1/*
2 * Copyright © 2008-2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 */
24
25#include <linux/dma-fence-array.h>
26#include <linux/dma-fence-chain.h>
27#include <linux/irq_work.h>
28#include <linux/prefetch.h>
29#include <linux/sched.h>
30#include <linux/sched/clock.h>
31#include <linux/sched/signal.h>
32#include <linux/sched/mm.h>
33
34#include "gem/i915_gem_context.h"
35#include "gt/intel_breadcrumbs.h"
36#include "gt/intel_context.h"
37#include "gt/intel_engine.h"
38#include "gt/intel_engine_heartbeat.h"
39#include "gt/intel_engine_regs.h"
40#include "gt/intel_gpu_commands.h"
41#include "gt/intel_reset.h"
42#include "gt/intel_ring.h"
43#include "gt/intel_rps.h"
44
45#include "i915_active.h"
46#include "i915_config.h"
47#include "i915_deps.h"
48#include "i915_driver.h"
49#include "i915_drv.h"
50#include "i915_trace.h"
51
52struct execute_cb {
53 struct irq_work work;
54 struct i915_sw_fence *fence;
55};
56
57static struct kmem_cache *slab_requests;
58static struct kmem_cache *slab_execute_cbs;
59
60static const char *i915_fence_get_driver_name(struct dma_fence *fence)
61{
62 return dev_name(dev: to_request(fence)->i915->drm.dev);
63}
64
65static const char *i915_fence_get_timeline_name(struct dma_fence *fence)
66{
67 const struct i915_gem_context *ctx;
68
69 /*
70 * The timeline struct (as part of the ppgtt underneath a context)
71 * may be freed when the request is no longer in use by the GPU.
72 * We could extend the life of a context to beyond that of all
73 * fences, possibly keeping the hw resource around indefinitely,
74 * or we just give them a false name. Since
75 * dma_fence_ops.get_timeline_name is a debug feature, the occasional
76 * lie seems justifiable.
77 */
78 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
79 return "signaled";
80
81 ctx = i915_request_gem_context(rq: to_request(fence));
82 if (!ctx)
83 return "[" DRIVER_NAME "]";
84
85 return ctx->name;
86}
87
88static bool i915_fence_signaled(struct dma_fence *fence)
89{
90 return i915_request_completed(rq: to_request(fence));
91}
92
93static bool i915_fence_enable_signaling(struct dma_fence *fence)
94{
95 return i915_request_enable_breadcrumb(request: to_request(fence));
96}
97
98static signed long i915_fence_wait(struct dma_fence *fence,
99 bool interruptible,
100 signed long timeout)
101{
102 return i915_request_wait_timeout(rq: to_request(fence),
103 flags: interruptible | I915_WAIT_PRIORITY,
104 timeout);
105}
106
107struct kmem_cache *i915_request_slab_cache(void)
108{
109 return slab_requests;
110}
111
112static void i915_fence_release(struct dma_fence *fence)
113{
114 struct i915_request *rq = to_request(fence);
115
116 GEM_BUG_ON(rq->guc_prio != GUC_PRIO_INIT &&
117 rq->guc_prio != GUC_PRIO_FINI);
118
119 i915_request_free_capture_list(fetch_and_zero(&rq->capture_list));
120 if (rq->batch_res) {
121 i915_vma_resource_put(vma_res: rq->batch_res);
122 rq->batch_res = NULL;
123 }
124
125 /*
126 * The request is put onto a RCU freelist (i.e. the address
127 * is immediately reused), mark the fences as being freed now.
128 * Otherwise the debugobjects for the fences are only marked as
129 * freed when the slab cache itself is freed, and so we would get
130 * caught trying to reuse dead objects.
131 */
132 i915_sw_fence_fini(fence: &rq->submit);
133 i915_sw_fence_fini(fence: &rq->semaphore);
134
135 /*
136 * Keep one request on each engine for reserved use under mempressure.
137 *
138 * We do not hold a reference to the engine here and so have to be
139 * very careful in what rq->engine we poke. The virtual engine is
140 * referenced via the rq->context and we released that ref during
141 * i915_request_retire(), ergo we must not dereference a virtual
142 * engine here. Not that we would want to, as the only consumer of
143 * the reserved engine->request_pool is the power management parking,
144 * which must-not-fail, and that is only run on the physical engines.
145 *
146 * Since the request must have been executed to be have completed,
147 * we know that it will have been processed by the HW and will
148 * not be unsubmitted again, so rq->engine and rq->execution_mask
149 * at this point is stable. rq->execution_mask will be a single
150 * bit if the last and _only_ engine it could execution on was a
151 * physical engine, if it's multiple bits then it started on and
152 * could still be on a virtual engine. Thus if the mask is not a
153 * power-of-two we assume that rq->engine may still be a virtual
154 * engine and so a dangling invalid pointer that we cannot dereference
155 *
156 * For example, consider the flow of a bonded request through a virtual
157 * engine. The request is created with a wide engine mask (all engines
158 * that we might execute on). On processing the bond, the request mask
159 * is reduced to one or more engines. If the request is subsequently
160 * bound to a single engine, it will then be constrained to only
161 * execute on that engine and never returned to the virtual engine
162 * after timeslicing away, see __unwind_incomplete_requests(). Thus we
163 * know that if the rq->execution_mask is a single bit, rq->engine
164 * can be a physical engine with the exact corresponding mask.
165 */
166 if (is_power_of_2(n: rq->execution_mask) &&
167 !cmpxchg(&rq->engine->request_pool, NULL, rq))
168 return;
169
170 kmem_cache_free(s: slab_requests, objp: rq);
171}
172
173const struct dma_fence_ops i915_fence_ops = {
174 .get_driver_name = i915_fence_get_driver_name,
175 .get_timeline_name = i915_fence_get_timeline_name,
176 .enable_signaling = i915_fence_enable_signaling,
177 .signaled = i915_fence_signaled,
178 .wait = i915_fence_wait,
179 .release = i915_fence_release,
180};
181
182static void irq_execute_cb(struct irq_work *wrk)
183{
184 struct execute_cb *cb = container_of(wrk, typeof(*cb), work);
185
186 i915_sw_fence_complete(fence: cb->fence);
187 kmem_cache_free(s: slab_execute_cbs, objp: cb);
188}
189
190static __always_inline void
191__notify_execute_cb(struct i915_request *rq, bool (*fn)(struct irq_work *wrk))
192{
193 struct execute_cb *cb, *cn;
194
195 if (llist_empty(head: &rq->execute_cb))
196 return;
197
198 llist_for_each_entry_safe(cb, cn,
199 llist_del_all(&rq->execute_cb),
200 work.node.llist)
201 fn(&cb->work);
202}
203
204static void __notify_execute_cb_irq(struct i915_request *rq)
205{
206 __notify_execute_cb(rq, fn: irq_work_queue);
207}
208
209static bool irq_work_imm(struct irq_work *wrk)
210{
211 wrk->func(wrk);
212 return false;
213}
214
215void i915_request_notify_execute_cb_imm(struct i915_request *rq)
216{
217 __notify_execute_cb(rq, fn: irq_work_imm);
218}
219
220static void __i915_request_fill(struct i915_request *rq, u8 val)
221{
222 void *vaddr = rq->ring->vaddr;
223 u32 head;
224
225 head = rq->infix;
226 if (rq->postfix < head) {
227 memset(vaddr + head, val, rq->ring->size - head);
228 head = 0;
229 }
230 memset(vaddr + head, val, rq->postfix - head);
231}
232
233/**
234 * i915_request_active_engine
235 * @rq: request to inspect
236 * @active: pointer in which to return the active engine
237 *
238 * Fills the currently active engine to the @active pointer if the request
239 * is active and still not completed.
240 *
241 * Returns true if request was active or false otherwise.
242 */
243bool
244i915_request_active_engine(struct i915_request *rq,
245 struct intel_engine_cs **active)
246{
247 struct intel_engine_cs *engine, *locked;
248 bool ret = false;
249
250 /*
251 * Serialise with __i915_request_submit() so that it sees
252 * is-banned?, or we know the request is already inflight.
253 *
254 * Note that rq->engine is unstable, and so we double
255 * check that we have acquired the lock on the final engine.
256 */
257 locked = READ_ONCE(rq->engine);
258 spin_lock_irq(lock: &locked->sched_engine->lock);
259 while (unlikely(locked != (engine = READ_ONCE(rq->engine)))) {
260 spin_unlock(lock: &locked->sched_engine->lock);
261 locked = engine;
262 spin_lock(lock: &locked->sched_engine->lock);
263 }
264
265 if (i915_request_is_active(rq)) {
266 if (!__i915_request_is_complete(rq))
267 *active = locked;
268 ret = true;
269 }
270
271 spin_unlock_irq(lock: &locked->sched_engine->lock);
272
273 return ret;
274}
275
276static void __rq_init_watchdog(struct i915_request *rq)
277{
278 rq->watchdog.timer.function = NULL;
279}
280
281static enum hrtimer_restart __rq_watchdog_expired(struct hrtimer *hrtimer)
282{
283 struct i915_request *rq =
284 container_of(hrtimer, struct i915_request, watchdog.timer);
285 struct intel_gt *gt = rq->engine->gt;
286
287 if (!i915_request_completed(rq)) {
288 if (llist_add(new: &rq->watchdog.link, head: &gt->watchdog.list))
289 queue_work(wq: gt->i915->unordered_wq, work: &gt->watchdog.work);
290 } else {
291 i915_request_put(rq);
292 }
293
294 return HRTIMER_NORESTART;
295}
296
297static void __rq_arm_watchdog(struct i915_request *rq)
298{
299 struct i915_request_watchdog *wdg = &rq->watchdog;
300 struct intel_context *ce = rq->context;
301
302 if (!ce->watchdog.timeout_us)
303 return;
304
305 i915_request_get(rq);
306
307 hrtimer_init(timer: &wdg->timer, CLOCK_MONOTONIC, mode: HRTIMER_MODE_REL);
308 wdg->timer.function = __rq_watchdog_expired;
309 hrtimer_start_range_ns(timer: &wdg->timer,
310 tim: ns_to_ktime(ns: ce->watchdog.timeout_us *
311 NSEC_PER_USEC),
312 NSEC_PER_MSEC,
313 mode: HRTIMER_MODE_REL);
314}
315
316static void __rq_cancel_watchdog(struct i915_request *rq)
317{
318 struct i915_request_watchdog *wdg = &rq->watchdog;
319
320 if (wdg->timer.function && hrtimer_try_to_cancel(timer: &wdg->timer) > 0)
321 i915_request_put(rq);
322}
323
324#if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
325
326/**
327 * i915_request_free_capture_list - Free a capture list
328 * @capture: Pointer to the first list item or NULL
329 *
330 */
331void i915_request_free_capture_list(struct i915_capture_list *capture)
332{
333 while (capture) {
334 struct i915_capture_list *next = capture->next;
335
336 i915_vma_resource_put(vma_res: capture->vma_res);
337 kfree(objp: capture);
338 capture = next;
339 }
340}
341
342#define assert_capture_list_is_null(_rq) GEM_BUG_ON((_rq)->capture_list)
343
344#define clear_capture_list(_rq) ((_rq)->capture_list = NULL)
345
346#else
347
348#define i915_request_free_capture_list(_a) do {} while (0)
349
350#define assert_capture_list_is_null(_a) do {} while (0)
351
352#define clear_capture_list(_rq) do {} while (0)
353
354#endif
355
356bool i915_request_retire(struct i915_request *rq)
357{
358 if (!__i915_request_is_complete(rq))
359 return false;
360
361 RQ_TRACE(rq, "\n");
362
363 GEM_BUG_ON(!i915_sw_fence_signaled(&rq->submit));
364 trace_i915_request_retire(rq);
365 i915_request_mark_complete(rq);
366
367 __rq_cancel_watchdog(rq);
368
369 /*
370 * We know the GPU must have read the request to have
371 * sent us the seqno + interrupt, so use the position
372 * of tail of the request to update the last known position
373 * of the GPU head.
