slave error\n", tdc->id);
581 break;
582
583 default:
584 dev_err(tdc->tdma->dev,
585 "GPCDMA CH%d security violation %x\n", tdc->id,
586 err_status);
587 }
588}
589
590static irqreturn_t tegra_dma_isr(int irq, void *dev_id)
591{
592 struct tegra_dma_channel *tdc = dev_id;
593 struct tegra_dma_desc *dma_desc = tdc->dma_desc;
594 struct tegra_dma_sg_req *sg_req;
595 u32 status;
596
597 /* Check channel error status register */
598 status = tdc_read(tdc, TEGRA_GPCDMA_CHAN_ERR_STATUS);
599 if (status) {
600 tegra_dma_chan_decode_error(tdc, err_status: status);
601 tegra_dma_dump_chan_regs(tdc);
602 tdc_write(tdc, TEGRA_GPCDMA_CHAN_ERR_STATUS, val: 0xFFFFFFFF);
603 }
604
605 spin_lock(lock: &tdc->vc.lock);
606 status = tdc_read(tdc, TEGRA_GPCDMA_CHAN_STATUS);
607 if (!(status & TEGRA_GPCDMA_STATUS_ISE_EOC))
608 goto irq_done;
609
610 tdc_write(tdc, TEGRA_GPCDMA_CHAN_STATUS,
611 TEGRA_GPCDMA_STATUS_ISE_EOC);
612
613 if (!dma_desc)
614 goto irq_done;
615
616 sg_req = dma_desc->sg_req;
617 dma_desc->bytes_xfer += sg_req[dma_desc->sg_idx].len;
618
619 if (dma_desc->cyclic) {
620 vchan_cyclic_callback(vd: &dma_desc->vd);
621 tegra_dma_configure_next_sg(tdc);
622 } else {
623 dma_desc->sg_idx++;
624 if (dma_desc->sg_idx == dma_desc->sg_count)
625 tegra_dma_xfer_complete(tdc);
626 else
627 tegra_dma_start(tdc);
628 }
629
630irq_done:
631 spin_unlock(lock: &tdc->vc.lock);
632 return IRQ_HANDLED;
633}
634
635static void tegra_dma_issue_pending(struct dma_chan *dc)
636{
637 struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
638 unsigned long flags;
639
640 if (tdc->dma_desc)
641 return;
642
643 spin_lock_irqsave(&tdc->vc.lock, flags);
644 if (vchan_issue_pending(vc: &tdc->vc))
645 tegra_dma_start(tdc);
646
647 /*
648 * For cyclic DMA transfers, program the second
649 * transfer parameters as soon as the first DMA
650 * transfer is started inorder for the DMA
651 * controller to trigger the second transfer
652 * with the correct parameters.
653 */
654 if (tdc->dma_desc && tdc->dma_desc->cyclic)
655 tegra_dma_configure_next_sg(tdc);
656
657 spin_unlock_irqrestore(lock: &tdc->vc.lock, flags);
658}
659
660static int tegra_dma_stop_client(struct tegra_dma_channel *tdc)
661{
662 int ret;
663 u32 status, csr;
664
665 /*
666 * Change the client associated with the DMA channel
667 * to stop DMA engine from starting any more bursts for
668 * the given client and wait for in flight bursts to complete
669 */
670 csr = tdc_read(tdc, TEGRA_GPCDMA_CHAN_CSR);
671 csr &= ~(TEGRA_GPCDMA_CSR_REQ_SEL_MASK);
672 csr |= TEGRA_GPCDMA_CSR_REQ_SEL_UNUSED;
673 tdc_write(tdc, TEGRA_GPCDMA_CHAN_CSR, val: csr);
674
675 /* Wait for in flight data transfer to finish */
676 udelay(TEGRA_GPCDMA_BURST_COMPLETE_TIME);
677
678 /* If TX/RX path is still active wait till it becomes
679 * inactive
680 */
681
682 ret = readl_relaxed_poll_timeout_atomic(tdc->tdma->base_addr +
683 tdc->chan_base_offset +
684 TEGRA_GPCDMA_CHAN_STATUS,
685 status,
686 !(status & (TEGRA_GPCDMA_STATUS_CHANNEL_TX |
687 TEGRA_GPCDMA_STATUS_CHANNEL_RX)),
688 5,
689 TEGRA_GPCDMA_BURST_COMPLETION_TIMEOUT);
690 if (ret) {
691 dev_err(tdc2dev(tdc), "Timeout waiting for DMA burst completion!\n");
692 tegra_dma_dump_chan_regs(tdc);
693 }
694
695 return ret;
696}
697
698static int tegra_dma_terminate_all(struct dma_chan *dc)
699{
700 struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
701 unsigned long flags;
702 LIST_HEAD(head);
703 int err;
704
705 spin_lock_irqsave(&tdc->vc.lock, flags);
706
707 if (tdc->dma_desc) {
708 err = tdc->tdma->chip_data->terminate(tdc);
709 if (err) {
710 spin_unlock_irqrestore(lock: &tdc->vc.lock, flags);
711 return err;
712 }
713
714 vchan_terminate_vdesc(vd: &tdc->dma_desc->vd);
715 tegra_dma_disable(tdc);
716 tdc->dma_desc = NULL;
717 }
718
719 tegra_dma_sid_free(tdc);
720 vchan_get_all_descriptors(vc: &tdc->vc, head: &head);
721 spin_unlock_irqrestore(lock: &tdc->vc.lock, flags);
722
723 vchan_dma_desc_free_list(vc: &tdc->vc, head: &head);
724
725 return 0;
726}
727
728static int tegra_dma_get_residual(struct tegra_dma_channel *tdc)
729{
730 struct tegra_dma_desc *dma_desc = tdc->dma_desc;
731 struct tegra_dma_sg_req *sg_req = dma_desc->sg_req;
732 unsigned int bytes_xfer, residual;
733 u32 wcount = 0, status;
734
735 wcount = tdc_read(tdc, TEGRA_GPCDMA_CHAN_XFER_COUNT);
736
737 /*
738 * Set wcount = 0 if EOC bit is set. The transfer would have
739 * already completed and the CHAN_XFER_COUNT could have updated
740 * for the next transfer, specifically in case of cyclic transfers.
