1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Copyright (C) 2022 Marek Vasut <marex@denx.de>
4 *
5 * This code is based on drivers/gpu/drm/mxsfb/mxsfb*
6 */
7
8#include <linux/bitfield.h>
9#include <linux/clk.h>
10#include <linux/io.h>
11#include <linux/iopoll.h>
12#include <linux/media-bus-format.h>
13#include <linux/pm_runtime.h>
14#include <linux/spinlock.h>
15
16#include <drm/drm_atomic.h>
17#include <drm/drm_atomic_helper.h>
18#include <drm/drm_bridge.h>
19#include <drm/drm_color_mgmt.h>
20#include <drm/drm_connector.h>
21#include <drm/drm_crtc.h>
22#include <drm/drm_encoder.h>
23#include <drm/drm_fb_dma_helper.h>
24#include <drm/drm_fourcc.h>
25#include <drm/drm_framebuffer.h>
26#include <drm/drm_gem_atomic_helper.h>
27#include <drm/drm_gem_dma_helper.h>
28#include <drm/drm_plane.h>
29#include <drm/drm_vblank.h>
30
31#include "lcdif_drv.h"
32#include "lcdif_regs.h"
33
34struct lcdif_crtc_state {
35 struct drm_crtc_state base; /* always be the first member */
36 u32 bus_format;
37 u32 bus_flags;
38};
39
40static inline struct lcdif_crtc_state *
41to_lcdif_crtc_state(struct drm_crtc_state *s)
42{
43 return container_of(s, struct lcdif_crtc_state, base);
44}
45
46/* -----------------------------------------------------------------------------
47 * CRTC
48 */
49
50/*
51 * For conversion from YCbCr to RGB, the CSC operates as follows:
52 *
53 * |R| |A1 A2 A3| |Y + D1|
54 * |G| = |B1 B2 B3| * |Cb + D2|
55 * |B| |C1 C2 C3| |Cr + D3|
56 *
57 * The A, B and C coefficients are expressed as Q2.8 fixed point values, and
58 * the D coefficients as Q0.8. Despite the reference manual stating the
59 * opposite, the D1, D2 and D3 offset values are added to Y, Cb and Cr, not
60 * subtracted. They must thus be programmed with negative values.
61 */
62static const u32 lcdif_yuv2rgb_coeffs[3][2][6] = {
63 [DRM_COLOR_YCBCR_BT601] = {
64 [DRM_COLOR_YCBCR_LIMITED_RANGE] = {
65 /*
66 * BT.601 limited range:
67 *
68 * |R| |1.1644 0.0000 1.5960| |Y - 16 |
69 * |G| = |1.1644 -0.3917 -0.8129| * |Cb - 128|
70 * |B| |1.1644 2.0172 0.0000| |Cr - 128|
71 */
72 CSC0_COEF0_A1(0x12a) | CSC0_COEF0_A2(0x000),
73 CSC0_COEF1_A3(0x199) | CSC0_COEF1_B1(0x12a),
74 CSC0_COEF2_B2(0x79c) | CSC0_COEF2_B3(0x730),
75 CSC0_COEF3_C1(0x12a) | CSC0_COEF3_C2(0x204),
76 CSC0_COEF4_C3(0x000) | CSC0_COEF4_D1(0x1f0),
77 CSC0_COEF5_D2(0x180) | CSC0_COEF5_D3(0x180),
78 },
79 [DRM_COLOR_YCBCR_FULL_RANGE] = {
80 /*
81 * BT.601 full range:
82 *
83 * |R| |1.0000 0.0000 1.4020| |Y - 0 |
84 * |G| = |1.0000 -0.3441 -0.7141| * |Cb - 128|
85 * |B| |1.0000 1.7720 0.0000| |Cr - 128|
86 */
87 CSC0_COEF0_A1(0x100) | CSC0_COEF0_A2(0x000),
88 CSC0_COEF1_A3(0x167) | CSC0_COEF1_B1(0x100),
89 CSC0_COEF2_B2(0x7a8) | CSC0_COEF2_B3(0x749),