374 *
375 * Note this requires that we are always called in request
376 * completion order.
377 */
378 GEM_BUG_ON(!list_is_first(&rq->link,
379 &i915_request_timeline(rq)->requests));
380 if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
381 /* Poison before we release our space in the ring */
382 __i915_request_fill(rq, POISON_FREE);
383 rq->ring->head = rq->postfix;
384
385 if (!i915_request_signaled(rq)) {
386 spin_lock_irq(lock: &rq->lock);
387 dma_fence_signal_locked(fence: &rq->fence);
388 spin_unlock_irq(lock: &rq->lock);
389 }
390
391 if (test_and_set_bit(nr: I915_FENCE_FLAG_BOOST, addr: &rq->fence.flags))
392 intel_rps_dec_waiters(rps: &rq->engine->gt->rps);
393
394 /*
395 * We only loosely track inflight requests across preemption,
396 * and so we may find ourselves attempting to retire a _completed_
397 * request that we have removed from the HW and put back on a run
398 * queue.
399 *
400 * As we set I915_FENCE_FLAG_ACTIVE on the request, this should be
401 * after removing the breadcrumb and signaling it, so that we do not
402 * inadvertently attach the breadcrumb to a completed request.
403 */
404 rq->engine->remove_active_request(rq);
405 GEM_BUG_ON(!llist_empty(&rq->execute_cb));
406
407 __list_del_entry(entry: &rq->link); /* poison neither prev/next (RCU walks) */
408
409 intel_context_exit(ce: rq->context);
410 intel_context_unpin(ce: rq->context);
411
412 i915_sched_node_fini(node: &rq->sched);
413 i915_request_put(rq);
414
415 return true;
416}
417
418void i915_request_retire_upto(struct i915_request *rq)
419{
420 struct intel_timeline * const tl = i915_request_timeline(rq);
421 struct i915_request *tmp;
422
423 RQ_TRACE(rq, "\n");
424 GEM_BUG_ON(!__i915_request_is_complete(rq));
425
426 do {
427 tmp = list_first_entry(&tl->requests, typeof(*tmp), link);
428 GEM_BUG_ON(!i915_request_completed(tmp));
429 } while (i915_request_retire(rq: tmp) && tmp != rq);
430}
431
432static struct i915_request * const *
433__engine_active(struct intel_engine_cs *engine)
434{
435 return READ_ONCE(engine->execlists.active);
436}
437
438static bool __request_in_flight(const struct i915_request *signal)
439{
440 struct i915_request * const *port, *rq;
441 bool inflight = false;
442
443 if (!i915_request_is_ready(rq: signal))
444 return false;
445
446 /*
447 * Even if we have unwound the request, it may still be on
448 * the GPU (preempt-to-busy). If that request is inside an
449 * unpreemptible critical section, it will not be removed. Some
450 * GPU functions may even be stuck waiting for the paired request
451 * (__await_execution) to be submitted and cannot be preempted
452 * until the bond is executing.
453 *
454 * As we know that there are always preemption points between
455 * requests, we know that only the currently executing request
456 * may be still active even though we have cleared the flag.
457 * However, we can't rely on our tracking of ELSP[0] to know
458 * which request is currently active and so maybe stuck, as
459 * the tracking maybe an event behind. Instead assume that
460 * if the context is still inflight, then it is still active
461 * even if the active flag has been cleared.
462 *
463 * To further complicate matters, if there a pending promotion, the HW
464 * may either perform a context switch to the second inflight execlists,
465 * or it may switch to the pending set of execlists. In the case of the
466 * latter, it may send the ACK and we process the event copying the
467 * pending[] over top of inflight[], _overwriting_ our *active. Since
468 * this implies the HW is arbitrating and not struck in *active, we do
469 * not worry about complete accuracy, but we do require no read/write
470 * tearing of the pointer [the read of the pointer must be valid, even
471 * as the array is being overwritten, for which we require the writes
472 * to avoid tearing.]
473 *
474 * Note that the read of *execlists->active may race with the promotion
475 * of execlists->pending[] to execlists->inflight[], overwritting
476 * the value at *execlists->active. This is fine. The promotion implies
477 * that we received an ACK from the HW, and so the context is not
478 * stuck -- if we do not see ourselves in *active, the inflight status
479 * is valid. If instead we see ourselves being copied into *active,
480 * we are inflight and may signal the callback.
481 */
482 if (!intel_context_inflight(signal->context))
483 return false;
484
485 rcu_read_lock();
486 for (port = __engine_active(engine: signal->engine);
487 (rq = READ_ONCE(*port)); /* may race with promotion of pending[] */
488 port++) {
489 if (rq->context == signal->context) {
490 inflight = i915_seqno_passed(seq1: rq->fence.seqno,
491 seq2: signal->fence.seqno);
492 break;
493 }
494 }
495 rcu_read_unlock();
496
497 return inflight;
498}
499
500static int
501__await_execution(struct i915_request *rq,
502 struct i915_request *signal,
503 gfp_t gfp)
504{
505 struct execute_cb *cb;
506
507 if (i915_request_is_active(rq: signal))
508 return 0;
509
510 cb = kmem_cache_alloc(cachep: slab_execute_cbs, flags: gfp);
511 if (!cb)
512 return -ENOMEM;
513
514 cb->fence = &rq->submit;
515 i915_sw_fence_await(fence: cb->fence);
516 init_irq_work(work: &cb->work, func: irq_execute_cb);
517
518 /*
519 * Register the callback first, then see if the signaler is already
520 * active. This ensures that if we race with the
521 * __notify_execute_cb from i915_request_submit() and we are not
522 * included in that list, we get a second bite of the cherry and
523 * execute it ourselves. After this point, a future
524 * i915_request_submit() will notify us.
525 *
526 * In i915_request_retire() we set the ACTIVE bit on a completed
527 * request (then flush the execute_cb). So by registering the
528 * callback first, then checking the ACTIVE bit, we serialise with
529 * the completed/retired request.
530 */
531 if (llist_add(new: &cb->work.node.llist, head: &signal->execute_cb)) {
532 if (i915_request_is_active(rq: signal) ||
533 __request_in_flight(signal))
534 i915_request_notify_execute_cb_imm(rq: signal);
535 }
536
537 return 0;
538}
539
540static bool fatal_error(int error)
541{
542 switch (error) {
543 case 0: /* not an error! */
544 case -EAGAIN: /* innocent victim of a GT reset (__i915_request_reset) */
545 case -ETIMEDOUT: /* waiting for Godot (timer_i915_sw_fence_wake) */
546 return false;
547 default:
548 return true;
549 }
550}
551
552void __i915_request_skip(struct i915_request *rq)
553{
554 GEM_BUG_ON(!fatal_error(rq->fence.error));
555
556 if (rq->infix == rq->postfix)
557 return;
558
559 RQ_TRACE(rq, "error: %d\n", rq->fence.error);
560
561 /*
562 * As this request likely depends on state from the lost
563 * context, clear out all the user operations leaving the
564 * breadcrumb at the end (so we get the fence notifications).
565 */
566 __i915_request_fill(rq, val: 0);
567 rq->infix = rq->postfix;
568}
569
570bool i915_request_set_error_once(struct i915_request *rq, int error)
571{
572 int old;
573
574 GEM_BUG_ON(!IS_ERR_VALUE((long)error));
575
576 if (i915_request_signaled(rq))
577 return false;
578
579 old = READ_ONCE(rq->fence.error);
580 do {
581 if (fatal_error(error: old))
582 return false;
583 } while (!try_cmpxchg(&rq->fence.error, &old, error));
584
585 return true;
586}
587
588struct i915_request *i915_request_mark_eio(struct i915_request *rq)
589{
590 if (__i915_request_is_complete(rq))
591 return NULL;
592
593 GEM_BUG_ON(i915_request_signaled(rq));
594
595 /* As soon as the request is completed, it may be retired */
596 rq = i915_request_get(rq);
597
598 i915_request_set_error_once(rq, error: -EIO);
599 i915_request_mark_complete(rq);
600
601 return rq;
602}
603
604bool __i915_request_submit(struct i915_request *request)
605{
606 struct intel_engine_cs *engine = request->engine;
607 bool result = false;
608
609 RQ_TRACE(request, "\n");
610
611 GEM_BUG_ON(!irqs_disabled());
612 lockdep_assert_held(&engine->sched_engine->lock);
613
614 /*
615 * With the advent of preempt-to-busy, we frequently encounter
616 * requests that we have unsubmitted from HW, but left running
617 * until the next ack and so have completed in the meantime. On
618 * resubmission of that completed request, we can skip
619 * updating the payload, and execlists can even skip submitting
620 * the request.