741 */
742 status = tdc_read(tdc, TEGRA_GPCDMA_CHAN_STATUS);
743 if (status & TEGRA_GPCDMA_STATUS_ISE_EOC)
744 wcount = 0;
745
746 bytes_xfer = dma_desc->bytes_xfer +
747 sg_req[dma_desc->sg_idx].len - (wcount * 4);
748
749 residual = dma_desc->bytes_req - (bytes_xfer % dma_desc->bytes_req);
750
751 return residual;
752}
753
754static enum dma_status tegra_dma_tx_status(struct dma_chan *dc,
755 dma_cookie_t cookie,
756 struct dma_tx_state *txstate)
757{
758 struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
759 struct tegra_dma_desc *dma_desc;
760 struct virt_dma_desc *vd;
761 unsigned int residual;
762 unsigned long flags;
763 enum dma_status ret;
764
765 ret = dma_cookie_status(chan: dc, cookie, state: txstate);
766 if (ret == DMA_COMPLETE)
767 return ret;
768
769 spin_lock_irqsave(&tdc->vc.lock, flags);
770 vd = vchan_find_desc(&tdc->vc, cookie);
771 if (vd) {
772 dma_desc = vd_to_tegra_dma_desc(vd);
773 residual = dma_desc->bytes_req;
774 dma_set_residue(state: txstate, residue: residual);
775 } else if (tdc->dma_desc && tdc->dma_desc->vd.tx.cookie == cookie) {
776 residual = tegra_dma_get_residual(tdc);
777 dma_set_residue(state: txstate, residue: residual);
778 } else {
779 dev_err(tdc2dev(tdc), "cookie %d is not found\n", cookie);
780 }
781 spin_unlock_irqrestore(lock: &tdc->vc.lock, flags);
782
783 return ret;
784}
785
786static inline int get_bus_width(struct tegra_dma_channel *tdc,
787 enum dma_slave_buswidth slave_bw)
788{
789 switch (slave_bw) {
790 case DMA_SLAVE_BUSWIDTH_1_BYTE:
791 return TEGRA_GPCDMA_MMIOSEQ_BUS_WIDTH_8;
792 case DMA_SLAVE_BUSWIDTH_2_BYTES:
793 return TEGRA_GPCDMA_MMIOSEQ_BUS_WIDTH_16;
794 case DMA_SLAVE_BUSWIDTH_4_BYTES:
795 return TEGRA_GPCDMA_MMIOSEQ_BUS_WIDTH_32;
796 default:
797 dev_err(tdc2dev(tdc), "given slave bus width is not supported\n");
798 return -EINVAL;
799 }
800}
801
802static unsigned int get_burst_size(struct tegra_dma_channel *tdc,
803 u32 burst_size, enum dma_slave_buswidth slave_bw,
804 int len)
805{
806 unsigned int burst_mmio_width, burst_byte;
807
808 /*
809 * burst_size from client is in terms of the bus_width.
810 * convert that into words.
811 * If burst_size is not specified from client, then use
812 * len to calculate the optimum burst size
813 */
814 burst_byte = burst_size ? burst_size * slave_bw : len;
815 burst_mmio_width = burst_byte / 4;
816
817 if (burst_mmio_width < TEGRA_GPCDMA_MMIOSEQ_BURST_MIN)
818 return 0;
819
820 burst_mmio_width = min(burst_mmio_width, TEGRA_GPCDMA_MMIOSEQ_BURST_MAX);
821
822 return TEGRA_GPCDMA_MMIOSEQ_BURST(burst_mmio_width);
823}
824
825static int get_transfer_param(struct tegra_dma_channel *tdc,
826 enum dma_transfer_direction direction,
827 u32 *apb_addr,
828 u32 *mmio_seq,
829 u32 *csr,
830 unsigned int *burst_size,
831 enum dma_slave_buswidth *slave_bw)
832{
833 switch (direction) {
834 case DMA_MEM_TO_DEV:
835 *apb_addr = tdc->dma_sconfig.dst_addr;
836 *mmio_seq = get_bus_width(tdc, slave_bw: tdc->dma_sconfig.dst_addr_width);
837 *burst_size = tdc->dma_sconfig.dst_maxburst;
838 *slave_bw = tdc->dma_sconfig.dst_addr_width;
839 *csr = TEGRA_GPCDMA_CSR_DMA_MEM2IO_FC;
840 return 0;
841 case DMA_DEV_TO_MEM:
842 *apb_addr = tdc->dma_sconfig.src_addr;
843 *mmio_seq = get_bus_width(tdc, slave_bw: tdc->dma_sconfig.src_addr_width);
844 *burst_size = tdc->dma_sconfig.src_maxburst;
845 *slave_bw = tdc->dma_sconfig.src_addr_width;
846 *csr = TEGRA_GPCDMA_CSR_DMA_IO2MEM_FC;
847 return 0;
848 default:
849 dev_err(tdc2dev(tdc), "DMA direction is not supported\n");
850 }
851
852 return -EINVAL;
853}
854
855static struct dma_async_tx_descriptor *
856tegra_dma_prep_dma_memset(struct dma_chan *dc, dma_addr_t dest, int value,
857 size_t len, unsigned long flags)
858{
859 struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
