1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * cec-adap.c - HDMI Consumer Electronics Control framework - CEC adapter
4 *
5 * Copyright 2016 Cisco Systems, Inc. and/or its affiliates. All rights reserved.
6 */
7
8#include <linux/errno.h>
9#include <linux/init.h>
10#include <linux/module.h>
11#include <linux/kernel.h>
12#include <linux/kmod.h>
13#include <linux/ktime.h>
14#include <linux/slab.h>
15#include <linux/mm.h>
16#include <linux/string.h>
17#include <linux/types.h>
18
19#include <drm/drm_connector.h>
20#include <drm/drm_device.h>
21#include <drm/drm_edid.h>
22#include <drm/drm_file.h>
23
24#include "cec-priv.h"
25
26static void cec_fill_msg_report_features(struct cec_adapter *adap,
27 struct cec_msg *msg,
28 unsigned int la_idx);
29
30static int cec_log_addr2idx(const struct cec_adapter *adap, u8 log_addr)
31{
32 int i;
33
34 for (i = 0; i < adap->log_addrs.num_log_addrs; i++)
35 if (adap->log_addrs.log_addr[i] == log_addr)
36 return i;
37 return -1;
38}
39
40static unsigned int cec_log_addr2dev(const struct cec_adapter *adap, u8 log_addr)
41{
42 int i = cec_log_addr2idx(adap, log_addr);
43
44 return adap->log_addrs.primary_device_type[i < 0 ? 0 : i];
45}
46
47u16 cec_get_edid_phys_addr(const u8 *edid, unsigned int size,
48 unsigned int *offset)
49{
50 unsigned int loc = cec_get_edid_spa_location(edid, size);
51
52 if (offset)
53 *offset = loc;
54 if (loc == 0)
55 return CEC_PHYS_ADDR_INVALID;
56 return (edid[loc] << 8) | edid[loc + 1];
57}
58EXPORT_SYMBOL_GPL(cec_get_edid_phys_addr);
59
60void cec_fill_conn_info_from_drm(struct cec_connector_info *conn_info,
61 const struct drm_connector *connector)
62{
63 memset(conn_info, 0, sizeof(*conn_info));
64 conn_info->type = CEC_CONNECTOR_TYPE_DRM;
65 conn_info->drm.card_no = connector->dev->primary->index;
66 conn_info->drm.connector_id = connector->base.id;
67}
68EXPORT_SYMBOL_GPL(cec_fill_conn_info_from_drm);
69
70/*
71 * Queue a new event for this filehandle. If ts == 0, then set it
72 * to the current time.
73 *
74 * We keep a queue of at most max_event events where max_event differs
75 * per event. If the queue becomes full, then drop the oldest event and
76 * keep track of how many events we've dropped.
77 */
78void cec_queue_event_fh(struct cec_fh *fh,
79 const struct cec_event *new_ev, u64 ts)
80{
81 static const u16 max_events[CEC_NUM_EVENTS] = {
82 1, 1, 800, 800, 8, 8, 8, 8
83 };
84 struct cec_event_entry *entry;
85 unsigned int ev_idx = new_ev->event - 1;
86
87 if (WARN_ON(ev_idx >= ARRAY_SIZE(fh->events)))
88 return;
89
90 if (ts == 0)
91 ts = ktime_get_ns();
92
93 mutex_lock(&fh->lock);
94 if (ev_idx < CEC_NUM_CORE_EVENTS)
95 entry = &fh->core_events[ev_idx];
96 else
97 entry = kmalloc(size: sizeof(*entry), GFP_KERNEL);
98 if (entry) {
99 if (new_ev->event == CEC_EVENT_LOST_MSGS &&
100 fh->queued_events[ev_idx]) {
101 entry->ev.lost_msgs.lost_msgs +=
102 new_ev->lost_msgs.lost_msgs;
103 goto unlock;
104 }
105 entry->ev = *new_ev;
106 entry->ev.ts = ts;
107
108 if (fh->queued_events[ev_idx] < max_events[ev_idx]) {
109 /* Add new msg at the end of the queue */
110 list_add_tail(new: &entry->list, head: &fh->events[ev_idx]);
111 fh->queued_events[ev_idx]++;
112 fh->total_queued_events++;
113 goto unlock;
114 }
115
116 if (ev_idx >= CEC_NUM_CORE_EVENTS) {
117 list_add_tail(new: &entry->list, head: &fh->events[ev_idx]);
118 /* drop the oldest event */
119 entry = list_first_entry(&fh->events[ev_idx],
120 struct cec_event_entry, list);
121 list_del(entry: &entry->list);
122 kfree(objp: entry);
123 }
124 }
125 /* Mark that events were lost */
126 entry = list_first_entry_or_null(&fh->events[ev_idx],
127 struct cec_event_entry, list);
128 if (entry)
129 entry->ev.flags |= CEC_EVENT_FL_DROPPED_EVENTS;
130
131unlock:
132 mutex_unlock(lock: &fh->lock);
133 wake_up_interruptible(&fh->wait);
134}
135
136/* Queue a new event for all open filehandles. */
137static void cec_queue_event(struct cec_adapter *adap,
138 const struct cec_event *ev)
139{
140 u64 ts = ktime_get_ns();
141 struct cec_fh *fh;
142
143 mutex_lock(&adap->devnode.lock_fhs);
144 list_for_each_entry(fh, &adap->devnode.fhs, list)
145 cec_queue_event_fh(fh, new_ev: ev, ts);
146 mutex_unlock(lock: &adap->devnode.lock_fhs);
147}
148
149/* Notify userspace that the CEC pin changed state at the given time. */
150void cec_queue_pin_cec_event(struct cec_adapter *adap, bool is_high,
151 bool dropped_events, ktime_t ts)
152{
153 struct cec_event ev = {
154 .event = is_high ? CEC_EVENT_PIN_CEC_HIGH :
155 CEC_EVENT_PIN_CEC_LOW,
156 .flags = dropped_events ? CEC_EVENT_FL_DROPPED_EVENTS : 0,
157 };
158 struct cec_fh *fh;
159
160 mutex_lock(&adap->devnode.lock_fhs);
161 list_for_each_entry(fh, &adap->devnode.fhs, list) {
162 if (fh->mode_follower == CEC_MODE_MONITOR_PIN)
163 cec_queue_event_fh(fh, new_ev: &ev, ts: ktime_to_ns(kt: ts));
164 }
165 mutex_unlock(lock: &adap->devnode.lock_fhs);
166}
167EXPORT_SYMBOL_GPL(cec_queue_pin_cec_event);
168
169/* Notify userspace that the HPD pin changed state at the given time. */
170void cec_queue_pin_hpd_event(struct cec_adapter *adap, bool is_high, ktime_t ts)
171{
172 struct cec_event ev = {
173 .event = is_high ? CEC_EVENT_PIN_HPD_HIGH :
174 CEC_EVENT_PIN_HPD_LOW,
175 };
176 struct cec_fh *fh;
177
178 mutex_lock(&adap->devnode.lock_fhs);
179 list_for_each_entry(fh, &adap->devnode.fhs, list)
180 cec_queue_event_fh(fh, new_ev: &ev, ts: ktime_to_ns(kt: ts));
181 mutex_unlock(lock: &adap->devnode.lock_fhs);
182}
183EXPORT_SYMBOL_GPL(cec_queue_pin_hpd_event);
184
185/* Notify userspace that the 5V pin changed state at the given time. */
186void cec_queue_pin_5v_event(struct cec_adapter *adap, bool is_high, ktime_t ts)
187{
188 struct cec_event ev = {
189 .event = is_high ? CEC_EVENT_PIN_5V_HIGH :
190 CEC_EVENT_PIN_5V_LOW,
191 };
192 struct cec_fh *fh;
193
194 mutex_lock(&adap->devnode.lock_fhs);
195 list_for_each_entry(fh, &adap->devnode.fhs, list)
196 cec_queue_event_fh(fh, new_ev: &ev, ts: ktime_to_ns(kt: ts));
197 mutex_unlock(lock: &adap->devnode.lock_fhs);
198}
199EXPORT_SYMBOL_GPL(cec_queue_pin_5v_event);
200
201/*
202 * Queue a new message for this filehandle.
203 *
204 * We keep a queue of at most CEC_MAX_MSG_RX_QUEUE_SZ messages. If the
205 * queue becomes full, then drop the oldest message and keep track
206 * of how many messages we've dropped.
207 */
208static void cec_queue_msg_fh(struct cec_fh *fh, const struct cec_msg *msg)
209{
210 static const struct cec_event ev_lost_msgs = {
211 .event = CEC_EVENT_LOST_MSGS,
212 .flags = 0,
213 {
214 .lost_msgs = { 1 },
215 },
216 };
217 struct cec_msg_entry *entry;
218
219 mutex_lock(&fh->lock);
220 entry = kmalloc(size: sizeof(*entry), GFP_KERNEL);
221 if (entry) {
222 entry->msg = *msg;
223 /* Add new msg at the end of the queue */
224 list_add_tail(new: &entry->list, head: &fh->msgs);
225
226 if (fh->queued_msgs < CEC_MAX_MSG_RX_QUEUE_SZ) {
227 /* All is fine if there is enough room */
228 fh->queued_msgs++;
229 mutex_unlock(lock: &fh->lock);
230 wake_up_interruptible(&fh->wait);
231 return;
232 }
233
234 /*
235 * if the message queue is full, then drop the oldest one and
236 * send a lost message event.
237 */
238 entry = list_first_entry(&fh->msgs, struct cec_msg_entry, list);
239 list_del(entry: &entry->list);
240 kfree(objp: entry);
241 }
242 mutex_unlock(lock: &fh->lock);
243
244 /*
245 * We lost a message, either because kmalloc failed or the queue
246 * was full.
247 */
248 cec_queue_event_fh(fh, new_ev: &ev_lost_msgs, ts: ktime_get_ns());
249}
250
251/*
252 * Queue the message for those filehandles that are in monitor mode.
253 * If valid_la is true (this message is for us or was sent by us),
254 * then pass it on to any monitoring filehandle. If this message
255 * isn't for us or from us, then only give it to filehandles that
256 * are in MONITOR_ALL mode.
257 *
258 * This can only happen if the CEC_CAP_MONITOR_ALL capability is
259 * set and the CEC adapter was placed in 'monitor all' mode.
260 */
261static void cec_queue_msg_monitor(struct cec_adapter *adap,
262 const struct cec_msg *msg,
263 bool valid_la)
264{
265 struct cec_fh *fh;
266 u32 monitor_mode = valid_la ? CEC_MODE_MONITOR :
267 CEC_MODE_MONITOR_ALL;
268
269 mutex_lock(&adap->devnode.lock_fhs);
270 list_for_each_entry(fh, &adap->devnode.fhs, list) {
271 if (fh->mode_follower >= monitor_mode)
272 cec_queue_msg_fh(fh, msg);
273 }
274 mutex_unlock(lock: &adap->devnode.lock_fhs);
275}
276
277/*
278 * Queue the message for follower filehandles.
279 */
280static void cec_queue_msg_followers(struct cec_adapter *adap,
281 const struct cec_msg *msg)
282{
283 struct cec_fh *fh;
284
285 mutex_lock(&adap->devnode.lock_fhs);
286 list_for_each_entry(fh, &adap->devnode.fhs, list) {
287 if (fh->mode_follower == CEC_MODE_FOLLOWER)
288 cec_queue_msg_fh(fh, msg);
289 }
290 mutex_unlock(lock: &adap->devnode.lock_fhs);
291}
292
293/* Notify userspace of an adapter state change. */
294static void cec_post_state_event(struct cec_adapter *adap)
295{
296 struct cec_event ev = {
297 .event = CEC_EVENT_STATE_CHANGE,
298 };
299
300 ev.state_change.phys_addr = adap->phys_addr;
301 ev.state_change.log_addr_mask = adap->log_addrs.log_addr_mask;
302 ev.state_change.have_conn_info =
303 adap->conn_info.type != CEC_CONNECTOR_TYPE_NO_CONNECTOR;
304 cec_queue_event(adap, ev: &ev);
305}
306
307/*
308 * A CEC transmit (and a possible wait for reply) completed.
309 * If this was in blocking mode, then complete it, otherwise
310 * queue the message for userspace to dequeue later.
311 *
312 * This function is called with adap->lock held.
313 */
314static void cec_data_completed(struct cec_data *data)
315{
316 /*
317 * Delete this transmit from the filehandle's xfer_list since
318 * we're done with it.
