1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2013-2022, Intel Corporation. All rights reserved.
4 * Intel Management Engine Interface (Intel MEI) Linux driver
5 */
6
7#include <linux/pci.h>
8#include <linux/jiffies.h>
9#include <linux/ktime.h>
10#include <linux/delay.h>
11#include <linux/kthread.h>
12#include <linux/interrupt.h>
13#include <linux/pm_runtime.h>
14
15#include <linux/mei.h>
16
17#include "mei_dev.h"
18#include "hw-txe.h"
19#include "client.h"
20#include "hbm.h"
21
22#include "mei-trace.h"
23
24#define TXE_HBUF_DEPTH (PAYLOAD_SIZE / MEI_SLOT_SIZE)
25
26/**
27 * mei_txe_reg_read - Reads 32bit data from the txe device
28 *
29 * @base_addr: registers base address
30 * @offset: register offset
31 *
32 * Return: register value
33 */
34static inline u32 mei_txe_reg_read(void __iomem *base_addr,
35 unsigned long offset)
36{
37 return ioread32(base_addr + offset);
38}
39
40/**
41 * mei_txe_reg_write - Writes 32bit data to the txe device
42 *
43 * @base_addr: registers base address
44 * @offset: register offset
45 * @value: the value to write
46 */
47static inline void mei_txe_reg_write(void __iomem *base_addr,
48 unsigned long offset, u32 value)
49{
50 iowrite32(value, base_addr + offset);
51}
52
53/**
54 * mei_txe_sec_reg_read_silent - Reads 32bit data from the SeC BAR
55 *
56 * @hw: the txe hardware structure
57 * @offset: register offset
58 *
59 * Doesn't check for aliveness while Reads 32bit data from the SeC BAR
60 *
61 * Return: register value
62 */
63static inline u32 mei_txe_sec_reg_read_silent(struct mei_txe_hw *hw,
64 unsigned long offset)
65{
66 return mei_txe_reg_read(base_addr: hw->mem_addr[SEC_BAR], offset);
67}
68
69/**
70 * mei_txe_sec_reg_read - Reads 32bit data from the SeC BAR
71 *
72 * @hw: the txe hardware structure
73 * @offset: register offset
74 *
75 * Reads 32bit data from the SeC BAR and shout loud if aliveness is not set
76 *
77 * Return: register value
78 */
79static inline u32 mei_txe_sec_reg_read(struct mei_txe_hw *hw,
80 unsigned long offset)
81{
82 WARN(!hw->aliveness, "sec read: aliveness not asserted\n");
83 return mei_txe_sec_reg_read_silent(hw, offset);
84}
85/**
86 * mei_txe_sec_reg_write_silent - Writes 32bit data to the SeC BAR
87 * doesn't check for aliveness
88 *
89 * @hw: the txe hardware structure
90 * @offset: register offset
91 * @value: value to write
92 *
93 * Doesn't check for aliveness while writes 32bit data from to the SeC BAR
94 */
95static inline void mei_txe_sec_reg_write_silent(struct mei_txe_hw *hw,
96 unsigned long offset, u32 value)
97{
98 mei_txe_reg_write(base_addr: hw->mem_addr[SEC_BAR], offset, value);
99}
100
101/**
102 * mei_txe_sec_reg_write - Writes 32bit data to the SeC BAR
103 *
104 * @hw: the txe hardware structure
105 * @offset: register offset
106 * @value: value to write
107 *
108 * Writes 32bit data from the SeC BAR and shout loud if aliveness is not set
109 */
110static inline void mei_txe_sec_reg_write(struct mei_txe_hw *hw,
111 unsigned long offset, u32 value)
112{
113 WARN(!hw->aliveness, "sec write: aliveness not asserted\n");
114 mei_txe_sec_reg_write_silent(hw, offset, value);
115}
116/**
117 * mei_txe_br_reg_read - Reads 32bit data from the Bridge BAR
118 *
119 * @hw: the txe hardware structure
120 * @offset: offset from which to read the data
121 *
122 * Return: the byte read.
123 */
124static inline u32 mei_txe_br_reg_read(struct mei_txe_hw *hw,
125 unsigned long offset)
126{
127 return mei_txe_reg_read(base_addr: hw->mem_addr[BRIDGE_BAR], offset);
128}
129
130/**
131 * mei_txe_br_reg_write - Writes 32bit data to the Bridge BAR
132 *
133 * @hw: the txe hardware structure
134 * @offset: offset from which to write the data
135 * @value: the byte to write
136 */
137static inline void mei_txe_br_reg_write(struct mei_txe_hw *hw,
138 unsigned long offset, u32 value)
139{
140 mei_txe_reg_write(base_addr: hw->mem_addr[BRIDGE_BAR], offset, value);
141}
142
143/**
144 * mei_txe_aliveness_set - request for aliveness change
145 *
146 * @dev: the device structure
147 * @req: requested aliveness value
148 *
149 * Request for aliveness change and returns true if the change is
150 * really needed and false if aliveness is already
151 * in the requested state
152 *
153 * Locking: called under "dev->device_lock" lock
154 *
155 * Return: true if request was send
156 */
157static bool mei_txe_aliveness_set(struct mei_device *dev, u32 req)
158{
159
160 struct mei_txe_hw *hw = to_txe_hw(dev);
161 bool do_req = hw->aliveness != req;
162
163 dev_dbg(dev->dev, "Aliveness current=%d request=%d\n",
164 hw->aliveness, req);
165 if (do_req) {
166 dev->pg_event = MEI_PG_EVENT_WAIT;
167 mei_txe_br_reg_write(hw, SICR_HOST_ALIVENESS_REQ_REG, value: req);
168 }
169 return do_req;
170}
171
172
173/**
174 * mei_txe_aliveness_req_get - get aliveness requested register value
175 *
176 * @dev: the device structure
177 *
178 * Extract HICR_HOST_ALIVENESS_RESP_ACK bit from
179 * HICR_HOST_ALIVENESS_REQ register value
180 *
181 * Return: SICR_HOST_ALIVENESS_REQ_REQUESTED bit value
182 */