621 *
622 * We must remove the request from the caller's priority queue,
623 * and the caller must only call us when the request is in their
624 * priority queue, under the sched_engine->lock. This ensures that the
625 * request has *not* yet been retired and we can safely move
626 * the request into the engine->active.list where it will be
627 * dropped upon retiring. (Otherwise if resubmit a *retired*
628 * request, this would be a horrible use-after-free.)
629 */
630 if (__i915_request_is_complete(rq: request)) {
631 list_del_init(entry: &request->sched.link);
632 goto active;
633 }
634
635 if (unlikely(!intel_context_is_schedulable(request->context)))
636 i915_request_set_error_once(rq: request, error: -EIO);
637
638 if (unlikely(fatal_error(request->fence.error)))
639 __i915_request_skip(rq: request);
640
641 /*
642 * Are we using semaphores when the gpu is already saturated?
643 *
644 * Using semaphores incurs a cost in having the GPU poll a
645 * memory location, busywaiting for it to change. The continual
646 * memory reads can have a noticeable impact on the rest of the
647 * system with the extra bus traffic, stalling the cpu as it too
648 * tries to access memory across the bus (perf stat -e bus-cycles).
649 *
650 * If we installed a semaphore on this request and we only submit
651 * the request after the signaler completed, that indicates the
652 * system is overloaded and using semaphores at this time only
653 * increases the amount of work we are doing. If so, we disable
654 * further use of semaphores until we are idle again, whence we
655 * optimistically try again.
656 */
657 if (request->sched.semaphores &&
658 i915_sw_fence_signaled(fence: &request->semaphore))
659 engine->saturated |= request->sched.semaphores;
660
661 engine->emit_fini_breadcrumb(request,
662 request->ring->vaddr + request->postfix);
663
664 trace_i915_request_execute(rq: request);
665 if (engine->bump_serial)
666 engine->bump_serial(engine);
667 else
668 engine->serial++;
669
670 result = true;
671
672 GEM_BUG_ON(test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags));
673 engine->add_active_request(request);
674active:
675 clear_bit(nr: I915_FENCE_FLAG_PQUEUE, addr: &request->fence.flags);
676 set_bit(nr: I915_FENCE_FLAG_ACTIVE, addr: &request->fence.flags);
677
678 /*
679 * XXX Rollback bonded-execution on __i915_request_unsubmit()?
680 *
681 * In the future, perhaps when we have an active time-slicing scheduler,
682 * it will be interesting to unsubmit parallel execution and remove
683 * busywaits from the GPU until their master is restarted. This is
684 * quite hairy, we have to carefully rollback the fence and do a
685 * preempt-to-idle cycle on the target engine, all the while the
686 * master execute_cb may refire.
687 */
688 __notify_execute_cb_irq(rq: request);
689
690 /* We may be recursing from the signal callback of another i915 fence */
691 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
692 i915_request_enable_breadcrumb(request);
693
694 return result;
695}
696
697void i915_request_submit(struct i915_request *request)
698{
699 struct intel_engine_cs *engine = request->engine;
700 unsigned long flags;
701
702 /* Will be called from irq-context when using foreign fences. */
703 spin_lock_irqsave(&engine->sched_engine->lock, flags);
704
705 __i915_request_submit(request);
706
707 spin_unlock_irqrestore(lock: &engine->sched_engine->lock, flags);
708}
709
710void __i915_request_unsubmit(struct i915_request *request)
711{
712 struct intel_engine_cs *engine = request->engine;
713
714 /*
715 * Only unwind in reverse order, required so that the per-context list
716 * is kept in seqno/ring order.
717 */
718 RQ_TRACE(request, "\n");
719
720 GEM_BUG_ON(!irqs_disabled());
721 lockdep_assert_held(&engine->sched_engine->lock);
722
723 /*
724 * Before we remove this breadcrumb from the signal list, we have
725 * to ensure that a concurrent dma_fence_enable_signaling() does not
726 * attach itself. We first mark the request as no longer active and
727 * make sure that is visible to other cores, and then remove the
728 * breadcrumb if attached.
729 */
730 GEM_BUG_ON(!test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags));
731 clear_bit_unlock(nr: I915_FENCE_FLAG_ACTIVE, addr: &request->fence.flags);
732 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
733 i915_request_cancel_breadcrumb(request);
734
735 /* We've already spun, don't charge on resubmitting. */
736 if (request->sched.semaphores && __i915_request_has_started(rq: request))
737 request->sched.semaphores = 0;
738
739 /*
740 * We don't need to wake_up any waiters on request->execute, they
741 * will get woken by any other event or us re-adding this request
742 * to the engine timeline (__i915_request_submit()). The waiters
743 * should be quite adapt at finding that the request now has a new
744 * global_seqno to the one they went to sleep on.
745 */
746}
747
748void i915_request_unsubmit(struct i915_request *request)
749{
750 struct intel_engine_cs *engine = request->engine;
751 unsigned long flags;
752
753 /* Will be called from irq-context when using foreign fences. */
754 spin_lock_irqsave(&engine->sched_engine->lock, flags);
755
756 __i915_request_unsubmit(request);
757
758 spin_unlock_irqrestore(lock: &engine->sched_engine->lock, flags);
759}
760
761void i915_request_cancel(struct i915_request *rq, int error)
762{
763 if (!i915_request_set_error_once(rq, error))
764 return;
765
766 set_bit(nr: I915_FENCE_FLAG_SENTINEL, addr: &rq->fence.flags);
767
768 intel_context_cancel_request(ce: rq->context, rq);
769}
770
771static int
772submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
773{
774 struct i915_request *request =
775 container_of(fence, typeof(*request), submit);
776
777 switch (state) {
778 case FENCE_COMPLETE:
779 trace_i915_request_submit(rq: request);
780
781 if (unlikely(fence->error))
782 i915_request_set_error_once(rq: request, error: fence->error);
783 else
784 __rq_arm_watchdog(rq: request);
785
786 /*
787 * We need to serialize use of the submit_request() callback
788 * with its hotplugging performed during an emergency
789 * i915_gem_set_wedged(). We use the RCU mechanism to mark the
790 * critical section in order to force i915_gem_set_wedged() to
791 * wait until the submit_request() is completed before
792 * proceeding.
793 */
794 rcu_read_lock();
795 request->engine->submit_request(request);
796 rcu_read_unlock();
797 break;
798
799 case FENCE_FREE:
800 i915_request_put(rq: request);
801 break;
802 }
803
804 return NOTIFY_DONE;
805}
806
807static int
808semaphore_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
809{
810 struct i915_request *rq = container_of(fence, typeof(*rq), semaphore);
811
812 switch (state) {
813 case FENCE_COMPLETE:
814 break;
815
816 case FENCE_FREE:
817 i915_request_put(rq);
818 break;
819 }
820
821 return NOTIFY_DONE;
822}
823
824static void retire_requests(struct intel_timeline *tl)
825{
826 struct i915_request *rq, *rn;
827
828 list_for_each_entry_safe(rq, rn, &tl->requests, link)
829 if (!i915_request_retire(rq))
830 break;
831}
832
833static noinline struct i915_request *
834request_alloc_slow(struct intel_timeline *tl,
835 struct i915_request **rsvd,
836 gfp_t gfp)
837{
838 struct i915_request *rq;
839
840 /* If we cannot wait, dip into our reserves */
841 if (!gfpflags_allow_blocking(gfp_flags: gfp)) {
842 rq = xchg(rsvd, NULL);
843 if (!rq) /* Use the normal failure path for one final WARN */
844 goto out;
845
846 return rq;
847 }
848
849 if (list_empty(head: &tl->requests))
850 goto out;
851
852 /* Move our oldest request to the slab-cache (if not in use!) */
853 rq = list_first_entry(&tl->requests, typeof(*rq), link);
854 i915_request_retire(rq);
855
856 rq = kmem_cache_alloc(cachep: slab_requests,
857 flags: gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
858 if (rq)
859 return rq;
860
861 /* Ratelimit ourselves to prevent oom from malicious clients */
862 rq = list_last_entry(&tl->requests, typeof(*rq), link);
863 cond_synchronize_rcu(oldstate: rq->rcustate);
864
865 /* Retire our old requests in the hope that we free some */
866 retire_requests(tl);
867
868out:
869 return kmem_cache_alloc(cachep: slab_requests, flags: gfp);
870}
871
872static void __i915_request_ctor(void *arg)
873{
874 struct i915_request *rq = arg;
875
876 spin_lock_init(&rq->lock);
877 i915_sched_node_init(node: &rq->sched);
878 i915_sw_fence_init(&rq->submit, submit_notify);
879 i915_sw_fence_init(&rq->semaphore, semaphore_notify);
880
881 clear_capture_list(rq);
882 rq->batch_res = NULL;
883
884 init_llist_head(list: &rq->execute_cb);
885}
886
887#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
888#define clear_batch_ptr(_rq) ((_rq)->batch = NULL)
889#else
890#define clear_batch_ptr(_a) do {} while (0)
891#endif
892
893struct i915_request *
894__i915_request_create(struct intel_context *ce, gfp_t gfp)
895{
896 struct intel_timeline *tl = ce->timeline;
897 struct i915_request *rq;
898 u32 seqno;
899 int ret;
900
901 might_alloc(gfp_mask: gfp);
902
903 /* Check that the caller provided an already pinned context */
904 __intel_context_pin(ce);
905
906 /*
907 * Beware: Dragons be flying overhead.
908 *
909 * We use RCU to look up requests in flight. The lookups may
910 * race with the request being allocated from the slab freelist.
911 * That is the request we are writing to here, may be in the process
912 * of being read by __i915_active_request_get_rcu(). As such,
913 * we have to be very careful when overwriting the contents. During
914 * the RCU lookup, we change chase the request->engine pointer,
915 * read the request->global_seqno and increment the reference count.