860 unsigned int max_dma_count = tdc->tdma->chip_data->max_dma_count;
861 struct tegra_dma_sg_req *sg_req;
862 struct tegra_dma_desc *dma_desc;
863 u32 csr, mc_seq;
864
865 if ((len & 3) || (dest & 3) || len > max_dma_count) {
866 dev_err(tdc2dev(tdc),
867 "DMA length/memory address is not supported\n");
868 return NULL;
869 }
870
871 /* Set DMA mode to fixed pattern */
872 csr = TEGRA_GPCDMA_CSR_DMA_FIXED_PAT;
873 /* Enable once or continuous mode */
874 csr |= TEGRA_GPCDMA_CSR_ONCE;
875 /* Enable IRQ mask */
876 csr |= TEGRA_GPCDMA_CSR_IRQ_MASK;
877 /* Enable the DMA interrupt */
878 if (flags & DMA_PREP_INTERRUPT)
879 csr |= TEGRA_GPCDMA_CSR_IE_EOC;
880 /* Configure default priority weight for the channel */
881 csr |= FIELD_PREP(TEGRA_GPCDMA_CSR_WEIGHT, 1);
882
883 mc_seq = tdc_read(tdc, TEGRA_GPCDMA_CHAN_MCSEQ);
884 /* retain stream-id and clean rest */
885 mc_seq &= TEGRA_GPCDMA_MCSEQ_STREAM_ID0_MASK;
886
887 /* Set the address wrapping */
888 mc_seq |= FIELD_PREP(TEGRA_GPCDMA_MCSEQ_WRAP0,
889 TEGRA_GPCDMA_MCSEQ_WRAP_NONE);
890 mc_seq |= FIELD_PREP(TEGRA_GPCDMA_MCSEQ_WRAP1,
891 TEGRA_GPCDMA_MCSEQ_WRAP_NONE);
892
893 /* Program outstanding MC requests */
894 mc_seq |= FIELD_PREP(TEGRA_GPCDMA_MCSEQ_REQ_COUNT, 1);
895 /* Set burst size */
896 mc_seq |= TEGRA_GPCDMA_MCSEQ_BURST_16;
897
898 dma_desc = kzalloc(struct_size(dma_desc, sg_req, 1), GFP_NOWAIT);
899 if (!dma_desc)
900 return NULL;
901
902 dma_desc->bytes_req = len;
903 dma_desc->sg_count = 1;
904 sg_req = dma_desc->sg_req;
905
906 sg_req[0].ch_regs.src_ptr = 0;
907 sg_req[0].ch_regs.dst_ptr = dest;
908 sg_req[0].ch_regs.high_addr_ptr =
909 FIELD_PREP(TEGRA_GPCDMA_HIGH_ADDR_DST_PTR, (dest >> 32));
910 sg_req[0].ch_regs.fixed_pattern = value;
911 /* Word count reg takes value as (N +1) words */
912 sg_req[0].ch_regs.wcount = ((len - 4) >> 2);
913 sg_req[0].ch_regs.csr = csr;
914 sg_req[0].ch_regs.mmio_seq = 0;
915 sg_req[0].ch_regs.mc_seq = mc_seq;
916 sg_req[0].len = len;
917
918 dma_desc->cyclic = false;
919 return vchan_tx_prep(vc: &tdc->vc, vd: &dma_desc->vd, tx_flags: flags);
920}
921
922static struct dma_async_tx_descriptor *
923tegra_dma_prep_dma_memcpy(struct dma_chan *dc, dma_addr_t dest,
924 dma_addr_t src, size_t len, unsigned long flags)
925{
926 struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
927 struct tegra_dma_sg_req *sg_req;
928 struct tegra_dma_desc *dma_desc;
929 unsigned int max_dma_count;
930 u32 csr, mc_seq;
931
932 max_dma_count = tdc->tdma->chip_data->max_dma_count;
933 if ((len & 3) || (src & 3) || (dest & 3) || len > max_dma_count) {
934 dev_err(tdc2dev(tdc),
935 "DMA length/memory address is not supported\n");
936 return NULL;
937 }
938
939 /* Set DMA mode to memory to memory transfer */
940 csr = TEGRA_GPCDMA_CSR_DMA_MEM2MEM;
941 /* Enable once or continuous mode */
942 csr |= TEGRA_GPCDMA_CSR_ONCE;
943 /* Enable IRQ mask */
944 csr |= TEGRA_GPCDMA_CSR_IRQ_MASK;
945 /* Enable the DMA interrupt */
946 if (flags & DMA_PREP_INTERRUPT)
947 csr |= TEGRA_GPCDMA_CSR_IE_EOC;
948 /* Configure default priority weight for the channel */
949 csr |= FIELD_PREP(TEGRA_GPCDMA_CSR_WEIGHT, 1);
950
951 mc_seq = tdc_read(tdc, TEGRA_GPCDMA_CHAN_MCSEQ);
952 /* retain stream-id and clean rest */
953 mc_seq &= (TEGRA_GPCDMA_MCSEQ_STREAM_ID0_MASK) |
954 (TEGRA_GPCDMA_MCSEQ_STREAM_ID1_MASK);
955
956 /* Set the address wrapping */
957 mc_seq |= FIELD_PREP(TEGRA_GPCDMA_MCSEQ_WRAP0,
958 TEGRA_GPCDMA_MCSEQ_WRAP_NONE);
959 mc_seq |= FIELD_PREP(TEGRA_GPCDMA_MCSEQ_WRAP1,
960 TEGRA_GPCDMA_MCSEQ_WRAP_NONE);
961
962 /* Program outstanding MC requests */
963 mc_seq |= FIELD_PREP(TEGRA_GPCDMA_MCSEQ_REQ_COUNT, 1);
964 /* Set burst size */
965 mc_seq |= TEGRA_GPCDMA_MCSEQ_BURST_16;
966
967 dma_desc = kzalloc(struct_size(dma_desc, sg_req, 1), GFP_NOWAIT);
968 if (!dma_desc)