183static u32 mei_txe_aliveness_req_get(struct mei_device *dev)
184{
185 struct mei_txe_hw *hw = to_txe_hw(dev);
186 u32 reg;
187
188 reg = mei_txe_br_reg_read(hw, SICR_HOST_ALIVENESS_REQ_REG);
189 return reg & SICR_HOST_ALIVENESS_REQ_REQUESTED;
190}
191
192/**
193 * mei_txe_aliveness_get - get aliveness response register value
194 *
195 * @dev: the device structure
196 *
197 * Return: HICR_HOST_ALIVENESS_RESP_ACK bit from HICR_HOST_ALIVENESS_RESP
198 * register
199 */
200static u32 mei_txe_aliveness_get(struct mei_device *dev)
201{
202 struct mei_txe_hw *hw = to_txe_hw(dev);
203 u32 reg;
204
205 reg = mei_txe_br_reg_read(hw, HICR_HOST_ALIVENESS_RESP_REG);
206 return reg & HICR_HOST_ALIVENESS_RESP_ACK;
207}
208
209/**
210 * mei_txe_aliveness_poll - waits for aliveness to settle
211 *
212 * @dev: the device structure
213 * @expected: expected aliveness value
214 *
215 * Polls for HICR_HOST_ALIVENESS_RESP.ALIVENESS_RESP to be set
216 *
217 * Return: 0 if the expected value was received, -ETIME otherwise
218 */
219static int mei_txe_aliveness_poll(struct mei_device *dev, u32 expected)
220{
221 struct mei_txe_hw *hw = to_txe_hw(dev);
222 ktime_t stop, start;
223
224 start = ktime_get();
225 stop = ktime_add(start, ms_to_ktime(SEC_ALIVENESS_WAIT_TIMEOUT));
226 do {
227 hw->aliveness = mei_txe_aliveness_get(dev);
228 if (hw->aliveness == expected) {
229 dev->pg_event = MEI_PG_EVENT_IDLE;
230 dev_dbg(dev->dev, "aliveness settled after %lld usecs\n",
231 ktime_to_us(ktime_sub(ktime_get(), start)));
232 return 0;
233 }
234 usleep_range(min: 20, max: 50);
235 } while (ktime_before(cmp1: ktime_get(), cmp2: stop));
236
237 dev->pg_event = MEI_PG_EVENT_IDLE;
238 dev_err(dev->dev, "aliveness timed out\n");
239 return -ETIME;
240}
241
242/**
243 * mei_txe_aliveness_wait - waits for aliveness to settle
244 *
245 * @dev: the device structure
246 * @expected: expected aliveness value
247 *
248 * Waits for HICR_HOST_ALIVENESS_RESP.ALIVENESS_RESP to be set
249 *
250 * Return: 0 on success and < 0 otherwise
251 */
252static int mei_txe_aliveness_wait(struct mei_device *dev, u32 expected)
253{
254 struct mei_txe_hw *hw = to_txe_hw(dev);
255 const unsigned long timeout =
256 msecs_to_jiffies(SEC_ALIVENESS_WAIT_TIMEOUT);
257 long err;
258 int ret;
259
260 hw->aliveness = mei_txe_aliveness_get(dev);
261 if (hw->aliveness == expected)
262 return 0;
263
264 mutex_unlock(lock: &dev->device_lock);
265 err = wait_event_timeout(hw->wait_aliveness_resp,
266 dev->pg_event == MEI_PG_EVENT_RECEIVED, timeout);
267 mutex_lock(&dev->device_lock);
268
269 hw->aliveness = mei_txe_aliveness_get(dev);
270 ret = hw->aliveness == expected ? 0 : -ETIME;
271
272 if (ret)
273 dev_warn(dev->dev, "aliveness timed out = %ld aliveness = %d event = %d\n",
274 err, hw->aliveness, dev->pg_event);
275 else
276 dev_dbg(dev->dev, "aliveness settled after = %d msec aliveness = %d event = %d\n",
277 jiffies_to_msecs(timeout - err),
278 hw->aliveness, dev->pg_event);
279
280 dev->pg_event = MEI_PG_EVENT_IDLE;
281 return ret;
282}
283
284/**
285 * mei_txe_aliveness_set_sync - sets an wait for aliveness to complete
286 *
287 * @dev: the device structure
288 * @req: requested aliveness value
289 *
290 * Return: 0 on success and < 0 otherwise
291 */
292int mei_txe_aliveness_set_sync(struct mei_device *dev, u32 req)
293{
294 if (mei_txe_aliveness_set(dev, req))
295 return mei_txe_aliveness_wait(dev, expected: req);
296 return 0;
297}
298
299/**
300 * mei_txe_pg_in_transition - is device now in pg transition
301 *
302 * @dev: the device structure
303 *
304 * Return: true if in pg transition, false otherwise
305 */
306static bool mei_txe_pg_in_transition(struct mei_device *dev)
307{
308 return dev->pg_event == MEI_PG_EVENT_WAIT;
309}
310
311/**
312 * mei_txe_pg_is_enabled - detect if PG is supported by HW
313 *
314 * @dev: the device structure
315 *
316 * Return: true is pg supported, false otherwise
317 */
318static bool mei_txe_pg_is_enabled(struct mei_device *dev)
319{
320 return true;
321}
322
323/**
324 * mei_txe_pg_state - translate aliveness register value
325 * to the mei power gating state
326 *
327 * @dev: the device structure
328 *
329 * Return: MEI_PG_OFF if aliveness is on and MEI_PG_ON otherwise
330 */
331static inline enum mei_pg_state mei_txe_pg_state(struct mei_device *dev)
332{
333 struct mei_txe_hw *hw = to_txe_hw(dev);
334
335 return hw->aliveness ? MEI_PG_OFF : MEI_PG_ON;
336}
337
338/**
339 * mei_txe_input_ready_interrupt_enable - sets the Input Ready Interrupt
340 *
341 * @dev: the device structure
342 */
343static void mei_txe_input_ready_interrupt_enable(struct mei_device *dev)
344{
345 struct mei_txe_hw *hw = to_txe_hw(dev);
346 u32 hintmsk;
347 /* Enable the SEC_IPC_HOST_INT_MASK_IN_RDY interrupt */
348 hintmsk = mei_txe_sec_reg_read(hw, SEC_IPC_HOST_INT_MASK_REG);
349 hintmsk |= SEC_IPC_HOST_INT_MASK_IN_RDY;
350 mei_txe_sec_reg_write(hw, SEC_IPC_HOST_INT_MASK_REG, value: hintmsk);
351}
352
353/**
354 * mei_txe_input_doorbell_set - sets bit 0 in
355 * SEC_IPC_INPUT_DOORBELL.IPC_INPUT_DOORBELL.