90 CSC0_COEF3_C1(0x100) | CSC0_COEF3_C2(0x1c6),
91 CSC0_COEF4_C3(0x000) | CSC0_COEF4_D1(0x000),
92 CSC0_COEF5_D2(0x180) | CSC0_COEF5_D3(0x180),
93 },
94 },
95 [DRM_COLOR_YCBCR_BT709] = {
96 [DRM_COLOR_YCBCR_LIMITED_RANGE] = {
97 /*
98 * Rec.709 limited range:
99 *
100 * |R| |1.1644 0.0000 1.7927| |Y - 16 |
101 * |G| = |1.1644 -0.2132 -0.5329| * |Cb - 128|
102 * |B| |1.1644 2.1124 0.0000| |Cr - 128|
103 */
104 CSC0_COEF0_A1(0x12a) | CSC0_COEF0_A2(0x000),
105 CSC0_COEF1_A3(0x1cb) | CSC0_COEF1_B1(0x12a),
106 CSC0_COEF2_B2(0x7c9) | CSC0_COEF2_B3(0x778),
107 CSC0_COEF3_C1(0x12a) | CSC0_COEF3_C2(0x21d),
108 CSC0_COEF4_C3(0x000) | CSC0_COEF4_D1(0x1f0),
109 CSC0_COEF5_D2(0x180) | CSC0_COEF5_D3(0x180),
110 },
111 [DRM_COLOR_YCBCR_FULL_RANGE] = {
112 /*
113 * Rec.709 full range:
114 *
115 * |R| |1.0000 0.0000 1.5748| |Y - 0 |
116 * |G| = |1.0000 -0.1873 -0.4681| * |Cb - 128|
117 * |B| |1.0000 1.8556 0.0000| |Cr - 128|
118 */
119 CSC0_COEF0_A1(0x100) | CSC0_COEF0_A2(0x000),
120 CSC0_COEF1_A3(0x193) | CSC0_COEF1_B1(0x100),
121 CSC0_COEF2_B2(0x7d0) | CSC0_COEF2_B3(0x788),
122 CSC0_COEF3_C1(0x100) | CSC0_COEF3_C2(0x1db),
123 CSC0_COEF4_C3(0x000) | CSC0_COEF4_D1(0x000),
124 CSC0_COEF5_D2(0x180) | CSC0_COEF5_D3(0x180),
125 },
126 },
127 [DRM_COLOR_YCBCR_BT2020] = {
128 [DRM_COLOR_YCBCR_LIMITED_RANGE] = {
129 /*
130 * BT.2020 limited range:
131 *
132 * |R| |1.1644 0.0000 1.6787| |Y - 16 |
133 * |G| = |1.1644 -0.1874 -0.6505| * |Cb - 128|
134 * |B| |1.1644 2.1418 0.0000| |Cr - 128|
135 */
136 CSC0_COEF0_A1(0x12a) | CSC0_COEF0_A2(0x000),
137 CSC0_COEF1_A3(0x1ae) | CSC0_COEF1_B1(0x12a),
138 CSC0_COEF2_B2(0x7d0) | CSC0_COEF2_B3(0x759),
139 CSC0_COEF3_C1(0x12a) | CSC0_COEF3_C2(0x224),
140 CSC0_COEF4_C3(0x000) | CSC0_COEF4_D1(0x1f0),
141 CSC0_COEF5_D2(0x180) | CSC0_COEF5_D3(0x180),
142 },
143 [DRM_COLOR_YCBCR_FULL_RANGE] = {
144 /*
145 * BT.2020 full range:
146 *
147 * |R| |1.0000 0.0000 1.4746| |Y - 0 |
148 * |G| = |1.0000 -0.1646 -0.5714| * |Cb - 128|
149 * |B| |1.0000 1.8814 0.0000| |Cr - 128|
150 */
151 CSC0_COEF0_A1(0x100) | CSC0_COEF0_A2(0x000),
152 CSC0_COEF1_A3(0x179) | CSC0_COEF1_B1(0x100),
153 CSC0_COEF2_B2(0x7d6) | CSC0_COEF2_B3(0x76e),
154 CSC0_COEF3_C1(0x100) | CSC0_COEF3_C2(0x1e2),
155 CSC0_COEF4_C3(0x000) | CSC0_COEF4_D1(0x000),
156 CSC0_COEF5_D2(0x180) | CSC0_COEF5_D3(0x180),
157 },
158 },
159};
160
161static void lcdif_set_formats(struct lcdif_drm_private *lcdif,
162 struct drm_plane_state *plane_state,
163 const u32 bus_format)
164{
165 struct drm_device *drm = lcdif->drm;
166 const u32 format = plane_state->fb->format->format;
167 bool in_yuv = false;
168 bool out_yuv = false;
169
170 switch (bus_format) {
171 case MEDIA_BUS_FMT_RGB565_1X16:
