1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Samsung S3C64XX/S5PC1XX OneNAND driver
4 *
5 * Copyright © 2008-2010 Samsung Electronics
6 * Kyungmin Park <kyungmin.park@samsung.com>
7 * Marek Szyprowski <m.szyprowski@samsung.com>
8 *
9 * Implementation:
10 * S3C64XX: emulate the pseudo BufferRAM
11 * S5PC110: use DMA
12 */
13
14#include <linux/module.h>
15#include <linux/platform_device.h>
16#include <linux/sched.h>
17#include <linux/slab.h>
18#include <linux/mtd/mtd.h>
19#include <linux/mtd/onenand.h>
20#include <linux/mtd/partitions.h>
21#include <linux/dma-mapping.h>
22#include <linux/interrupt.h>
23#include <linux/io.h>
24
25#include "samsung.h"
26
27enum soc_type {
28 TYPE_S3C6400,
29 TYPE_S3C6410,
30 TYPE_S5PC110,
31};
32
33#define ONENAND_ERASE_STATUS 0x00
34#define ONENAND_MULTI_ERASE_SET 0x01
35#define ONENAND_ERASE_START 0x03
36#define ONENAND_UNLOCK_START 0x08
37#define ONENAND_UNLOCK_END 0x09
38#define ONENAND_LOCK_START 0x0A
39#define ONENAND_LOCK_END 0x0B
40#define ONENAND_LOCK_TIGHT_START 0x0C
41#define ONENAND_LOCK_TIGHT_END 0x0D
42#define ONENAND_UNLOCK_ALL 0x0E
43#define ONENAND_OTP_ACCESS 0x12
44#define ONENAND_SPARE_ACCESS_ONLY 0x13
45#define ONENAND_MAIN_ACCESS_ONLY 0x14
46#define ONENAND_ERASE_VERIFY 0x15
47#define ONENAND_MAIN_SPARE_ACCESS 0x16
48#define ONENAND_PIPELINE_READ 0x4000
49
50#define MAP_00 (0x0)
51#define MAP_01 (0x1)
52#define MAP_10 (0x2)
53#define MAP_11 (0x3)
54
55#define S3C64XX_CMD_MAP_SHIFT 24
56
57#define S3C6400_FBA_SHIFT 10
58#define S3C6400_FPA_SHIFT 4
59#define S3C6400_FSA_SHIFT 2
60
61#define S3C6410_FBA_SHIFT 12
62#define S3C6410_FPA_SHIFT 6
63#define S3C6410_FSA_SHIFT 4
64
65/* S5PC110 specific definitions */
66#define S5PC110_DMA_SRC_ADDR 0x400
67#define S5PC110_DMA_SRC_CFG 0x404
68#define S5PC110_DMA_DST_ADDR 0x408
69#define S5PC110_DMA_DST_CFG 0x40C
70#define S5PC110_DMA_TRANS_SIZE 0x414
71#define S5PC110_DMA_TRANS_CMD 0x418
72#define S5PC110_DMA_TRANS_STATUS 0x41C
73#define S5PC110_DMA_TRANS_DIR 0x420
74#define S5PC110_INTC_DMA_CLR 0x1004
75#define S5PC110_INTC_ONENAND_CLR 0x1008
76#define S5PC110_INTC_DMA_MASK 0x1024
77#define S5PC110_INTC_ONENAND_MASK 0x1028
78#define S5PC110_INTC_DMA_PEND 0x1044
79#define S5PC110_INTC_ONENAND_PEND 0x1048
80#define S5PC110_INTC_DMA_STATUS 0x1064
81#define S5PC110_INTC_ONENAND_STATUS 0x1068
82
83#define S5PC110_INTC_DMA_TD (1 << 24)
84#define S5PC110_INTC_DMA_TE (1 << 16)
85
86#define S5PC110_DMA_CFG_SINGLE (0x0 << 16)
87#define S5PC110_DMA_CFG_4BURST (0x2 << 16)
88#define S5PC110_DMA_CFG_8BURST (0x3 << 16)
89#define S5PC110_DMA_CFG_16BURST (0x4 << 16)
90
91#define S5PC110_DMA_CFG_INC (0x0 << 8)
92#define S5PC110_DMA_CFG_CNT (0x1 << 8)
93
94#define S5PC110_DMA_CFG_8BIT (0x0 << 0)
95#define S5PC110_DMA_CFG_16BIT (0x1 << 0)