916 *
917 * The reference count is incremented atomically. If it is zero,
918 * the lookup knows the request is unallocated and complete. Otherwise,
919 * it is either still in use, or has been reallocated and reset
920 * with dma_fence_init(). This increment is safe for release as we
921 * check that the request we have a reference to and matches the active
922 * request.
923 *
924 * Before we increment the refcount, we chase the request->engine
925 * pointer. We must not call kmem_cache_zalloc() or else we set
926 * that pointer to NULL and cause a crash during the lookup. If
927 * we see the request is completed (based on the value of the
928 * old engine and seqno), the lookup is complete and reports NULL.
929 * If we decide the request is not completed (new engine or seqno),
930 * then we grab a reference and double check that it is still the
931 * active request - which it won't be and restart the lookup.
932 *
933 * Do not use kmem_cache_zalloc() here!
934 */
935 rq = kmem_cache_alloc(cachep: slab_requests,
936 flags: gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
937 if (unlikely(!rq)) {
938 rq = request_alloc_slow(tl, rsvd: &ce->engine->request_pool, gfp);
939 if (!rq) {
940 ret = -ENOMEM;
941 goto err_unreserve;
942 }
943 }
944
945 rq->context = ce;
946 rq->engine = ce->engine;
947 rq->ring = ce->ring;
948 rq->execution_mask = ce->engine->mask;
949 rq->i915 = ce->engine->i915;
950
951 ret = intel_timeline_get_seqno(tl, rq, seqno: &seqno);
952 if (ret)
953 goto err_free;
954
955 dma_fence_init(fence: &rq->fence, ops: &i915_fence_ops, lock: &rq->lock,
956 context: tl->fence_context, seqno);
957
958 RCU_INIT_POINTER(rq->timeline, tl);
959 rq->hwsp_seqno = tl->hwsp_seqno;
960 GEM_BUG_ON(__i915_request_is_complete(rq));
961
962 rq->rcustate = get_state_synchronize_rcu(); /* acts as smp_mb() */
963
964 rq->guc_prio = GUC_PRIO_INIT;
965
966 /* We bump the ref for the fence chain */
967 i915_sw_fence_reinit(fence: &i915_request_get(rq)->submit);
968 i915_sw_fence_reinit(fence: &i915_request_get(rq)->semaphore);
969
970 i915_sched_node_reinit(node: &rq->sched);
971
972 /* No zalloc, everything must be cleared after use */
973 clear_batch_ptr(rq);
974 __rq_init_watchdog(rq);
975 assert_capture_list_is_null(rq);
976 GEM_BUG_ON(!llist_empty(&rq->execute_cb));
977 GEM_BUG_ON(rq->batch_res);
978
979 /*
980 * Reserve space in the ring buffer for all the commands required to
981 * eventually emit this request. This is to guarantee that the
982 * i915_request_add() call can't fail. Note that the reserve may need
983 * to be redone if the request is not actually submitted straight
984 * away, e.g. because a GPU scheduler has deferred it.
985 *
986 * Note that due to how we add reserved_space to intel_ring_begin()
987 * we need to double our request to ensure that if we need to wrap
988 * around inside i915_request_add() there is sufficient space at
989 * the beginning of the ring as well.
990 */
991 rq->reserved_space =
992 2 * rq->engine->emit_fini_breadcrumb_dw * sizeof(u32);
993
994 /*
995 * Record the position of the start of the request so that
996 * should we detect the updated seqno part-way through the
997 * GPU processing the request, we never over-estimate the
998 * position of the head.
999 */
1000 rq->head = rq->ring->emit;
1001
1002 ret = rq->engine->request_alloc(rq);
1003 if (ret)
1004 goto err_unwind;
1005
1006 rq->infix = rq->ring->emit; /* end of header; start of user payload */
1007
1008 intel_context_mark_active(ce);
1009 list_add_tail_rcu(new: &rq->link, head: &tl->requests);
1010
1011 return rq;
1012
1013err_unwind:
1014 ce->ring->emit = rq->head;
1015
1016 /* Make sure we didn't add ourselves to external state before freeing */
1017 GEM_BUG_ON(!list_empty(&rq->sched.signalers_list));
1018 GEM_BUG_ON(!list_empty(&rq->sched.waiters_list));
1019
1020err_free:
1021 kmem_cache_free(s: slab_requests, objp: rq);
1022err_unreserve:
1023 intel_context_unpin(ce);
1024 return ERR_PTR(error: ret);
1025}
1026
1027struct i915_request *
1028i915_request_create(struct intel_context *ce)
1029{
1030 struct i915_request *rq;
1031 struct intel_timeline *tl;
1032
1033 tl = intel_context_timeline_lock(ce);
1034 if (IS_ERR(ptr: tl))
1035 return ERR_CAST(ptr: tl);
1036
1037 /* Move our oldest request to the slab-cache (if not in use!) */
1038 rq = list_first_entry(&tl->requests, typeof(*rq), link);
1039 if (!list_is_last(list: &rq->link, head: &tl->requests))
1040 i915_request_retire(rq);
1041
1042 intel_context_enter(ce);
1043 rq = __i915_request_create(ce, GFP_KERNEL);
1044 intel_context_exit(ce); /* active reference transferred to request */
1045 if (IS_ERR(ptr: rq))
1046 goto err_unlock;
1047
1048 /* Check that we do not interrupt ourselves with a new request */
1049 rq->cookie = lockdep_pin_lock(&tl->mutex);
1050
1051 return rq;
1052
1053err_unlock:
1054 intel_context_timeline_unlock(tl);
1055 return rq;
1056}
1057
1058static int
1059i915_request_await_start(struct i915_request *rq, struct i915_request *signal)
1060{
1061 struct dma_fence *fence;
1062 int err;
1063
1064 if (i915_request_timeline(rq) == rcu_access_pointer(signal->timeline))
1065 return 0;
1066
1067 if (i915_request_started(rq: signal))
1068 return 0;
1069
1070 /*
1071 * The caller holds a reference on @signal, but we do not serialise
1072 * against it being retired and removed from the lists.
1073 *
1074 * We do not hold a reference to the request before @signal, and
1075 * so must be very careful to ensure that it is not _recycled_ as
1076 * we follow the link backwards.
1077 */
1078 fence = NULL;
1079 rcu_read_lock();
1080 do {
1081 struct list_head *pos = READ_ONCE(signal->link.prev);
1082 struct i915_request *prev;
1083
1084 /* Confirm signal has not been retired, the link is valid */
1085 if (unlikely(__i915_request_has_started(signal)))
1086 break;
1087
1088 /* Is signal the earliest request on its timeline? */
1089 if (pos == &rcu_dereference(signal->timeline)->requests)
1090 break;
1091
1092 /*
1093 * Peek at the request before us in the timeline. That
1094 * request will only be valid before it is retired, so
1095 * after acquiring a reference to it, confirm that it is
1096 * still part of the signaler's timeline.
1097 */
1098 prev = list_entry(pos, typeof(*prev), link);
1099 if (!i915_request_get_rcu(rq: prev))
1100 break;
1101
1102 /* After the strong barrier, confirm prev is still attached */
1103 if (unlikely(READ_ONCE(prev->link.next) != &signal->link)) {
1104 i915_request_put(rq: prev);
1105 break;
1106 }
1107
1108 fence = &prev->fence;
1109 } while (0);
1110 rcu_read_unlock();
1111 if (!fence)
1112 return 0;
1113
1114 err = 0;
1115 if (!intel_timeline_sync_is_later(tl: i915_request_timeline(rq), fence))
1116 err = i915_sw_fence_await_dma_fence(fence: &rq->submit,
1117 dma: fence, timeout: 0,
1118 I915_FENCE_GFP);
1119 dma_fence_put(fence);
1120
1121 return err;
1122}
1123
1124static intel_engine_mask_t
1125already_busywaiting(struct i915_request *rq)
1126{
1127 /*
1128 * Polling a semaphore causes bus traffic, delaying other users of
1129 * both the GPU and CPU. We want to limit the impact on others,
1130 * while taking advantage of early submission to reduce GPU
1131 * latency. Therefore we restrict ourselves to not using more
1132 * than one semaphore from each source, and not using a semaphore
1133 * if we have detected the engine is saturated (i.e. would not be
1134 * submitted early and cause bus traffic reading an already passed
1135 * semaphore).
1136 *
1137 * See the are-we-too-late? check in __i915_request_submit().
1138 */
1139 return rq->sched.semaphores | READ_ONCE(rq->engine->saturated);
1140}
1141
1142static int
1143__emit_semaphore_wait(struct i915_request *to,
1144 struct i915_request *from,
1145 u32 seqno)
1146{
1147 const int has_token = GRAPHICS_VER(to->engine->i915) >= 12;
1148 u32 hwsp_offset;
1149 int len, err;
1150 u32 *cs;
1151
1152 GEM_BUG_ON(GRAPHICS_VER(to->engine->i915) < 8);
1153 GEM_BUG_ON(i915_request_has_initial_breadcrumb(to));
1154
1155 /* We need to pin the signaler's HWSP until we are finished reading. */
1156 err = intel_timeline_read_hwsp(from, until: to, hwsp_offset: &hwsp_offset);
1157 if (err)
1158 return err;
1159
1160 len = 4;
1161 if (has_token)
1162 len += 2;
1163
1164 cs = intel_ring_begin(rq: to, num_dwords: len);
1165 if (IS_ERR(ptr: cs))
1166 return PTR_ERR(ptr: cs);
1167
1168 /*
1169 * Using greater-than-or-equal here means we have to worry
1170 * about seqno wraparound. To side step that issue, we swap
1171 * the timeline HWSP upon wrapping, so that everyone listening
1172 * for the old (pre-wrap) values do not see the much smaller
1173 * (post-wrap) values than they were expecting (and so wait
1174 * forever).