172 writel(DISP_PARA_LINE_PATTERN_RGB565,
173 addr: lcdif->base + LCDC_V8_DISP_PARA);
174 break;
175 case MEDIA_BUS_FMT_RGB888_1X24:
176 writel(DISP_PARA_LINE_PATTERN_RGB888,
177 addr: lcdif->base + LCDC_V8_DISP_PARA);
178 break;
179 case MEDIA_BUS_FMT_UYVY8_1X16:
180 writel(DISP_PARA_LINE_PATTERN_UYVY_H,
181 addr: lcdif->base + LCDC_V8_DISP_PARA);
182 out_yuv = true;
183 break;
184 default:
185 dev_err(drm->dev, "Unknown media bus format 0x%x\n", bus_format);
186 break;
187 }
188
189 switch (format) {
190 /* RGB Formats */
191 case DRM_FORMAT_RGB565:
192 writel(CTRLDESCL0_5_BPP_16_RGB565,
193 addr: lcdif->base + LCDC_V8_CTRLDESCL0_5);
194 break;
195 case DRM_FORMAT_RGB888:
196 writel(CTRLDESCL0_5_BPP_24_RGB888,
197 addr: lcdif->base + LCDC_V8_CTRLDESCL0_5);
198 break;
199 case DRM_FORMAT_XRGB1555:
200 writel(CTRLDESCL0_5_BPP_16_ARGB1555,
201 addr: lcdif->base + LCDC_V8_CTRLDESCL0_5);
202 break;
203 case DRM_FORMAT_XRGB4444:
204 writel(CTRLDESCL0_5_BPP_16_ARGB4444,
205 addr: lcdif->base + LCDC_V8_CTRLDESCL0_5);
206 break;
207 case DRM_FORMAT_XBGR8888:
208 writel(CTRLDESCL0_5_BPP_32_ABGR8888,
209 addr: lcdif->base + LCDC_V8_CTRLDESCL0_5);
210 break;
211 case DRM_FORMAT_XRGB8888:
212 writel(CTRLDESCL0_5_BPP_32_ARGB8888,
213 addr: lcdif->base + LCDC_V8_CTRLDESCL0_5);
214 break;
215
216 /* YUV Formats */
217 case DRM_FORMAT_YUYV:
218 writel(CTRLDESCL0_5_BPP_YCbCr422 | CTRLDESCL0_5_YUV_FORMAT_VY2UY1,
219 addr: lcdif->base + LCDC_V8_CTRLDESCL0_5);
220 in_yuv = true;
221 break;
222 case DRM_FORMAT_YVYU:
223 writel(CTRLDESCL0_5_BPP_YCbCr422 | CTRLDESCL0_5_YUV_FORMAT_UY2VY1,
224 addr: lcdif->base + LCDC_V8_CTRLDESCL0_5);
225 in_yuv = true;
226 break;
227 case DRM_FORMAT_UYVY:
228 writel(CTRLDESCL0_5_BPP_YCbCr422 | CTRLDESCL0_5_YUV_FORMAT_Y2VY1U,
229 addr: lcdif->base + LCDC_V8_CTRLDESCL0_5);
230 in_yuv = true;
231 break;
232 case DRM_FORMAT_VYUY:
233 writel(CTRLDESCL0_5_BPP_YCbCr422 | CTRLDESCL0_5_YUV_FORMAT_Y2UY1V,
234 addr: lcdif->base + LCDC_V8_CTRLDESCL0_5);
235 in_yuv = true;
236 break;
237
238 default:
239 dev_err(drm->dev, "Unknown pixel format 0x%x\n", format);
240 break;
241 }
242
243 /*
244 * The CSC differentiates between "YCbCr" and "YUV", but the reference
245 * manual doesn't detail how they differ. Experiments showed that the
246 * luminance value is unaffected, only the calculations involving chroma
247 * values differ. The YCbCr mode behaves as expected, with chroma values
248 * being offset by 128. The YUV mode isn't fully understood.
249 */
250 if (!in_yuv && out_yuv) {
251 /* RGB -> YCbCr */
252 writel(CSC0_CTRL_CSC_MODE_RGB2YCbCr,
253 addr: lcdif->base + LCDC_V8_CSC0_CTRL);
254
255 /*
256 * CSC: BT.601 Limited Range RGB to YCbCr coefficients.