96#define S5PC110_DMA_CFG_32BIT (0x2 << 0)
97
98#define S5PC110_DMA_SRC_CFG_READ (S5PC110_DMA_CFG_16BURST | \
99 S5PC110_DMA_CFG_INC | \
100 S5PC110_DMA_CFG_16BIT)
101#define S5PC110_DMA_DST_CFG_READ (S5PC110_DMA_CFG_16BURST | \
102 S5PC110_DMA_CFG_INC | \
103 S5PC110_DMA_CFG_32BIT)
104#define S5PC110_DMA_SRC_CFG_WRITE (S5PC110_DMA_CFG_16BURST | \
105 S5PC110_DMA_CFG_INC | \
106 S5PC110_DMA_CFG_32BIT)
107#define S5PC110_DMA_DST_CFG_WRITE (S5PC110_DMA_CFG_16BURST | \
108 S5PC110_DMA_CFG_INC | \
109 S5PC110_DMA_CFG_16BIT)
110
111#define S5PC110_DMA_TRANS_CMD_TDC (0x1 << 18)
112#define S5PC110_DMA_TRANS_CMD_TEC (0x1 << 16)
113#define S5PC110_DMA_TRANS_CMD_TR (0x1 << 0)
114
115#define S5PC110_DMA_TRANS_STATUS_TD (0x1 << 18)
116#define S5PC110_DMA_TRANS_STATUS_TB (0x1 << 17)
117#define S5PC110_DMA_TRANS_STATUS_TE (0x1 << 16)
118
119#define S5PC110_DMA_DIR_READ 0x0
120#define S5PC110_DMA_DIR_WRITE 0x1
121
122struct s3c_onenand {
123 struct mtd_info *mtd;
124 struct platform_device *pdev;
125 enum soc_type type;
126 void __iomem *base;
127 void __iomem *ahb_addr;
128 int bootram_command;
129 void *page_buf;
130 void *oob_buf;
131 unsigned int (*mem_addr)(int fba, int fpa, int fsa);
132 unsigned int (*cmd_map)(unsigned int type, unsigned int val);
133 void __iomem *dma_addr;
134 unsigned long phys_base;
135 struct completion complete;
136};
137
138#define CMD_MAP_00(dev, addr) (dev->cmd_map(MAP_00, ((addr) << 1)))
139#define CMD_MAP_01(dev, mem_addr) (dev->cmd_map(MAP_01, (mem_addr)))
140#define CMD_MAP_10(dev, mem_addr) (dev->cmd_map(MAP_10, (mem_addr)))
141#define CMD_MAP_11(dev, addr) (dev->cmd_map(MAP_11, ((addr) << 2)))
142
143static struct s3c_onenand *onenand;
144
145static inline int s3c_read_reg(int offset)
146{
147 return readl(addr: onenand->base + offset);
148}
149
150static inline void s3c_write_reg(int value, int offset)
151{
152 writel(val: value, addr: onenand->base + offset);
153}
154
155static inline int s3c_read_cmd(unsigned int cmd)
156{
157 return readl(addr: onenand->ahb_addr + cmd);
158}
159
160static inline void s3c_write_cmd(int value, unsigned int cmd)
161{
162 writel(val: value, addr: onenand->ahb_addr + cmd);
163}
164
165#ifdef SAMSUNG_DEBUG
166static void s3c_dump_reg(void)
167{
168 int i;
169
170 for (i = 0; i < 0x400; i += 0x40) {
171 printk(KERN_INFO "0x%08X: 0x%08x 0x%08x 0x%08x 0x%08x\n",
172 (unsigned int) onenand->base + i,
173 s3c_read_reg(i), s3c_read_reg(i + 0x10),
174 s3c_read_reg(i + 0x20), s3c_read_reg(i + 0x30));
175 }
176}
177#endif
178
179static unsigned int s3c64xx_cmd_map(unsigned type, unsigned val)
180{
181 return (type << S3C64XX_CMD_MAP_SHIFT) | val;
182}
183
184static unsigned int s3c6400_mem_addr(int fba, int fpa, int fsa)
185{