356 *
357 * @hw: the txe hardware structure
358 */
359static void mei_txe_input_doorbell_set(struct mei_txe_hw *hw)
360{
361 /* Clear the interrupt cause */
362 clear_bit(TXE_INTR_IN_READY_BIT, addr: &hw->intr_cause);
363 mei_txe_sec_reg_write(hw, SEC_IPC_INPUT_DOORBELL_REG, value: 1);
364}
365
366/**
367 * mei_txe_output_ready_set - Sets the SICR_SEC_IPC_OUTPUT_STATUS bit to 1
368 *
369 * @hw: the txe hardware structure
370 */
371static void mei_txe_output_ready_set(struct mei_txe_hw *hw)
372{
373 mei_txe_br_reg_write(hw,
374 SICR_SEC_IPC_OUTPUT_STATUS_REG,
375 SEC_IPC_OUTPUT_STATUS_RDY);
376}
377
378/**
379 * mei_txe_is_input_ready - check if TXE is ready for receiving data
380 *
381 * @dev: the device structure
382 *
383 * Return: true if INPUT STATUS READY bit is set
384 */
385static bool mei_txe_is_input_ready(struct mei_device *dev)
386{
387 struct mei_txe_hw *hw = to_txe_hw(dev);
388 u32 status;
389
390 status = mei_txe_sec_reg_read(hw, SEC_IPC_INPUT_STATUS_REG);
391 return !!(SEC_IPC_INPUT_STATUS_RDY & status);
392}
393
394/**
395 * mei_txe_intr_clear - clear all interrupts
396 *
397 * @dev: the device structure
398 */
399static inline void mei_txe_intr_clear(struct mei_device *dev)
400{
401 struct mei_txe_hw *hw = to_txe_hw(dev);
402
403 mei_txe_sec_reg_write_silent(hw, SEC_IPC_HOST_INT_STATUS_REG,
404 SEC_IPC_HOST_INT_STATUS_PENDING);
405 mei_txe_br_reg_write(hw, HISR_REG, HISR_INT_STS_MSK);
406 mei_txe_br_reg_write(hw, HHISR_REG, IPC_HHIER_MSK);
407}
408
409/**
410 * mei_txe_intr_disable - disable all interrupts
411 *
412 * @dev: the device structure
413 */
414static void mei_txe_intr_disable(struct mei_device *dev)
415{
416 struct mei_txe_hw *hw = to_txe_hw(dev);
417
418 mei_txe_br_reg_write(hw, HHIER_REG, value: 0);
419 mei_txe_br_reg_write(hw, HIER_REG, value: 0);
420}
421/**
422 * mei_txe_intr_enable - enable all interrupts
423 *
424 * @dev: the device structure
425 */
426static void mei_txe_intr_enable(struct mei_device *dev)
427{
428 struct mei_txe_hw *hw = to_txe_hw(dev);
429
430 mei_txe_br_reg_write(hw, HHIER_REG, IPC_HHIER_MSK);
431 mei_txe_br_reg_write(hw, HIER_REG, HIER_INT_EN_MSK);
432}
433
434/**
435 * mei_txe_synchronize_irq - wait for pending IRQ handlers
436 *
437 * @dev: the device structure
438 */
439static void mei_txe_synchronize_irq(struct mei_device *dev)
440{
441 struct pci_dev *pdev = to_pci_dev(dev->dev);
442
443 synchronize_irq(irq: pdev->irq);
444}
445
446/**
447 * mei_txe_pending_interrupts - check if there are pending interrupts
448 * only Aliveness, Input ready, and output doorbell are of relevance
449 *
450 * @dev: the device structure
451 *
452 * Checks if there are pending interrupts
453 * only Aliveness, Readiness, Input ready, and Output doorbell are relevant
454 *
455 * Return: true if there are pending interrupts
456 */
457static bool mei_txe_pending_interrupts(struct mei_device *dev)
458{
459
460 struct mei_txe_hw *hw = to_txe_hw(dev);
461 bool ret = (hw->intr_cause & (TXE_INTR_READINESS |
462 TXE_INTR_ALIVENESS |
463 TXE_INTR_IN_READY |
464 TXE_INTR_OUT_DB));
465
466 if (ret) {
467 dev_dbg(dev->dev,
468 "Pending Interrupts InReady=%01d Readiness=%01d, Aliveness=%01d, OutDoor=%01d\n",
469 !!(hw->intr_cause & TXE_INTR_IN_READY),
470 !!(hw->intr_cause & TXE_INTR_READINESS),
471 !!(hw->intr_cause & TXE_INTR_ALIVENESS),
472 !!(hw->intr_cause & TXE_INTR_OUT_DB));
473 }
474 return ret;
475}
476
477/**
478 * mei_txe_input_payload_write - write a dword to the host buffer
479 * at offset idx
480 *
481 * @dev: the device structure
482 * @idx: index in the host buffer
483 * @value: value
484 */
485static void mei_txe_input_payload_write(struct mei_device *dev,
486 unsigned long idx, u32 value)
487{
488 struct mei_txe_hw *hw = to_txe_hw(dev);
489
490 mei_txe_sec_reg_write(hw, SEC_IPC_INPUT_PAYLOAD_REG +
491 (idx * sizeof(u32)), value);
492}
493
494/**
495 * mei_txe_out_data_read - read dword from the device buffer
496 * at offset idx
497 *
498 * @dev: the device structure
499 * @idx: index in the device buffer
500 *
501 * Return: register value at index
502 */
503static u32 mei_txe_out_data_read(const struct mei_device *dev,
504 unsigned long idx)
505{
506 struct mei_txe_hw *hw = to_txe_hw(dev);
507
508 return mei_txe_br_reg_read(hw,
509 BRIDGE_IPC_OUTPUT_PAYLOAD_REG + (idx * sizeof(u32)));
510}
511
512/* Readiness */
513
514/**
515 * mei_txe_readiness_set_host_rdy - set host readiness bit
516 *