1175 */
1176 *cs++ = (MI_SEMAPHORE_WAIT |
1177 MI_SEMAPHORE_GLOBAL_GTT |
1178 MI_SEMAPHORE_POLL |
1179 MI_SEMAPHORE_SAD_GTE_SDD) +
1180 has_token;
1181 *cs++ = seqno;
1182 *cs++ = hwsp_offset;
1183 *cs++ = 0;
1184 if (has_token) {
1185 *cs++ = 0;
1186 *cs++ = MI_NOOP;
1187 }
1188
1189 intel_ring_advance(rq: to, cs);
1190 return 0;
1191}
1192
1193static bool
1194can_use_semaphore_wait(struct i915_request *to, struct i915_request *from)
1195{
1196 return to->engine->gt->ggtt == from->engine->gt->ggtt;
1197}
1198
1199static int
1200emit_semaphore_wait(struct i915_request *to,
1201 struct i915_request *from,
1202 gfp_t gfp)
1203{
1204 const intel_engine_mask_t mask = READ_ONCE(from->engine)->mask;
1205 struct i915_sw_fence *wait = &to->submit;
1206
1207 if (!can_use_semaphore_wait(to, from))
1208 goto await_fence;
1209
1210 if (!intel_context_use_semaphores(ce: to->context))
1211 goto await_fence;
1212
1213 if (i915_request_has_initial_breadcrumb(rq: to))
1214 goto await_fence;
1215
1216 /*
1217 * If this or its dependents are waiting on an external fence
1218 * that may fail catastrophically, then we want to avoid using
1219 * semaphores as they bypass the fence signaling metadata, and we
1220 * lose the fence->error propagation.
1221 */
1222 if (from->sched.flags & I915_SCHED_HAS_EXTERNAL_CHAIN)
1223 goto await_fence;
1224
1225 /* Just emit the first semaphore we see as request space is limited. */
1226 if (already_busywaiting(rq: to) & mask)
1227 goto await_fence;
1228
1229 if (i915_request_await_start(rq: to, signal: from) < 0)
1230 goto await_fence;
1231
1232 /* Only submit our spinner after the signaler is running! */
1233 if (__await_execution(rq: to, signal: from, gfp))
1234 goto await_fence;
1235
1236 if (__emit_semaphore_wait(to, from, seqno: from->fence.seqno))
1237 goto await_fence;
1238
1239 to->sched.semaphores |= mask;
1240 wait = &to->semaphore;
1241
1242await_fence:
1243 return i915_sw_fence_await_dma_fence(fence: wait,
1244 dma: &from->fence, timeout: 0,
1245 I915_FENCE_GFP);
1246}
1247
1248static bool intel_timeline_sync_has_start(struct intel_timeline *tl,
1249 struct dma_fence *fence)
1250{
1251 return __intel_timeline_sync_is_later(tl,
1252 context: fence->context,
1253 seqno: fence->seqno - 1);
1254}
1255
1256static int intel_timeline_sync_set_start(struct intel_timeline *tl,
1257 const struct dma_fence *fence)
1258{
1259 return __intel_timeline_sync_set(tl, context: fence->context, seqno: fence->seqno - 1);
1260}
1261
1262static int
1263__i915_request_await_execution(struct i915_request *to,
1264 struct i915_request *from)
1265{
1266 int err;
1267
1268 GEM_BUG_ON(intel_context_is_barrier(from->context));
1269
1270 /* Submit both requests at the same time */
1271 err = __await_execution(rq: to, signal: from, I915_FENCE_GFP);
1272 if (err)
1273 return err;
1274
1275 /* Squash repeated depenendices to the same timelines */
1276 if (intel_timeline_sync_has_start(tl: i915_request_timeline(rq: to),
1277 fence: &from->fence))
1278 return 0;
1279
1280 /*
1281 * Wait until the start of this request.
1282 *
1283 * The execution cb fires when we submit the request to HW. But in
1284 * many cases this may be long before the request itself is ready to
1285 * run (consider that we submit 2 requests for the same context, where
1286 * the request of interest is behind an indefinite spinner). So we hook
1287 * up to both to reduce our queues and keep the execution lag minimised
1288 * in the worst case, though we hope that the await_start is elided.
1289 */
1290 err = i915_request_await_start(rq: to, signal: from);
1291 if (err < 0)
1292 return err;
1293
1294 /*
1295 * Ensure both start together [after all semaphores in signal]
1296 *
1297 * Now that we are queued to the HW at roughly the same time (thanks
1298 * to the execute cb) and are ready to run at roughly the same time
1299 * (thanks to the await start), our signaler may still be indefinitely
1300 * delayed by waiting on a semaphore from a remote engine. If our
1301 * signaler depends on a semaphore, so indirectly do we, and we do not
1302 * want to start our payload until our signaler also starts theirs.
1303 * So we wait.
1304 *
1305 * However, there is also a second condition for which we need to wait
1306 * for the precise start of the signaler. Consider that the signaler
1307 * was submitted in a chain of requests following another context
1308 * (with just an ordinary intra-engine fence dependency between the
1309 * two). In this case the signaler is queued to HW, but not for
1310 * immediate execution, and so we must wait until it reaches the
1311 * active slot.
1312 */
1313 if (can_use_semaphore_wait(to, from) &&
1314 intel_engine_has_semaphores(engine: to->engine) &&
1315 !i915_request_has_initial_breadcrumb(rq: to)) {
1316 err = __emit_semaphore_wait(to, from, seqno: from->fence.seqno - 1);
1317 if (err < 0)
1318 return err;
1319 }
1320
1321 /* Couple the dependency tree for PI on this exposed to->fence */
1322 if (to->engine->sched_engine->schedule) {
1323 err = i915_sched_node_add_dependency(node: &to->sched,
1324 signal: &from->sched,
1325 I915_DEPENDENCY_WEAK);
1326 if (err < 0)
1327 return err;
1328 }
1329
1330 return intel_timeline_sync_set_start(tl: i915_request_timeline(rq: to),
1331 fence: &from->fence);
1332}
1333
1334static void mark_external(struct i915_request *rq)
1335{
1336 /*
1337 * The downside of using semaphores is that we lose metadata passing
1338 * along the signaling chain. This is particularly nasty when we
1339 * need to pass along a fatal error such as EFAULT or EDEADLK. For
1340 * fatal errors we want to scrub the request before it is executed,
1341 * which means that we cannot preload the request onto HW and have
1342 * it wait upon a semaphore.
1343 */
1344 rq->sched.flags |= I915_SCHED_HAS_EXTERNAL_CHAIN;
1345}
1346
1347static int
1348__i915_request_await_external(struct i915_request *rq, struct dma_fence *fence)
1349{
1350 mark_external(rq);
1351 return i915_sw_fence_await_dma_fence(fence: &rq->submit, dma: fence,
1352 timeout: i915_fence_context_timeout(i915: rq->i915,
1353 context: fence->context),
1354 I915_FENCE_GFP);
1355}
1356
1357static int
1358i915_request_await_external(struct i915_request *rq, struct dma_fence *fence)
1359{
1360 struct dma_fence *iter;
1361 int err = 0;
1362
1363 if (!to_dma_fence_chain(fence))
1364 return __i915_request_await_external(rq, fence);
1365
1366 dma_fence_chain_for_each(iter, fence) {
1367 struct dma_fence_chain *chain = to_dma_fence_chain(fence: iter);
1368
1369 if (!dma_fence_is_i915(fence: chain->fence)) {
1370 err = __i915_request_await_external(rq, fence: iter);
1371 break;
1372 }
1373
1374 err = i915_request_await_dma_fence(rq, fence: chain->fence);
1375 if (err < 0)
1376 break;
1377 }
1378
1379 dma_fence_put(fence: iter);
1380 return err;
1381}
1382
1383static inline bool is_parallel_rq(struct i915_request *rq)
1384{
1385 return intel_context_is_parallel(ce: rq->context);
1386}
1387
1388static inline struct intel_context *request_to_parent(struct i915_request *rq)
1389{
1390 return intel_context_to_parent(ce: rq->context);
1391}
1392
1393static bool is_same_parallel_context(struct i915_request *to,
1394 struct i915_request *from)
1395{
1396 if (is_parallel_rq(rq: to))
1397 return request_to_parent(rq: to) == request_to_parent(rq: from);
1398
1399 return false;
1400}
1401
1402int
1403i915_request_await_execution(struct i915_request *rq,
1404 struct dma_fence *fence)
1405{
1406 struct dma_fence **child = &fence;
1407 unsigned int nchild = 1;
1408 int ret;
1409
1410 if (dma_fence_is_array(fence)) {
1411 struct dma_fence_array *array = to_dma_fence_array(fence);
1412
1413 /* XXX Error for signal-on-any fence arrays */
1414
1415 child = array->fences;
1416 nchild = array->num_fences;
1417 GEM_BUG_ON(!nchild);
1418 }
1419
1420 do {
1421 fence = *child++;
1422 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
1423 continue;
1424
1425 if (fence->context == rq->fence.context)
1426 continue;
1427
1428 /*
1429 * We don't squash repeated fence dependencies here as we
1430 * want to run our callback in all cases.
1431 */
1432
1433 if (dma_fence_is_i915(fence)) {
1434 if (is_same_parallel_context(to: rq, from: to_request(fence)))
1435 continue;
1436 ret = __i915_request_await_execution(to: rq,
1437 from: to_request(fence));
1438 } else {
1439 ret = i915_request_await_external(rq, fence);
1440 }
1441 if (ret < 0)
1442 return ret;
1443 } while (--nchild);
1444
1445 return 0;
1446}
1447
1448static int
1449await_request_submit(struct i915_request *to, struct i915_request *from)
1450{
1451 /*
1452 * If we are waiting on a virtual engine, then it may be
1453 * constrained to execute on a single engine *prior* to submission.
1454 * When it is submitted, it will be first submitted to the virtual
1455 * engine and then passed to the physical engine. We cannot allow
1456 * the waiter to be submitted immediately to the physical engine
1457 * as it may then bypass the virtual request.