186 return (fba << S3C6400_FBA_SHIFT) | (fpa << S3C6400_FPA_SHIFT) |
187 (fsa << S3C6400_FSA_SHIFT);
188}
189
190static unsigned int s3c6410_mem_addr(int fba, int fpa, int fsa)
191{
192 return (fba << S3C6410_FBA_SHIFT) | (fpa << S3C6410_FPA_SHIFT) |
193 (fsa << S3C6410_FSA_SHIFT);
194}
195
196static void s3c_onenand_reset(void)
197{
198 unsigned long timeout = 0x10000;
199 int stat;
200
201 s3c_write_reg(ONENAND_MEM_RESET_COLD, MEM_RESET_OFFSET);
202 while (1 && timeout--) {
203 stat = s3c_read_reg(INT_ERR_STAT_OFFSET);
204 if (stat & RST_CMP)
205 break;
206 }
207 stat = s3c_read_reg(INT_ERR_STAT_OFFSET);
208 s3c_write_reg(value: stat, INT_ERR_ACK_OFFSET);
209
210 /* Clear interrupt */
211 s3c_write_reg(value: 0x0, INT_ERR_ACK_OFFSET);
212 /* Clear the ECC status */
213 s3c_write_reg(value: 0x0, ECC_ERR_STAT_OFFSET);
214}
215
216static unsigned short s3c_onenand_readw(void __iomem *addr)
217{
218 struct onenand_chip *this = onenand->mtd->priv;
219 struct device *dev = &onenand->pdev->dev;
220 int reg = addr - this->base;
221 int word_addr = reg >> 1;
222 int value;
223
224 /* It's used for probing time */
225 switch (reg) {
226 case ONENAND_REG_MANUFACTURER_ID:
227 return s3c_read_reg(MANUFACT_ID_OFFSET);
228 case ONENAND_REG_DEVICE_ID:
229 return s3c_read_reg(DEVICE_ID_OFFSET);
230 case ONENAND_REG_VERSION_ID:
231 return s3c_read_reg(FLASH_VER_ID_OFFSET);
232 case ONENAND_REG_DATA_BUFFER_SIZE:
233 return s3c_read_reg(DATA_BUF_SIZE_OFFSET);
234 case ONENAND_REG_TECHNOLOGY:
235 return s3c_read_reg(TECH_OFFSET);
236 case ONENAND_REG_SYS_CFG1:
237 return s3c_read_reg(MEM_CFG_OFFSET);
238
239 /* Used at unlock all status */
240 case ONENAND_REG_CTRL_STATUS:
241 return 0;
242
243 case ONENAND_REG_WP_STATUS:
244 return ONENAND_WP_US;
245
246 default:
247 break;
248 }
249
250 /* BootRAM access control */
251 if ((unsigned long)addr < ONENAND_DATARAM && onenand->bootram_command) {
252 if (word_addr == 0)
253 return s3c_read_reg(MANUFACT_ID_OFFSET);
254 if (word_addr == 1)
255 return s3c_read_reg(DEVICE_ID_OFFSET);
256 if (word_addr == 2)
257 return s3c_read_reg(FLASH_VER_ID_OFFSET);
258 }
259
260 value = s3c_read_cmd(CMD_MAP_11(onenand, word_addr)) & 0xffff;
261 dev_info(dev, "%s: Illegal access at reg 0x%x, value 0x%x\n", __func__,
262 word_addr, value);
263 return value;
264}
265
266static void s3c_onenand_writew(unsigned short value, void __iomem *addr)
267{
268 struct onenand_chip *this = onenand->mtd->priv;
269 struct device *dev = &onenand->pdev->dev;
270 unsigned int reg = addr - this->base;
271 unsigned int word_addr = reg >> 1;
272
273 /* It's used for probing time */
274 switch (reg) {
275 case ONENAND_REG_SYS_CFG1:
276 s3c_write_reg(value, MEM_CFG_OFFSET);
277 return;
278
279 case ONENAND_REG_START_ADDRESS1:
