1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * Generic Error-Correcting Code (ECC) engine
4 *
5 * Copyright (C) 2019 Macronix
6 * Author:
7 * Miquèl RAYNAL <miquel.raynal@bootlin.com>
8 *
9 *
10 * This file describes the abstraction of any NAND ECC engine. It has been
11 * designed to fit most cases, including parallel NANDs and SPI-NANDs.
12 *
13 * There are three main situations where instantiating this ECC engine makes
14 * sense:
15 * - external: The ECC engine is outside the NAND pipeline, typically this
16 * is a software ECC engine, or an hardware engine that is
17 * outside the NAND controller pipeline.
18 * - pipelined: The ECC engine is inside the NAND pipeline, ie. on the
19 * controller's side. This is the case of most of the raw NAND
20 * controllers. In the pipeline case, the ECC bytes are
21 * generated/data corrected on the fly when a page is
22 * written/read.
23 * - ondie: The ECC engine is inside the NAND pipeline, on the chip's side.
24 * Some NAND chips can correct themselves the data.
25 *
26 * Besides the initial setup and final cleanups, the interfaces are rather
27 * simple:
28 * - prepare: Prepare an I/O request. Enable/disable the ECC engine based on
29 * the I/O request type. In case of software correction or external
30 * engine, this step may involve to derive the ECC bytes and place
31 * them in the OOB area before a write.
32 * - finish: Finish an I/O request. Correct the data in case of a read
33 * request and report the number of corrected bits/uncorrectable
34 * errors. Most likely empty for write operations, unless you have
35 * hardware specific stuff to do, like shutting down the engine to
36 * save power.
37 *
38 * The I/O request should be enclosed in a prepare()/finish() pair of calls
39 * and will behave differently depending on the requested I/O type:
40 * - raw: Correction disabled
41 * - ecc: Correction enabled
42 *
43 * The request direction is impacting the logic as well:
44 * - read: Load data from the NAND chip
45 * - write: Store data in the NAND chip
46 *
47 * Mixing all this combinations together gives the following behavior.
48 * Those are just examples, drivers are free to add custom steps in their
49 * prepare/finish hook.
50 *
51 * [external ECC engine]
52 * - external + prepare + raw + read: do nothing
53 * - external + finish + raw + read: do nothing
54 * - external + prepare + raw + write: do nothing
55 * - external + finish + raw + write: do nothing
56 * - external + prepare + ecc + read: do nothing
57 * - external + finish + ecc + read: calculate expected ECC bytes, extract
58 * ECC bytes from OOB buffer, correct
59 * and report any bitflip/error
60 * - external + prepare + ecc + write: calculate ECC bytes and store them at
61 * the right place in the OOB buffer based
62 * on the OOB layout
63 * - external + finish + ecc + write: do nothing
64 *
65 * [pipelined ECC engine]
66 * - pipelined + prepare + raw + read: disable the controller's ECC engine if
67 * activated
68 * - pipelined + finish + raw + read: do nothing
69 * - pipelined + prepare + raw + write: disable the controller's ECC engine if
70 * activated
71 * - pipelined + finish + raw + write: do nothing
72 * - pipelined + prepare + ecc + read: enable the controller's ECC engine if
73 * deactivated
74 * - pipelined + finish + ecc + read: check the status, report any
75 * error/bitflip
76 * - pipelined + prepare + ecc + write: enable the controller's ECC engine if
77 * deactivated
78 * - pipelined + finish + ecc + write: do nothing
79 *
80 * [ondie ECC engine]
81 * - ondie + prepare + raw + read: send commands to disable the on-chip ECC
82 * engine if activated
83 * - ondie + finish + raw + read: do nothing
84 * - ondie + prepare + raw + write: send commands to disable the on-chip ECC
85 * engine if activated
86 * - ondie + finish + raw + write: do nothing
87 * - ondie + prepare + ecc + read: send commands to enable the on-chip ECC
88 * engine if deactivated
89 * - ondie + finish + ecc + read: send commands to check the status, report
90 * any error/bitflip
91 * - ondie + prepare + ecc + write: send commands to enable the on-chip ECC
92 * engine if deactivated
93 * - ondie + finish + ecc + write: do nothing
94 */
95
96#include <linux/module.h>
97#include <linux/mtd/nand.h>
98#include <linux/platform_device.h>
99#include <linux/slab.h>
100#include <linux/of.h>
101#include <linux/of_platform.h>
102
103static LIST_HEAD(on_host_hw_engines);
104static DEFINE_MUTEX(on_host_hw_engines_mutex);
105
106/**
107 * nand_ecc_init_ctx - Init the ECC engine context
108 * @nand: the NAND device
109 *
110 * On success, the caller is responsible of calling @nand_ecc_cleanup_ctx().