319 *
320 * Note that if the filehandle is closed before this transmit
321 * finished, then the release() function will set data->fh to NULL.
322 * Without that we would be referring to a closed filehandle.
323 */
324 if (data->fh)
325 list_del_init(entry: &data->xfer_list);
326
327 if (data->blocking) {
328 /*
329 * Someone is blocking so mark the message as completed
330 * and call complete.
331 */
332 data->completed = true;
333 complete(&data->c);
334 } else {
335 /*
336 * No blocking, so just queue the message if needed and
337 * free the memory.
338 */
339 if (data->fh)
340 cec_queue_msg_fh(fh: data->fh, msg: &data->msg);
341 kfree(objp: data);
342 }
343}
344
345/*
346 * A pending CEC transmit needs to be cancelled, either because the CEC
347 * adapter is disabled or the transmit takes an impossibly long time to
348 * finish, or the reply timed out.
349 *
350 * This function is called with adap->lock held.
351 */
352static void cec_data_cancel(struct cec_data *data, u8 tx_status, u8 rx_status)
353{
354 struct cec_adapter *adap = data->adap;
355
356 /*
357 * It's either the current transmit, or it is a pending
358 * transmit. Take the appropriate action to clear it.
359 */
360 if (adap->transmitting == data) {
361 adap->transmitting = NULL;
362 } else {
363 list_del_init(entry: &data->list);
364 if (!(data->msg.tx_status & CEC_TX_STATUS_OK))
365 if (!WARN_ON(!adap->transmit_queue_sz))
366 adap->transmit_queue_sz--;
367 }
368
369 if (data->msg.tx_status & CEC_TX_STATUS_OK) {
370 data->msg.rx_ts = ktime_get_ns();
371 data->msg.rx_status = rx_status;
372 if (!data->blocking)
373 data->msg.tx_status = 0;
374 } else {
375 data->msg.tx_ts = ktime_get_ns();
376 data->msg.tx_status |= tx_status |
377 CEC_TX_STATUS_MAX_RETRIES;
378 data->msg.tx_error_cnt++;
379 data->attempts = 0;
380 if (!data->blocking)
381 data->msg.rx_status = 0;
382 }
383
384 /* Queue transmitted message for monitoring purposes */
385 cec_queue_msg_monitor(adap, msg: &data->msg, valid_la: 1);
386
387 if (!data->blocking && data->msg.sequence)
388 /* Allow drivers to react to a canceled transmit */
389 call_void_op(adap, adap_nb_transmit_canceled, &data->msg);
390
391 cec_data_completed(data);
392}
393
394/*
395 * Flush all pending transmits and cancel any pending timeout work.
396 *
397 * This function is called with adap->lock held.
398 */
399static void cec_flush(struct cec_adapter *adap)
400{
401 struct cec_data *data, *n;
402
403 /*
404 * If the adapter is disabled, or we're asked to stop,
405 * then cancel any pending transmits.
406 */
407 while (!list_empty(head: &adap->transmit_queue)) {
408 data = list_first_entry(&adap->transmit_queue,
409 struct cec_data, list);
410 cec_data_cancel(data, CEC_TX_STATUS_ABORTED, rx_status: 0);
411 }
412 if (adap->transmitting)
413 adap->transmit_in_progress_aborted = true;
414
415 /* Cancel the pending timeout work. */
416 list_for_each_entry_safe(data, n, &adap->wait_queue, list) {
417 if (cancel_delayed_work(dwork: &data->work))
418 cec_data_cancel(data, CEC_TX_STATUS_OK, CEC_RX_STATUS_ABORTED);
419 /*
420 * If cancel_delayed_work returned false, then
421 * the cec_wait_timeout function is running,
422 * which will call cec_data_completed. So no
423 * need to do anything special in that case.
424 */
425 }
426 /*
427 * If something went wrong and this counter isn't what it should
428 * be, then this will reset it back to 0. Warn if it is not 0,
429 * since it indicates a bug, either in this framework or in a
430 * CEC driver.
431 */
432 if (WARN_ON(adap->transmit_queue_sz))
433 adap->transmit_queue_sz = 0;
434}
435
436/*
437 * Main CEC state machine
438 *
439 * Wait until the thread should be stopped, or we are not transmitting and
440 * a new transmit message is queued up, in which case we start transmitting
441 * that message. When the adapter finished transmitting the message it will
442 * call cec_transmit_done().
443 *
444 * If the adapter is disabled, then remove all queued messages instead.
445 *
446 * If the current transmit times out, then cancel that transmit.
447 */
448int cec_thread_func(void *_adap)
449{
450 struct cec_adapter *adap = _adap;
451
452 for (;;) {
453 unsigned int signal_free_time;
454 struct cec_data *data;
455 bool timeout = false;
456 u8 attempts;
457
458 if (adap->transmit_in_progress) {
459 int err;
460
461 /*
462 * We are transmitting a message, so add a timeout
463 * to prevent the state machine to get stuck waiting
464 * for this message to finalize and add a check to
465 * see if the adapter is disabled in which case the
466 * transmit should be canceled.
467 */
468 err = wait_event_interruptible_timeout(adap->kthread_waitq,
469 (adap->needs_hpd &&
470 (!adap->is_configured && !adap->is_configuring)) ||
471 kthread_should_stop() ||
472 (!adap->transmit_in_progress &&
473 !list_empty(&adap->transmit_queue)),
474 msecs_to_jiffies(adap->xfer_timeout_ms));
475 timeout = err == 0;
476 } else {
477 /* Otherwise we just wait for something to happen. */
478 wait_event_interruptible(adap->kthread_waitq,
479 kthread_should_stop() ||
480 (!adap->transmit_in_progress &&
481 !list_empty(&adap->transmit_queue)));
482 }
483
484 mutex_lock(&adap->lock);
485
486 if ((adap->needs_hpd &&
487 (!adap->is_configured && !adap->is_configuring)) ||
488 kthread_should_stop()) {
489 cec_flush(adap);
490 goto unlock;
491 }
492
493 if (adap->transmit_in_progress && timeout) {
494 /*
495 * If we timeout, then log that. Normally this does
496 * not happen and it is an indication of a faulty CEC
497 * adapter driver, or the CEC bus is in some weird
498 * state. On rare occasions it can happen if there is
499 * so much traffic on the bus that the adapter was
500 * unable to transmit for xfer_timeout_ms (2.1s by
501 * default).
502 */
503 if (adap->transmitting) {
504 pr_warn("cec-%s: message %*ph timed out\n", adap->name,
505 adap->transmitting->msg.len,
506 adap->transmitting->msg.msg);
507 /* Just give up on this. */
508 cec_data_cancel(data: adap->transmitting,
509 CEC_TX_STATUS_TIMEOUT, rx_status: 0);
510 } else {
511 pr_warn("cec-%s: transmit timed out\n", adap->name);
512 }
513 adap->transmit_in_progress = false;
514 adap->tx_timeout_cnt++;
515 goto unlock;
516 }
517
518 /*
519 * If we are still transmitting, or there is nothing new to
520 * transmit, then just continue waiting.
521 */
522 if (adap->transmit_in_progress || list_empty(head: &adap->transmit_queue))
523 goto unlock;
524
525 /* Get a new message to transmit */
526 data = list_first_entry(&adap->transmit_queue,
527 struct cec_data, list);
528 list_del_init(entry: &data->list);
529 if (!WARN_ON(!data->adap->transmit_queue_sz))
530 adap->transmit_queue_sz--;
531
532 /* Make this the current transmitting message */
533 adap->transmitting = data;
534
535 /*
536 * Suggested number of attempts as per the CEC 2.0 spec:
537 * 4 attempts is the default, except for 'secondary poll
538 * messages', i.e. poll messages not sent during the adapter
539 * configuration phase when it allocates logical addresses.
540 */
541 if (data->msg.len == 1 && adap->is_configured)
542 attempts = 2;
543 else
544 attempts = 4;
545
546 /* Set the suggested signal free time */
547 if (data->attempts) {
548 /* should be >= 3 data bit periods for a retry */
549 signal_free_time = CEC_SIGNAL_FREE_TIME_RETRY;
550 } else if (adap->last_initiator !=
551 cec_msg_initiator(msg: &data->msg)) {
552 /* should be >= 5 data bit periods for new initiator */
553 signal_free_time = CEC_SIGNAL_FREE_TIME_NEW_INITIATOR;
554 adap->last_initiator = cec_msg_initiator(msg: &data->msg);
555 } else {
556 /*
557 * should be >= 7 data bit periods for sending another
558 * frame immediately after another.
559 */
560 signal_free_time = CEC_SIGNAL_FREE_TIME_NEXT_XFER;
561 }
562 if (data->attempts == 0)
563 data->attempts = attempts;
564
565 adap->transmit_in_progress_aborted = false;
566 /* Tell the adapter to transmit, cancel on error */
567 if (call_op(adap, adap_transmit, data->attempts,
568 signal_free_time, &data->msg))
569 cec_data_cancel(data, CEC_TX_STATUS_ABORTED, rx_status: 0);
570 else
571 adap->transmit_in_progress = true;
572
573unlock:
574 mutex_unlock(lock: &adap->lock);
575
576 if (kthread_should_stop())
577 break;
578 }
579 return 0;
580}
581
582/*
583 * Called by the CEC adapter if a transmit finished.
584 */
585void cec_transmit_done_ts(struct cec_adapter *adap, u8 status,
586 u8 arb_lost_cnt, u8 nack_cnt, u8 low_drive_cnt,
587 u8 error_cnt, ktime_t ts)
588{
589 struct cec_data *data;
590 struct cec_msg *msg;
591 unsigned int attempts_made = arb_lost_cnt + nack_cnt +
592 low_drive_cnt + error_cnt;
593 bool done = status & (CEC_TX_STATUS_MAX_RETRIES | CEC_TX_STATUS_OK);
594 bool aborted = adap->transmit_in_progress_aborted;
595
596 dprintk(2, "%s: status 0x%02x\n", __func__, status);
597 if (attempts_made < 1)
598 attempts_made = 1;
599
600 mutex_lock(&adap->lock);
601 data = adap->transmitting;
602 if (!data) {
603 /*
604 * This might happen if a transmit was issued and the cable is
605 * unplugged while the transmit is ongoing. Ignore this
606 * transmit in that case.
607 */
608 if (!adap->transmit_in_progress)
609 dprintk(1, "%s was called without an ongoing transmit!\n",
610 __func__);
611 adap->transmit_in_progress = false;
612 goto wake_thread;
613 }
614 adap->transmit_in_progress = false;
615 adap->transmit_in_progress_aborted = false;
616
617 msg = &data->msg;
618
619 /* Drivers must fill in the status! */
620 WARN_ON(status == 0);
621 msg->tx_ts = ktime_to_ns(kt: ts);
622 msg->tx_status |= status;
623 msg->tx_arb_lost_cnt += arb_lost_cnt;
624 msg->tx_nack_cnt += nack_cnt;
625 msg->tx_low_drive_cnt += low_drive_cnt;
626 msg->tx_error_cnt += error_cnt;
627
628 adap->tx_arb_lost_cnt += arb_lost_cnt;
629 adap->tx_low_drive_cnt += low_drive_cnt;
630 adap->tx_error_cnt += error_cnt;
631
632 /*
633 * Low Drive transmission errors should really not happen for
634 * well-behaved CEC devices and proper HDMI cables.
635 *
636 * Ditto for the 'Error' status.
637 *
638 * For the first few times that this happens, log this.
639 * Stop logging after that, since that will not add any more
640 * useful information and instead it will just flood the kernel log.
641 */
642 if (done && adap->tx_low_drive_log_cnt < 8 && msg->tx_low_drive_cnt) {
643 adap->tx_low_drive_log_cnt++;
644 dprintk(0, "low drive counter: %u (seq %u: %*ph)\n",
645 msg->tx_low_drive_cnt, msg->sequence,
646 msg->len, msg->msg);
647 }
648 if (done && adap->tx_error_log_cnt < 8 && msg->tx_error_cnt) {
649 adap->tx_error_log_cnt++;
650 dprintk(0, "error counter: %u (seq %u: %*ph)\n",
651 msg->tx_error_cnt, msg->sequence,
652 msg->len, msg->msg);
653 }
654
655 /* Mark that we're done with this transmit */
656 adap->transmitting = NULL;
657
658 /*
659 * If there are still retry attempts left and there was an error and
660 * the hardware didn't signal that it retried itself (by setting
661 * CEC_TX_STATUS_MAX_RETRIES), then we will retry ourselves.