280 case ONENAND_REG_START_ADDRESS2:
281 return;
282
283 /* Lock/lock-tight/unlock/unlock_all */
284 case ONENAND_REG_START_BLOCK_ADDRESS:
285 return;
286
287 default:
288 break;
289 }
290
291 /* BootRAM access control */
292 if ((unsigned long)addr < ONENAND_DATARAM) {
293 if (value == ONENAND_CMD_READID) {
294 onenand->bootram_command = 1;
295 return;
296 }
297 if (value == ONENAND_CMD_RESET) {
298 s3c_write_reg(ONENAND_MEM_RESET_COLD, MEM_RESET_OFFSET);
299 onenand->bootram_command = 0;
300 return;
301 }
302 }
303
304 dev_info(dev, "%s: Illegal access at reg 0x%x, value 0x%x\n", __func__,
305 word_addr, value);
306
307 s3c_write_cmd(value, CMD_MAP_11(onenand, word_addr));
308}
309
310static int s3c_onenand_wait(struct mtd_info *mtd, int state)
311{
312 struct device *dev = &onenand->pdev->dev;
313 unsigned int flags = INT_ACT;
314 unsigned int stat, ecc;
315 unsigned long timeout;
316
317 switch (state) {
318 case FL_READING:
319 flags |= BLK_RW_CMP | LOAD_CMP;
320 break;
321 case FL_WRITING:
322 flags |= BLK_RW_CMP | PGM_CMP;
323 break;
324 case FL_ERASING:
325 flags |= BLK_RW_CMP | ERS_CMP;
326 break;
327 case FL_LOCKING:
328 flags |= BLK_RW_CMP;
329 break;
330 default:
331 break;
332 }
333
334 /* The 20 msec is enough */
335 timeout = jiffies + msecs_to_jiffies(m: 20);
336 while (time_before(jiffies, timeout)) {
337 stat = s3c_read_reg(INT_ERR_STAT_OFFSET);
338 if (stat & flags)
339 break;
340
341 if (state != FL_READING)
342 cond_resched();
343 }
344 /* To get correct interrupt status in timeout case */
345 stat = s3c_read_reg(INT_ERR_STAT_OFFSET);
346 s3c_write_reg(value: stat, INT_ERR_ACK_OFFSET);
347
348 /*
349 * In the Spec. it checks the controller status first
350 * However if you get the correct information in case of
351 * power off recovery (POR) test, it should read ECC status first
352 */
353 if (stat & LOAD_CMP) {
354 ecc = s3c_read_reg(ECC_ERR_STAT_OFFSET);
355 if (ecc & ONENAND_ECC_4BIT_UNCORRECTABLE) {
356 dev_info(dev, "%s: ECC error = 0x%04x\n", __func__,
357 ecc);
358 mtd->ecc_stats.failed++;
359 return -EBADMSG;
360 }
361 }
362
363 if (stat & (LOCKED_BLK | ERS_FAIL | PGM_FAIL | LD_FAIL_ECC_ERR)) {
364 dev_info(dev, "%s: controller error = 0x%04x\n", __func__,
365 stat);
366 if (stat & LOCKED_BLK)
367 dev_info(dev, "%s: it's locked error = 0x%04x\n",
368 __func__, stat);
369
370 return -EIO;
371 }
372
373 return 0;
374}
375
376static int s3c_onenand_command(struct mtd_info *mtd, int cmd, loff_t addr,
377 size_t len)
378{
379 struct onenand_chip *this = mtd->priv;
380 unsigned int *m, *s;
381 int fba, fpa, fsa = 0;
382 unsigned int mem_addr, cmd_map_01, cmd_map_10;
383 int i, mcount, scount;
384 int index;
385
386 fba = (int) (addr >> this->erase_shift);
387 fpa = (int) (addr >> this->page_shift);