969 return NULL;
970
971 dma_desc->bytes_req = len;
972 dma_desc->sg_count = 1;
973 sg_req = dma_desc->sg_req;
974
975 sg_req[0].ch_regs.src_ptr = src;
976 sg_req[0].ch_regs.dst_ptr = dest;
977 sg_req[0].ch_regs.high_addr_ptr =
978 FIELD_PREP(TEGRA_GPCDMA_HIGH_ADDR_SRC_PTR, (src >> 32));
979 sg_req[0].ch_regs.high_addr_ptr |=
980 FIELD_PREP(TEGRA_GPCDMA_HIGH_ADDR_DST_PTR, (dest >> 32));
981 /* Word count reg takes value as (N +1) words */
982 sg_req[0].ch_regs.wcount = ((len - 4) >> 2);
983 sg_req[0].ch_regs.csr = csr;
984 sg_req[0].ch_regs.mmio_seq = 0;
985 sg_req[0].ch_regs.mc_seq = mc_seq;
986 sg_req[0].len = len;
987
988 dma_desc->cyclic = false;
989 return vchan_tx_prep(vc: &tdc->vc, vd: &dma_desc->vd, tx_flags: flags);
990}
991
992static struct dma_async_tx_descriptor *
993tegra_dma_prep_slave_sg(struct dma_chan *dc, struct scatterlist *sgl,
994 unsigned int sg_len, enum dma_transfer_direction direction,
995 unsigned long flags, void *context)
996{
997 struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
998 unsigned int max_dma_count = tdc->tdma->chip_data->max_dma_count;
999 enum dma_slave_buswidth slave_bw = DMA_SLAVE_BUSWIDTH_UNDEFINED;
1000 u32 csr, mc_seq, apb_ptr = 0, mmio_seq = 0;
1001 struct tegra_dma_sg_req *sg_req;
1002 struct tegra_dma_desc *dma_desc;
1003 struct scatterlist *sg;
1004 u32 burst_size;
1005 unsigned int i;
1006 int ret;
1007
1008 if (!tdc->config_init) {
1009 dev_err(tdc2dev(tdc), "DMA channel is not configured\n");
1010 return NULL;
1011 }
1012 if (sg_len < 1) {
1013 dev_err(tdc2dev(tdc), "Invalid segment length %d\n", sg_len);
1014 return NULL;
1015 }
1016
1017 ret = tegra_dma_sid_reserve(tdc, direction);
1018 if (ret)
1019 return NULL;
1020
1021 ret = get_transfer_param(tdc, direction, apb_addr: &apb_ptr, mmio_seq: &mmio_seq, csr: &csr,
1022 burst_size: &burst_size, slave_bw: &slave_bw);
1023 if (ret < 0)
1024 return NULL;
1025
1026 /* Enable once or continuous mode */
1027 csr |= TEGRA_GPCDMA_CSR_ONCE;
1028 /* Program the slave id in requestor select */
1029 csr |= FIELD_PREP(TEGRA_GPCDMA_CSR_REQ_SEL_MASK, tdc->slave_id);
1030 /* Enable IRQ mask */
1031 csr |= TEGRA_GPCDMA_CSR_IRQ_MASK;
1032 /* Configure default priority weight for the channel*/
1033 csr |= FIELD_PREP(TEGRA_GPCDMA_CSR_WEIGHT, 1);
1034
1035 /* Enable the DMA interrupt */
1036 if (flags & DMA_PREP_INTERRUPT)
1037 csr |= TEGRA_GPCDMA_CSR_IE_EOC;
1038
1039 mc_seq = tdc_read(tdc, TEGRA_GPCDMA_CHAN_MCSEQ);
1040 /* retain stream-id and clean rest */
1041 mc_seq &= TEGRA_GPCDMA_MCSEQ_STREAM_ID0_MASK;
1042
1043 /* Set the address wrapping on both MC and MMIO side */
1044
1045 mc_seq |= FIELD_PREP(TEGRA_GPCDMA_MCSEQ_WRAP0,
1046 TEGRA_GPCDMA_MCSEQ_WRAP_NONE);
1047 mc_seq |= FIELD_PREP(TEGRA_GPCDMA_MCSEQ_WRAP1,
1048 TEGRA_GPCDMA_MCSEQ_WRAP_NONE);
1049 mmio_seq |= FIELD_PREP(TEGRA_GPCDMA_MMIOSEQ_WRAP_WORD, 1);
1050
1051 /* Program 2 MC outstanding requests by default. */
1052 mc_seq |= FIELD_PREP(TEGRA_GPCDMA_MCSEQ_REQ_COUNT, 1);
1053
1054 /* Setting MC burst size depending on MMIO burst size */
1055 if (burst_size == 64)
1056 mc_seq |= TEGRA_GPCDMA_MCSEQ_BURST_16;
1057 else
1058 mc_seq |= TEGRA_GPCDMA_MCSEQ_BURST_2;
1059
1060 dma_desc = kzalloc(struct_size(dma_desc, sg_req, sg_len), GFP_NOWAIT);
1061 if (!dma_desc)
1062 return NULL;
1063
1064 dma_desc->sg_count = sg_len;
1065 sg_req = dma_desc->sg_req;
1066
1067 /* Make transfer requests */
1068 for_each_sg(sgl, sg, sg_len, i) {
1069 u32 len;
1070 dma_addr_t mem;
1071
1072 mem = sg_dma_address(sg);
1073 len = sg_dma_len(sg);
1074
1075 if ((len & 3) || (mem & 3) || len > max_dma_count) {
1076 dev_err(tdc2dev(tdc),
1077 "DMA length/memory address is not supported\n");
1078 kfree(objp: dma_desc);
1079 return NULL;
1080 }
1081
1082 mmio_seq |= get_burst_size(tdc, burst_size, slave_bw, len);