662 */
663 if (!aborted && data->attempts > attempts_made && !done) {
664 /* Retry this message */
665 data->attempts -= attempts_made;
666 if (msg->timeout)
667 dprintk(2, "retransmit: %*ph (attempts: %d, wait for 0x%02x)\n",
668 msg->len, msg->msg, data->attempts, msg->reply);
669 else
670 dprintk(2, "retransmit: %*ph (attempts: %d)\n",
671 msg->len, msg->msg, data->attempts);
672 /* Add the message in front of the transmit queue */
673 list_add(new: &data->list, head: &adap->transmit_queue);
674 adap->transmit_queue_sz++;
675 goto wake_thread;
676 }
677
678 if (aborted && !done)
679 status |= CEC_TX_STATUS_ABORTED;
680 data->attempts = 0;
681
682 /* Always set CEC_TX_STATUS_MAX_RETRIES on error */
683 if (!(status & CEC_TX_STATUS_OK))
684 msg->tx_status |= CEC_TX_STATUS_MAX_RETRIES;
685
686 /* Queue transmitted message for monitoring purposes */
687 cec_queue_msg_monitor(adap, msg, valid_la: 1);
688
689 if ((status & CEC_TX_STATUS_OK) && adap->is_configured &&
690 msg->timeout) {
691 /*
692 * Queue the message into the wait queue if we want to wait
693 * for a reply.
694 */
695 list_add_tail(new: &data->list, head: &adap->wait_queue);
696 schedule_delayed_work(dwork: &data->work,
697 delay: msecs_to_jiffies(m: msg->timeout));
698 } else {
699 /* Otherwise we're done */
700 cec_data_completed(data);
701 }
702
703wake_thread:
704 /*
705 * Wake up the main thread to see if another message is ready
706 * for transmitting or to retry the current message.
707 */
708 wake_up_interruptible(&adap->kthread_waitq);
709 mutex_unlock(lock: &adap->lock);
710}
711EXPORT_SYMBOL_GPL(cec_transmit_done_ts);
712
713void cec_transmit_attempt_done_ts(struct cec_adapter *adap,
714 u8 status, ktime_t ts)
715{
716 switch (status & ~CEC_TX_STATUS_MAX_RETRIES) {
717 case CEC_TX_STATUS_OK:
718 cec_transmit_done_ts(adap, status, 0, 0, 0, 0, ts);
719 return;
720 case CEC_TX_STATUS_ARB_LOST:
721 cec_transmit_done_ts(adap, status, 1, 0, 0, 0, ts);
722 return;
723 case CEC_TX_STATUS_NACK:
724 cec_transmit_done_ts(adap, status, 0, 1, 0, 0, ts);
725 return;
726 case CEC_TX_STATUS_LOW_DRIVE:
727 cec_transmit_done_ts(adap, status, 0, 0, 1, 0, ts);
728 return;
729 case CEC_TX_STATUS_ERROR:
730 cec_transmit_done_ts(adap, status, 0, 0, 0, 1, ts);
731 return;
732 default:
733 /* Should never happen */
734 WARN(1, "cec-%s: invalid status 0x%02x\n", adap->name, status);
735 return;
736 }
737}
738EXPORT_SYMBOL_GPL(cec_transmit_attempt_done_ts);
739
740/*
741 * Called when waiting for a reply times out.
742 */
743static void cec_wait_timeout(struct work_struct *work)
744{
745 struct cec_data *data = container_of(work, struct cec_data, work.work);
746 struct cec_adapter *adap = data->adap;
747
748 mutex_lock(&adap->lock);
749 /*
750 * Sanity check in case the timeout and the arrival of the message
751 * happened at the same time.
752 */
753 if (list_empty(head: &data->list))
754 goto unlock;
755
756 /* Mark the message as timed out */
757 list_del_init(entry: &data->list);
758 cec_data_cancel(data, CEC_TX_STATUS_OK, CEC_RX_STATUS_TIMEOUT);
759unlock:
760 mutex_unlock(lock: &adap->lock);
761}
762
763/*
764 * Transmit a message. The fh argument may be NULL if the transmit is not
765 * associated with a specific filehandle.
766 *
767 * This function is called with adap->lock held.
768 */
769int cec_transmit_msg_fh(struct cec_adapter *adap, struct cec_msg *msg,
770 struct cec_fh *fh, bool block)
771{
772 struct cec_data *data;
773 bool is_raw = msg_is_raw(msg);
774
775 if (adap->devnode.unregistered)
776 return -ENODEV;
777
778 msg->rx_ts = 0;
779 msg->tx_ts = 0;
780 msg->rx_status = 0;
781 msg->tx_status = 0;
782 msg->tx_arb_lost_cnt = 0;
783 msg->tx_nack_cnt = 0;
784 msg->tx_low_drive_cnt = 0;
785 msg->tx_error_cnt = 0;
786 msg->sequence = 0;
787
788 if (msg->reply && msg->timeout == 0) {
789 /* Make sure the timeout isn't 0. */
790 msg->timeout = 1000;
791 }
792 msg->flags &= CEC_MSG_FL_REPLY_TO_FOLLOWERS | CEC_MSG_FL_RAW;
793
794 if (!msg->timeout)
795 msg->flags &= ~CEC_MSG_FL_REPLY_TO_FOLLOWERS;
796
797 /* Sanity checks */
798 if (msg->len == 0 || msg->len > CEC_MAX_MSG_SIZE) {
799 dprintk(1, "%s: invalid length %d\n", __func__, msg->len);
800 return -EINVAL;
801 }
802
803 memset(msg->msg + msg->len, 0, sizeof(msg->msg) - msg->len);
804
805 if (msg->timeout)
806 dprintk(2, "%s: %*ph (wait for 0x%02x%s)\n",
807 __func__, msg->len, msg->msg, msg->reply,
808 !block ? ", nb" : "");
809 else
810 dprintk(2, "%s: %*ph%s\n",
811 __func__, msg->len, msg->msg, !block ? " (nb)" : "");
812
813 if (msg->timeout && msg->len == 1) {
814 dprintk(1, "%s: can't reply to poll msg\n", __func__);
815 return -EINVAL;
816 }
817
818 if (is_raw) {
819 if (!capable(CAP_SYS_RAWIO))
820 return -EPERM;
821 } else {
822 /* A CDC-Only device can only send CDC messages */
823 if ((adap->log_addrs.flags & CEC_LOG_ADDRS_FL_CDC_ONLY) &&
824 (msg->len == 1 || msg->msg[1] != CEC_MSG_CDC_MESSAGE)) {
825 dprintk(1, "%s: not a CDC message\n", __func__);
826 return -EINVAL;
827 }
828
829 if (msg->len >= 4 && msg->msg[1] == CEC_MSG_CDC_MESSAGE) {
830 msg->msg[2] = adap->phys_addr >> 8;
831 msg->msg[3] = adap->phys_addr & 0xff;
832 }
833
834 if (msg->len == 1) {
835 if (cec_msg_destination(msg) == 0xf) {
836 dprintk(1, "%s: invalid poll message\n",
837 __func__);
838 return -EINVAL;
839 }
840 if (cec_has_log_addr(adap, log_addr: cec_msg_destination(msg))) {
841 /*
842 * If the destination is a logical address our
843 * adapter has already claimed, then just NACK
844 * this. It depends on the hardware what it will
845 * do with a POLL to itself (some OK this), so
846 * it is just as easy to handle it here so the
847 * behavior will be consistent.
848 */
849 msg->tx_ts = ktime_get_ns();
850 msg->tx_status = CEC_TX_STATUS_NACK |
851 CEC_TX_STATUS_MAX_RETRIES;
852 msg->tx_nack_cnt = 1;
853 msg->sequence = ++adap->sequence;
854 if (!msg->sequence)
855 msg->sequence = ++adap->sequence;
856 return 0;
857 }
858 }
859 if (msg->len > 1 && !cec_msg_is_broadcast(msg) &&
860 cec_has_log_addr(adap, log_addr: cec_msg_destination(msg))) {
861 dprintk(1, "%s: destination is the adapter itself\n",
862 __func__);
863 return -EINVAL;
864 }
865 if (msg->len > 1 && adap->is_configured &&
866 !cec_has_log_addr(adap, log_addr: cec_msg_initiator(msg))) {
867 dprintk(1, "%s: initiator has unknown logical address %d\n",
868 __func__, cec_msg_initiator(msg));
869 return -EINVAL;
870 }
871 /*
872 * Special case: allow Ping and IMAGE/TEXT_VIEW_ON to be
873 * transmitted to a TV, even if the adapter is unconfigured.
874 * This makes it possible to detect or wake up displays that
875 * pull down the HPD when in standby.
876 */
877 if (!adap->is_configured && !adap->is_configuring &&
878 (msg->len > 2 ||
879 cec_msg_destination(msg) != CEC_LOG_ADDR_TV ||
880 (msg->len == 2 && msg->msg[1] != CEC_MSG_IMAGE_VIEW_ON &&
881 msg->msg[1] != CEC_MSG_TEXT_VIEW_ON))) {
882 dprintk(1, "%s: adapter is unconfigured\n", __func__);
883 return -ENONET;
884 }
885 }
886
887 if (!adap->is_configured && !adap->is_configuring) {
888 if (adap->needs_hpd) {
889 dprintk(1, "%s: adapter is unconfigured and needs HPD\n",
890 __func__);
891 return -ENONET;
892 }
893 if (msg->reply) {
894 dprintk(1, "%s: invalid msg->reply\n", __func__);
895 return -EINVAL;
896 }
897 }
898
899 if (adap->transmit_queue_sz >= CEC_MAX_MSG_TX_QUEUE_SZ) {
900 dprintk(2, "%s: transmit queue full\n", __func__);
901 return -EBUSY;
902 }
903
904 data = kzalloc(size: sizeof(*data), GFP_KERNEL);
905 if (!data)
906 return -ENOMEM;
907
908 msg->sequence = ++adap->sequence;
909 if (!msg->sequence)
910 msg->sequence = ++adap->sequence;
911
912 data->msg = *msg;
913 data->fh = fh;
914 data->adap = adap;
915 data->blocking = block;
916
917 init_completion(x: &data->c);
918 INIT_DELAYED_WORK(&data->work, cec_wait_timeout);
919
920 if (fh)
921 list_add_tail(new: &data->xfer_list, head: &fh->xfer_list);
922 else
923 INIT_LIST_HEAD(list: &data->xfer_list);
924
925 list_add_tail(new: &data->list, head: &adap->transmit_queue);
926 adap->transmit_queue_sz++;
927 if (!adap->transmitting)
928 wake_up_interruptible(&adap->kthread_waitq);
929
930 /* All done if we don't need to block waiting for completion */
931 if (!block)
932 return 0;
933
934 /*
935 * Release the lock and wait, retake the lock afterwards.
936 */
937 mutex_unlock(lock: &adap->lock);
938 wait_for_completion_killable(x: &data->c);
939 if (!data->completed)
940 cancel_delayed_work_sync(dwork: &data->work);
941 mutex_lock(&adap->lock);
942
943 /* Cancel the transmit if it was interrupted */
944 if (!data->completed) {
945 if (data->msg.tx_status & CEC_TX_STATUS_OK)
946 cec_data_cancel(data, CEC_TX_STATUS_OK, CEC_RX_STATUS_ABORTED);
947 else
948 cec_data_cancel(data, CEC_TX_STATUS_ABORTED, rx_status: 0);
949 }
950
951 /* The transmit completed (possibly with an error) */
952 *msg = data->msg;
953 if (WARN_ON(!list_empty(&data->list)))
954 list_del(entry: &data->list);
955 if (WARN_ON(!list_empty(&data->xfer_list)))
956 list_del(entry: &data->xfer_list);
957 kfree(objp: data);
958 return 0;
959}
960
961/* Helper function to be used by drivers and this framework. */
962int cec_transmit_msg(struct cec_adapter *adap, struct cec_msg *msg,
963 bool block)
964{
965 int ret;
966
967 mutex_lock(&adap->lock);
968 ret = cec_transmit_msg_fh(adap, msg, NULL, block);
969 mutex_unlock(lock: &adap->lock);
970 return ret;
971}
972EXPORT_SYMBOL_GPL(cec_transmit_msg);
973
974/*
975 * I don't like forward references but without this the low-level
976 * cec_received_msg() function would come after a bunch of high-level
977 * CEC protocol handling functions. That was very confusing.