388 fpa &= this->page_mask;
389
390 mem_addr = onenand->mem_addr(fba, fpa, fsa);
391 cmd_map_01 = CMD_MAP_01(onenand, mem_addr);
392 cmd_map_10 = CMD_MAP_10(onenand, mem_addr);
393
394 switch (cmd) {
395 case ONENAND_CMD_READ:
396 case ONENAND_CMD_READOOB:
397 case ONENAND_CMD_BUFFERRAM:
398 ONENAND_SET_NEXT_BUFFERRAM(this);
399 break;
400 default:
401 break;
402 }
403
404 index = ONENAND_CURRENT_BUFFERRAM(this);
405
406 /*
407 * Emulate Two BufferRAMs and access with 4 bytes pointer
408 */
409 m = onenand->page_buf;
410 s = onenand->oob_buf;
411
412 if (index) {
413 m += (this->writesize >> 2);
414 s += (mtd->oobsize >> 2);
415 }
416
417 mcount = mtd->writesize >> 2;
418 scount = mtd->oobsize >> 2;
419
420 switch (cmd) {
421 case ONENAND_CMD_READ:
422 /* Main */
423 for (i = 0; i < mcount; i++)
424 *m++ = s3c_read_cmd(cmd: cmd_map_01);
425 return 0;
426
427 case ONENAND_CMD_READOOB:
428 s3c_write_reg(TSRF, TRANS_SPARE_OFFSET);
429 /* Main */
430 for (i = 0; i < mcount; i++)
431 *m++ = s3c_read_cmd(cmd: cmd_map_01);
432
433 /* Spare */
434 for (i = 0; i < scount; i++)
435 *s++ = s3c_read_cmd(cmd: cmd_map_01);
436
437 s3c_write_reg(value: 0, TRANS_SPARE_OFFSET);
438 return 0;
439
440 case ONENAND_CMD_PROG:
441 /* Main */
442 for (i = 0; i < mcount; i++)
443 s3c_write_cmd(value: *m++, cmd: cmd_map_01);
444 return 0;
445
446 case ONENAND_CMD_PROGOOB:
447 s3c_write_reg(TSRF, TRANS_SPARE_OFFSET);
448
449 /* Main - dummy write */
450 for (i = 0; i < mcount; i++)
451 s3c_write_cmd(value: 0xffffffff, cmd: cmd_map_01);
452
453 /* Spare */
454 for (i = 0; i < scount; i++)
455 s3c_write_cmd(value: *s++, cmd: cmd_map_01);
456
457 s3c_write_reg(value: 0, TRANS_SPARE_OFFSET);
458 return 0;
459
460 case ONENAND_CMD_UNLOCK_ALL:
461 s3c_write_cmd(ONENAND_UNLOCK_ALL, cmd: cmd_map_10);
462 return 0;
463
464 case ONENAND_CMD_ERASE:
465 s3c_write_cmd(ONENAND_ERASE_START, cmd: cmd_map_10);
466 return 0;
467
468 default:
469 break;
470 }
471
472 return 0;
473}
474
475static unsigned char *s3c_get_bufferram(struct mtd_info *mtd, int area)
476{
477 struct onenand_chip *this = mtd->priv;
478 int index = ONENAND_CURRENT_BUFFERRAM(this);
479 unsigned char *p;
480
481 if (area == ONENAND_DATARAM) {
482 p = onenand->page_buf;
483 if (index == 1)
484 p += this->writesize;
485 } else {
486 p = onenand->oob_buf;
487 if (index == 1)
488 p += mtd->oobsize;
489 }
490
491 return p;
492}
493
494static int onenand_read_bufferram(struct mtd_info *mtd, int area,
495 unsigned char *buffer, int offset,
496 size_t count)
497{
498 unsigned char *p;
499
500 p = s3c_get_bufferram(mtd, area);
501 memcpy(buffer, p + offset, count);
502 return 0;
503}
504
505static int onenand_write_bufferram(struct mtd_info *mtd, int area,
506 const unsigned char *buffer, int offset,