1083 dma_desc->bytes_req += len;
1084
1085 if (direction == DMA_MEM_TO_DEV) {
1086 sg_req[i].ch_regs.src_ptr = mem;
1087 sg_req[i].ch_regs.dst_ptr = apb_ptr;
1088 sg_req[i].ch_regs.high_addr_ptr =
1089 FIELD_PREP(TEGRA_GPCDMA_HIGH_ADDR_SRC_PTR, (mem >> 32));
1090 } else if (direction == DMA_DEV_TO_MEM) {
1091 sg_req[i].ch_regs.src_ptr = apb_ptr;
1092 sg_req[i].ch_regs.dst_ptr = mem;
1093 sg_req[i].ch_regs.high_addr_ptr =
1094 FIELD_PREP(TEGRA_GPCDMA_HIGH_ADDR_DST_PTR, (mem >> 32));
1095 }
1096
1097 /*
1098 * Word count register takes input in words. Writing a value
1099 * of N into word count register means a req of (N+1) words.
1100 */
1101 sg_req[i].ch_regs.wcount = ((len - 4) >> 2);
1102 sg_req[i].ch_regs.csr = csr;
1103 sg_req[i].ch_regs.mmio_seq = mmio_seq;
1104 sg_req[i].ch_regs.mc_seq = mc_seq;
1105 sg_req[i].len = len;
1106 }
1107
1108 dma_desc->cyclic = false;
1109 return vchan_tx_prep(vc: &tdc->vc, vd: &dma_desc->vd, tx_flags: flags);
1110}
1111
1112static struct dma_async_tx_descriptor *
1113tegra_dma_prep_dma_cyclic(struct dma_chan *dc, dma_addr_t buf_addr, size_t buf_len,
1114 size_t period_len, enum dma_transfer_direction direction,
1115 unsigned long flags)
1116{
1117 enum dma_slave_buswidth slave_bw = DMA_SLAVE_BUSWIDTH_UNDEFINED;
1118 u32 csr, mc_seq, apb_ptr = 0, mmio_seq = 0, burst_size;
1119 unsigned int max_dma_count, len, period_count, i;
1120 struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
1121 struct tegra_dma_desc *dma_desc;
1122 struct tegra_dma_sg_req *sg_req;
1123 dma_addr_t mem = buf_addr;
1124 int ret;
1125
1126 if (!buf_len || !period_len) {
1127 dev_err(tdc2dev(tdc), "Invalid buffer/period len\n");
1128 return NULL;
1129 }
1130
1131 if (!tdc->config_init) {
1132 dev_err(tdc2dev(tdc), "DMA slave is not configured\n");
1133 return NULL;
1134 }
1135
1136 ret = tegra_dma_sid_reserve(tdc, direction);
1137 if (ret)
1138 return NULL;
1139
1140 /*
1141 * We only support cycle transfer when buf_len is multiple of
1142 * period_len.
1143 */
1144 if (buf_len % period_len) {
1145 dev_err(tdc2dev(tdc), "buf_len is not multiple of period_len\n");
1146 return NULL;
1147 }
1148
1149 len = period_len;
1150 max_dma_count = tdc->tdma->chip_data->max_dma_count;
1151 if ((len & 3) || (buf_addr & 3) || len > max_dma_count) {
1152 dev_err(tdc2dev(tdc), "Req len/mem address is not correct\n");
1153 return NULL;
1154 }
1155
1156 ret = get_transfer_param(tdc, direction, apb_addr: &apb_ptr, mmio_seq: &mmio_seq, csr: &csr,
1157 burst_size: &burst_size, slave_bw: &slave_bw);
1158 if (ret < 0)
1159 return NULL;
1160
1161 /* Enable once or continuous mode */
1162 csr &= ~TEGRA_GPCDMA_CSR_ONCE;
1163 /* Program the slave id in requestor select */
1164 csr |= FIELD_PREP(TEGRA_GPCDMA_CSR_REQ_SEL_MASK, tdc->slave_id);
1165 /* Enable IRQ mask */
1166 csr |= TEGRA_GPCDMA_CSR_IRQ_MASK;
1167 /* Configure default priority weight for the channel*/
1168 csr |= FIELD_PREP(TEGRA_GPCDMA_CSR_WEIGHT, 1);
1169
1170 /* Enable the DMA interrupt */
1171 if (flags & DMA_PREP_INTERRUPT)
1172 csr |= TEGRA_GPCDMA_CSR_IE_EOC;
1173
1174 mmio_seq |= FIELD_PREP(TEGRA_GPCDMA_MMIOSEQ_WRAP_WORD, 1);
1175
1176 mc_seq = tdc_read(tdc, TEGRA_GPCDMA_CHAN_MCSEQ);
1177 /* retain stream-id and clean rest */
1178 mc_seq &= TEGRA_GPCDMA_MCSEQ_STREAM_ID0_MASK;
1179
1180 /* Set the address wrapping on both MC and MMIO side */
1181 mc_seq |= FIELD_PREP(TEGRA_GPCDMA_MCSEQ_WRAP0,
1182 TEGRA_GPCDMA_MCSEQ_WRAP_NONE);
1183 mc_seq |= FIELD_PREP(TEGRA_GPCDMA_MCSEQ_WRAP1,
1184 TEGRA_GPCDMA_MCSEQ_WRAP_NONE);
1185
1186 /* Program 2 MC outstanding requests by default. */
1187 mc_seq |= FIELD_PREP(TEGRA_GPCDMA_MCSEQ_REQ_COUNT, 1);
1188 /* Setting MC burst size depending on MMIO burst size */
1189 if (burst_size == 64)
1190 mc_seq |= TEGRA_GPCDMA_MCSEQ_BURST_16;