257 *
258 * |Y | | 0.2568 0.5041 0.0979| |R| |16 |
259 * |Cb| = |-0.1482 -0.2910 0.4392| * |G| + |128|
260 * |Cr| | 0.4392 0.4392 -0.3678| |B| |128|
261 */
262 writel(CSC0_COEF0_A2(0x081) | CSC0_COEF0_A1(0x041),
263 addr: lcdif->base + LCDC_V8_CSC0_COEF0);
264 writel(CSC0_COEF1_B1(0x7db) | CSC0_COEF1_A3(0x019),
265 addr: lcdif->base + LCDC_V8_CSC0_COEF1);
266 writel(CSC0_COEF2_B3(0x070) | CSC0_COEF2_B2(0x7b6),
267 addr: lcdif->base + LCDC_V8_CSC0_COEF2);
268 writel(CSC0_COEF3_C2(0x7a2) | CSC0_COEF3_C1(0x070),
269 addr: lcdif->base + LCDC_V8_CSC0_COEF3);
270 writel(CSC0_COEF4_D1(0x010) | CSC0_COEF4_C3(0x7ee),
271 addr: lcdif->base + LCDC_V8_CSC0_COEF4);
272 writel(CSC0_COEF5_D3(0x080) | CSC0_COEF5_D2(0x080),
273 addr: lcdif->base + LCDC_V8_CSC0_COEF5);
274 } else if (in_yuv && !out_yuv) {
275 /* YCbCr -> RGB */
276 const u32 *coeffs =
277 lcdif_yuv2rgb_coeffs[plane_state->color_encoding]
278 [plane_state->color_range];
279
280 writel(CSC0_CTRL_CSC_MODE_YCbCr2RGB,
281 addr: lcdif->base + LCDC_V8_CSC0_CTRL);
282
283 writel(val: coeffs[0], addr: lcdif->base + LCDC_V8_CSC0_COEF0);
284 writel(val: coeffs[1], addr: lcdif->base + LCDC_V8_CSC0_COEF1);
285 writel(val: coeffs[2], addr: lcdif->base + LCDC_V8_CSC0_COEF2);
286 writel(val: coeffs[3], addr: lcdif->base + LCDC_V8_CSC0_COEF3);
287 writel(val: coeffs[4], addr: lcdif->base + LCDC_V8_CSC0_COEF4);
288 writel(val: coeffs[5], addr: lcdif->base + LCDC_V8_CSC0_COEF5);
289 } else {
290 /* RGB -> RGB, YCbCr -> YCbCr: bypass colorspace converter. */
291 writel(CSC0_CTRL_BYPASS, addr: lcdif->base + LCDC_V8_CSC0_CTRL);
292 }
293}
294
295static void lcdif_set_mode(struct lcdif_drm_private *lcdif, u32 bus_flags)
296{
297 struct drm_display_mode *m = &lcdif->crtc.state->adjusted_mode;
298 u32 ctrl = 0;
299
300 if (m->flags & DRM_MODE_FLAG_NHSYNC)
301 ctrl |= CTRL_INV_HS;
302 if (m->flags & DRM_MODE_FLAG_NVSYNC)
303 ctrl |= CTRL_INV_VS;
304 if (bus_flags & DRM_BUS_FLAG_DE_LOW)
305 ctrl |= CTRL_INV_DE;
306 if (bus_flags & DRM_BUS_FLAG_PIXDATA_DRIVE_NEGEDGE)
307 ctrl |= CTRL_INV_PXCK;
308
309 writel(val: ctrl, addr: lcdif->base + LCDC_V8_CTRL);
310
311 writel(DISP_SIZE_DELTA_Y(m->vdisplay) |
312 DISP_SIZE_DELTA_X(m->hdisplay),
313 addr: lcdif->base + LCDC_V8_DISP_SIZE);
314
315 writel(HSYN_PARA_BP_H(m->htotal - m->hsync_end) |
316 HSYN_PARA_FP_H(m->hsync_start - m->hdisplay),
317 addr: lcdif->base + LCDC_V8_HSYN_PARA);
318
319 writel(VSYN_PARA_BP_V(m->vtotal - m->vsync_end) |
320 VSYN_PARA_FP_V(m->vsync_start - m->vdisplay),
321 addr: lcdif->base + LCDC_V8_VSYN_PARA);
322
323 writel(VSYN_HSYN_WIDTH_PW_V(m->vsync_end - m->vsync_start) |
324 VSYN_HSYN_WIDTH_PW_H(m->hsync_end - m->hsync_start),
325 addr: lcdif->base + LCDC_V8_VSYN_HSYN_WIDTH);
326
327 writel(CTRLDESCL0_1_HEIGHT(m->vdisplay) |
328 CTRLDESCL0_1_WIDTH(m->hdisplay),
329 addr: lcdif->base + LCDC_V8_CTRLDESCL0_1);
330
331 /*
332 * Undocumented P_SIZE and T_SIZE register but those written in the
333 * downstream kernel those registers control the AXI burst size. As of
334 * now there are two known values:
335 * 1 - 128Byte
336 * 2 - 256Byte
337 * Downstream set it to 256B burst size to improve the memory
338 * efficiency so set it here too.
339 */
340 ctrl = CTRLDESCL0_3_P_SIZE(2) | CTRLDESCL0_3_T_SIZE(2) |
341 CTRLDESCL0_3_PITCH(lcdif->crtc.primary->state->fb->pitches[0]);
342 writel(val: ctrl, addr: lcdif->base + LCDC_V8_CTRLDESCL0_3);
343}
344
345static void lcdif_enable_controller(struct lcdif_drm_private *lcdif)
346{
347 u32 reg;
348
349 /* Set FIFO Panic watermarks, low 1/3, high 2/3 . */
350 writel(FIELD_PREP(PANIC0_THRES_LOW_MASK, 1 * PANIC0_THRES_MAX / 3) |
351 FIELD_PREP(PANIC0_THRES_HIGH_MASK, 2 * PANIC0_THRES_MAX / 3),
352 addr: lcdif->base + LCDC_V8_PANIC0_THRES);
353
354 /*
355 * Enable FIFO Panic, this does not generate interrupt, but
356 * boosts NoC priority based on FIFO Panic watermarks.