111 */
112int nand_ecc_init_ctx(struct nand_device *nand)
113{
114 if (!nand->ecc.engine || !nand->ecc.engine->ops->init_ctx)
115 return 0;
116
117 return nand->ecc.engine->ops->init_ctx(nand);
118}
119EXPORT_SYMBOL(nand_ecc_init_ctx);
120
121/**
122 * nand_ecc_cleanup_ctx - Cleanup the ECC engine context
123 * @nand: the NAND device
124 */
125void nand_ecc_cleanup_ctx(struct nand_device *nand)
126{
127 if (nand->ecc.engine && nand->ecc.engine->ops->cleanup_ctx)
128 nand->ecc.engine->ops->cleanup_ctx(nand);
129}
130EXPORT_SYMBOL(nand_ecc_cleanup_ctx);
131
132/**
133 * nand_ecc_prepare_io_req - Prepare an I/O request
134 * @nand: the NAND device
135 * @req: the I/O request
136 */
137int nand_ecc_prepare_io_req(struct nand_device *nand,
138 struct nand_page_io_req *req)
139{
140 if (!nand->ecc.engine || !nand->ecc.engine->ops->prepare_io_req)
141 return 0;
142
143 return nand->ecc.engine->ops->prepare_io_req(nand, req);
144}
145EXPORT_SYMBOL(nand_ecc_prepare_io_req);
146
147/**
148 * nand_ecc_finish_io_req - Finish an I/O request
149 * @nand: the NAND device
150 * @req: the I/O request
151 */
152int nand_ecc_finish_io_req(struct nand_device *nand,
153 struct nand_page_io_req *req)
154{
155 if (!nand->ecc.engine || !nand->ecc.engine->ops->finish_io_req)
156 return 0;
157
158 return nand->ecc.engine->ops->finish_io_req(nand, req);
159}
160EXPORT_SYMBOL(nand_ecc_finish_io_req);
161
162/* Define default OOB placement schemes for large and small page devices */
163static int nand_ooblayout_ecc_sp(struct mtd_info *mtd, int section,
164 struct mtd_oob_region *oobregion)
165{
166 struct nand_device *nand = mtd_to_nanddev(mtd);
167 unsigned int total_ecc_bytes = nand->ecc.ctx.total;
168
169 if (section > 1)
170 return -ERANGE;
171
172 if (!section) {
173 oobregion->offset = 0;
174 if (mtd->oobsize == 16)
175 oobregion->length = 4;
176 else
177 oobregion->length = 3;
178 } else {
179 if (mtd->oobsize == 8)
180 return -ERANGE;
181
182 oobregion->offset = 6;
183 oobregion->length = total_ecc_bytes - 4;
184 }
185
186 return 0;
187}
188
189static int nand_ooblayout_free_sp(struct mtd_info *mtd, int section,
190 struct mtd_oob_region *oobregion)
191{
192 if (section > 1)
193 return -ERANGE;
194
195 if (mtd->oobsize == 16) {
196 if (section)
197 return -ERANGE;
198
199 oobregion->length = 8;
200 oobregion->offset = 8;
201 } else {
202 oobregion->length = 2;
203 if (!section)
204 oobregion->offset = 3;
205 else
206 oobregion->offset = 6;
207 }
208
209 return 0;
210}
211
212static const struct mtd_ooblayout_ops nand_ooblayout_sp_ops = {
213 .ecc = nand_ooblayout_ecc_sp,
214 .free = nand_ooblayout_free_sp,
215};
216
217const struct mtd_ooblayout_ops *nand_get_small_page_ooblayout(void)
218{
219 return &nand_ooblayout_sp_ops;
220}
221EXPORT_SYMBOL_GPL(nand_get_small_page_ooblayout);
222
223static int nand_ooblayout_ecc_lp(struct mtd_info *mtd, int section,
224 struct mtd_oob_region *oobregion)
225{
226 struct nand_device *nand = mtd_to_nanddev(mtd);
227 unsigned int total_ecc_bytes = nand->ecc.ctx.total;