978 */
979static int cec_receive_notify(struct cec_adapter *adap, struct cec_msg *msg,
980 bool is_reply);
981
982#define DIRECTED 0x80
983#define BCAST1_4 0x40
984#define BCAST2_0 0x20 /* broadcast only allowed for >= 2.0 */
985#define BCAST (BCAST1_4 | BCAST2_0)
986#define BOTH (BCAST | DIRECTED)
987
988/*
989 * Specify minimum length and whether the message is directed, broadcast
990 * or both. Messages that do not match the criteria are ignored as per
991 * the CEC specification.
992 */
993static const u8 cec_msg_size[256] = {
994 [CEC_MSG_ACTIVE_SOURCE] = 4 | BCAST,
995 [CEC_MSG_IMAGE_VIEW_ON] = 2 | DIRECTED,
996 [CEC_MSG_TEXT_VIEW_ON] = 2 | DIRECTED,
997 [CEC_MSG_INACTIVE_SOURCE] = 4 | DIRECTED,
998 [CEC_MSG_REQUEST_ACTIVE_SOURCE] = 2 | BCAST,
999 [CEC_MSG_ROUTING_CHANGE] = 6 | BCAST,
1000 [CEC_MSG_ROUTING_INFORMATION] = 4 | BCAST,
1001 [CEC_MSG_SET_STREAM_PATH] = 4 | BCAST,
1002 [CEC_MSG_STANDBY] = 2 | BOTH,
1003 [CEC_MSG_RECORD_OFF] = 2 | DIRECTED,
1004 [CEC_MSG_RECORD_ON] = 3 | DIRECTED,
1005 [CEC_MSG_RECORD_STATUS] = 3 | DIRECTED,
1006 [CEC_MSG_RECORD_TV_SCREEN] = 2 | DIRECTED,
1007 [CEC_MSG_CLEAR_ANALOGUE_TIMER] = 13 | DIRECTED,
1008 [CEC_MSG_CLEAR_DIGITAL_TIMER] = 16 | DIRECTED,
1009 [CEC_MSG_CLEAR_EXT_TIMER] = 13 | DIRECTED,
1010 [CEC_MSG_SET_ANALOGUE_TIMER] = 13 | DIRECTED,
1011 [CEC_MSG_SET_DIGITAL_TIMER] = 16 | DIRECTED,
1012 [CEC_MSG_SET_EXT_TIMER] = 13 | DIRECTED,
1013 [CEC_MSG_SET_TIMER_PROGRAM_TITLE] = 2 | DIRECTED,
1014 [CEC_MSG_TIMER_CLEARED_STATUS] = 3 | DIRECTED,
1015 [CEC_MSG_TIMER_STATUS] = 3 | DIRECTED,
1016 [CEC_MSG_CEC_VERSION] = 3 | DIRECTED,
1017 [CEC_MSG_GET_CEC_VERSION] = 2 | DIRECTED,
1018 [CEC_MSG_GIVE_PHYSICAL_ADDR] = 2 | DIRECTED,
1019 [CEC_MSG_GET_MENU_LANGUAGE] = 2 | DIRECTED,
1020 [CEC_MSG_REPORT_PHYSICAL_ADDR] = 5 | BCAST,
1021 [CEC_MSG_SET_MENU_LANGUAGE] = 5 | BCAST,
1022 [CEC_MSG_REPORT_FEATURES] = 6 | BCAST,
1023 [CEC_MSG_GIVE_FEATURES] = 2 | DIRECTED,
1024 [CEC_MSG_DECK_CONTROL] = 3 | DIRECTED,
1025 [CEC_MSG_DECK_STATUS] = 3 | DIRECTED,
1026 [CEC_MSG_GIVE_DECK_STATUS] = 3 | DIRECTED,
1027 [CEC_MSG_PLAY] = 3 | DIRECTED,
1028 [CEC_MSG_GIVE_TUNER_DEVICE_STATUS] = 3 | DIRECTED,
1029 [CEC_MSG_SELECT_ANALOGUE_SERVICE] = 6 | DIRECTED,
1030 [CEC_MSG_SELECT_DIGITAL_SERVICE] = 9 | DIRECTED,
1031 [CEC_MSG_TUNER_DEVICE_STATUS] = 7 | DIRECTED,
1032 [CEC_MSG_TUNER_STEP_DECREMENT] = 2 | DIRECTED,
1033 [CEC_MSG_TUNER_STEP_INCREMENT] = 2 | DIRECTED,
1034 [CEC_MSG_DEVICE_VENDOR_ID] = 5 | BCAST,
1035 [CEC_MSG_GIVE_DEVICE_VENDOR_ID] = 2 | DIRECTED,
1036 [CEC_MSG_VENDOR_COMMAND] = 2 | DIRECTED,
1037 [CEC_MSG_VENDOR_COMMAND_WITH_ID] = 5 | BOTH,
1038 [CEC_MSG_VENDOR_REMOTE_BUTTON_DOWN] = 2 | BOTH,
1039 [CEC_MSG_VENDOR_REMOTE_BUTTON_UP] = 2 | BOTH,
1040 [CEC_MSG_SET_OSD_STRING] = 3 | DIRECTED,
1041 [CEC_MSG_GIVE_OSD_NAME] = 2 | DIRECTED,
1042 [CEC_MSG_SET_OSD_NAME] = 2 | DIRECTED,
1043 [CEC_MSG_MENU_REQUEST] = 3 | DIRECTED,
1044 [CEC_MSG_MENU_STATUS] = 3 | DIRECTED,
1045 [CEC_MSG_USER_CONTROL_PRESSED] = 3 | DIRECTED,
1046 [CEC_MSG_USER_CONTROL_RELEASED] = 2 | DIRECTED,
1047 [CEC_MSG_GIVE_DEVICE_POWER_STATUS] = 2 | DIRECTED,
1048 [CEC_MSG_REPORT_POWER_STATUS] = 3 | DIRECTED | BCAST2_0,
1049 [CEC_MSG_FEATURE_ABORT] = 4 | DIRECTED,
1050 [CEC_MSG_ABORT] = 2 | DIRECTED,
1051 [CEC_MSG_GIVE_AUDIO_STATUS] = 2 | DIRECTED,
1052 [CEC_MSG_GIVE_SYSTEM_AUDIO_MODE_STATUS] = 2 | DIRECTED,
1053 [CEC_MSG_REPORT_AUDIO_STATUS] = 3 | DIRECTED,
1054 [CEC_MSG_REPORT_SHORT_AUDIO_DESCRIPTOR] = 2 | DIRECTED,
1055 [CEC_MSG_REQUEST_SHORT_AUDIO_DESCRIPTOR] = 2 | DIRECTED,
1056 [CEC_MSG_SET_SYSTEM_AUDIO_MODE] = 3 | BOTH,
1057 [CEC_MSG_SET_AUDIO_VOLUME_LEVEL] = 3 | DIRECTED,
1058 [CEC_MSG_SYSTEM_AUDIO_MODE_REQUEST] = 2 | DIRECTED,
1059 [CEC_MSG_SYSTEM_AUDIO_MODE_STATUS] = 3 | DIRECTED,
1060 [CEC_MSG_SET_AUDIO_RATE] = 3 | DIRECTED,
1061 [CEC_MSG_INITIATE_ARC] = 2 | DIRECTED,
1062 [CEC_MSG_REPORT_ARC_INITIATED] = 2 | DIRECTED,
1063 [CEC_MSG_REPORT_ARC_TERMINATED] = 2 | DIRECTED,
1064 [CEC_MSG_REQUEST_ARC_INITIATION] = 2 | DIRECTED,
1065 [CEC_MSG_REQUEST_ARC_TERMINATION] = 2 | DIRECTED,
1066 [CEC_MSG_TERMINATE_ARC] = 2 | DIRECTED,
1067 [CEC_MSG_REQUEST_CURRENT_LATENCY] = 4 | BCAST,
1068 [CEC_MSG_REPORT_CURRENT_LATENCY] = 6 | BCAST,
1069 [CEC_MSG_CDC_MESSAGE] = 2 | BCAST,
1070};
1071
1072/* Called by the CEC adapter if a message is received */
1073void cec_received_msg_ts(struct cec_adapter *adap,
1074 struct cec_msg *msg, ktime_t ts)
1075{
1076 struct cec_data *data;
1077 u8 msg_init = cec_msg_initiator(msg);
1078 u8 msg_dest = cec_msg_destination(msg);
1079 u8 cmd = msg->msg[1];
1080 bool is_reply = false;
1081 bool valid_la = true;
1082 bool monitor_valid_la = true;
1083 u8 min_len = 0;
1084
1085 if (WARN_ON(!msg->len || msg->len > CEC_MAX_MSG_SIZE))
1086 return;
1087
1088 if (adap->devnode.unregistered)
1089 return;
1090
1091 /*
1092 * Some CEC adapters will receive the messages that they transmitted.
1093 * This test filters out those messages by checking if we are the
1094 * initiator, and just returning in that case.
1095 *
1096 * Note that this won't work if this is an Unregistered device.
1097 *
1098 * It is bad practice if the hardware receives the message that it
1099 * transmitted and luckily most CEC adapters behave correctly in this
1100 * respect.
1101 */
1102 if (msg_init != CEC_LOG_ADDR_UNREGISTERED &&
1103 cec_has_log_addr(adap, log_addr: msg_init))
1104 return;
1105
1106 msg->rx_ts = ktime_to_ns(kt: ts);
1107 msg->rx_status = CEC_RX_STATUS_OK;
1108 msg->sequence = msg->reply = msg->timeout = 0;
1109 msg->tx_status = 0;
1110 msg->tx_ts = 0;
1111 msg->tx_arb_lost_cnt = 0;
1112 msg->tx_nack_cnt = 0;
1113 msg->tx_low_drive_cnt = 0;
1114 msg->tx_error_cnt = 0;
1115 msg->flags = 0;
1116 memset(msg->msg + msg->len, 0, sizeof(msg->msg) - msg->len);
1117
1118 mutex_lock(&adap->lock);
1119 dprintk(2, "%s: %*ph\n", __func__, msg->len, msg->msg);
1120
1121 if (!adap->transmit_in_progress)
1122 adap->last_initiator = 0xff;
1123
1124 /* Check if this message was for us (directed or broadcast). */
1125 if (!cec_msg_is_broadcast(msg)) {
1126 valid_la = cec_has_log_addr(adap, log_addr: msg_dest);
1127 monitor_valid_la = valid_la;
1128 }
1129
1130 /*
1131 * Check if the length is not too short or if the message is a
1132 * broadcast message where a directed message was expected or
1133 * vice versa. If so, then the message has to be ignored (according
1134 * to section CEC 7.3 and CEC 12.2).
1135 */
1136 if (valid_la && msg->len > 1 && cec_msg_size[cmd]) {
1137 u8 dir_fl = cec_msg_size[cmd] & BOTH;
1138
1139 min_len = cec_msg_size[cmd] & 0x1f;
1140 if (msg->len < min_len)
1141 valid_la = false;
1142 else if (!cec_msg_is_broadcast(msg) && !(dir_fl & DIRECTED))
1143 valid_la = false;
1144 else if (cec_msg_is_broadcast(msg) && !(dir_fl & BCAST))
1145 valid_la = false;
1146 else if (cec_msg_is_broadcast(msg) &&
1147 adap->log_addrs.cec_version < CEC_OP_CEC_VERSION_2_0 &&
1148 !(dir_fl & BCAST1_4))
1149 valid_la = false;
1150 }
1151 if (valid_la && min_len) {
1152 /* These messages have special length requirements */
1153 switch (cmd) {
1154 case CEC_MSG_RECORD_ON:
1155 switch (msg->msg[2]) {
1156 case CEC_OP_RECORD_SRC_OWN:
1157 break;
1158 case CEC_OP_RECORD_SRC_DIGITAL:
1159 if (msg->len < 10)
1160 valid_la = false;
1161 break;
1162 case CEC_OP_RECORD_SRC_ANALOG:
1163 if (msg->len < 7)
1164 valid_la = false;
1165 break;
1166 case CEC_OP_RECORD_SRC_EXT_PLUG:
1167 if (msg->len < 4)
1168 valid_la = false;
1169 break;
1170 case CEC_OP_RECORD_SRC_EXT_PHYS_ADDR:
1171 if (msg->len < 5)
1172 valid_la = false;
1173 break;
1174 }
1175 break;
1176 }
1177 }
1178
1179 /* It's a valid message and not a poll or CDC message */
1180 if (valid_la && msg->len > 1 && cmd != CEC_MSG_CDC_MESSAGE) {
1181 bool abort = cmd == CEC_MSG_FEATURE_ABORT;
1182
1183 /* The aborted command is in msg[2] */
1184 if (abort)
1185 cmd = msg->msg[2];
1186
1187 /*
1188 * Walk over all transmitted messages that are waiting for a
1189 * reply.