357 */
358 writel(INT_ENABLE_D1_PLANE_PANIC_EN,
359 addr: lcdif->base + LCDC_V8_INT_ENABLE_D1);
360
361 reg = readl(addr: lcdif->base + LCDC_V8_DISP_PARA);
362 reg |= DISP_PARA_DISP_ON;
363 writel(val: reg, addr: lcdif->base + LCDC_V8_DISP_PARA);
364
365 reg = readl(addr: lcdif->base + LCDC_V8_CTRLDESCL0_5);
366 reg |= CTRLDESCL0_5_EN;
367 writel(val: reg, addr: lcdif->base + LCDC_V8_CTRLDESCL0_5);
368}
369
370static void lcdif_disable_controller(struct lcdif_drm_private *lcdif)
371{
372 u32 reg;
373 int ret;
374
375 reg = readl(addr: lcdif->base + LCDC_V8_CTRLDESCL0_5);
376 reg &= ~CTRLDESCL0_5_EN;
377 writel(val: reg, addr: lcdif->base + LCDC_V8_CTRLDESCL0_5);
378
379 ret = readl_poll_timeout(lcdif->base + LCDC_V8_CTRLDESCL0_5,
380 reg, !(reg & CTRLDESCL0_5_EN),
381 0, 36000); /* Wait ~2 frame times max */
382 if (ret)
383 drm_err(lcdif->drm, "Failed to disable controller!\n");
384
385 reg = readl(addr: lcdif->base + LCDC_V8_DISP_PARA);
386 reg &= ~DISP_PARA_DISP_ON;
387 writel(val: reg, addr: lcdif->base + LCDC_V8_DISP_PARA);
388
389 /* Disable FIFO Panic NoC priority booster. */
390 writel(val: 0, addr: lcdif->base + LCDC_V8_INT_ENABLE_D1);
391}
392
393static void lcdif_reset_block(struct lcdif_drm_private *lcdif)
394{
395 writel(CTRL_SW_RESET, addr: lcdif->base + LCDC_V8_CTRL + REG_SET);
396 readl(addr: lcdif->base + LCDC_V8_CTRL);
397 writel(CTRL_SW_RESET, addr: lcdif->base + LCDC_V8_CTRL + REG_CLR);
398 readl(addr: lcdif->base + LCDC_V8_CTRL);
399}
400
401static void lcdif_crtc_mode_set_nofb(struct drm_crtc_state *crtc_state,
402 struct drm_plane_state *plane_state)
403{
404 struct lcdif_crtc_state *lcdif_crtc_state = to_lcdif_crtc_state(s: crtc_state);
405 struct drm_device *drm = crtc_state->crtc->dev;
406 struct lcdif_drm_private *lcdif = to_lcdif_drm_private(drm);
407 struct drm_display_mode *m = &crtc_state->adjusted_mode;
408
409 DRM_DEV_DEBUG_DRIVER(drm->dev, "Pixel clock: %dkHz (actual: %dkHz)\n",
410 m->crtc_clock,
411 (int)(clk_get_rate(lcdif->clk) / 1000));
412 DRM_DEV_DEBUG_DRIVER(drm->dev, "Bridge bus_flags: 0x%08X\n",
413 lcdif_crtc_state->bus_flags);
414 DRM_DEV_DEBUG_DRIVER(drm->dev, "Mode flags: 0x%08X\n", m->flags);
415
416 /* Mandatory eLCDIF reset as per the Reference Manual */
417 lcdif_reset_block(lcdif);
418
419 lcdif_set_formats(lcdif, plane_state, bus_format: lcdif_crtc_state->bus_format);
420
421 lcdif_set_mode(lcdif, bus_flags: lcdif_crtc_state->bus_flags);
422}
423
424static int lcdif_crtc_atomic_check(struct drm_crtc *crtc,
425 struct drm_atomic_state *state)
426{
427 struct drm_device *drm = crtc->dev;
428 struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state,
429 crtc);
430 struct lcdif_crtc_state *lcdif_crtc_state = to_lcdif_crtc_state(s: crtc_state);
431 bool has_primary = crtc_state->plane_mask &
432 drm_plane_mask(plane: crtc->primary);
433 struct drm_connector_state *connector_state;
434 struct drm_connector *connector;
435 struct drm_encoder *encoder;
436 struct drm_bridge_state *bridge_state;
437 struct drm_bridge *bridge;
438 u32 bus_format, bus_flags;
439 bool format_set = false, flags_set = false;
440 int ret, i;
441
442 /* The primary plane has to be enabled when the CRTC is active. */
443 if (crtc_state->active && !has_primary)
444 return -EINVAL;
445
446 ret = drm_atomic_add_affected_planes(state, crtc);
447 if (ret)
448 return ret;
449
450 /* Try to find consistent bus format and flags across first bridges. */
451 for_each_new_connector_in_state(state, connector, connector_state, i) {
452 if (!connector_state->crtc)