1191 else
1192 mc_seq |= TEGRA_GPCDMA_MCSEQ_BURST_2;
1193
1194 period_count = buf_len / period_len;
1195 dma_desc = kzalloc(struct_size(dma_desc, sg_req, period_count),
1196 GFP_NOWAIT);
1197 if (!dma_desc)
1198 return NULL;
1199
1200 dma_desc->bytes_req = buf_len;
1201 dma_desc->sg_count = period_count;
1202 sg_req = dma_desc->sg_req;
1203
1204 /* Split transfer equal to period size */
1205 for (i = 0; i < period_count; i++) {
1206 mmio_seq |= get_burst_size(tdc, burst_size, slave_bw, len);
1207 if (direction == DMA_MEM_TO_DEV) {
1208 sg_req[i].ch_regs.src_ptr = mem;
1209 sg_req[i].ch_regs.dst_ptr = apb_ptr;
1210 sg_req[i].ch_regs.high_addr_ptr =
1211 FIELD_PREP(TEGRA_GPCDMA_HIGH_ADDR_SRC_PTR, (mem >> 32));
1212 } else if (direction == DMA_DEV_TO_MEM) {
1213 sg_req[i].ch_regs.src_ptr = apb_ptr;
1214 sg_req[i].ch_regs.dst_ptr = mem;
1215 sg_req[i].ch_regs.high_addr_ptr =
1216 FIELD_PREP(TEGRA_GPCDMA_HIGH_ADDR_DST_PTR, (mem >> 32));
1217 }
1218 /*
1219 * Word count register takes input in words. Writing a value
1220 * of N into word count register means a req of (N+1) words.
1221 */
1222 sg_req[i].ch_regs.wcount = ((len - 4) >> 2);
1223 sg_req[i].ch_regs.csr = csr;
1224 sg_req[i].ch_regs.mmio_seq = mmio_seq;
1225 sg_req[i].ch_regs.mc_seq = mc_seq;
1226 sg_req[i].len = len;
1227
1228 mem += len;
1229 }
1230
1231 dma_desc->cyclic = true;
1232
1233 return vchan_tx_prep(vc: &tdc->vc, vd: &dma_desc->vd, tx_flags: flags);
1234}
1235
1236static int tegra_dma_alloc_chan_resources(struct dma_chan *dc)
1237{
1238 struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
1239 int ret;
1240
1241 ret = request_irq(irq: tdc->irq, handler: tegra_dma_isr, flags: 0, name: tdc->name, dev: tdc);
1242 if (ret) {
1243 dev_err(tdc2dev(tdc), "request_irq failed for %s\n", tdc->name);
1244 return ret;
1245 }
1246
1247 dma_cookie_init(chan: &tdc->vc.chan);
1248 tdc->config_init = false;
1249 return 0;
1250}
1251
1252static void tegra_dma_chan_synchronize(struct dma_chan *dc)
1253{
1254 struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
1255
1256 synchronize_irq(irq: tdc->irq);
1257 vchan_synchronize(vc: &tdc->vc);
1258}
1259
1260static void tegra_dma_free_chan_resources(struct dma_chan *dc)
1261{
1262 struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
1263
1264 dev_dbg(tdc2dev(tdc), "Freeing channel %d\n", tdc->id);
1265
1266 tegra_dma_terminate_all(dc);
1267 synchronize_irq(irq: tdc->irq);
1268
1269 tasklet_kill(t: &tdc->vc.task);
1270 tdc->config_init = false;
1271 tdc->slave_id = -1;
1272 tdc->sid_dir = DMA_TRANS_NONE;
1273 free_irq(tdc->irq, tdc);
1274
1275 vchan_free_chan_resources(vc: &tdc->vc);
1276}
1277
1278static struct dma_chan *tegra_dma_of_xlate(struct of_phandle_args *dma_spec,
1279 struct of_dma *ofdma)
1280{
1281 struct tegra_dma *tdma = ofdma->of_dma_data;
1282 struct tegra_dma_channel *tdc;
1283 struct dma_chan *chan;
1284
1285 chan = dma_get_any_slave_channel(device: &tdma->dma_dev);
1286 if (!chan)
1287 return NULL;
1288
1289 tdc = to_tegra_dma_chan(dc: chan);
1290 tdc->slave_id = dma_spec->args[0];
1291
1292 return chan;
1293}
1294
1295static const struct tegra_dma_chip_data tegra186_dma_chip_data = {
1296 .nr_channels = 32,
1297 .channel_reg_size = SZ_64K,
1298 .max_dma_count = SZ_1G,
1299 .hw_support_pause = false,
1300 .terminate = tegra_dma_stop_client,
1301};
1302
1303static const struct tegra_dma_chip_data tegra194_dma_chip_data = {
1304 .nr_channels = 32,
1305 .channel_reg_size = SZ_64K,
1306 .max_dma_count = SZ_1G,
1307 .hw_support_pause = true,
1308 .terminate = tegra_dma_pause,
1309};
1310
1311static const struct tegra_dma_chip_data tegra234_dma_chip_data = {
1312 .nr_channels = 32,
1313 .channel_reg_size = SZ_64K,
1314 .max_dma_count = SZ_1G,
1315 .hw_support_pause = true,