517 * @dev: the device structure
518 */
519static void mei_txe_readiness_set_host_rdy(struct mei_device *dev)
520{
521 struct mei_txe_hw *hw = to_txe_hw(dev);
522
523 mei_txe_br_reg_write(hw,
524 SICR_HOST_IPC_READINESS_REQ_REG,
525 SICR_HOST_IPC_READINESS_HOST_RDY);
526}
527
528/**
529 * mei_txe_readiness_clear - clear host readiness bit
530 *
531 * @dev: the device structure
532 */
533static void mei_txe_readiness_clear(struct mei_device *dev)
534{
535 struct mei_txe_hw *hw = to_txe_hw(dev);
536
537 mei_txe_br_reg_write(hw, SICR_HOST_IPC_READINESS_REQ_REG,
538 SICR_HOST_IPC_READINESS_RDY_CLR);
539}
540/**
541 * mei_txe_readiness_get - Reads and returns
542 * the HICR_SEC_IPC_READINESS register value
543 *
544 * @dev: the device structure
545 *
546 * Return: the HICR_SEC_IPC_READINESS register value
547 */
548static u32 mei_txe_readiness_get(struct mei_device *dev)
549{
550 struct mei_txe_hw *hw = to_txe_hw(dev);
551
552 return mei_txe_br_reg_read(hw, HICR_SEC_IPC_READINESS_REG);
553}
554
555
556/**
557 * mei_txe_readiness_is_sec_rdy - check readiness
558 * for HICR_SEC_IPC_READINESS_SEC_RDY
559 *
560 * @readiness: cached readiness state
561 *
562 * Return: true if readiness bit is set
563 */
564static inline bool mei_txe_readiness_is_sec_rdy(u32 readiness)
565{
566 return !!(readiness & HICR_SEC_IPC_READINESS_SEC_RDY);
567}
568
569/**
570 * mei_txe_hw_is_ready - check if the hw is ready
571 *
572 * @dev: the device structure
573 *
574 * Return: true if sec is ready
575 */
576static bool mei_txe_hw_is_ready(struct mei_device *dev)
577{
578 u32 readiness = mei_txe_readiness_get(dev);
579
580 return mei_txe_readiness_is_sec_rdy(readiness);
581}
582
583/**
584 * mei_txe_host_is_ready - check if the host is ready
585 *
586 * @dev: the device structure
587 *
588 * Return: true if host is ready
589 */
590static inline bool mei_txe_host_is_ready(struct mei_device *dev)
591{
592 struct mei_txe_hw *hw = to_txe_hw(dev);
593 u32 reg = mei_txe_br_reg_read(hw, HICR_SEC_IPC_READINESS_REG);
594
595 return !!(reg & HICR_SEC_IPC_READINESS_HOST_RDY);
596}
597
598/**
599 * mei_txe_readiness_wait - wait till readiness settles
600 *
601 * @dev: the device structure
602 *
603 * Return: 0 on success and -ETIME on timeout
604 */
605static int mei_txe_readiness_wait(struct mei_device *dev)
606{
607 if (mei_txe_hw_is_ready(dev))
608 return 0;
609
610 mutex_unlock(lock: &dev->device_lock);
611 wait_event_timeout(dev->wait_hw_ready, dev->recvd_hw_ready,
612 msecs_to_jiffies(SEC_RESET_WAIT_TIMEOUT));
613 mutex_lock(&dev->device_lock);
614 if (!dev->recvd_hw_ready) {
615 dev_err(dev->dev, "wait for readiness failed\n");
616 return -ETIME;
617 }
618
619 dev->recvd_hw_ready = false;
620 return 0;
621}
622
623static const struct mei_fw_status mei_txe_fw_sts = {
624 .count = 2,
625 .status[0] = PCI_CFG_TXE_FW_STS0,
626 .status[1] = PCI_CFG_TXE_FW_STS1
627};
628
629/**
630 * mei_txe_fw_status - read fw status register from pci config space
631 *
632 * @dev: mei device
633 * @fw_status: fw status register values
634 *
635 * Return: 0 on success, error otherwise
636 */
637static int mei_txe_fw_status(struct mei_device *dev,
638 struct mei_fw_status *fw_status)
639{
640 const struct mei_fw_status *fw_src = &mei_txe_fw_sts;
641 struct pci_dev *pdev = to_pci_dev(dev->dev);
642 int ret;
643 int i;
644
645 if (!fw_status)
646 return -EINVAL;
647
648 fw_status->count = fw_src->count;
649 for (i = 0; i < fw_src->count && i < MEI_FW_STATUS_MAX; i++) {
650 ret = pci_read_config_dword(dev: pdev, where: fw_src->status[i],
651 val: &fw_status->status[i]);
652 trace_mei_pci_cfg_read(dev: dev->dev, reg: "PCI_CFG_HSF_X",
653 offs: fw_src->status[i],
654 val: fw_status->status[i]);
655 if (ret)
656 return ret;
657 }
658
659 return 0;
660}
661
662/**
663 * mei_txe_hw_config - configure hardware at the start of the devices
664 *
665 * @dev: the device structure
666 *
667 * Configure hardware at the start of the device should be done only
668 * once at the device probe time
669 *
670 * Return: always 0
671 */
672static int mei_txe_hw_config(struct mei_device *dev)
673{
674
675 struct mei_txe_hw *hw = to_txe_hw(dev);
676
677 hw->aliveness = mei_txe_aliveness_get(dev);
678 hw->readiness = mei_txe_readiness_get(dev);
679
680 dev_dbg(dev->dev, "aliveness_resp = 0x%08x, readiness = 0x%08x.\n",
681 hw->aliveness, hw->readiness);
682
683 return 0;
684}
685
686/**
687 * mei_txe_write - writes a message to device.