507 size_t count)
508{
509 unsigned char *p;
510
511 p = s3c_get_bufferram(mtd, area);
512 memcpy(p + offset, buffer, count);
513 return 0;
514}
515
516static int (*s5pc110_dma_ops)(dma_addr_t dst, dma_addr_t src, size_t count, int direction);
517
518static int s5pc110_dma_poll(dma_addr_t dst, dma_addr_t src, size_t count, int direction)
519{
520 void __iomem *base = onenand->dma_addr;
521 int status;
522 unsigned long timeout;
523
524 writel(val: src, addr: base + S5PC110_DMA_SRC_ADDR);
525 writel(val: dst, addr: base + S5PC110_DMA_DST_ADDR);
526
527 if (direction == S5PC110_DMA_DIR_READ) {
528 writel(S5PC110_DMA_SRC_CFG_READ, addr: base + S5PC110_DMA_SRC_CFG);
529 writel(S5PC110_DMA_DST_CFG_READ, addr: base + S5PC110_DMA_DST_CFG);
530 } else {
531 writel(S5PC110_DMA_SRC_CFG_WRITE, addr: base + S5PC110_DMA_SRC_CFG);
532 writel(S5PC110_DMA_DST_CFG_WRITE, addr: base + S5PC110_DMA_DST_CFG);
533 }
534
535 writel(val: count, addr: base + S5PC110_DMA_TRANS_SIZE);
536 writel(val: direction, addr: base + S5PC110_DMA_TRANS_DIR);
537
538 writel(S5PC110_DMA_TRANS_CMD_TR, addr: base + S5PC110_DMA_TRANS_CMD);
539
540 /*
541 * There's no exact timeout values at Spec.
542 * In real case it takes under 1 msec.
543 * So 20 msecs are enough.
544 */
545 timeout = jiffies + msecs_to_jiffies(m: 20);
546
547 do {
548 status = readl(addr: base + S5PC110_DMA_TRANS_STATUS);
549 if (status & S5PC110_DMA_TRANS_STATUS_TE) {
550 writel(S5PC110_DMA_TRANS_CMD_TEC,
551 addr: base + S5PC110_DMA_TRANS_CMD);
552 return -EIO;
553 }
554 } while (!(status & S5PC110_DMA_TRANS_STATUS_TD) &&
555 time_before(jiffies, timeout));
556
557 writel(S5PC110_DMA_TRANS_CMD_TDC, addr: base + S5PC110_DMA_TRANS_CMD);
558
559 return 0;
560}
561
562static irqreturn_t s5pc110_onenand_irq(int irq, void *data)
563{
564 void __iomem *base = onenand->dma_addr;
565 int status, cmd = 0;
566
567 status = readl(addr: base + S5PC110_INTC_DMA_STATUS);
568
569 if (likely(status & S5PC110_INTC_DMA_TD))
570 cmd = S5PC110_DMA_TRANS_CMD_TDC;
571
572 if (unlikely(status & S5PC110_INTC_DMA_TE))
573 cmd = S5PC110_DMA_TRANS_CMD_TEC;
574
575 writel(val: cmd, addr: base + S5PC110_DMA_TRANS_CMD);
576 writel(val: status, addr: base + S5PC110_INTC_DMA_CLR);
577
578 if (!onenand->complete.done)
579 complete(&onenand->complete);
580
581 return IRQ_HANDLED;
582}
583
584static int s5pc110_dma_irq(dma_addr_t dst, dma_addr_t src, size_t count, int direction)
585{
586 void __iomem *base = onenand->dma_addr;
587 int status;
588
589 status = readl(addr: base + S5PC110_INTC_DMA_MASK);
590 if (status) {
591 status &= ~(S5PC110_INTC_DMA_TD | S5PC110_INTC_DMA_TE);
592 writel(val: status, addr: base + S5PC110_INTC_DMA_MASK);
593 }
594
595 writel(val: src, addr: base + S5PC110_DMA_SRC_ADDR);