1190 */
1191 list_for_each_entry(data, &adap->wait_queue, list) {
1192 struct cec_msg *dst = &data->msg;
1193
1194 /*
1195 * The *only* CEC message that has two possible replies
1196 * is CEC_MSG_INITIATE_ARC.
1197 * In this case allow either of the two replies.
1198 */
1199 if (!abort && dst->msg[1] == CEC_MSG_INITIATE_ARC &&
1200 (cmd == CEC_MSG_REPORT_ARC_INITIATED ||
1201 cmd == CEC_MSG_REPORT_ARC_TERMINATED) &&
1202 (dst->reply == CEC_MSG_REPORT_ARC_INITIATED ||
1203 dst->reply == CEC_MSG_REPORT_ARC_TERMINATED))
1204 dst->reply = cmd;
1205
1206 /* Does the command match? */
1207 if ((abort && cmd != dst->msg[1]) ||
1208 (!abort && cmd != dst->reply))
1209 continue;
1210
1211 /* Does the addressing match? */
1212 if (msg_init != cec_msg_destination(msg: dst) &&
1213 !cec_msg_is_broadcast(msg: dst))
1214 continue;
1215
1216 /* We got a reply */
1217 memcpy(dst->msg, msg->msg, msg->len);
1218 dst->len = msg->len;
1219 dst->rx_ts = msg->rx_ts;
1220 dst->rx_status = msg->rx_status;
1221 if (abort)
1222 dst->rx_status |= CEC_RX_STATUS_FEATURE_ABORT;
1223 msg->flags = dst->flags;
1224 msg->sequence = dst->sequence;
1225 /* Remove it from the wait_queue */
1226 list_del_init(entry: &data->list);
1227
1228 /* Cancel the pending timeout work */
1229 if (!cancel_delayed_work(dwork: &data->work)) {
1230 mutex_unlock(lock: &adap->lock);
1231 cancel_delayed_work_sync(dwork: &data->work);
1232 mutex_lock(&adap->lock);
1233 }
1234 /*
1235 * Mark this as a reply, provided someone is still
1236 * waiting for the answer.
1237 */
1238 if (data->fh)
1239 is_reply = true;
1240 cec_data_completed(data);
1241 break;
1242 }
1243 }
1244 mutex_unlock(lock: &adap->lock);
1245
1246 /* Pass the message on to any monitoring filehandles */
1247 cec_queue_msg_monitor(adap, msg, valid_la: monitor_valid_la);
1248
1249 /* We're done if it is not for us or a poll message */
1250 if (!valid_la || msg->len <= 1)
1251 return;
1252
1253 if (adap->log_addrs.log_addr_mask == 0)
1254 return;
1255
1256 /*
1257 * Process the message on the protocol level. If is_reply is true,
1258 * then cec_receive_notify() won't pass on the reply to the listener(s)
1259 * since that was already done by cec_data_completed() above.
1260 */
1261 cec_receive_notify(adap, msg, is_reply);
1262}
1263EXPORT_SYMBOL_GPL(cec_received_msg_ts);
1264
1265/* Logical Address Handling */
1266
1267/*
1268 * Attempt to claim a specific logical address.
1269 *
1270 * This function is called with adap->lock held.
1271 */
1272static int cec_config_log_addr(struct cec_adapter *adap,
1273 unsigned int idx,
1274 unsigned int log_addr)
1275{
1276 struct cec_log_addrs *las = &adap->log_addrs;
1277 struct cec_msg msg = { };
1278 const unsigned int max_retries = 2;
1279 unsigned int i;
1280 int err;
1281
1282 if (cec_has_log_addr(adap, log_addr))
1283 return 0;
1284
1285 /* Send poll message */
1286 msg.len = 1;
1287 msg.msg[0] = (log_addr << 4) | log_addr;
1288
1289 for (i = 0; i < max_retries; i++) {
1290 err = cec_transmit_msg_fh(adap, msg: &msg, NULL, block: true);
1291
1292 /*
1293 * While trying to poll the physical address was reset
1294 * and the adapter was unconfigured, so bail out.
1295 */
1296 if (adap->phys_addr == CEC_PHYS_ADDR_INVALID)
1297 return -EINTR;
1298
1299 /* Also bail out if the PA changed while configuring. */
1300 if (adap->must_reconfigure)
1301 return -EINTR;
1302
1303 if (err)
1304 return err;
1305
1306 /*
1307 * The message was aborted or timed out due to a disconnect or
1308 * unconfigure, just bail out.
1309 */
1310 if (msg.tx_status &
1311 (CEC_TX_STATUS_ABORTED | CEC_TX_STATUS_TIMEOUT))
1312 return -EINTR;
1313 if (msg.tx_status & CEC_TX_STATUS_OK)
1314 return 0;
1315 if (msg.tx_status & CEC_TX_STATUS_NACK)
1316 break;
1317 /*
1318 * Retry up to max_retries times if the message was neither
1319 * OKed or NACKed. This can happen due to e.g. a Lost
1320 * Arbitration condition.
1321 */
1322 }
1323
1324 /*
1325 * If we are unable to get an OK or a NACK after max_retries attempts
1326 * (and note that each attempt already consists of four polls), then
1327 * we assume that something is really weird and that it is not a
1328 * good idea to try and claim this logical address.
1329 */
1330 if (i == max_retries) {
1331 dprintk(0, "polling for LA %u failed with tx_status=0x%04x\n",
1332 log_addr, msg.tx_status);
1333 return 0;
1334 }
1335
1336 /*
1337 * Message not acknowledged, so this logical
1338 * address is free to use.
1339 */
1340 err = call_op(adap, adap_log_addr, log_addr);
1341 if (err)
1342 return err;
1343
1344 las->log_addr[idx] = log_addr;
1345 las->log_addr_mask |= 1 << log_addr;
1346 return 1;
1347}
1348
1349/*
1350 * Unconfigure the adapter: clear all logical addresses and send
1351 * the state changed event.
1352 *
1353 * This function is called with adap->lock held.
1354 */
1355static void cec_adap_unconfigure(struct cec_adapter *adap)
1356{
1357 if (!adap->needs_hpd || adap->phys_addr != CEC_PHYS_ADDR_INVALID)
1358 WARN_ON(call_op(adap, adap_log_addr, CEC_LOG_ADDR_INVALID));
1359 adap->log_addrs.log_addr_mask = 0;
1360 adap->is_configured = false;
1361 cec_flush(adap);
1362 wake_up_interruptible(&adap->kthread_waitq);
1363 cec_post_state_event(adap);
1364 call_void_op(adap, adap_unconfigured);
1365}
1366
1367/*
1368 * Attempt to claim the required logical addresses.
1369 */
1370static int cec_config_thread_func(void *arg)
1371{
1372 /* The various LAs for each type of device */
1373 static const u8 tv_log_addrs[] = {
1374 CEC_LOG_ADDR_TV, CEC_LOG_ADDR_SPECIFIC,
1375 CEC_LOG_ADDR_INVALID
1376 };
1377 static const u8 record_log_addrs[] = {
1378 CEC_LOG_ADDR_RECORD_1, CEC_LOG_ADDR_RECORD_2,
1379 CEC_LOG_ADDR_RECORD_3,
1380 CEC_LOG_ADDR_BACKUP_1, CEC_LOG_ADDR_BACKUP_2,
1381 CEC_LOG_ADDR_INVALID
1382 };
1383 static const u8 tuner_log_addrs[] = {
1384 CEC_LOG_ADDR_TUNER_1, CEC_LOG_ADDR_TUNER_2,
1385 CEC_LOG_ADDR_TUNER_3, CEC_LOG_ADDR_TUNER_4,
1386 CEC_LOG_ADDR_BACKUP_1, CEC_LOG_ADDR_BACKUP_2,
1387 CEC_LOG_ADDR_INVALID
1388 };
1389 static const u8 playback_log_addrs[] = {
1390 CEC_LOG_ADDR_PLAYBACK_1, CEC_LOG_ADDR_PLAYBACK_2,
1391 CEC_LOG_ADDR_PLAYBACK_3,
1392 CEC_LOG_ADDR_BACKUP_1, CEC_LOG_ADDR_BACKUP_2,
1393 CEC_LOG_ADDR_INVALID
1394 };
1395 static const u8 audiosystem_log_addrs[] = {
1396 CEC_LOG_ADDR_AUDIOSYSTEM,
1397 CEC_LOG_ADDR_INVALID
1398 };
1399 static const u8 specific_use_log_addrs[] = {
1400 CEC_LOG_ADDR_SPECIFIC,
1401 CEC_LOG_ADDR_BACKUP_1, CEC_LOG_ADDR_BACKUP_2,
1402 CEC_LOG_ADDR_INVALID
1403 };
1404 static const u8 *type2addrs[6] = {
1405 [CEC_LOG_ADDR_TYPE_TV] = tv_log_addrs,
1406 [CEC_LOG_ADDR_TYPE_RECORD] = record_log_addrs,
1407 [CEC_LOG_ADDR_TYPE_TUNER] = tuner_log_addrs,
1408 [CEC_LOG_ADDR_TYPE_PLAYBACK] = playback_log_addrs,
1409 [CEC_LOG_ADDR_TYPE_AUDIOSYSTEM] = audiosystem_log_addrs,
1410 [CEC_LOG_ADDR_TYPE_SPECIFIC] = specific_use_log_addrs,
1411 };
1412 static const u16 type2mask[] = {
1413 [CEC_LOG_ADDR_TYPE_TV] = CEC_LOG_ADDR_MASK_TV,
1414 [CEC_LOG_ADDR_TYPE_RECORD] = CEC_LOG_ADDR_MASK_RECORD,
1415 [CEC_LOG_ADDR_TYPE_TUNER] = CEC_LOG_ADDR_MASK_TUNER,
1416 [CEC_LOG_ADDR_TYPE_PLAYBACK] = CEC_LOG_ADDR_MASK_PLAYBACK,
1417 [CEC_LOG_ADDR_TYPE_AUDIOSYSTEM] = CEC_LOG_ADDR_MASK_AUDIOSYSTEM,
1418 [CEC_LOG_ADDR_TYPE_SPECIFIC] = CEC_LOG_ADDR_MASK_SPECIFIC,
1419 };
1420 struct cec_adapter *adap = arg;
1421 struct cec_log_addrs *las = &adap->log_addrs;
1422 int err;
1423 int i, j;
1424
1425 mutex_lock(&adap->lock);
1426 dprintk(1, "physical address: %x.%x.%x.%x, claim %d logical addresses\n",
1427 cec_phys_addr_exp(adap->phys_addr), las->num_log_addrs);
1428 las->log_addr_mask = 0;
1429
1430 if (las->log_addr_type[0] == CEC_LOG_ADDR_TYPE_UNREGISTERED)
1431 goto configured;
1432
1433reconfigure:
1434 for (i = 0; i < las->num_log_addrs; i++) {
1435 unsigned int type = las->log_addr_type[i];
1436 const u8 *la_list;
1437 u8 last_la;
1438
1439 /*
1440 * The TV functionality can only map to physical address 0.
1441 * For any other address, try the Specific functionality
1442 * instead as per the spec.