688 *
689 * @dev: the device structure
690 * @hdr: header of message
691 * @hdr_len: header length in bytes - must multiplication of a slot (4bytes)
692 * @data: payload
693 * @data_len: paylead length in bytes
694 *
695 * Return: 0 if success, < 0 - otherwise.
696 */
697static int mei_txe_write(struct mei_device *dev,
698 const void *hdr, size_t hdr_len,
699 const void *data, size_t data_len)
700{
701 struct mei_txe_hw *hw = to_txe_hw(dev);
702 unsigned long rem;
703 const u32 *reg_buf;
704 u32 slots = TXE_HBUF_DEPTH;
705 u32 dw_cnt;
706 unsigned long i, j;
707
708 if (WARN_ON(!hdr || !data || hdr_len & 0x3))
709 return -EINVAL;
710
711 dev_dbg(dev->dev, MEI_HDR_FMT, MEI_HDR_PRM((struct mei_msg_hdr *)hdr));
712
713 dw_cnt = mei_data2slots(length: hdr_len + data_len);
714 if (dw_cnt > slots)
715 return -EMSGSIZE;
716
717 if (WARN(!hw->aliveness, "txe write: aliveness not asserted\n"))
718 return -EAGAIN;
719
720 /* Enable Input Ready Interrupt. */
721 mei_txe_input_ready_interrupt_enable(dev);
722
723 if (!mei_txe_is_input_ready(dev)) {
724 char fw_sts_str[MEI_FW_STATUS_STR_SZ];
725
726 mei_fw_status_str(dev, buf: fw_sts_str, MEI_FW_STATUS_STR_SZ);
727 dev_err(dev->dev, "Input is not ready %s\n", fw_sts_str);
728 return -EAGAIN;
729 }
730
731 reg_buf = hdr;
732 for (i = 0; i < hdr_len / MEI_SLOT_SIZE; i++)
733 mei_txe_input_payload_write(dev, idx: i, value: reg_buf[i]);
734
735 reg_buf = data;
736 for (j = 0; j < data_len / MEI_SLOT_SIZE; j++)
737 mei_txe_input_payload_write(dev, idx: i + j, value: reg_buf[j]);
738
739 rem = data_len & 0x3;
740 if (rem > 0) {
741 u32 reg = 0;
742
743 memcpy(&reg, (const u8 *)data + data_len - rem, rem);
744 mei_txe_input_payload_write(dev, idx: i + j, value: reg);
745 }
746
747 /* after each write the whole buffer is consumed */
748 hw->slots = 0;
749
750 /* Set Input-Doorbell */
751 mei_txe_input_doorbell_set(hw);
752
753 return 0;
754}
755
756/**
757 * mei_txe_hbuf_depth - mimics the me hbuf circular buffer
758 *
759 * @dev: the device structure
760 *
761 * Return: the TXE_HBUF_DEPTH
762 */
763static u32 mei_txe_hbuf_depth(const struct mei_device *dev)
764{
765 return TXE_HBUF_DEPTH;
766}
767
768/**
769 * mei_txe_hbuf_empty_slots - mimics the me hbuf circular buffer
770 *
771 * @dev: the device structure
772 *
773 * Return: always TXE_HBUF_DEPTH
774 */
775static int mei_txe_hbuf_empty_slots(struct mei_device *dev)
776{
777 struct mei_txe_hw *hw = to_txe_hw(dev);
778
779 return hw->slots;
780}
781
782/**
783 * mei_txe_count_full_read_slots - mimics the me device circular buffer
784 *
785 * @dev: the device structure
786 *
787 * Return: always buffer size in dwords count
788 */
789static int mei_txe_count_full_read_slots(struct mei_device *dev)
790{
791 /* read buffers has static size */
792 return TXE_HBUF_DEPTH;
793}
794
795/**
796 * mei_txe_read_hdr - read message header which is always in 4 first bytes
797 *
798 * @dev: the device structure
799 *
800 * Return: mei message header
801 */
802
803static u32 mei_txe_read_hdr(const struct mei_device *dev)
804{
805 return mei_txe_out_data_read(dev, idx: 0);
806}
807/**
808 * mei_txe_read - reads a message from the txe device.