228
229 if (section || !total_ecc_bytes)
230 return -ERANGE;
231
232 oobregion->length = total_ecc_bytes;
233 oobregion->offset = mtd->oobsize - oobregion->length;
234
235 return 0;
236}
237
238static int nand_ooblayout_free_lp(struct mtd_info *mtd, int section,
239 struct mtd_oob_region *oobregion)
240{
241 struct nand_device *nand = mtd_to_nanddev(mtd);
242 unsigned int total_ecc_bytes = nand->ecc.ctx.total;
243
244 if (section)
245 return -ERANGE;
246
247 oobregion->length = mtd->oobsize - total_ecc_bytes - 2;
248 oobregion->offset = 2;
249
250 return 0;
251}
252
253static const struct mtd_ooblayout_ops nand_ooblayout_lp_ops = {
254 .ecc = nand_ooblayout_ecc_lp,
255 .free = nand_ooblayout_free_lp,
256};
257
258const struct mtd_ooblayout_ops *nand_get_large_page_ooblayout(void)
259{
260 return &nand_ooblayout_lp_ops;
261}
262EXPORT_SYMBOL_GPL(nand_get_large_page_ooblayout);
263
264/*
265 * Support the old "large page" layout used for 1-bit Hamming ECC where ECC
266 * are placed at a fixed offset.
267 */
268static int nand_ooblayout_ecc_lp_hamming(struct mtd_info *mtd, int section,
269 struct mtd_oob_region *oobregion)
270{
271 struct nand_device *nand = mtd_to_nanddev(mtd);
272 unsigned int total_ecc_bytes = nand->ecc.ctx.total;
273
274 if (section)
275 return -ERANGE;
276
277 switch (mtd->oobsize) {
278 case 64:
279 oobregion->offset = 40;
280 break;
281 case 128:
282 oobregion->offset = 80;
283 break;
284 default:
285 return -EINVAL;
286 }
287
288 oobregion->length = total_ecc_bytes;
289 if (oobregion->offset + oobregion->length > mtd->oobsize)
290 return -ERANGE;
291
292 return 0;
293}
294
295static int nand_ooblayout_free_lp_hamming(struct mtd_info *mtd, int section,
296 struct mtd_oob_region *oobregion)
297{
298 struct nand_device *nand = mtd_to_nanddev(mtd);
299 unsigned int total_ecc_bytes = nand->ecc.ctx.total;
300 int ecc_offset = 0;
301
302 if (section < 0 || section > 1)
303 return -ERANGE;
304
305 switch (mtd->oobsize) {
306 case 64:
307 ecc_offset = 40;
308 break;
309 case 128:
310 ecc_offset = 80;
311 break;
312 default:
313 return -EINVAL;
314 }
315
316 if (section == 0) {
317 oobregion->offset = 2;
318 oobregion->length = ecc_offset - 2;
319 } else {
320 oobregion->offset = ecc_offset + total_ecc_bytes;
321 oobregion->length = mtd->oobsize - oobregion->offset;
322 }
323
324 return 0;
325}
326
327static const struct mtd_ooblayout_ops nand_ooblayout_lp_hamming_ops = {
328 .ecc = nand_ooblayout_ecc_lp_hamming,
329 .free = nand_ooblayout_free_lp_hamming,
330};
331
332const struct mtd_ooblayout_ops *nand_get_large_page_hamming_ooblayout(void)
333{
334 return &nand_ooblayout_lp_hamming_ops;
335}
336EXPORT_SYMBOL_GPL(nand_get_large_page_hamming_ooblayout);
337
338static enum nand_ecc_engine_type
339of_get_nand_ecc_engine_type(struct device_node *np)
340{
341 struct device_node *eng_np;
342
343 if (of_property_read_bool(np, propname: "nand-no-ecc-engine"))
344 return NAND_ECC_ENGINE_TYPE_NONE;
345
346 if (of_property_read_bool(np, propname: "nand-use-soft-ecc-engine"))