1316 .terminate = tegra_dma_pause_noerr,
1317};
1318
1319static const struct of_device_id tegra_dma_of_match[] = {
1320 {
1321 .compatible = "nvidia,tegra186-gpcdma",
1322 .data = &tegra186_dma_chip_data,
1323 }, {
1324 .compatible = "nvidia,tegra194-gpcdma",
1325 .data = &tegra194_dma_chip_data,
1326 }, {
1327 .compatible = "nvidia,tegra234-gpcdma",
1328 .data = &tegra234_dma_chip_data,
1329 }, {
1330 },
1331};
1332MODULE_DEVICE_TABLE(of, tegra_dma_of_match);
1333
1334static int tegra_dma_program_sid(struct tegra_dma_channel *tdc, int stream_id)
1335{
1336 unsigned int reg_val = tdc_read(tdc, TEGRA_GPCDMA_CHAN_MCSEQ);
1337
1338 reg_val &= ~(TEGRA_GPCDMA_MCSEQ_STREAM_ID0_MASK);
1339 reg_val &= ~(TEGRA_GPCDMA_MCSEQ_STREAM_ID1_MASK);
1340
1341 reg_val |= FIELD_PREP(TEGRA_GPCDMA_MCSEQ_STREAM_ID0_MASK, stream_id);
1342 reg_val |= FIELD_PREP(TEGRA_GPCDMA_MCSEQ_STREAM_ID1_MASK, stream_id);
1343
1344 tdc_write(tdc, TEGRA_GPCDMA_CHAN_MCSEQ, val: reg_val);
1345 return 0;
1346}
1347
1348static int tegra_dma_probe(struct platform_device *pdev)
1349{
1350 const struct tegra_dma_chip_data *cdata = NULL;
1351 struct iommu_fwspec *iommu_spec;
1352 unsigned int stream_id, i;
1353 struct tegra_dma *tdma;
1354 int ret;
1355
1356 cdata = of_device_get_match_data(dev: &pdev->dev);
1357
1358 tdma = devm_kzalloc(dev: &pdev->dev,
1359 struct_size(tdma, channels, cdata->nr_channels),
1360 GFP_KERNEL);
1361 if (!tdma)
1362 return -ENOMEM;
1363
1364 tdma->dev = &pdev->dev;
1365 tdma->chip_data = cdata;
1366 platform_set_drvdata(pdev, data: tdma);
1367
1368 tdma->base_addr = devm_platform_ioremap_resource(pdev, index: 0);
1369 if (IS_ERR(ptr: tdma->base_addr))
1370 return PTR_ERR(ptr: tdma->base_addr);
1371
1372 tdma->rst = devm_reset_control_get_exclusive(dev: &pdev->dev, id: "gpcdma");
1373 if (IS_ERR(ptr: tdma->rst)) {
1374 return dev_err_probe(dev: &pdev->dev, err: PTR_ERR(ptr: tdma->rst),
1375 fmt: "Missing controller reset\n");
1376 }
1377 reset_control_reset(rstc: tdma->rst);
1378
1379 tdma->dma_dev.dev = &pdev->dev;
1380
1381 iommu_spec = dev_iommu_fwspec_get(dev: &pdev->dev);
1382 if (!iommu_spec) {
1383 dev_err(&pdev->dev, "Missing iommu stream-id\n");
1384 return -EINVAL;
1385 }
1386 stream_id = iommu_spec->ids[0] & 0xffff;
1387
1388 ret = device_property_read_u32(dev: &pdev->dev, propname: "dma-channel-mask",
1389 val: &tdma->chan_mask);
1390 if (ret) {
1391 dev_warn(&pdev->dev,
1392 "Missing dma-channel-mask property, using default channel mask %#x\n",
1393 TEGRA_GPCDMA_DEFAULT_CHANNEL_MASK);
1394 tdma->chan_mask = TEGRA_GPCDMA_DEFAULT_CHANNEL_MASK;
1395 }
1396
1397 INIT_LIST_HEAD(list: &tdma->dma_dev.channels);
1398 for (i = 0; i < cdata->nr_channels; i++) {
1399 struct tegra_dma_channel *tdc = &tdma->channels[i];
1400
1401 /* Check for channel mask */
1402 if (!(tdma->chan_mask & BIT(i)))
1403 continue;
1404
1405 tdc->irq = platform_get_irq(pdev, i);
1406 if (tdc->irq < 0)
1407 return tdc->irq;
1408
1409 tdc->chan_base_offset = TEGRA_GPCDMA_CHANNEL_BASE_ADDR_OFFSET +
1410 i * cdata->channel_reg_size;
1411 snprintf(buf: tdc->name, size: sizeof(tdc->name), fmt: "gpcdma.%d", i);
1412 tdc->tdma = tdma;
1413 tdc->id = i;
1414 tdc->slave_id = -1;
1415
1416 vchan_init(vc: &tdc->vc, dmadev: &tdma->dma_dev);
1417 tdc->vc.desc_free = tegra_dma_desc_free;
1418
1419 /* program stream-id for this channel */
1420 tegra_dma_program_sid(tdc, stream_id);
1421 tdc->stream_id = stream_id;
1422 }
1423
1424 dma_cap_set(DMA_SLAVE, tdma->dma_dev.cap_mask);
1425 dma_cap_set(DMA_PRIVATE, tdma->dma_dev.cap_mask);
1426 dma_cap_set(DMA_MEMCPY, tdma->dma_dev.cap_mask);
1427 dma_cap_set(DMA_MEMSET, tdma->dma_dev.cap_mask);
1428 dma_cap_set(DMA_CYCLIC, tdma->dma_dev.cap_mask);
1429
1430 /*
1431 * Only word aligned transfers are supported. Set the copy
1432 * alignment shift.