809 *
810 * @dev: the device structure
811 * @buf: message buffer will be written
812 * @len: message size will be read
813 *
814 * Return: -EINVAL on error wrong argument and 0 on success
815 */
816static int mei_txe_read(struct mei_device *dev,
817 unsigned char *buf, unsigned long len)
818{
819
820 struct mei_txe_hw *hw = to_txe_hw(dev);
821 u32 *reg_buf, reg;
822 u32 rem;
823 u32 i;
824
825 if (WARN_ON(!buf || !len))
826 return -EINVAL;
827
828 reg_buf = (u32 *)buf;
829 rem = len & 0x3;
830
831 dev_dbg(dev->dev, "buffer-length = %lu buf[0]0x%08X\n",
832 len, mei_txe_out_data_read(dev, 0));
833
834 for (i = 0; i < len / MEI_SLOT_SIZE; i++) {
835 /* skip header: index starts from 1 */
836 reg = mei_txe_out_data_read(dev, idx: i + 1);
837 dev_dbg(dev->dev, "buf[%d] = 0x%08X\n", i, reg);
838 *reg_buf++ = reg;
839 }
840
841 if (rem) {
842 reg = mei_txe_out_data_read(dev, idx: i + 1);
843 memcpy(reg_buf, &reg, rem);
844 }
845
846 mei_txe_output_ready_set(hw);
847 return 0;
848}
849
850/**
851 * mei_txe_hw_reset - resets host and fw.
852 *
853 * @dev: the device structure
854 * @intr_enable: if interrupt should be enabled after reset.
855 *
856 * Return: 0 on success and < 0 in case of error
857 */
858static int mei_txe_hw_reset(struct mei_device *dev, bool intr_enable)
859{
860 struct mei_txe_hw *hw = to_txe_hw(dev);
861
862 u32 aliveness_req;
863 /*
864 * read input doorbell to ensure consistency between Bridge and SeC
865 * return value might be garbage return
866 */
867 (void)mei_txe_sec_reg_read_silent(hw, SEC_IPC_INPUT_DOORBELL_REG);
868
869 aliveness_req = mei_txe_aliveness_req_get(dev);
870 hw->aliveness = mei_txe_aliveness_get(dev);
871
872 /* Disable interrupts in this stage we will poll */
873 mei_txe_intr_disable(dev);
874
875 /*
876 * If Aliveness Request and Aliveness Response are not equal then
877 * wait for them to be equal
878 * Since we might have interrupts disabled - poll for it
879 */
880 if (aliveness_req != hw->aliveness)
881 if (mei_txe_aliveness_poll(dev, expected: aliveness_req) < 0) {
882 dev_err(dev->dev, "wait for aliveness settle failed ... bailing out\n");
883 return -EIO;
884 }
885
886 /*
887 * If Aliveness Request and Aliveness Response are set then clear them
888 */
889 if (aliveness_req) {
890 mei_txe_aliveness_set(dev, req: 0);
891 if (mei_txe_aliveness_poll(dev, expected: 0) < 0) {
892 dev_err(dev->dev, "wait for aliveness failed ... bailing out\n");
893 return -EIO;
894 }
895 }
896
897 /*
898 * Set readiness RDY_CLR bit
899 */
900 mei_txe_readiness_clear(dev);
901
902 return 0;
903}
904
905/**
906 * mei_txe_hw_start - start the hardware after reset
907 *
908 * @dev: the device structure
909 *
910 * Return: 0 on success an error code otherwise
911 */
912static int mei_txe_hw_start(struct mei_device *dev)
913{
914 struct mei_txe_hw *hw = to_txe_hw(dev);
915 int ret;
916
917 u32 hisr;
918
919 /* bring back interrupts */
920 mei_txe_intr_enable(dev);
921
922 ret = mei_txe_readiness_wait(dev);
923 if (ret < 0) {
924 dev_err(dev->dev, "waiting for readiness failed\n");
925 return ret;
926 }
927
928 /*
929 * If HISR.INT2_STS interrupt status bit is set then clear it.
930 */
931 hisr = mei_txe_br_reg_read(hw, HISR_REG);
932 if (hisr & HISR_INT_2_STS)
933 mei_txe_br_reg_write(hw, HISR_REG, HISR_INT_2_STS);
934
935 /* Clear the interrupt cause of OutputDoorbell */
936 clear_bit(TXE_INTR_OUT_DB_BIT, addr: &hw->intr_cause);
937
938 ret = mei_txe_aliveness_set_sync(dev, req: 1);
939 if (ret < 0) {
940 dev_err(dev->dev, "wait for aliveness failed ... bailing out\n");
941 return ret;
942 }
943
944 pm_runtime_set_active(dev: dev->dev);
945
946 /* enable input ready interrupts:
947 * SEC_IPC_HOST_INT_MASK.IPC_INPUT_READY_INT_MASK
948 */
949 mei_txe_input_ready_interrupt_enable(dev);
950
951
952 /* Set the SICR_SEC_IPC_OUTPUT_STATUS.IPC_OUTPUT_READY bit */
953 mei_txe_output_ready_set(hw);
954
955 /* Set bit SICR_HOST_IPC_READINESS.HOST_RDY
956 */
957 mei_txe_readiness_set_host_rdy(dev);
958
959 return 0;
960}
961
962/**
963 * mei_txe_check_and_ack_intrs - translate multi BAR interrupt into
964 * single bit mask and acknowledge the interrupts
965 *
966 * @dev: the device structure
967 * @do_ack: acknowledge interrupts
968 *
969 * Return: true if found interrupts to process.