347 return NAND_ECC_ENGINE_TYPE_SOFT;
348
349 eng_np = of_parse_phandle(np, phandle_name: "nand-ecc-engine", index: 0);
350 of_node_put(node: eng_np);
351
352 if (eng_np) {
353 if (eng_np == np)
354 return NAND_ECC_ENGINE_TYPE_ON_DIE;
355 else
356 return NAND_ECC_ENGINE_TYPE_ON_HOST;
357 }
358
359 return NAND_ECC_ENGINE_TYPE_INVALID;
360}
361
362static const char * const nand_ecc_placement[] = {
363 [NAND_ECC_PLACEMENT_OOB] = "oob",
364 [NAND_ECC_PLACEMENT_INTERLEAVED] = "interleaved",
365};
366
367static enum nand_ecc_placement of_get_nand_ecc_placement(struct device_node *np)
368{
369 enum nand_ecc_placement placement;
370 const char *pm;
371 int err;
372
373 err = of_property_read_string(np, propname: "nand-ecc-placement", out_string: &pm);
374 if (!err) {
375 for (placement = NAND_ECC_PLACEMENT_OOB;
376 placement < ARRAY_SIZE(nand_ecc_placement); placement++) {
377 if (!strcasecmp(s1: pm, s2: nand_ecc_placement[placement]))
378 return placement;
379 }
380 }
381
382 return NAND_ECC_PLACEMENT_UNKNOWN;
383}
384
385static const char * const nand_ecc_algos[] = {
386 [NAND_ECC_ALGO_HAMMING] = "hamming",
387 [NAND_ECC_ALGO_BCH] = "bch",
388 [NAND_ECC_ALGO_RS] = "rs",
389};
390
391static enum nand_ecc_algo of_get_nand_ecc_algo(struct device_node *np)
392{
393 enum nand_ecc_algo ecc_algo;
394 const char *pm;
395 int err;
396
397 err = of_property_read_string(np, propname: "nand-ecc-algo", out_string: &pm);
398 if (!err) {
399 for (ecc_algo = NAND_ECC_ALGO_HAMMING;
400 ecc_algo < ARRAY_SIZE(nand_ecc_algos);
401 ecc_algo++) {
402 if (!strcasecmp(s1: pm, s2: nand_ecc_algos[ecc_algo]))
403 return ecc_algo;
404 }
405 }
406
407 return NAND_ECC_ALGO_UNKNOWN;
408}
409
410static int of_get_nand_ecc_step_size(struct device_node *np)
411{
412 int ret;
413 u32 val;
414
415 ret = of_property_read_u32(np, propname: "nand-ecc-step-size", out_value: &val);
416 return ret ? ret : val;
417}
418
419static int of_get_nand_ecc_strength(struct device_node *np)
420{
421 int ret;
422 u32 val;
423
424 ret = of_property_read_u32(np, propname: "nand-ecc-strength", out_value: &val);
425 return ret ? ret : val;
426}
427
428void of_get_nand_ecc_user_config(struct nand_device *nand)
429{
430 struct device_node *dn = nanddev_get_of_node(nand);
431 int strength, size;
432
433 nand->ecc.user_conf.engine_type = of_get_nand_ecc_engine_type(np: dn);
434 nand->ecc.user_conf.algo = of_get_nand_ecc_algo(np: dn);
435 nand->ecc.user_conf.placement = of_get_nand_ecc_placement(np: dn);
436
437 strength = of_get_nand_ecc_strength(np: dn);
438 if (strength >= 0)
439 nand->ecc.user_conf.strength = strength;
440
441 size = of_get_nand_ecc_step_size(np: dn);
442 if (size >= 0)
443 nand->ecc.user_conf.step_size = size;
444
445 if (of_property_read_bool(np: dn, propname: "nand-ecc-maximize"))
446 nand->ecc.user_conf.flags |= NAND_ECC_MAXIMIZE_STRENGTH;
447}
448EXPORT_SYMBOL(of_get_nand_ecc_user_config);
449
450/**
451 * nand_ecc_is_strong_enough - Check if the chip configuration meets the
452 * datasheet requirements.