1443 */
1444 if (adap->phys_addr && type == CEC_LOG_ADDR_TYPE_TV)
1445 type = CEC_LOG_ADDR_TYPE_SPECIFIC;
1446
1447 la_list = type2addrs[type];
1448 last_la = las->log_addr[i];
1449 las->log_addr[i] = CEC_LOG_ADDR_INVALID;
1450 if (last_la == CEC_LOG_ADDR_INVALID ||
1451 last_la == CEC_LOG_ADDR_UNREGISTERED ||
1452 !((1 << last_la) & type2mask[type]))
1453 last_la = la_list[0];
1454
1455 err = cec_config_log_addr(adap, idx: i, log_addr: last_la);
1456
1457 if (adap->must_reconfigure) {
1458 adap->must_reconfigure = false;
1459 las->log_addr_mask = 0;
1460 goto reconfigure;
1461 }
1462
1463 if (err > 0) /* Reused last LA */
1464 continue;
1465
1466 if (err < 0)
1467 goto unconfigure;
1468
1469 for (j = 0; la_list[j] != CEC_LOG_ADDR_INVALID; j++) {
1470 /* Tried this one already, skip it */
1471 if (la_list[j] == last_la)
1472 continue;
1473 /* The backup addresses are CEC 2.0 specific */
1474 if ((la_list[j] == CEC_LOG_ADDR_BACKUP_1 ||
1475 la_list[j] == CEC_LOG_ADDR_BACKUP_2) &&
1476 las->cec_version < CEC_OP_CEC_VERSION_2_0)
1477 continue;
1478
1479 err = cec_config_log_addr(adap, idx: i, log_addr: la_list[j]);
1480 if (err == 0) /* LA is in use */
1481 continue;
1482 if (err < 0)
1483 goto unconfigure;
1484 /* Done, claimed an LA */
1485 break;
1486 }
1487
1488 if (la_list[j] == CEC_LOG_ADDR_INVALID)
1489 dprintk(1, "could not claim LA %d\n", i);
1490 }
1491
1492 if (adap->log_addrs.log_addr_mask == 0 &&
1493 !(las->flags & CEC_LOG_ADDRS_FL_ALLOW_UNREG_FALLBACK))
1494 goto unconfigure;
1495
1496configured:
1497 if (adap->log_addrs.log_addr_mask == 0) {
1498 /* Fall back to unregistered */
1499 las->log_addr[0] = CEC_LOG_ADDR_UNREGISTERED;
1500 las->log_addr_mask = 1 << las->log_addr[0];
1501 for (i = 1; i < las->num_log_addrs; i++)
1502 las->log_addr[i] = CEC_LOG_ADDR_INVALID;
1503 }
1504 for (i = las->num_log_addrs; i < CEC_MAX_LOG_ADDRS; i++)
1505 las->log_addr[i] = CEC_LOG_ADDR_INVALID;
1506 adap->is_configured = true;
1507 adap->is_configuring = false;
1508 adap->must_reconfigure = false;
1509 cec_post_state_event(adap);
1510
1511 /*
1512 * Now post the Report Features and Report Physical Address broadcast
1513 * messages. Note that these are non-blocking transmits, meaning that
1514 * they are just queued up and once adap->lock is unlocked the main
1515 * thread will kick in and start transmitting these.
1516 *
1517 * If after this function is done (but before one or more of these
1518 * messages are actually transmitted) the CEC adapter is unconfigured,
1519 * then any remaining messages will be dropped by the main thread.
1520 */
1521 for (i = 0; i < las->num_log_addrs; i++) {
1522 struct cec_msg msg = {};
1523
1524 if (las->log_addr[i] == CEC_LOG_ADDR_INVALID ||
1525 (las->flags & CEC_LOG_ADDRS_FL_CDC_ONLY))
1526 continue;
1527
1528 msg.msg[0] = (las->log_addr[i] << 4) | 0x0f;
1529
1530 /* Report Features must come first according to CEC 2.0 */
1531 if (las->log_addr[i] != CEC_LOG_ADDR_UNREGISTERED &&
1532 adap->log_addrs.cec_version >= CEC_OP_CEC_VERSION_2_0) {
1533 cec_fill_msg_report_features(adap, msg: &msg, la_idx: i);
1534 cec_transmit_msg_fh(adap, msg: &msg, NULL, block: false);
1535 }
1536
1537 /* Report Physical Address */
1538 cec_msg_report_physical_addr(msg: &msg, phys_addr: adap->phys_addr,
1539 prim_devtype: las->primary_device_type[i]);
1540 dprintk(1, "config: la %d pa %x.%x.%x.%x\n",
1541 las->log_addr[i],
1542 cec_phys_addr_exp(adap->phys_addr));
1543 cec_transmit_msg_fh(adap, msg: &msg, NULL, block: false);
1544
1545 /* Report Vendor ID */
1546 if (adap->log_addrs.vendor_id != CEC_VENDOR_ID_NONE) {
1547 cec_msg_device_vendor_id(msg: &msg,
1548 vendor_id: adap->log_addrs.vendor_id);
1549 cec_transmit_msg_fh(adap, msg: &msg, NULL, block: false);
1550 }
1551 }
1552 adap->kthread_config = NULL;
1553 complete(&adap->config_completion);
1554 mutex_unlock(lock: &adap->lock);
1555 call_void_op(adap, configured);
1556 return 0;
1557
1558unconfigure:
1559 for (i = 0; i < las->num_log_addrs; i++)
1560 las->log_addr[i] = CEC_LOG_ADDR_INVALID;
1561 cec_adap_unconfigure(adap);
1562 adap->is_configuring = false;
1563 adap->must_reconfigure = false;
1564 adap->kthread_config = NULL;
1565 complete(&adap->config_completion);
1566 mutex_unlock(lock: &adap->lock);
1567 return 0;
1568}
1569
1570/*
1571 * Called from either __cec_s_phys_addr or __cec_s_log_addrs to claim the
1572 * logical addresses.
1573 *
1574 * This function is called with adap->lock held.
1575 */
1576static void cec_claim_log_addrs(struct cec_adapter *adap, bool block)
1577{
1578 if (WARN_ON(adap->is_configuring || adap->is_configured))
1579 return;
1580
1581 init_completion(x: &adap->config_completion);
1582
1583 /* Ready to kick off the thread */
1584 adap->is_configuring = true;
1585 adap->kthread_config = kthread_run(cec_config_thread_func, adap,
1586 "ceccfg-%s", adap->name);
1587 if (IS_ERR(ptr: adap->kthread_config)) {
1588 adap->kthread_config = NULL;
1589 adap->is_configuring = false;
1590 } else if (block) {
1591 mutex_unlock(lock: &adap->lock);
1592 wait_for_completion(&adap->config_completion);
1593 mutex_lock(&adap->lock);
1594 }
1595}
1596
1597/*
1598 * Helper function to enable/disable the CEC adapter.
1599 *
1600 * This function is called with adap->lock held.
1601 */
1602int cec_adap_enable(struct cec_adapter *adap)
1603{
1604 bool enable;
1605 int ret = 0;
1606
1607 enable = adap->monitor_all_cnt || adap->monitor_pin_cnt ||
1608 adap->log_addrs.num_log_addrs;
1609 if (adap->needs_hpd)
1610 enable = enable && adap->phys_addr != CEC_PHYS_ADDR_INVALID;
1611
1612 if (adap->devnode.unregistered)
1613 enable = false;
1614
1615 if (enable == adap->is_enabled)
1616 return 0;
1617
1618 /* serialize adap_enable */
1619 mutex_lock(&adap->devnode.lock);
1620 if (enable) {
1621 adap->last_initiator = 0xff;
1622 adap->transmit_in_progress = false;
1623 adap->tx_low_drive_log_cnt = 0;
1624 adap->tx_error_log_cnt = 0;
1625 ret = adap->ops->adap_enable(adap, true);
1626 if (!ret) {
1627 /*
1628 * Enable monitor-all/pin modes if needed. We warn, but
1629 * continue if this fails as this is not a critical error.
1630 */
1631 if (adap->monitor_all_cnt)
1632 WARN_ON(call_op(adap, adap_monitor_all_enable, true));
1633 if (adap->monitor_pin_cnt)
1634 WARN_ON(call_op(adap, adap_monitor_pin_enable, true));
1635 }
1636 } else {
1637 /* Disable monitor-all/pin modes if needed (needs_hpd == 1) */
1638 if (adap->monitor_all_cnt)
1639 WARN_ON(call_op(adap, adap_monitor_all_enable, false));
1640 if (adap->monitor_pin_cnt)
1641 WARN_ON(call_op(adap, adap_monitor_pin_enable, false));
1642 WARN_ON(adap->ops->adap_enable(adap, false));
1643 adap->last_initiator = 0xff;
1644 adap->transmit_in_progress = false;
1645 adap->transmit_in_progress_aborted = false;
1646 if (adap->transmitting)
1647 cec_data_cancel(data: adap->transmitting, CEC_TX_STATUS_ABORTED, rx_status: 0);
1648 }
1649 if (!ret)
1650 adap->is_enabled = enable;
1651 wake_up_interruptible(&adap->kthread_waitq);
1652 mutex_unlock(lock: &adap->devnode.lock);
1653 return ret;
1654}
1655
1656/* Set a new physical address and send an event notifying userspace of this.
1657 *
1658 * This function is called with adap->lock held.
1659 */
1660void __cec_s_phys_addr(struct cec_adapter *adap, u16 phys_addr, bool block)
1661{
1662 bool becomes_invalid = phys_addr == CEC_PHYS_ADDR_INVALID;
1663 bool is_invalid = adap->phys_addr == CEC_PHYS_ADDR_INVALID;
1664
1665 if (phys_addr == adap->phys_addr)
1666 return;
1667 if (!becomes_invalid && adap->devnode.unregistered)
1668 return;
1669
1670 dprintk(1, "new physical address %x.%x.%x.%x\n",
1671 cec_phys_addr_exp(phys_addr));
1672 if (becomes_invalid || !is_invalid) {
1673 adap->phys_addr = CEC_PHYS_ADDR_INVALID;
1674 cec_post_state_event(adap);
1675 cec_adap_unconfigure(adap);
1676 if (becomes_invalid) {
1677 cec_adap_enable(adap);
1678 return;
1679 }
1680 }
1681
1682 adap->phys_addr = phys_addr;
1683 if (is_invalid)
1684 cec_adap_enable(adap);
1685
1686 cec_post_state_event(adap);
1687 if (!adap->log_addrs.num_log_addrs)
1688 return;
1689 if (adap->is_configuring)
1690 adap->must_reconfigure = true;
1691 else
1692 cec_claim_log_addrs(adap, block);
1693}
1694
1695void cec_s_phys_addr(struct cec_adapter *adap, u16 phys_addr, bool block)
1696{
1697 if (IS_ERR_OR_NULL(ptr: adap))
1698 return;
1699
1700 mutex_lock(&adap->lock);
1701 __cec_s_phys_addr(adap, phys_addr, block);
1702 mutex_unlock(lock: &adap->lock);
1703}
1704EXPORT_SYMBOL_GPL(cec_s_phys_addr);
1705
1706/*
1707 * Note: In the drm subsystem, prefer calling (if possible):
1708 *
1709 * cec_s_phys_addr(adap, connector->display_info.source_physical_address, false);
1710 */
1711void cec_s_phys_addr_from_edid(struct cec_adapter *adap,
1712 const struct edid *edid)
1713{
1714 u16 pa = CEC_PHYS_ADDR_INVALID;
1715
1716 if (edid && edid->extensions)
1717 pa = cec_get_edid_phys_addr((const u8 *)edid,
1718 EDID_LENGTH * (edid->extensions + 1), NULL);
1719 cec_s_phys_addr(adap, pa, false);
1720}
1721EXPORT_SYMBOL_GPL(cec_s_phys_addr_from_edid);
1722
1723void cec_s_conn_info(struct cec_adapter *adap,
1724 const struct cec_connector_info *conn_info)
1725{
1726 if (IS_ERR_OR_NULL(ptr: adap))
1727 return;
1728
1729 if (!(adap->capabilities & CEC_CAP_CONNECTOR_INFO))
1730 return;
1731
1732 mutex_lock(&adap->lock);
1733 if (conn_info)
1734 adap->conn_info = *conn_info;
1735 else
1736 memset(&adap->conn_info, 0, sizeof(adap->conn_info));
1737 cec_post_state_event(adap);
1738 mutex_unlock(lock: &adap->lock);
1739}
1740EXPORT_SYMBOL_GPL(cec_s_conn_info);
1741
1742/*
1743 * Called from either the ioctl or a driver to set the logical addresses.
1744 *
1745 * This function is called with adap->lock held.
1746 */
1747int __cec_s_log_addrs(struct cec_adapter *adap,
1748 struct cec_log_addrs *log_addrs, bool block)
1749{
1750 u16 type_mask = 0;
1751 int err;
1752 int i;
1753
1754 if (adap->devnode.unregistered)
1755 return -ENODEV;
1756
1757 if (!log_addrs || log_addrs->num_log_addrs == 0) {
1758 if (!adap->log_addrs.num_log_addrs)
1759 return 0;
1760 if (adap->is_configuring || adap->is_configured)
1761 cec_adap_unconfigure(adap);
1762 adap->log_addrs.num_log_addrs = 0;
1763 for (i = 0; i < CEC_MAX_LOG_ADDRS; i++)
1764 adap->log_addrs.log_addr[i] = CEC_LOG_ADDR_INVALID;
1765 adap->log_addrs.osd_name[0] = '\0';
1766 adap->log_addrs.vendor_id = CEC_VENDOR_ID_NONE;
1767 adap->log_addrs.cec_version = CEC_OP_CEC_VERSION_2_0;
1768 cec_adap_enable(adap);
1769 return 0;
1770 }
1771
1772 if (log_addrs->flags & CEC_LOG_ADDRS_FL_CDC_ONLY) {
1773 /*
1774 * Sanitize log_addrs fields if a CDC-Only device is
1775 * requested.