970 */
971static bool mei_txe_check_and_ack_intrs(struct mei_device *dev, bool do_ack)
972{
973 struct mei_txe_hw *hw = to_txe_hw(dev);
974 u32 hisr;
975 u32 hhisr;
976 u32 ipc_isr;
977 u32 aliveness;
978 bool generated;
979
980 /* read interrupt registers */
981 hhisr = mei_txe_br_reg_read(hw, HHISR_REG);
982 generated = (hhisr & IPC_HHIER_MSK);
983 if (!generated)
984 goto out;
985
986 hisr = mei_txe_br_reg_read(hw, HISR_REG);
987
988 aliveness = mei_txe_aliveness_get(dev);
989 if (hhisr & IPC_HHIER_SEC && aliveness) {
990 ipc_isr = mei_txe_sec_reg_read_silent(hw,
991 SEC_IPC_HOST_INT_STATUS_REG);
992 } else {
993 ipc_isr = 0;
994 hhisr &= ~IPC_HHIER_SEC;
995 }
996
997 if (do_ack) {
998 /* Save the interrupt causes */
999 hw->intr_cause |= hisr & HISR_INT_STS_MSK;
1000 if (ipc_isr & SEC_IPC_HOST_INT_STATUS_IN_RDY)
1001 hw->intr_cause |= TXE_INTR_IN_READY;
1002
1003
1004 mei_txe_intr_disable(dev);
1005 /* Clear the interrupts in hierarchy:
1006 * IPC and Bridge, than the High Level */
1007 mei_txe_sec_reg_write_silent(hw,
1008 SEC_IPC_HOST_INT_STATUS_REG, value: ipc_isr);
1009 mei_txe_br_reg_write(hw, HISR_REG, value: hisr);
1010 mei_txe_br_reg_write(hw, HHISR_REG, value: hhisr);
1011 }
1012
1013out:
1014 return generated;
1015}
1016
1017/**
1018 * mei_txe_irq_quick_handler - The ISR of the MEI device
1019 *
1020 * @irq: The irq number
1021 * @dev_id: pointer to the device structure
1022 *
1023 * Return: IRQ_WAKE_THREAD if interrupt is designed for the device
1024 * IRQ_NONE otherwise
1025 */
1026irqreturn_t mei_txe_irq_quick_handler(int irq, void *dev_id)
1027{
1028 struct mei_device *dev = dev_id;
1029
1030 if (mei_txe_check_and_ack_intrs(dev, do_ack: true))
1031 return IRQ_WAKE_THREAD;
1032 return IRQ_NONE;
1033}
1034
1035
1036/**
1037 * mei_txe_irq_thread_handler - txe interrupt thread
1038 *
1039 * @irq: The irq number
1040 * @dev_id: pointer to the device structure
1041 *
1042 * Return: IRQ_HANDLED
1043 */
1044irqreturn_t mei_txe_irq_thread_handler(int irq, void *dev_id)
1045{
1046 struct mei_device *dev = (struct mei_device *) dev_id;
1047 struct mei_txe_hw *hw = to_txe_hw(dev);
1048 struct list_head cmpl_list;
1049 s32 slots;
1050 int rets = 0;
1051
1052 dev_dbg(dev->dev, "irq thread: Interrupt Registers HHISR|HISR|SEC=%02X|%04X|%02X\n",
1053 mei_txe_br_reg_read(hw, HHISR_REG),
1054 mei_txe_br_reg_read(hw, HISR_REG),
1055 mei_txe_sec_reg_read_silent(hw, SEC_IPC_HOST_INT_STATUS_REG));
1056
1057
1058 /* initialize our complete list */
1059 mutex_lock(&dev->device_lock);
1060 INIT_LIST_HEAD(list: &cmpl_list);
1061
1062 if (pci_dev_msi_enabled(to_pci_dev(dev->dev)))
1063 mei_txe_check_and_ack_intrs(dev, do_ack: true);
1064
1065 /* show irq events */
1066 mei_txe_pending_interrupts(dev);
1067
1068 hw->aliveness = mei_txe_aliveness_get(dev);
1069 hw->readiness = mei_txe_readiness_get(dev);
1070
1071 /* Readiness:
1072 * Detection of TXE driver going through reset
1073 * or TXE driver resetting the HECI interface.
1074 */
1075 if (test_and_clear_bit(TXE_INTR_READINESS_BIT, addr: &hw->intr_cause)) {
1076 dev_dbg(dev->dev, "Readiness Interrupt was received...\n");
1077
1078 /* Check if SeC is going through reset */
1079 if (mei_txe_readiness_is_sec_rdy(readiness: hw->readiness)) {
1080 dev_dbg(dev->dev, "we need to start the dev.\n");
1081 dev->recvd_hw_ready = true;
1082 } else {
1083 dev->recvd_hw_ready = false;
1084 if (dev->dev_state != MEI_DEV_RESETTING) {
1085
1086 dev_warn(dev->dev, "FW not ready: resetting.\n");
1087 schedule_work(work: &dev->reset_work);
1088 goto end;
1089
1090 }
1091 }
1092 wake_up(&dev->wait_hw_ready);
1093 }
1094
1095 /************************************************************/
1096 /* Check interrupt cause:
1097 * Aliveness: Detection of SeC acknowledge of host request that
1098 * it remain alive or host cancellation of that request.