453 *
454 * @nand: Device to check
455 *
456 * If our configuration corrects A bits per B bytes and the minimum
457 * required correction level is X bits per Y bytes, then we must ensure
458 * both of the following are true:
459 *
460 * (1) A / B >= X / Y
461 * (2) A >= X
462 *
463 * Requirement (1) ensures we can correct for the required bitflip density.
464 * Requirement (2) ensures we can correct even when all bitflips are clumped
465 * in the same sector.
466 */
467bool nand_ecc_is_strong_enough(struct nand_device *nand)
468{
469 const struct nand_ecc_props *reqs = nanddev_get_ecc_requirements(nand);
470 const struct nand_ecc_props *conf = nanddev_get_ecc_conf(nand);
471 struct mtd_info *mtd = nanddev_to_mtd(nand);
472 int corr, ds_corr;
473
474 if (conf->step_size == 0 || reqs->step_size == 0)
475 /* Not enough information */
476 return true;
477
478 /*
479 * We get the number of corrected bits per page to compare
480 * the correction density.
481 */
482 corr = (mtd->writesize * conf->strength) / conf->step_size;
483 ds_corr = (mtd->writesize * reqs->strength) / reqs->step_size;
484
485 return corr >= ds_corr && conf->strength >= reqs->strength;
486}
487EXPORT_SYMBOL(nand_ecc_is_strong_enough);
488
489/* ECC engine driver internal helpers */
490int nand_ecc_init_req_tweaking(struct nand_ecc_req_tweak_ctx *ctx,
491 struct nand_device *nand)
492{
493 unsigned int total_buffer_size;
494
495 ctx->nand = nand;
496
497 /* Let the user decide the exact length of each buffer */
498 if (!ctx->page_buffer_size)
499 ctx->page_buffer_size = nanddev_page_size(nand);
500 if (!ctx->oob_buffer_size)
501 ctx->oob_buffer_size = nanddev_per_page_oobsize(nand);
502
503 total_buffer_size = ctx->page_buffer_size + ctx->oob_buffer_size;
504
505 ctx->spare_databuf = kzalloc(size: total_buffer_size, GFP_KERNEL);
506 if (!ctx->spare_databuf)
507 return -ENOMEM;
508
509 ctx->spare_oobbuf = ctx->spare_databuf + ctx->page_buffer_size;
510
511 return 0;
512}
513EXPORT_SYMBOL_GPL(nand_ecc_init_req_tweaking);
514
515void nand_ecc_cleanup_req_tweaking(struct nand_ecc_req_tweak_ctx *ctx)
516{
517 kfree(objp: ctx->spare_databuf);
518}
519EXPORT_SYMBOL_GPL(nand_ecc_cleanup_req_tweaking);
520
521/*
522 * Ensure data and OOB area is fully read/written otherwise the correction might
523 * not work as expected.