1458 */
1459 if (to->engine == READ_ONCE(from->engine))
1460 return i915_sw_fence_await_sw_fence_gfp(fence: &to->submit,
1461 after: &from->submit,
1462 I915_FENCE_GFP);
1463 else
1464 return __i915_request_await_execution(to, from);
1465}
1466
1467static int
1468i915_request_await_request(struct i915_request *to, struct i915_request *from)
1469{
1470 int ret;
1471
1472 GEM_BUG_ON(to == from);
1473 GEM_BUG_ON(to->timeline == from->timeline);
1474
1475 if (i915_request_completed(rq: from)) {
1476 i915_sw_fence_set_error_once(fence: &to->submit, error: from->fence.error);
1477 return 0;
1478 }
1479
1480 if (to->engine->sched_engine->schedule) {
1481 ret = i915_sched_node_add_dependency(node: &to->sched,
1482 signal: &from->sched,
1483 I915_DEPENDENCY_EXTERNAL);
1484 if (ret < 0)
1485 return ret;
1486 }
1487
1488 if (!intel_engine_uses_guc(engine: to->engine) &&
1489 is_power_of_2(n: to->execution_mask | READ_ONCE(from->execution_mask)))
1490 ret = await_request_submit(to, from);
1491 else
1492 ret = emit_semaphore_wait(to, from, I915_FENCE_GFP);
1493 if (ret < 0)
1494 return ret;
1495
1496 return 0;
1497}
1498
1499int
1500i915_request_await_dma_fence(struct i915_request *rq, struct dma_fence *fence)
1501{
1502 struct dma_fence **child = &fence;
1503 unsigned int nchild = 1;
1504 int ret;
1505
1506 /*
1507 * Note that if the fence-array was created in signal-on-any mode,
1508 * we should *not* decompose it into its individual fences. However,
1509 * we don't currently store which mode the fence-array is operating
1510 * in. Fortunately, the only user of signal-on-any is private to
1511 * amdgpu and we should not see any incoming fence-array from
1512 * sync-file being in signal-on-any mode.
1513 */
1514 if (dma_fence_is_array(fence)) {
1515 struct dma_fence_array *array = to_dma_fence_array(fence);
1516
1517 child = array->fences;
1518 nchild = array->num_fences;
1519 GEM_BUG_ON(!nchild);
1520 }
1521
1522 do {
1523 fence = *child++;
1524 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
1525 continue;
1526
1527 /*
1528 * Requests on the same timeline are explicitly ordered, along
1529 * with their dependencies, by i915_request_add() which ensures
1530 * that requests are submitted in-order through each ring.
1531 */
1532 if (fence->context == rq->fence.context)
1533 continue;
1534
1535 /* Squash repeated waits to the same timelines */
1536 if (fence->context &&
1537 intel_timeline_sync_is_later(tl: i915_request_timeline(rq),
1538 fence))
1539 continue;
1540
1541 if (dma_fence_is_i915(fence)) {
1542 if (is_same_parallel_context(to: rq, from: to_request(fence)))
1543 continue;
1544 ret = i915_request_await_request(to: rq, from: to_request(fence));
1545 } else {
1546 ret = i915_request_await_external(rq, fence);
1547 }
1548 if (ret < 0)
1549 return ret;
1550
1551 /* Record the latest fence used against each timeline */
1552 if (fence->context)
1553 intel_timeline_sync_set(tl: i915_request_timeline(rq),
1554 fence);
1555 } while (--nchild);
1556
1557 return 0;
1558}
1559
1560/**
1561 * i915_request_await_deps - set this request to (async) wait upon a struct
1562 * i915_deps dma_fence collection
1563 * @rq: request we are wishing to use
1564 * @deps: The struct i915_deps containing the dependencies.
1565 *
1566 * Returns 0 if successful, negative error code on error.
1567 */
1568int i915_request_await_deps(struct i915_request *rq, const struct i915_deps *deps)
1569{
1570 int i, err;
1571
1572 for (i = 0; i < deps->num_deps; ++i) {
1573 err = i915_request_await_dma_fence(rq, fence: deps->fences[i]);
1574 if (err)
1575 return err;
1576 }
1577
1578 return 0;
1579}
1580
1581/**
1582 * i915_request_await_object - set this request to (async) wait upon a bo
1583 * @to: request we are wishing to use
1584 * @obj: object which may be in use on another ring.
1585 * @write: whether the wait is on behalf of a writer
1586 *
1587 * This code is meant to abstract object synchronization with the GPU.
1588 * Conceptually we serialise writes between engines inside the GPU.
1589 * We only allow one engine to write into a buffer at any time, but
1590 * multiple readers. To ensure each has a coherent view of memory, we must:
1591 *
1592 * - If there is an outstanding write request to the object, the new
1593 * request must wait for it to complete (either CPU or in hw, requests
1594 * on the same ring will be naturally ordered).
1595 *
1596 * - If we are a write request (pending_write_domain is set), the new
1597 * request must wait for outstanding read requests to complete.
1598 *
1599 * Returns 0 if successful, else propagates up the lower layer error.
1600 */
1601int
1602i915_request_await_object(struct i915_request *to,
1603 struct drm_i915_gem_object *obj,
1604 bool write)
1605{
1606 struct dma_resv_iter cursor;
1607 struct dma_fence *fence;
1608 int ret = 0;
1609
1610 dma_resv_for_each_fence(&cursor, obj->base.resv,
1611 dma_resv_usage_rw(write), fence) {
1612 ret = i915_request_await_dma_fence(rq: to, fence);
1613 if (ret)
1614 break;
1615 }
1616
1617 return ret;
1618}
1619
1620static void i915_request_await_huc(struct i915_request *rq)
1621{
1622 struct intel_huc *huc = &rq->context->engine->gt->uc.huc;
1623
1624 /* don't stall kernel submissions! */
1625 if (!rcu_access_pointer(rq->context->gem_context))
1626 return;
1627
1628 if (intel_huc_wait_required(huc))
1629 i915_sw_fence_await_sw_fence(fence: &rq->submit,
1630 after: &huc->delayed_load.fence,
1631 wq: &rq->hucq);
1632}
1633
1634static struct i915_request *
1635__i915_request_ensure_parallel_ordering(struct i915_request *rq,
1636 struct intel_timeline *timeline)
1637{
1638 struct i915_request *prev;
1639
1640 GEM_BUG_ON(!is_parallel_rq(rq));
1641
1642 prev = request_to_parent(rq)->parallel.last_rq;
1643 if (prev) {
1644 if (!__i915_request_is_complete(rq: prev)) {
1645 i915_sw_fence_await_sw_fence(fence: &rq->submit,
1646 after: &prev->submit,
1647 wq: &rq->submitq);
1648
1649 if (rq->engine->sched_engine->schedule)
1650 __i915_sched_node_add_dependency(node: &rq->sched,
1651 signal: &prev->sched,
1652 dep: &rq->dep,
1653 flags: 0);
1654 }
1655 i915_request_put(rq: prev);
1656 }
1657
1658 request_to_parent(rq)->parallel.last_rq = i915_request_get(rq);
1659
1660 /*
1661 * Users have to put a reference potentially got by
1662 * __i915_active_fence_set() to the returned request
1663 * when no longer needed
1664 */
1665 return to_request(fence: __i915_active_fence_set(active: &timeline->last_request,
1666 fence: &rq->fence));
1667}
1668
1669static struct i915_request *
1670__i915_request_ensure_ordering(struct i915_request *rq,
1671 struct intel_timeline *timeline)
1672{
1673 struct i915_request *prev;
1674
1675 GEM_BUG_ON(is_parallel_rq(rq));
1676
1677 prev = to_request(fence: __i915_active_fence_set(active: &timeline->last_request,
1678 fence: &rq->fence));
1679
1680 if (prev && !__i915_request_is_complete(rq: prev)) {
1681 bool uses_guc = intel_engine_uses_guc(engine: rq->engine);
1682 bool pow2 = is_power_of_2(READ_ONCE(prev->engine)->mask |
1683 rq->engine->mask);
1684 bool same_context = prev->context == rq->context;
1685
1686 /*
1687 * The requests are supposed to be kept in order. However,
1688 * we need to be wary in case the timeline->last_request
1689 * is used as a barrier for external modification to this
1690 * context.
1691 */
1692 GEM_BUG_ON(same_context &&
1693 i915_seqno_passed(prev->fence.seqno,
1694 rq->fence.seqno));
1695
1696 if ((same_context && uses_guc) || (!uses_guc && pow2))
1697 i915_sw_fence_await_sw_fence(fence: &rq->submit,
1698 after: &prev->submit,
1699 wq: &rq->submitq);
1700 else
1701 __i915_sw_fence_await_dma_fence(fence: &rq->submit,
1702 dma: &prev->fence,
1703 cb: &rq->dmaq);
1704 if (rq->engine->sched_engine->schedule)
1705 __i915_sched_node_add_dependency(node: &rq->sched,
1706 signal: &prev->sched,
1707 dep: &rq->dep,
1708 flags: 0);
1709 }
1710
1711 /*
1712 * Users have to put the reference to prev potentially got
1713 * by __i915_active_fence_set() when no longer needed
1714 */
1715 return prev;
1716}
1717
1718static struct i915_request *
1719__i915_request_add_to_timeline(struct i915_request *rq)
1720{
1721 struct intel_timeline *timeline = i915_request_timeline(rq);
1722 struct i915_request *prev;
1723
1724 /*
1725 * Media workloads may require HuC, so stall them until HuC loading is
1726 * complete. Note that HuC not being loaded when a user submission
1727 * arrives can only happen when HuC is loaded via GSC and in that case
1728 * we still expect the window between us starting to accept submissions
1729 * and HuC loading completion to be small (a few hundred ms).
1730 */
1731 if (rq->engine->class == VIDEO_DECODE_CLASS)
1732 i915_request_await_huc(rq);
1733
1734 /*
1735 * Dependency tracking and request ordering along the timeline
1736 * is special cased so that we can eliminate redundant ordering
1737 * operations while building the request (we know that the timeline
1738 * itself is ordered, and here we guarantee it).
1739 *
1740 * As we know we will need to emit tracking along the timeline,
1741 * we embed the hooks into our request struct -- at the cost of
1742 * having to have specialised no-allocation interfaces (which will
1743 * be beneficial elsewhere).
1744 *
1745 * A second benefit to open-coding i915_request_await_request is
1746 * that we can apply a slight variant of the rules specialised
1747 * for timelines that jump between engines (such as virtual engines).