1433 */
1434 tdma->dma_dev.copy_align = 2;
1435 tdma->dma_dev.fill_align = 2;
1436 tdma->dma_dev.device_alloc_chan_resources =
1437 tegra_dma_alloc_chan_resources;
1438 tdma->dma_dev.device_free_chan_resources =
1439 tegra_dma_free_chan_resources;
1440 tdma->dma_dev.device_prep_slave_sg = tegra_dma_prep_slave_sg;
1441 tdma->dma_dev.device_prep_dma_memcpy = tegra_dma_prep_dma_memcpy;
1442 tdma->dma_dev.device_prep_dma_memset = tegra_dma_prep_dma_memset;
1443 tdma->dma_dev.device_prep_dma_cyclic = tegra_dma_prep_dma_cyclic;
1444 tdma->dma_dev.device_config = tegra_dma_slave_config;
1445 tdma->dma_dev.device_terminate_all = tegra_dma_terminate_all;
1446 tdma->dma_dev.device_tx_status = tegra_dma_tx_status;
1447 tdma->dma_dev.device_issue_pending = tegra_dma_issue_pending;
1448 tdma->dma_dev.device_pause = tegra_dma_device_pause;
1449 tdma->dma_dev.device_resume = tegra_dma_device_resume;
1450 tdma->dma_dev.device_synchronize = tegra_dma_chan_synchronize;
1451 tdma->dma_dev.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1452
1453 ret = dma_async_device_register(device: &tdma->dma_dev);
1454 if (ret < 0) {
1455 dev_err_probe(dev: &pdev->dev, err: ret,
1456 fmt: "GPC DMA driver registration failed\n");
1457 return ret;
1458 }
1459
1460 ret = of_dma_controller_register(np: pdev->dev.of_node,
1461 of_dma_xlate: tegra_dma_of_xlate, data: tdma);
1462 if (ret < 0) {
1463 dev_err_probe(dev: &pdev->dev, err: ret,
1464 fmt: "GPC DMA OF registration failed\n");
1465
1466 dma_async_device_unregister(device: &tdma->dma_dev);
1467 return ret;
1468 }
1469
1470 dev_info(&pdev->dev, "GPC DMA driver register %lu channels\n",
1471 hweight_long(tdma->chan_mask));
1472
1473 return 0;
1474}
1475
1476static void tegra_dma_remove(struct platform_device *pdev)
1477{
1478 struct tegra_dma *tdma = platform_get_drvdata(pdev);
1479
1480 of_dma_controller_free(np: pdev->dev.of_node);
1481 dma_async_device_unregister(device: &tdma->dma_dev);
1482}
1483
1484static int __maybe_unused tegra_dma_pm_suspend(struct device *dev)
1485{
1486 struct tegra_dma *tdma = dev_get_drvdata(dev);
1487 unsigned int i;
1488
1489 for (i = 0; i < tdma->chip_data->nr_channels; i++) {
1490 struct tegra_dma_channel *tdc = &tdma->channels[i];
1491
1492 if (!(tdma->chan_mask & BIT(i)))
1493 continue;
1494
1495 if (tdc->dma_desc) {
1496 dev_err(tdma->dev, "channel %u busy\n", i);
1497 return -EBUSY;
1498 }
1499 }
1500
1501 return 0;
1502}
1503
1504static int __maybe_unused tegra_dma_pm_resume(struct device *dev)
1505{
1506 struct tegra_dma *tdma = dev_get_drvdata(dev);
1507 unsigned int i;
1508
1509 reset_control_reset(rstc: tdma->rst);
1510
1511 for (i = 0; i < tdma->chip_data->nr_channels; i++) {
1512 struct tegra_dma_channel *tdc = &tdma->channels[i];
1513
1514 if (!(tdma->chan_mask & BIT(i)))
1515 continue;
1516
1517 tegra_dma_program_sid(tdc, stream_id: tdc->stream_id);
1518 }
1519
1520 return 0;
1521}
1522
1523static const struct dev_pm_ops tegra_dma_dev_pm_ops = {
1524 SET_SYSTEM_SLEEP_PM_OPS(tegra_dma_pm_suspend, tegra_dma_pm_resume)
1525};
1526
1527static struct platform_driver tegra_dma_driver = {
1528 .driver = {
1529 .name = "tegra-gpcdma",
1530 .pm = &tegra_dma_dev_pm_ops,
1531 .of_match_table = tegra_dma_of_match,
1532 },
1533 .probe = tegra_dma_probe,
1534 .remove_new = tegra_dma_remove,
1535};
1536
1537module_platform_driver(tegra_dma_driver);
1538
1539MODULE_DESCRIPTION("NVIDIA Tegra GPC DMA Controller driver");
1540MODULE_AUTHOR("Pavan Kunapuli <pkunapuli@nvidia.com>");
1541MODULE_AUTHOR("Rajesh Gumasta <rgumasta@nvidia.com>");
1542MODULE_LICENSE("GPL");
1543

source code of linux/drivers/dma/tegra186-gpc-dma.c