524 */
525void nand_ecc_tweak_req(struct nand_ecc_req_tweak_ctx *ctx,
526 struct nand_page_io_req *req)
527{
528 struct nand_device *nand = ctx->nand;
529 struct nand_page_io_req *orig, *tweak;
530
531 /* Save the original request */
532 ctx->orig_req = *req;
533 ctx->bounce_data = false;
534 ctx->bounce_oob = false;
535 orig = &ctx->orig_req;
536 tweak = req;
537
538 /* Ensure the request covers the entire page */
539 if (orig->datalen < nanddev_page_size(nand)) {
540 ctx->bounce_data = true;
541 tweak->dataoffs = 0;
542 tweak->datalen = nanddev_page_size(nand);
543 tweak->databuf.in = ctx->spare_databuf;
544 memset(tweak->databuf.in, 0xFF, ctx->page_buffer_size);
545 }
546
547 if (orig->ooblen < nanddev_per_page_oobsize(nand)) {
548 ctx->bounce_oob = true;
549 tweak->ooboffs = 0;
550 tweak->ooblen = nanddev_per_page_oobsize(nand);
551 tweak->oobbuf.in = ctx->spare_oobbuf;
552 memset(tweak->oobbuf.in, 0xFF, ctx->oob_buffer_size);
553 }
554
555 /* Copy the data that must be writen in the bounce buffers, if needed */
556 if (orig->type == NAND_PAGE_WRITE) {
557 if (ctx->bounce_data)
558 memcpy((void *)tweak->databuf.out + orig->dataoffs,
559 orig->databuf.out, orig->datalen);
560
561 if (ctx->bounce_oob)
562 memcpy((void *)tweak->oobbuf.out + orig->ooboffs,
563 orig->oobbuf.out, orig->ooblen);
564 }
565}
566EXPORT_SYMBOL_GPL(nand_ecc_tweak_req);
567
568void nand_ecc_restore_req(struct nand_ecc_req_tweak_ctx *ctx,
569 struct nand_page_io_req *req)
570{
571 struct nand_page_io_req *orig, *tweak;
572
573 orig = &ctx->orig_req;
574 tweak = req;
575
576 /* Restore the data read from the bounce buffers, if needed */
577 if (orig->type == NAND_PAGE_READ) {
578 if (ctx->bounce_data)
579 memcpy(orig->databuf.in,
580 tweak->databuf.in + orig->dataoffs,
581 orig->datalen);
582
583 if (ctx->bounce_oob)
584 memcpy(orig->oobbuf.in,
585 tweak->oobbuf.in + orig->ooboffs,
586 orig->ooblen);
587 }
588
589 /* Ensure the original request is restored */
590 *req = *orig;
591}
592EXPORT_SYMBOL_GPL(nand_ecc_restore_req);
593
594struct nand_ecc_engine *nand_ecc_get_sw_engine(struct nand_device *nand)
595{
596 unsigned int algo = nand->ecc.user_conf.algo;
597
598 if (algo == NAND_ECC_ALGO_UNKNOWN)
599 algo = nand->ecc.defaults.algo;
600
601 switch (algo) {
602 case NAND_ECC_ALGO_HAMMING:
603 return nand_ecc_sw_hamming_get_engine();
604 case NAND_ECC_ALGO_BCH:
605 return nand_ecc_sw_bch_get_engine();
606 default:
607 break;
608 }
609
610 return NULL;
611}
612EXPORT_SYMBOL(nand_ecc_get_sw_engine);
613
614struct nand_ecc_engine *nand_ecc_get_on_die_hw_engine(struct nand_device *nand)
615{
616 return nand->ecc.ondie_engine;
617}
618EXPORT_SYMBOL(nand_ecc_get_on_die_hw_engine);
619
620int nand_ecc_register_on_host_hw_engine(struct nand_ecc_engine *engine)
621{
622 struct nand_ecc_engine *item;
623
624 if (!engine)
625 return -EINVAL;
626
627 /* Prevent multiple registrations of one engine */
628 list_for_each_entry(item, &on_host_hw_engines, node)
629 if (item == engine)
630 return 0;
631