1748 * If we consider the case of virtual engine, we must emit a dma-fence
1749 * to prevent scheduling of the second request until the first is
1750 * complete (to maximise our greedy late load balancing) and this
1751 * precludes optimising to use semaphores serialisation of a single
1752 * timeline across engines.
1753 *
1754 * We do not order parallel submission requests on the timeline as each
1755 * parallel submission context has its own timeline and the ordering
1756 * rules for parallel requests are that they must be submitted in the
1757 * order received from the execbuf IOCTL. So rather than using the
1758 * timeline we store a pointer to last request submitted in the
1759 * relationship in the gem context and insert a submission fence
1760 * between that request and request passed into this function or
1761 * alternatively we use completion fence if gem context has a single
1762 * timeline and this is the first submission of an execbuf IOCTL.
1763 */
1764 if (likely(!is_parallel_rq(rq)))
1765 prev = __i915_request_ensure_ordering(rq, timeline);
1766 else
1767 prev = __i915_request_ensure_parallel_ordering(rq, timeline);
1768 if (prev)
1769 i915_request_put(rq: prev);
1770
1771 /*
1772 * Make sure that no request gazumped us - if it was allocated after
1773 * our i915_request_alloc() and called __i915_request_add() before
1774 * us, the timeline will hold its seqno which is later than ours.
1775 */
1776 GEM_BUG_ON(timeline->seqno != rq->fence.seqno);
1777
1778 return prev;
1779}
1780
1781/*
1782 * NB: This function is not allowed to fail. Doing so would mean the the
1783 * request is not being tracked for completion but the work itself is
1784 * going to happen on the hardware. This would be a Bad Thing(tm).
1785 */
1786struct i915_request *__i915_request_commit(struct i915_request *rq)
1787{
1788 struct intel_engine_cs *engine = rq->engine;
1789 struct intel_ring *ring = rq->ring;
1790 u32 *cs;
1791
1792 RQ_TRACE(rq, "\n");
1793
1794 /*
1795 * To ensure that this call will not fail, space for its emissions
1796 * should already have been reserved in the ring buffer. Let the ring
1797 * know that it is time to use that space up.
1798 */
1799 GEM_BUG_ON(rq->reserved_space > ring->space);
1800 rq->reserved_space = 0;
1801 rq->emitted_jiffies = jiffies;
1802
1803 /*
1804 * Record the position of the start of the breadcrumb so that
1805 * should we detect the updated seqno part-way through the
1806 * GPU processing the request, we never over-estimate the
1807 * position of the ring's HEAD.
1808 */
1809 cs = intel_ring_begin(rq, num_dwords: engine->emit_fini_breadcrumb_dw);
1810 GEM_BUG_ON(IS_ERR(cs));
1811 rq->postfix = intel_ring_offset(rq, addr: cs);
1812
1813 return __i915_request_add_to_timeline(rq);
1814}
1815
1816void __i915_request_queue_bh(struct i915_request *rq)
1817{
1818 i915_sw_fence_commit(fence: &rq->semaphore);
1819 i915_sw_fence_commit(fence: &rq->submit);
1820}
1821
1822void __i915_request_queue(struct i915_request *rq,
1823 const struct i915_sched_attr *attr)
1824{
1825 /*
1826 * Let the backend know a new request has arrived that may need
1827 * to adjust the existing execution schedule due to a high priority
1828 * request - i.e. we may want to preempt the current request in order
1829 * to run a high priority dependency chain *before* we can execute this
1830 * request.
1831 *
1832 * This is called before the request is ready to run so that we can
1833 * decide whether to preempt the entire chain so that it is ready to
1834 * run at the earliest possible convenience.
1835 */
1836 if (attr && rq->engine->sched_engine->schedule)
1837 rq->engine->sched_engine->schedule(rq, attr);
1838
1839 local_bh_disable();
1840 __i915_request_queue_bh(rq);
1841 local_bh_enable(); /* kick tasklets */
1842}
1843
1844void i915_request_add(struct i915_request *rq)
1845{
1846 struct intel_timeline * const tl = i915_request_timeline(rq);
1847 struct i915_sched_attr attr = {};
1848 struct i915_gem_context *ctx;
1849
1850 lockdep_assert_held(&tl->mutex);
1851 lockdep_unpin_lock(&tl->mutex, rq->cookie);
1852
1853 trace_i915_request_add(rq);
1854 __i915_request_commit(rq);
1855
1856 /* XXX placeholder for selftests */
1857 rcu_read_lock();
1858 ctx = rcu_dereference(rq->context->gem_context);
1859 if (ctx)
1860 attr = ctx->sched;
1861 rcu_read_unlock();
1862
1863 __i915_request_queue(rq, attr: &attr);
1864
1865 mutex_unlock(lock: &tl->mutex);
1866}
1867
1868static unsigned long local_clock_ns(unsigned int *cpu)
1869{
1870 unsigned long t;
1871
1872 /*
1873 * Cheaply and approximately convert from nanoseconds to microseconds.
1874 * The result and subsequent calculations are also defined in the same
1875 * approximate microseconds units. The principal source of timing
1876 * error here is from the simple truncation.
1877 *
1878 * Note that local_clock() is only defined wrt to the current CPU;
1879 * the comparisons are no longer valid if we switch CPUs. Instead of
1880 * blocking preemption for the entire busywait, we can detect the CPU
1881 * switch and use that as indicator of system load and a reason to
1882 * stop busywaiting, see busywait_stop().
1883 */
1884 *cpu = get_cpu();
1885 t = local_clock();
1886 put_cpu();
1887
1888 return t;
1889}
1890
1891static bool busywait_stop(unsigned long timeout, unsigned int cpu)
1892{
1893 unsigned int this_cpu;
1894
1895 if (time_after(local_clock_ns(&this_cpu), timeout))
1896 return true;
1897
1898 return this_cpu != cpu;
1899}
1900
1901static bool __i915_spin_request(struct i915_request * const rq, int state)
1902{
1903 unsigned long timeout_ns;
1904 unsigned int cpu;
1905
1906 /*
1907 * Only wait for the request if we know it is likely to complete.
1908 *
1909 * We don't track the timestamps around requests, nor the average
1910 * request length, so we do not have a good indicator that this
1911 * request will complete within the timeout. What we do know is the
1912 * order in which requests are executed by the context and so we can
1913 * tell if the request has been started. If the request is not even
1914 * running yet, it is a fair assumption that it will not complete
1915 * within our relatively short timeout.
1916 */
1917 if (!i915_request_is_running(rq))
1918 return false;
1919
1920 /*
1921 * When waiting for high frequency requests, e.g. during synchronous
1922 * rendering split between the CPU and GPU, the finite amount of time
1923 * required to set up the irq and wait upon it limits the response
1924 * rate. By busywaiting on the request completion for a short while we
1925 * can service the high frequency waits as quick as possible. However,
1926 * if it is a slow request, we want to sleep as quickly as possible.
1927 * The tradeoff between waiting and sleeping is roughly the time it
1928 * takes to sleep on a request, on the order of a microsecond.
1929 */
1930
1931 timeout_ns = READ_ONCE(rq->engine->props.max_busywait_duration_ns);
1932 timeout_ns += local_clock_ns(cpu: &cpu);
1933 do {
1934 if (dma_fence_is_signaled(fence: &rq->fence))
1935 return true;
1936
1937 if (signal_pending_state(state, current))
1938 break;
1939
1940 if (busywait_stop(timeout: timeout_ns, cpu))
1941 break;
1942
1943 cpu_relax();
1944 } while (!need_resched());
1945
1946 return false;
1947}
1948
1949struct request_wait {
1950 struct dma_fence_cb cb;
1951 struct task_struct *tsk;
1952};
1953
1954static void request_wait_wake(struct dma_fence *fence, struct dma_fence_cb *cb)
1955{
1956 struct request_wait *wait = container_of(cb, typeof(*wait), cb);
1957
1958 wake_up_process(fetch_and_zero(&wait->tsk));
1959}
1960
1961/**
1962 * i915_request_wait_timeout - wait until execution of request has finished
1963 * @rq: the request to wait upon
1964 * @flags: how to wait
1965 * @timeout: how long to wait in jiffies
1966 *
1967 * i915_request_wait_timeout() waits for the request to be completed, for a
1968 * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an
1969 * unbounded wait).
1970 *
1971 * Returns the remaining time (in jiffies) if the request completed, which may
1972 * be zero if the request is unfinished after the timeout expires.
1973 * If the timeout is 0, it will return 1 if the fence is signaled.
1974 *
1975 * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is
1976 * pending before the request completes.
1977 *
1978 * NOTE: This function has the same wait semantics as dma-fence.
1979 */
1980long i915_request_wait_timeout(struct i915_request *rq,
1981 unsigned int flags,
1982 long timeout)
1983{
1984 const int state = flags & I915_WAIT_INTERRUPTIBLE ?
1985 TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1986 struct request_wait wait;
1987
1988 might_sleep();
1989 GEM_BUG_ON(timeout < 0);
1990
1991 if (dma_fence_is_signaled(fence: &rq->fence))
1992 return timeout ?: 1;
1993
1994 if (!timeout)
1995 return -ETIME;
1996
1997 trace_i915_request_wait_begin(rq, flags);
1998
1999 /*
2000 * We must never wait on the GPU while holding a lock as we
2001 * may need to perform a GPU reset. So while we don't need to
2002 * serialise wait/reset with an explicit lock, we do want
2003 * lockdep to detect potential dependency cycles.
2004 */
2005 mutex_acquire(&rq->engine->gt->reset.mutex.dep_map, 0, 0, _THIS_IP_);
2006
2007 /*
2008 * Optimistic spin before touching IRQs.
2009 *
2010 * We may use a rather large value here to offset the penalty of
2011 * switching away from the active task. Frequently, the client will
2012 * wait upon an old swapbuffer to throttle itself to remain within a
2013 * frame of the gpu. If the client is running in lockstep with the gpu,
2014 * then it should not be waiting long at all, and a sleep now will incur
2015 * extra scheduler latency in producing the next frame. To try to
2016 * avoid adding the cost of enabling/disabling the interrupt to the
2017 * short wait, we first spin to see if the request would have completed
2018 * in the time taken to setup the interrupt.