1099 */
1100
1101 if (test_and_clear_bit(TXE_INTR_ALIVENESS_BIT, addr: &hw->intr_cause)) {
1102 /* Clear the interrupt cause */
1103 dev_dbg(dev->dev,
1104 "Aliveness Interrupt: Status: %d\n", hw->aliveness);
1105 dev->pg_event = MEI_PG_EVENT_RECEIVED;
1106 if (waitqueue_active(wq_head: &hw->wait_aliveness_resp))
1107 wake_up(&hw->wait_aliveness_resp);
1108 }
1109
1110
1111 /* Output Doorbell:
1112 * Detection of SeC having sent output to host
1113 */
1114 slots = mei_count_full_read_slots(dev);
1115 if (test_and_clear_bit(TXE_INTR_OUT_DB_BIT, addr: &hw->intr_cause)) {
1116 /* Read from TXE */
1117 rets = mei_irq_read_handler(dev, cmpl_list: &cmpl_list, slots: &slots);
1118 if (rets &&
1119 (dev->dev_state != MEI_DEV_RESETTING &&
1120 dev->dev_state != MEI_DEV_POWER_DOWN)) {
1121 dev_err(dev->dev,
1122 "mei_irq_read_handler ret = %d.\n", rets);
1123
1124 schedule_work(work: &dev->reset_work);
1125 goto end;
1126 }
1127 }
1128 /* Input Ready: Detection if host can write to SeC */
1129 if (test_and_clear_bit(TXE_INTR_IN_READY_BIT, addr: &hw->intr_cause)) {
1130 dev->hbuf_is_ready = true;
1131 hw->slots = TXE_HBUF_DEPTH;
1132 }
1133
1134 if (hw->aliveness && dev->hbuf_is_ready) {
1135 /* get the real register value */
1136 dev->hbuf_is_ready = mei_hbuf_is_ready(dev);
1137 rets = mei_irq_write_handler(dev, cmpl_list: &cmpl_list);
1138 if (rets && rets != -EMSGSIZE)
1139 dev_err(dev->dev, "mei_irq_write_handler ret = %d.\n",
1140 rets);
1141 dev->hbuf_is_ready = mei_hbuf_is_ready(dev);
1142 }
1143
1144 mei_irq_compl_handler(dev, cmpl_list: &cmpl_list);
1145
1146end:
1147 dev_dbg(dev->dev, "interrupt thread end ret = %d\n", rets);
1148
1149 mutex_unlock(lock: &dev->device_lock);
1150
1151 mei_enable_interrupts(dev);
1152 return IRQ_HANDLED;
1153}
1154
1155static const struct mei_hw_ops mei_txe_hw_ops = {
1156
1157 .host_is_ready = mei_txe_host_is_ready,
1158
1159 .fw_status = mei_txe_fw_status,
1160 .pg_state = mei_txe_pg_state,
1161
1162 .hw_is_ready = mei_txe_hw_is_ready,
1163 .hw_reset = mei_txe_hw_reset,
1164 .hw_config = mei_txe_hw_config,
1165 .hw_start = mei_txe_hw_start,
1166
1167 .pg_in_transition = mei_txe_pg_in_transition,
1168 .pg_is_enabled = mei_txe_pg_is_enabled,
1169
1170 .intr_clear = mei_txe_intr_clear,
1171 .intr_enable = mei_txe_intr_enable,
1172 .intr_disable = mei_txe_intr_disable,
1173 .synchronize_irq = mei_txe_synchronize_irq,
1174
1175 .hbuf_free_slots = mei_txe_hbuf_empty_slots,
1176 .hbuf_is_ready = mei_txe_is_input_ready,
1177 .hbuf_depth = mei_txe_hbuf_depth,
1178
1179 .write = mei_txe_write,
1180
1181 .rdbuf_full_slots = mei_txe_count_full_read_slots,
1182 .read_hdr = mei_txe_read_hdr,
1183
1184 .read = mei_txe_read,
1185
1186};
1187
1188/**
1189 * mei_txe_dev_init - allocates and initializes txe hardware specific structure
1190 *
1191 * @pdev: pci device
1192 *
1193 * Return: struct mei_device * on success or NULL
1194 */
1195struct mei_device *mei_txe_dev_init(struct pci_dev *pdev)
1196{
1197 struct mei_device *dev;
1198 struct mei_txe_hw *hw;
1199
1200 dev = devm_kzalloc(dev: &pdev->dev, size: sizeof(*dev) + sizeof(*hw), GFP_KERNEL);
1201 if (!dev)
1202 return NULL;
1203
1204 mei_device_init(dev, device: &pdev->dev, slow_fw: false, hw_ops: &mei_txe_hw_ops);
1205
1206 hw = to_txe_hw(dev);
1207
1208 init_waitqueue_head(&hw->wait_aliveness_resp);
1209
1210 return dev;
1211}
1212
1213/**
1214 * mei_txe_setup_satt2 - SATT2 configuration for DMA support.
1215 *
1216 * @dev: the device structure
1217 * @addr: physical address start of the range
1218 * @range: physical range size
1219 *
1220 * Return: 0 on success an error code otherwise
1221 */
1222int mei_txe_setup_satt2(struct mei_device *dev, phys_addr_t addr, u32 range)
1223{
1224 struct mei_txe_hw *hw = to_txe_hw(dev);
1225
1226 u32 lo32 = lower_32_bits(addr);
1227 u32 hi32 = upper_32_bits(addr);
1228 u32 ctrl;
1229
1230 /* SATT is limited to 36 Bits */
1231 if (hi32 & ~0xF)
1232 return -EINVAL;
1233
1234 /* SATT has to be 16Byte aligned */
1235 if (lo32 & 0xF)
1236 return -EINVAL;
1237
1238 /* SATT range has to be 4Bytes aligned */
1239 if (range & 0x4)
1240 return -EINVAL;
1241
1242 /* SATT is limited to 32 MB range*/
1243 if (range > SATT_RANGE_MAX)
1244 return -EINVAL;
1245
1246 ctrl = SATT2_CTRL_VALID_MSK;
1247 ctrl |= hi32 << SATT2_CTRL_BR_BASE_ADDR_REG_SHIFT;
1248
1249 mei_txe_br_reg_write(hw, SATT2_SAP_SIZE_REG, value: range);
1250 mei_txe_br_reg_write(hw, SATT2_BRG_BA_LSB_REG, value: lo32);
1251 mei_txe_br_reg_write(hw, SATT2_CTRL_REG, value: ctrl);
1252 dev_dbg(dev->dev, "SATT2: SAP_SIZE_OFFSET=0x%08X, BRG_BA_LSB_OFFSET=0x%08X, CTRL_OFFSET=0x%08X\n",
1253 range, lo32, ctrl);
1254
1255 return 0;
1256}
1257

source code of linux/drivers/misc/mei/hw-txe.c