1776 */
1777 log_addrs->num_log_addrs = 1;
1778 log_addrs->osd_name[0] = '\0';
1779 log_addrs->vendor_id = CEC_VENDOR_ID_NONE;
1780 log_addrs->log_addr_type[0] = CEC_LOG_ADDR_TYPE_UNREGISTERED;
1781 /*
1782 * This is just an internal convention since a CDC-Only device
1783 * doesn't have to be a switch. But switches already use
1784 * unregistered, so it makes some kind of sense to pick this
1785 * as the primary device. Since a CDC-Only device never sends
1786 * any 'normal' CEC messages this primary device type is never
1787 * sent over the CEC bus.
1788 */
1789 log_addrs->primary_device_type[0] = CEC_OP_PRIM_DEVTYPE_SWITCH;
1790 log_addrs->all_device_types[0] = 0;
1791 log_addrs->features[0][0] = 0;
1792 log_addrs->features[0][1] = 0;
1793 }
1794
1795 /* Ensure the osd name is 0-terminated */
1796 log_addrs->osd_name[sizeof(log_addrs->osd_name) - 1] = '\0';
1797
1798 /* Sanity checks */
1799 if (log_addrs->num_log_addrs > adap->available_log_addrs) {
1800 dprintk(1, "num_log_addrs > %d\n", adap->available_log_addrs);
1801 return -EINVAL;
1802 }
1803
1804 /*
1805 * Vendor ID is a 24 bit number, so check if the value is
1806 * within the correct range.
1807 */
1808 if (log_addrs->vendor_id != CEC_VENDOR_ID_NONE &&
1809 (log_addrs->vendor_id & 0xff000000) != 0) {
1810 dprintk(1, "invalid vendor ID\n");
1811 return -EINVAL;
1812 }
1813
1814 if (log_addrs->cec_version != CEC_OP_CEC_VERSION_1_4 &&
1815 log_addrs->cec_version != CEC_OP_CEC_VERSION_2_0) {
1816 dprintk(1, "invalid CEC version\n");
1817 return -EINVAL;
1818 }
1819
1820 if (log_addrs->num_log_addrs > 1)
1821 for (i = 0; i < log_addrs->num_log_addrs; i++)
1822 if (log_addrs->log_addr_type[i] ==
1823 CEC_LOG_ADDR_TYPE_UNREGISTERED) {
1824 dprintk(1, "num_log_addrs > 1 can't be combined with unregistered LA\n");
1825 return -EINVAL;
1826 }
1827
1828 for (i = 0; i < log_addrs->num_log_addrs; i++) {
1829 const u8 feature_sz = ARRAY_SIZE(log_addrs->features[0]);
1830 u8 *features = log_addrs->features[i];
1831 bool op_is_dev_features = false;
1832 unsigned int j;
1833
1834 log_addrs->log_addr[i] = CEC_LOG_ADDR_INVALID;
1835 if (log_addrs->log_addr_type[i] > CEC_LOG_ADDR_TYPE_UNREGISTERED) {
1836 dprintk(1, "unknown logical address type\n");
1837 return -EINVAL;
1838 }
1839 if (type_mask & (1 << log_addrs->log_addr_type[i])) {
1840 dprintk(1, "duplicate logical address type\n");
1841 return -EINVAL;
1842 }
1843 type_mask |= 1 << log_addrs->log_addr_type[i];
1844 if ((type_mask & (1 << CEC_LOG_ADDR_TYPE_RECORD)) &&
1845 (type_mask & (1 << CEC_LOG_ADDR_TYPE_PLAYBACK))) {
1846 /* Record already contains the playback functionality */
1847 dprintk(1, "invalid record + playback combination\n");
1848 return -EINVAL;
1849 }
1850 if (log_addrs->primary_device_type[i] >
1851 CEC_OP_PRIM_DEVTYPE_PROCESSOR) {
1852 dprintk(1, "unknown primary device type\n");
1853 return -EINVAL;
1854 }
1855 if (log_addrs->primary_device_type[i] == 2) {
1856 dprintk(1, "invalid primary device type\n");
1857 return -EINVAL;
1858 }
1859 for (j = 0; j < feature_sz; j++) {
1860 if ((features[j] & 0x80) == 0) {
1861 if (op_is_dev_features)
1862 break;
1863 op_is_dev_features = true;
1864 }
1865 }
1866 if (!op_is_dev_features || j == feature_sz) {
1867 dprintk(1, "malformed features\n");
1868 return -EINVAL;
1869 }
1870 /* Zero unused part of the feature array */
1871 memset(features + j + 1, 0, feature_sz - j - 1);
1872 }
1873
1874 if (log_addrs->cec_version >= CEC_OP_CEC_VERSION_2_0) {
1875 if (log_addrs->num_log_addrs > 2) {
1876 dprintk(1, "CEC 2.0 allows no more than 2 logical addresses\n");
1877 return -EINVAL;
1878 }
1879 if (log_addrs->num_log_addrs == 2) {
1880 if (!(type_mask & ((1 << CEC_LOG_ADDR_TYPE_AUDIOSYSTEM) |
1881 (1 << CEC_LOG_ADDR_TYPE_TV)))) {
1882 dprintk(1, "two LAs is only allowed for audiosystem and TV\n");
1883 return -EINVAL;
1884 }
1885 if (!(type_mask & ((1 << CEC_LOG_ADDR_TYPE_PLAYBACK) |
1886 (1 << CEC_LOG_ADDR_TYPE_RECORD)))) {
1887 dprintk(1, "an audiosystem/TV can only be combined with record or playback\n");
1888 return -EINVAL;
1889 }
1890 }
1891 }
1892
1893 /* Zero unused LAs */
1894 for (i = log_addrs->num_log_addrs; i < CEC_MAX_LOG_ADDRS; i++) {
1895 log_addrs->primary_device_type[i] = 0;
1896 log_addrs->log_addr_type[i] = 0;
1897 log_addrs->all_device_types[i] = 0;
1898 memset(log_addrs->features[i], 0,
1899 sizeof(log_addrs->features[i]));
1900 }
1901
1902 log_addrs->log_addr_mask = adap->log_addrs.log_addr_mask;
1903 adap->log_addrs = *log_addrs;
1904 err = cec_adap_enable(adap);
1905 if (!err && adap->phys_addr != CEC_PHYS_ADDR_INVALID)
1906 cec_claim_log_addrs(adap, block);
1907 return err;
1908}
1909
1910int cec_s_log_addrs(struct cec_adapter *adap,
1911 struct cec_log_addrs *log_addrs, bool block)
1912{
1913 int err;
1914
1915 mutex_lock(&adap->lock);
1916 err = __cec_s_log_addrs(adap, log_addrs, block);
1917 mutex_unlock(lock: &adap->lock);
1918 return err;
1919}
1920EXPORT_SYMBOL_GPL(cec_s_log_addrs);
1921
1922/* High-level core CEC message handling */
1923
1924/* Fill in the Report Features message */
1925static void cec_fill_msg_report_features(struct cec_adapter *adap,
1926 struct cec_msg *msg,
1927 unsigned int la_idx)
1928{
1929 const struct cec_log_addrs *las = &adap->log_addrs;
1930 const u8 *features = las->features[la_idx];
1931 bool op_is_dev_features = false;
1932 unsigned int idx;
1933
1934 /* Report Features */
1935 msg->msg[0] = (las->log_addr[la_idx] << 4) | 0x0f;
1936 msg->len = 4;
1937 msg->msg[1] = CEC_MSG_REPORT_FEATURES;
1938 msg->msg[2] = adap->log_addrs.cec_version;
1939 msg->msg[3] = las->all_device_types[la_idx];
1940
1941 /* Write RC Profiles first, then Device Features */
1942 for (idx = 0; idx < ARRAY_SIZE(las->features[0]); idx++) {
1943 msg->msg[msg->len++] = features[idx];
1944 if ((features[idx] & CEC_OP_FEAT_EXT) == 0) {
1945 if (op_is_dev_features)
1946 break;
1947 op_is_dev_features = true;
1948 }
1949 }
1950}
1951
1952/* Transmit the Feature Abort message */
1953static int cec_feature_abort_reason(struct cec_adapter *adap,
1954 struct cec_msg *msg, u8 reason)
1955{
1956 struct cec_msg tx_msg = { };
1957
1958 /*
1959 * Don't reply with CEC_MSG_FEATURE_ABORT to a CEC_MSG_FEATURE_ABORT
1960 * message!
1961 */
1962 if (msg->msg[1] == CEC_MSG_FEATURE_ABORT)
1963 return 0;
1964 /* Don't Feature Abort messages from 'Unregistered' */
1965 if (cec_msg_initiator(msg) == CEC_LOG_ADDR_UNREGISTERED)
1966 return 0;
1967 cec_msg_set_reply_to(msg: &tx_msg, orig: msg);
1968 cec_msg_feature_abort(msg: &tx_msg, abort_msg: msg->msg[1], reason);
1969 return cec_transmit_msg(adap, &tx_msg, false);
1970}
1971
1972static int cec_feature_abort(struct cec_adapter *adap, struct cec_msg *msg)
1973{
1974 return cec_feature_abort_reason(adap, msg,
1975 CEC_OP_ABORT_UNRECOGNIZED_OP);
1976}
1977
1978static int cec_feature_refused(struct cec_adapter *adap, struct cec_msg *msg)
1979{
1980 return cec_feature_abort_reason(adap, msg,
1981 CEC_OP_ABORT_REFUSED);
1982}
1983
1984/*
1985 * Called when a CEC message is received. This function will do any
1986 * necessary core processing. The is_reply bool is true if this message
1987 * is a reply to an earlier transmit.
1988 *
1989 * The message is either a broadcast message or a valid directed message.
1990 */
1991static int cec_receive_notify(struct cec_adapter *adap, struct cec_msg *msg,
1992 bool is_reply)
1993{
1994 bool is_broadcast = cec_msg_is_broadcast(msg);
1995 u8 dest_laddr = cec_msg_destination(msg);
1996 u8 init_laddr = cec_msg_initiator(msg);
1997 u8 devtype = cec_log_addr2dev(adap, log_addr: dest_laddr);
1998 int la_idx = cec_log_addr2idx(adap, log_addr: dest_laddr);
1999 bool from_unregistered = init_laddr == 0xf;
2000 struct cec_msg tx_cec_msg = { };
2001
2002 dprintk(2, "%s: %*ph\n", __func__, msg->len, msg->msg);
2003
2004 /* If this is a CDC-Only device, then ignore any non-CDC messages */
2005 if (cec_is_cdc_only(las: &adap->log_addrs) &&
2006 msg->msg[1] != CEC_MSG_CDC_MESSAGE)
2007 return 0;
2008
2009 /* Allow drivers to process the message first */
2010 if (adap->ops->received && !adap->devnode.unregistered &&
2011 adap->ops->received(adap, msg) != -ENOMSG)
2012 return 0;
2013
2014 /*
2015 * REPORT_PHYSICAL_ADDR, CEC_MSG_USER_CONTROL_PRESSED and
2016 * CEC_MSG_USER_CONTROL_RELEASED messages always have to be
2017 * handled by the CEC core, even if the passthrough mode is on.
2018 * The others are just ignored if passthrough mode is on.
2019 */
2020 switch (msg->msg[1]) {
2021 case CEC_MSG_GET_CEC_VERSION:
2022 case CEC_MSG_ABORT:
2023 case CEC_MSG_GIVE_DEVICE_POWER_STATUS:
2024 case CEC_MSG_GIVE_OSD_NAME:
2025 /*
2026 * These messages reply with a directed message, so ignore if
2027 * the initiator is Unregistered.
2028 */
2029 if (!adap->passthrough && from_unregistered)
2030 return 0;
2031 fallthrough;
2032 case CEC_MSG_GIVE_DEVICE_VENDOR_ID:
2033 case CEC_MSG_GIVE_FEATURES:
2034 case CEC_MSG_GIVE_PHYSICAL_ADDR:
2035 /*
2036 * Skip processing these messages if the passthrough mode
2037 * is on.