453 continue;
454
455 encoder = connector_state->best_encoder;
456
457 bridge = drm_bridge_chain_get_first_bridge(encoder);
458 if (!bridge)
459 continue;
460
461 bridge_state = drm_atomic_get_new_bridge_state(state, bridge);
462 if (!bridge_state)
463 bus_format = MEDIA_BUS_FMT_FIXED;
464 else
465 bus_format = bridge_state->input_bus_cfg.format;
466
467 if (bus_format == MEDIA_BUS_FMT_FIXED) {
468 dev_warn(drm->dev,
469 "[ENCODER:%d:%s]'s bridge does not provide bus format, assuming MEDIA_BUS_FMT_RGB888_1X24.\n"
470 "Please fix bridge driver by handling atomic_get_input_bus_fmts.\n",
471 encoder->base.id, encoder->name);
472 bus_format = MEDIA_BUS_FMT_RGB888_1X24;
473 } else if (!bus_format) {
474 /* If all else fails, default to RGB888_1X24 */
475 bus_format = MEDIA_BUS_FMT_RGB888_1X24;
476 }
477
478 if (!format_set) {
479 lcdif_crtc_state->bus_format = bus_format;
480 format_set = true;
481 } else if (lcdif_crtc_state->bus_format != bus_format) {
482 DRM_DEV_DEBUG_DRIVER(drm->dev, "inconsistent bus format\n");
483 return -EINVAL;
484 }
485
486 if (bridge->timings)
487 bus_flags = bridge->timings->input_bus_flags;
488 else if (bridge_state)
489 bus_flags = bridge_state->input_bus_cfg.flags;
490 else
491 bus_flags = 0;
492
493 if (!flags_set) {
494 lcdif_crtc_state->bus_flags = bus_flags;
495 flags_set = true;
496 } else if (lcdif_crtc_state->bus_flags != bus_flags) {
497 DRM_DEV_DEBUG_DRIVER(drm->dev, "inconsistent bus flags\n");
498 return -EINVAL;
499 }
500 }
501
502 return 0;
503}
504
505static void lcdif_crtc_atomic_flush(struct drm_crtc *crtc,
506 struct drm_atomic_state *state)
507{
508 struct lcdif_drm_private *lcdif = to_lcdif_drm_private(drm: crtc->dev);
509 struct drm_pending_vblank_event *event;
510 u32 reg;
511
512 reg = readl(addr: lcdif->base + LCDC_V8_CTRLDESCL0_5);
513 reg |= CTRLDESCL0_5_SHADOW_LOAD_EN;
514 writel(val: reg, addr: lcdif->base + LCDC_V8_CTRLDESCL0_5);
515
516 event = crtc->state->event;
517 crtc->state->event = NULL;
518
519 if (!event)
520 return;
521
522 spin_lock_irq(lock: &crtc->dev->event_lock);
523 if (drm_crtc_vblank_get(crtc) == 0)
524 drm_crtc_arm_vblank_event(crtc, e: event);
525 else
526 drm_crtc_send_vblank_event(crtc, e: event);
527 spin_unlock_irq(lock: &crtc->dev->event_lock);
528}
529
530static void lcdif_crtc_atomic_enable(struct drm_crtc *crtc,
531 struct drm_atomic_state *state)
532{
533 struct lcdif_drm_private *lcdif = to_lcdif_drm_private(drm: crtc->dev);
534 struct drm_crtc_state *new_cstate = drm_atomic_get_new_crtc_state(state, crtc);
535 struct drm_plane_state *new_pstate = drm_atomic_get_new_plane_state(state,
536 plane: crtc->primary);
537 struct drm_display_mode *m = &lcdif->crtc.state->adjusted_mode;
538 struct drm_device *drm = lcdif->drm;
539 dma_addr_t paddr;
540
541 clk_set_rate(clk: lcdif->clk, rate: m->crtc_clock * 1000);
542
543 pm_runtime_get_sync(dev: drm->dev);
544
545 lcdif_crtc_mode_set_nofb(crtc_state: new_cstate, plane_state: new_pstate);
546
547 /* Write cur_buf as well to avoid an initial corrupt frame */
548 paddr = drm_fb_dma_get_gem_addr(fb: new_pstate->fb, state: new_pstate, plane: 0);
549 if (paddr) {
550 writel(lower_32_bits(paddr),
551 addr: lcdif->base + LCDC_V8_CTRLDESCL_LOW0_4);
552 writel(CTRLDESCL_HIGH0_4_ADDR_HIGH(upper_32_bits(paddr)),
553 addr: lcdif->base + LCDC_V8_CTRLDESCL_HIGH0_4);
554 }
555 lcdif_enable_controller(lcdif);
556
557 drm_crtc_vblank_on(crtc);
558}
559
560static void lcdif_crtc_atomic_disable(struct drm_crtc *crtc,
561 struct drm_atomic_state *state)