632 mutex_lock(&on_host_hw_engines_mutex);
633 list_add_tail(new: &engine->node, head: &on_host_hw_engines);
634 mutex_unlock(lock: &on_host_hw_engines_mutex);
635
636 return 0;
637}
638EXPORT_SYMBOL(nand_ecc_register_on_host_hw_engine);
639
640int nand_ecc_unregister_on_host_hw_engine(struct nand_ecc_engine *engine)
641{
642 if (!engine)
643 return -EINVAL;
644
645 mutex_lock(&on_host_hw_engines_mutex);
646 list_del(entry: &engine->node);
647 mutex_unlock(lock: &on_host_hw_engines_mutex);
648
649 return 0;
650}
651EXPORT_SYMBOL(nand_ecc_unregister_on_host_hw_engine);
652
653static struct nand_ecc_engine *nand_ecc_match_on_host_hw_engine(struct device *dev)
654{
655 struct nand_ecc_engine *item;
656
657 list_for_each_entry(item, &on_host_hw_engines, node)
658 if (item->dev == dev)
659 return item;
660
661 return NULL;
662}
663
664struct nand_ecc_engine *nand_ecc_get_on_host_hw_engine(struct nand_device *nand)
665{
666 struct nand_ecc_engine *engine = NULL;
667 struct device *dev = &nand->mtd.dev;
668 struct platform_device *pdev;
669 struct device_node *np;
670
671 if (list_empty(head: &on_host_hw_engines))
672 return NULL;
673
674 /* Check for an explicit nand-ecc-engine property */
675 np = of_parse_phandle(np: dev->of_node, phandle_name: "nand-ecc-engine", index: 0);
676 if (np) {
677 pdev = of_find_device_by_node(np);
678 if (!pdev)
679 return ERR_PTR(error: -EPROBE_DEFER);
680
681 engine = nand_ecc_match_on_host_hw_engine(dev: &pdev->dev);
682 platform_device_put(pdev);
683 of_node_put(node: np);
684
685 if (!engine)
686 return ERR_PTR(error: -EPROBE_DEFER);
687 }
688
689 if (engine)
690 get_device(dev: engine->dev);
691
692 return engine;
693}
694EXPORT_SYMBOL(nand_ecc_get_on_host_hw_engine);
695
696void nand_ecc_put_on_host_hw_engine(struct nand_device *nand)
697{
698 put_device(dev: nand->ecc.engine->dev);
699}
700EXPORT_SYMBOL(nand_ecc_put_on_host_hw_engine);
701
702/*
703 * In the case of a pipelined engine, the device registering the ECC
704 * engine is not necessarily the ECC engine itself but may be a host controller.
705 * It is then useful to provide a helper to retrieve the right device object
706 * which actually represents the ECC engine.
707 */
708struct device *nand_ecc_get_engine_dev(struct device *host)
709{
710 struct platform_device *ecc_pdev;
711 struct device_node *np;
712
713 /*
714 * If the device node contains this property, it means we need to follow
715 * it in order to get the right ECC engine device we are looking for.
716 */
717 np = of_parse_phandle(np: host->of_node, phandle_name: "nand-ecc-engine", index: 0);
718 if (!np)
719 return host;
720
721 ecc_pdev = of_find_device_by_node(np);
722 if (!ecc_pdev) {
723 of_node_put(node: np);
724 return NULL;
725 }
726
727 platform_device_put(pdev: ecc_pdev);
728 of_node_put(node: np);
729
730 return &ecc_pdev->dev;
731}
732
733MODULE_LICENSE("GPL");
734MODULE_AUTHOR("Miquel Raynal <miquel.raynal@bootlin.com>");
735MODULE_DESCRIPTION("Generic ECC engine");
736

source code of linux/drivers/mtd/nand/ecc.c