2038 */
2039 if (adap->passthrough)
2040 goto skip_processing;
2041 /* Ignore if addressing is wrong */
2042 if (is_broadcast)
2043 return 0;
2044 break;
2045
2046 case CEC_MSG_USER_CONTROL_PRESSED:
2047 case CEC_MSG_USER_CONTROL_RELEASED:
2048 /* Wrong addressing mode: don't process */
2049 if (is_broadcast || from_unregistered)
2050 goto skip_processing;
2051 break;
2052
2053 case CEC_MSG_REPORT_PHYSICAL_ADDR:
2054 /*
2055 * This message is always processed, regardless of the
2056 * passthrough setting.
2057 *
2058 * Exception: don't process if wrong addressing mode.
2059 */
2060 if (!is_broadcast)
2061 goto skip_processing;
2062 break;
2063
2064 default:
2065 break;
2066 }
2067
2068 cec_msg_set_reply_to(msg: &tx_cec_msg, orig: msg);
2069
2070 switch (msg->msg[1]) {
2071 /* The following messages are processed but still passed through */
2072 case CEC_MSG_REPORT_PHYSICAL_ADDR: {
2073 u16 pa = (msg->msg[2] << 8) | msg->msg[3];
2074
2075 dprintk(1, "reported physical address %x.%x.%x.%x for logical address %d\n",
2076 cec_phys_addr_exp(pa), init_laddr);
2077 break;
2078 }
2079
2080 case CEC_MSG_USER_CONTROL_PRESSED:
2081 if (!(adap->capabilities & CEC_CAP_RC) ||
2082 !(adap->log_addrs.flags & CEC_LOG_ADDRS_FL_ALLOW_RC_PASSTHRU))
2083 break;
2084
2085#ifdef CONFIG_MEDIA_CEC_RC
2086 switch (msg->msg[2]) {
2087 /*
2088 * Play function, this message can have variable length
2089 * depending on the specific play function that is used.
2090 */
2091 case CEC_OP_UI_CMD_PLAY_FUNCTION:
2092 if (msg->len == 2)
2093 rc_keydown(dev: adap->rc, protocol: RC_PROTO_CEC,
2094 scancode: msg->msg[2], toggle: 0);
2095 else
2096 rc_keydown(dev: adap->rc, protocol: RC_PROTO_CEC,
2097 scancode: msg->msg[2] << 8 | msg->msg[3], toggle: 0);
2098 break;
2099 /*
2100 * Other function messages that are not handled.
2101 * Currently the RC framework does not allow to supply an
2102 * additional parameter to a keypress. These "keys" contain
2103 * other information such as channel number, an input number
2104 * etc.
2105 * For the time being these messages are not processed by the
2106 * framework and are simply forwarded to the user space.
2107 */
2108 case CEC_OP_UI_CMD_SELECT_BROADCAST_TYPE:
2109 case CEC_OP_UI_CMD_SELECT_SOUND_PRESENTATION:
2110 case CEC_OP_UI_CMD_TUNE_FUNCTION:
2111 case CEC_OP_UI_CMD_SELECT_MEDIA_FUNCTION:
2112 case CEC_OP_UI_CMD_SELECT_AV_INPUT_FUNCTION:
2113 case CEC_OP_UI_CMD_SELECT_AUDIO_INPUT_FUNCTION:
2114 break;
2115 default:
2116 rc_keydown(dev: adap->rc, protocol: RC_PROTO_CEC, scancode: msg->msg[2], toggle: 0);
2117 break;
2118 }
2119#endif
2120 break;
2121
2122 case CEC_MSG_USER_CONTROL_RELEASED:
2123 if (!(adap->capabilities & CEC_CAP_RC) ||
2124 !(adap->log_addrs.flags & CEC_LOG_ADDRS_FL_ALLOW_RC_PASSTHRU))
2125 break;
2126#ifdef CONFIG_MEDIA_CEC_RC
2127 rc_keyup(dev: adap->rc);
2128#endif
2129 break;
2130
2131 /*
2132 * The remaining messages are only processed if the passthrough mode
2133 * is off.
2134 */
2135 case CEC_MSG_GET_CEC_VERSION:
2136 cec_msg_cec_version(msg: &tx_cec_msg, cec_version: adap->log_addrs.cec_version);
2137 return cec_transmit_msg(adap, &tx_cec_msg, false);
2138
2139 case CEC_MSG_GIVE_PHYSICAL_ADDR:
2140 /* Do nothing for CEC switches using addr 15 */
2141 if (devtype == CEC_OP_PRIM_DEVTYPE_SWITCH && dest_laddr == 15)
2142 return 0;
2143 cec_msg_report_physical_addr(msg: &tx_cec_msg, phys_addr: adap->phys_addr, prim_devtype: devtype);
2144 return cec_transmit_msg(adap, &tx_cec_msg, false);
2145
2146 case CEC_MSG_GIVE_DEVICE_VENDOR_ID:
2147 if (adap->log_addrs.vendor_id == CEC_VENDOR_ID_NONE)
2148 return cec_feature_abort(adap, msg);
2149 cec_msg_device_vendor_id(msg: &tx_cec_msg, vendor_id: adap->log_addrs.vendor_id);
2150 return cec_transmit_msg(adap, &tx_cec_msg, false);
2151
2152 case CEC_MSG_ABORT:
2153 /* Do nothing for CEC switches */
2154 if (devtype == CEC_OP_PRIM_DEVTYPE_SWITCH)
2155 return 0;
2156 return cec_feature_refused(adap, msg);
2157
2158 case CEC_MSG_GIVE_OSD_NAME: {
2159 if (adap->log_addrs.osd_name[0] == 0)
2160 return cec_feature_abort(adap, msg);
2161 cec_msg_set_osd_name(msg: &tx_cec_msg, name: adap->log_addrs.osd_name);
2162 return cec_transmit_msg(adap, &tx_cec_msg, false);
2163 }
2164
2165 case CEC_MSG_GIVE_FEATURES:
2166 if (adap->log_addrs.cec_version < CEC_OP_CEC_VERSION_2_0)
2167 return cec_feature_abort(adap, msg);
2168 cec_fill_msg_report_features(adap, msg: &tx_cec_msg, la_idx);
2169 return cec_transmit_msg(adap, &tx_cec_msg, false);
2170
2171 default:
2172 /*
2173 * Unprocessed messages are aborted if userspace isn't doing
2174 * any processing either.
2175 */
2176 if (!is_broadcast && !is_reply && !adap->follower_cnt &&
2177 !adap->cec_follower && msg->msg[1] != CEC_MSG_FEATURE_ABORT)
2178 return cec_feature_abort(adap, msg);
2179 break;
2180 }
2181
2182skip_processing:
2183 /* If this was a reply, then we're done, unless otherwise specified */
2184 if (is_reply && !(msg->flags & CEC_MSG_FL_REPLY_TO_FOLLOWERS))
2185 return 0;
2186
2187 /*
2188 * Send to the exclusive follower if there is one, otherwise send
2189 * to all followers.
2190 */
2191 if (adap->cec_follower)
2192 cec_queue_msg_fh(fh: adap->cec_follower, msg);
2193 else
2194 cec_queue_msg_followers(adap, msg);
2195 return 0;
2196}
2197
2198/*
2199 * Helper functions to keep track of the 'monitor all' use count.
2200 *
2201 * These functions are called with adap->lock held.
2202 */
2203int cec_monitor_all_cnt_inc(struct cec_adapter *adap)
2204{
2205 int ret;
2206
2207 if (adap->monitor_all_cnt++)
2208 return 0;
2209
2210 ret = cec_adap_enable(adap);
2211 if (ret)
2212 adap->monitor_all_cnt--;
2213 return ret;
2214}
2215
2216void cec_monitor_all_cnt_dec(struct cec_adapter *adap)
2217{
2218 if (WARN_ON(!adap->monitor_all_cnt))
2219 return;
2220 if (--adap->monitor_all_cnt)
2221 return;
2222 WARN_ON(call_op(adap, adap_monitor_all_enable, false));
2223 cec_adap_enable(adap);
2224}
2225
2226/*
2227 * Helper functions to keep track of the 'monitor pin' use count.
2228 *
2229 * These functions are called with adap->lock held.
2230 */
2231int cec_monitor_pin_cnt_inc(struct cec_adapter *adap)
2232{
2233 int ret;
2234
2235 if (adap->monitor_pin_cnt++)
2236 return 0;
2237
2238 ret = cec_adap_enable(adap);
2239 if (ret)
2240 adap->monitor_pin_cnt--;
2241 return ret;
2242}
2243
2244void cec_monitor_pin_cnt_dec(struct cec_adapter *adap)
2245{
2246 if (WARN_ON(!adap->monitor_pin_cnt))
2247 return;
2248 if (--adap->monitor_pin_cnt)
2249 return;
2250 WARN_ON(call_op(adap, adap_monitor_pin_enable, false));
2251 cec_adap_enable(adap);
2252}
2253
2254#ifdef CONFIG_DEBUG_FS
2255/*
2256 * Log the current state of the CEC adapter.
2257 * Very useful for debugging.
2258 */
2259int cec_adap_status(struct seq_file *file, void *priv)
2260{
2261 struct cec_adapter *adap = dev_get_drvdata(dev: file->private);
2262 struct cec_data *data;
2263
2264 mutex_lock(&adap->lock);
2265 seq_printf(m: file, fmt: "enabled: %d\n", adap->is_enabled);
2266 seq_printf(m: file, fmt: "configured: %d\n", adap->is_configured);
2267 seq_printf(m: file, fmt: "configuring: %d\n", adap->is_configuring);
2268 seq_printf(m: file, fmt: "phys_addr: %x.%x.%x.%x\n",
2269 cec_phys_addr_exp(adap->phys_addr));
2270 seq_printf(m: file, fmt: "number of LAs: %d\n", adap->log_addrs.num_log_addrs);
2271 seq_printf(m: file, fmt: "LA mask: 0x%04x\n", adap->log_addrs.log_addr_mask);
2272 if (adap->cec_follower)
2273 seq_printf(m: file, fmt: "has CEC follower%s\n",
2274 adap->passthrough ? " (in passthrough mode)" : "");
2275 if (adap->cec_initiator)
2276 seq_puts(m: file, s: "has CEC initiator\n");
2277 if (adap->monitor_all_cnt)
2278 seq_printf(m: file, fmt: "file handles in Monitor All mode: %u\n",
2279 adap->monitor_all_cnt);
2280 if (adap->monitor_pin_cnt)
2281 seq_printf(m: file, fmt: "file handles in Monitor Pin mode: %u\n",
2282 adap->monitor_pin_cnt);
2283 if (adap->tx_timeout_cnt) {
2284 seq_printf(m: file, fmt: "transmit timeout count: %u\n",
2285 adap->tx_timeout_cnt);
2286 adap->tx_timeout_cnt = 0;
2287 }
2288 if (adap->tx_low_drive_cnt) {
2289 seq_printf(m: file, fmt: "transmit low drive count: %u\n",
2290 adap->tx_low_drive_cnt);
2291 adap->tx_low_drive_cnt = 0;
2292 }
2293 if (adap->tx_arb_lost_cnt) {
2294 seq_printf(m: file, fmt: "transmit arbitration lost count: %u\n",
2295 adap->tx_arb_lost_cnt);
2296 adap->tx_arb_lost_cnt = 0;
2297 }
2298 if (adap->tx_error_cnt) {
2299 seq_printf(m: file, fmt: "transmit error count: %u\n",
2300 adap->tx_error_cnt);
2301 adap->tx_error_cnt = 0;
2302 }
2303 data = adap->transmitting;
2304 if (data)
2305 seq_printf(m: file, fmt: "transmitting message: %*ph (reply: %02x, timeout: %ums)\n",
2306 data->msg.len, data->msg.msg, data->msg.reply,
2307 data->msg.timeout);
2308 seq_printf(m: file, fmt: "pending transmits: %u\n", adap->transmit_queue_sz);
2309 list_for_each_entry(data, &adap->transmit_queue, list) {
2310 seq_printf(m: file, fmt: "queued tx message: %*ph (reply: %02x, timeout: %ums)\n",
2311 data->msg.len, data->msg.msg, data->msg.reply,
2312 data->msg.timeout);
2313 }
2314 list_for_each_entry(data, &adap->wait_queue, list) {
2315 seq_printf(m: file, fmt: "message waiting for reply: %*ph (reply: %02x, timeout: %ums)\n",
2316 data->msg.len, data->msg.msg, data->msg.reply,
2317 data->msg.timeout);
2318 }
2319
2320 call_void_op(adap, adap_status, file);
2321 mutex_unlock(lock: &adap->lock);
2322 return 0;
2323}
2324#endif
2325

source code of linux/drivers/media/cec/core/cec-adap.c