562{
563 struct lcdif_drm_private *lcdif = to_lcdif_drm_private(drm: crtc->dev);
564 struct drm_device *drm = lcdif->drm;
565 struct drm_pending_vblank_event *event;
566
567 drm_crtc_vblank_off(crtc);
568
569 lcdif_disable_controller(lcdif);
570
571 spin_lock_irq(lock: &drm->event_lock);
572 event = crtc->state->event;
573 if (event) {
574 crtc->state->event = NULL;
575 drm_crtc_send_vblank_event(crtc, e: event);
576 }
577 spin_unlock_irq(lock: &drm->event_lock);
578
579 pm_runtime_put_sync(dev: drm->dev);
580}
581
582static void lcdif_crtc_atomic_destroy_state(struct drm_crtc *crtc,
583 struct drm_crtc_state *state)
584{
585 __drm_atomic_helper_crtc_destroy_state(state);
586 kfree(objp: to_lcdif_crtc_state(s: state));
587}
588
589static void lcdif_crtc_reset(struct drm_crtc *crtc)
590{
591 struct lcdif_crtc_state *state;
592
593 if (crtc->state)
594 lcdif_crtc_atomic_destroy_state(crtc, state: crtc->state);
595
596 crtc->state = NULL;
597
598 state = kzalloc(size: sizeof(*state), GFP_KERNEL);
599 if (state)
600 __drm_atomic_helper_crtc_reset(crtc, state: &state->base);
601}
602
603static struct drm_crtc_state *
604lcdif_crtc_atomic_duplicate_state(struct drm_crtc *crtc)
605{
606 struct lcdif_crtc_state *old = to_lcdif_crtc_state(s: crtc->state);
607 struct lcdif_crtc_state *new;
608
609 if (WARN_ON(!crtc->state))
610 return NULL;
611
612 new = kzalloc(size: sizeof(*new), GFP_KERNEL);
613 if (!new)
614 return NULL;
615
616 __drm_atomic_helper_crtc_duplicate_state(crtc, state: &new->base);
617
618 new->bus_format = old->bus_format;
619 new->bus_flags = old->bus_flags;
620
621 return &new->base;
622}
623
624static int lcdif_crtc_enable_vblank(struct drm_crtc *crtc)
625{
626 struct lcdif_drm_private *lcdif = to_lcdif_drm_private(drm: crtc->dev);
627
628 /* Clear and enable VBLANK IRQ */
629 writel(INT_STATUS_D0_VS_BLANK, addr: lcdif->base + LCDC_V8_INT_STATUS_D0);
630 writel(INT_ENABLE_D0_VS_BLANK_EN, addr: lcdif->base + LCDC_V8_INT_ENABLE_D0);
631
632 return 0;
633}
634
635static void lcdif_crtc_disable_vblank(struct drm_crtc *crtc)
636{
637 struct lcdif_drm_private *lcdif = to_lcdif_drm_private(drm: crtc->dev);
638
639 /* Disable and clear VBLANK IRQ */
640 writel(val: 0, addr: lcdif->base + LCDC_V8_INT_ENABLE_D0);
641 writel(INT_STATUS_D0_VS_BLANK, addr: lcdif->base + LCDC_V8_INT_STATUS_D0);
642}
643
644static const struct drm_crtc_helper_funcs lcdif_crtc_helper_funcs = {
645 .atomic_check = lcdif_crtc_atomic_check,
646 .atomic_flush = lcdif_crtc_atomic_flush,
647 .atomic_enable = lcdif_crtc_atomic_enable,
648 .atomic_disable = lcdif_crtc_atomic_disable,
649};
650
651static const struct drm_crtc_funcs lcdif_crtc_funcs = {
652 .reset = lcdif_crtc_reset,
653 .destroy = drm_crtc_cleanup,
654 .set_config = drm_atomic_helper_set_config,
655 .page_flip = drm_atomic_helper_page_flip,
656 .atomic_duplicate_state = lcdif_crtc_atomic_duplicate_state,
657 .atomic_destroy_state = lcdif_crtc_atomic_destroy_state,
658 .enable_vblank = lcdif_crtc_enable_vblank,
659 .disable_vblank = lcdif_crtc_disable_vblank,
660};
661
662/* -----------------------------------------------------------------------------
663 * Planes
664 */
665
666static int lcdif_plane_atomic_check(struct drm_plane *plane,
667 struct drm_atomic_state *state)
668{
669 struct drm_plane_state *plane_state = drm_atomic_get_new_plane_state(state,
670 plane);
671 struct lcdif_drm_private *lcdif = to_lcdif_drm_private(drm: plane->dev);
672 struct drm_crtc_state *crtc_state;
673
674 crtc_state = drm_atomic_get_new_crtc_state(state,