2019 *
2020 * We need upto 5us to enable the irq, and upto 20us to hide the
2021 * scheduler latency of a context switch, ignoring the secondary
2022 * impacts from a context switch such as cache eviction.
2023 *
2024 * The scheme used for low-latency IO is called "hybrid interrupt
2025 * polling". The suggestion there is to sleep until just before you
2026 * expect to be woken by the device interrupt and then poll for its
2027 * completion. That requires having a good predictor for the request
2028 * duration, which we currently lack.
2029 */
2030 if (CONFIG_DRM_I915_MAX_REQUEST_BUSYWAIT &&
2031 __i915_spin_request(rq, state))
2032 goto out;
2033
2034 /*
2035 * This client is about to stall waiting for the GPU. In many cases
2036 * this is undesirable and limits the throughput of the system, as
2037 * many clients cannot continue processing user input/output whilst
2038 * blocked. RPS autotuning may take tens of milliseconds to respond
2039 * to the GPU load and thus incurs additional latency for the client.
2040 * We can circumvent that by promoting the GPU frequency to maximum
2041 * before we sleep. This makes the GPU throttle up much more quickly
2042 * (good for benchmarks and user experience, e.g. window animations),
2043 * but at a cost of spending more power processing the workload
2044 * (bad for battery).
2045 */
2046 if (flags & I915_WAIT_PRIORITY && !i915_request_started(rq))
2047 intel_rps_boost(rq);
2048
2049 wait.tsk = current;
2050 if (dma_fence_add_callback(fence: &rq->fence, cb: &wait.cb, func: request_wait_wake))
2051 goto out;
2052
2053 /*
2054 * Flush the submission tasklet, but only if it may help this request.
2055 *
2056 * We sometimes experience some latency between the HW interrupts and
2057 * tasklet execution (mostly due to ksoftirqd latency, but it can also
2058 * be due to lazy CS events), so lets run the tasklet manually if there
2059 * is a chance it may submit this request. If the request is not ready
2060 * to run, as it is waiting for other fences to be signaled, flushing
2061 * the tasklet is busy work without any advantage for this client.
2062 *
2063 * If the HW is being lazy, this is the last chance before we go to
2064 * sleep to catch any pending events. We will check periodically in
2065 * the heartbeat to flush the submission tasklets as a last resort
2066 * for unhappy HW.
2067 */
2068 if (i915_request_is_ready(rq))
2069 __intel_engine_flush_submission(engine: rq->engine, sync: false);
2070
2071 for (;;) {
2072 set_current_state(state);
2073
2074 if (dma_fence_is_signaled(fence: &rq->fence))
2075 break;
2076
2077 if (signal_pending_state(state, current)) {
2078 timeout = -ERESTARTSYS;
2079 break;
2080 }
2081
2082 if (!timeout) {
2083 timeout = -ETIME;
2084 break;
2085 }
2086
2087 timeout = io_schedule_timeout(timeout);
2088 }
2089 __set_current_state(TASK_RUNNING);
2090
2091 if (READ_ONCE(wait.tsk))
2092 dma_fence_remove_callback(fence: &rq->fence, cb: &wait.cb);
2093 GEM_BUG_ON(!list_empty(&wait.cb.node));
2094
2095out:
2096 mutex_release(&rq->engine->gt->reset.mutex.dep_map, _THIS_IP_);
2097 trace_i915_request_wait_end(rq);
2098 return timeout;
2099}
2100
2101/**
2102 * i915_request_wait - wait until execution of request has finished
2103 * @rq: the request to wait upon
2104 * @flags: how to wait
2105 * @timeout: how long to wait in jiffies
2106 *
2107 * i915_request_wait() waits for the request to be completed, for a
2108 * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an
2109 * unbounded wait).
2110 *
2111 * Returns the remaining time (in jiffies) if the request completed, which may
2112 * be zero or -ETIME if the request is unfinished after the timeout expires.
2113 * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is
2114 * pending before the request completes.
2115 *
2116 * NOTE: This function behaves differently from dma-fence wait semantics for
2117 * timeout = 0. It returns 0 on success, and -ETIME if not signaled.
2118 */
2119long i915_request_wait(struct i915_request *rq,
2120 unsigned int flags,
2121 long timeout)
2122{
2123 long ret = i915_request_wait_timeout(rq, flags, timeout);
2124
2125 if (!ret)
2126 return -ETIME;
2127
2128 if (ret > 0 && !timeout)
2129 return 0;
2130
2131 return ret;
2132}
2133
2134static int print_sched_attr(const struct i915_sched_attr *attr,
2135 char *buf, int x, int len)
2136{
2137 if (attr->priority == I915_PRIORITY_INVALID)
2138 return x;
2139
2140 x += snprintf(buf: buf + x, size: len - x,
2141 fmt: " prio=%d", attr->priority);
2142
2143 return x;
2144}
2145
2146static char queue_status(const struct i915_request *rq)
2147{
2148 if (i915_request_is_active(rq))
2149 return 'E';
2150
2151 if (i915_request_is_ready(rq))
2152 return intel_engine_is_virtual(engine: rq->engine) ? 'V' : 'R';
2153
2154 return 'U';
2155}
2156
2157static const char *run_status(const struct i915_request *rq)
2158{
2159 if (__i915_request_is_complete(rq))
2160 return "!";
2161
2162 if (__i915_request_has_started(rq))
2163 return "*";
2164
2165 if (!i915_sw_fence_signaled(fence: &rq->semaphore))
2166 return "&";
2167
2168 return "";
2169}
2170
2171static const char *fence_status(const struct i915_request *rq)
2172{
2173 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &rq->fence.flags))
2174 return "+";
2175
2176 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &rq->fence.flags))
2177 return "-";
2178
2179 return "";
2180}
2181
2182void i915_request_show(struct drm_printer *m,
2183 const struct i915_request *rq,
2184 const char *prefix,
2185 int indent)
2186{
2187 const char *name = rq->fence.ops->get_timeline_name((struct dma_fence *)&rq->fence);
2188 char buf[80] = "";
2189 int x = 0;
2190
2191 /*
2192 * The prefix is used to show the queue status, for which we use
2193 * the following flags:
2194 *
2195 * U [Unready]
2196 * - initial status upon being submitted by the user
2197 *
2198 * - the request is not ready for execution as it is waiting
2199 * for external fences
2200 *
2201 * R [Ready]
2202 * - all fences the request was waiting on have been signaled,
2203 * and the request is now ready for execution and will be
2204 * in a backend queue
2205 *
2206 * - a ready request may still need to wait on semaphores
2207 * [internal fences]
2208 *
2209 * V [Ready/virtual]
2210 * - same as ready, but queued over multiple backends
2211 *
2212 * E [Executing]
2213 * - the request has been transferred from the backend queue and
2214 * submitted for execution on HW
2215 *
2216 * - a completed request may still be regarded as executing, its
2217 * status may not be updated until it is retired and removed
2218 * from the lists
2219 */
2220
2221 x = print_sched_attr(attr: &rq->sched.attr, buf, x, len: sizeof(buf));
2222
2223 drm_printf(p: m, f: "%s%.*s%c %llx:%lld%s%s %s @ %dms: %s\n",
2224 prefix, indent, " ",
2225 queue_status(rq),
2226 rq->fence.context, rq->fence.seqno,
2227 run_status(rq),
2228 fence_status(rq),
2229 buf,
2230 jiffies_to_msecs(j: jiffies - rq->emitted_jiffies),
2231 name);
2232}
2233
2234static bool engine_match_ring(struct intel_engine_cs *engine, struct i915_request *rq)
2235{
2236 u32 ring = ENGINE_READ(engine, RING_START);
2237
2238 return ring == i915_ggtt_offset(vma: rq->ring->vma);
2239}
2240
2241static bool match_ring(struct i915_request *rq)
2242{
2243 struct intel_engine_cs *engine;
2244 bool found;
2245 int i;
2246
2247 if (!intel_engine_is_virtual(engine: rq->engine))
2248 return engine_match_ring(engine: rq->engine, rq);
2249
2250 found = false;
2251 i = 0;
2252 while ((engine = intel_engine_get_sibling(engine: rq->engine, sibling: i++))) {
2253 found = engine_match_ring(engine, rq);
2254 if (found)
2255 break;
2256 }
2257
2258 return found;
2259}
2260
2261enum i915_request_state i915_test_request_state(struct i915_request *rq)
2262{
2263 if (i915_request_completed(rq))
2264 return I915_REQUEST_COMPLETE;
2265
2266 if (!i915_request_started(rq))
2267 return I915_REQUEST_PENDING;
2268
2269 if (match_ring(rq))
2270 return I915_REQUEST_ACTIVE;
2271
2272 return I915_REQUEST_QUEUED;
2273}
2274
2275#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
2276#include "selftests/mock_request.c"
2277#include "selftests/i915_request.c"
2278#endif
2279
2280void i915_request_module_exit(void)
2281{
2282 kmem_cache_destroy(s: slab_execute_cbs);
2283 kmem_cache_destroy(s: slab_requests);
2284}
2285
2286int __init i915_request_module_init(void)
2287{
2288 slab_requests =
2289 kmem_cache_create(name: "i915_request",
2290 size: sizeof(struct i915_request),
2291 align: __alignof__(struct i915_request),
2292 SLAB_HWCACHE_ALIGN |
2293 SLAB_RECLAIM_ACCOUNT |
2294 SLAB_TYPESAFE_BY_RCU,
2295 ctor: __i915_request_ctor);
2296 if (!slab_requests)
2297 return -ENOMEM;
2298
2299 slab_execute_cbs = KMEM_CACHE(execute_cb,
2300 SLAB_HWCACHE_ALIGN |
2301 SLAB_RECLAIM_ACCOUNT |
2302 SLAB_TYPESAFE_BY_RCU);
2303 if (!slab_execute_cbs)
2304 goto err_requests;
2305
2306 return 0;
2307
2308err_requests:
2309 kmem_cache_destroy(s: slab_requests);
2310 return -ENOMEM;
2311}
2312

source code of linux/drivers/gpu/drm/i915/i915_request.c