675 crtc: &lcdif->crtc);
676
677 return drm_atomic_helper_check_plane_state(plane_state, crtc_state,
678 DRM_PLANE_NO_SCALING,
679 DRM_PLANE_NO_SCALING,
680 can_position: false, can_update_disabled: true);
681}
682
683static void lcdif_plane_primary_atomic_update(struct drm_plane *plane,
684 struct drm_atomic_state *state)
685{
686 struct lcdif_drm_private *lcdif = to_lcdif_drm_private(drm: plane->dev);
687 struct drm_plane_state *new_pstate = drm_atomic_get_new_plane_state(state,
688 plane);
689 dma_addr_t paddr;
690
691 paddr = drm_fb_dma_get_gem_addr(fb: new_pstate->fb, state: new_pstate, plane: 0);
692 if (paddr) {
693 writel(lower_32_bits(paddr),
694 addr: lcdif->base + LCDC_V8_CTRLDESCL_LOW0_4);
695 writel(CTRLDESCL_HIGH0_4_ADDR_HIGH(upper_32_bits(paddr)),
696 addr: lcdif->base + LCDC_V8_CTRLDESCL_HIGH0_4);
697 }
698}
699
700static bool lcdif_format_mod_supported(struct drm_plane *plane,
701 uint32_t format,
702 uint64_t modifier)
703{
704 return modifier == DRM_FORMAT_MOD_LINEAR;
705}
706
707static const struct drm_plane_helper_funcs lcdif_plane_primary_helper_funcs = {
708 .atomic_check = lcdif_plane_atomic_check,
709 .atomic_update = lcdif_plane_primary_atomic_update,
710};
711
712static const struct drm_plane_funcs lcdif_plane_funcs = {
713 .format_mod_supported = lcdif_format_mod_supported,
714 .update_plane = drm_atomic_helper_update_plane,
715 .disable_plane = drm_atomic_helper_disable_plane,
716 .destroy = drm_plane_cleanup,
717 .reset = drm_atomic_helper_plane_reset,
718 .atomic_duplicate_state = drm_atomic_helper_plane_duplicate_state,
719 .atomic_destroy_state = drm_atomic_helper_plane_destroy_state,
720};
721
722static const u32 lcdif_primary_plane_formats[] = {
723 /* RGB */
724 DRM_FORMAT_RGB565,
725 DRM_FORMAT_RGB888,
726 DRM_FORMAT_XBGR8888,
727 DRM_FORMAT_XRGB1555,
728 DRM_FORMAT_XRGB4444,
729 DRM_FORMAT_XRGB8888,
730
731 /* Packed YCbCr */
732 DRM_FORMAT_YUYV,
733 DRM_FORMAT_YVYU,
734 DRM_FORMAT_UYVY,
735 DRM_FORMAT_VYUY,
736};
737
738static const u64 lcdif_modifiers[] = {
739 DRM_FORMAT_MOD_LINEAR,
740 DRM_FORMAT_MOD_INVALID
741};
742
743/* -----------------------------------------------------------------------------
744 * Initialization
745 */
746
747int lcdif_kms_init(struct lcdif_drm_private *lcdif)
748{
749 const u32 supported_encodings = BIT(DRM_COLOR_YCBCR_BT601) |
750 BIT(DRM_COLOR_YCBCR_BT709) |
751 BIT(DRM_COLOR_YCBCR_BT2020);
752 const u32 supported_ranges = BIT(DRM_COLOR_YCBCR_LIMITED_RANGE) |
753 BIT(DRM_COLOR_YCBCR_FULL_RANGE);
754 struct drm_crtc *crtc = &lcdif->crtc;
755 int ret;
756
757 drm_plane_helper_add(plane: &lcdif->planes.primary,
758 funcs: &lcdif_plane_primary_helper_funcs);
759 ret = drm_universal_plane_init(dev: lcdif->drm, plane: &lcdif->planes.primary, possible_crtcs: 1,
760 funcs: &lcdif_plane_funcs,
761 formats: lcdif_primary_plane_formats,
762 ARRAY_SIZE(lcdif_primary_plane_formats),
763 format_modifiers: lcdif_modifiers, type: DRM_PLANE_TYPE_PRIMARY,
764 NULL);
765 if (ret)
766 return ret;
767
768 ret = drm_plane_create_color_properties(plane: &lcdif->planes.primary,
769 supported_encodings,
770 supported_ranges,
771 default_encoding: DRM_COLOR_YCBCR_BT601,
772 default_range: DRM_COLOR_YCBCR_LIMITED_RANGE);
773 if (ret)
774 return ret;
775
776 drm_crtc_helper_add(crtc, funcs: &lcdif_crtc_helper_funcs);
777 return drm_crtc_init_with_planes(dev: lcdif->drm, crtc,
778 primary: &lcdif->planes.primary, NULL,
779 funcs: &lcdif_crtc_funcs, NULL);
780}
781

source code of linux/drivers/gpu/drm/mxsfb/lcdif_kms.c