596 writel(val: dst, addr: base + S5PC110_DMA_DST_ADDR);
597
598 if (direction == S5PC110_DMA_DIR_READ) {
599 writel(S5PC110_DMA_SRC_CFG_READ, addr: base + S5PC110_DMA_SRC_CFG);
600 writel(S5PC110_DMA_DST_CFG_READ, addr: base + S5PC110_DMA_DST_CFG);
601 } else {
602 writel(S5PC110_DMA_SRC_CFG_WRITE, addr: base + S5PC110_DMA_SRC_CFG);
603 writel(S5PC110_DMA_DST_CFG_WRITE, addr: base + S5PC110_DMA_DST_CFG);
604 }
605
606 writel(val: count, addr: base + S5PC110_DMA_TRANS_SIZE);
607 writel(val: direction, addr: base + S5PC110_DMA_TRANS_DIR);
608
609 writel(S5PC110_DMA_TRANS_CMD_TR, addr: base + S5PC110_DMA_TRANS_CMD);
610
611 wait_for_completion_timeout(x: &onenand->complete, timeout: msecs_to_jiffies(m: 20));
612
613 return 0;
614}
615
616static int s5pc110_read_bufferram(struct mtd_info *mtd, int area,
617 unsigned char *buffer, int offset, size_t count)
618{
619 struct onenand_chip *this = mtd->priv;
620 void __iomem *p;
621 void *buf = (void *) buffer;
622 dma_addr_t dma_src, dma_dst;
623 int err, ofs, page_dma = 0;
624 struct device *dev = &onenand->pdev->dev;
625
626 p = this->base + area;
627 if (ONENAND_CURRENT_BUFFERRAM(this)) {
628 if (area == ONENAND_DATARAM)
629 p += this->writesize;
630 else
631 p += mtd->oobsize;
632 }
633
634 if (offset & 3 || (size_t) buf & 3 ||
635 !onenand->dma_addr || count != mtd->writesize)
636 goto normal;
637
638 /* Handle vmalloc address */
639 if (buf >= high_memory) {
640 struct page *page;
641
642 if (((size_t) buf & PAGE_MASK) !=
643 ((size_t) (buf + count - 1) & PAGE_MASK))
644 goto normal;
645 page = vmalloc_to_page(addr: buf);
646 if (!page)
647 goto normal;
648
649 /* Page offset */
650 ofs = ((size_t) buf & ~PAGE_MASK);
651 page_dma = 1;
652
653 /* DMA routine */
654 dma_src = onenand->phys_base + (p - this->base);
655 dma_dst = dma_map_page(dev, page, ofs, count, DMA_FROM_DEVICE);
656 } else {
657 /* DMA routine */
658 dma_src = onenand->phys_base + (p - this->base);
659 dma_dst = dma_map_single(dev, buf, count, DMA_FROM_DEVICE);
660 }
661 if (dma_mapping_error(dev, dma_addr: dma_dst)) {
662 dev_err(dev, "Couldn't map a %zu byte buffer for DMA\n", count);
663 goto normal;
664 }
665 err = s5pc110_dma_ops(dma_dst, dma_src,
666 count, S5PC110_DMA_DIR_READ);
667
668 if (page_dma)
669 dma_unmap_page(dev, dma_dst, count, DMA_FROM_DEVICE);
670 else
671 dma_unmap_single(dev, dma_dst, count, DMA_FROM_DEVICE);
672
673 if (!err)
674 return 0;
675
676normal:
677 if (count != mtd->writesize) {
678 /* Copy the bufferram to memory to prevent unaligned access */
679 memcpy_fromio(this->page_buf, p, mtd->writesize);
680 memcpy(buffer, this->page_buf + offset, count);
681 } else {
682 memcpy_fromio(buffer, p, count);
683 }
684
685 return 0;
686}
687
688static int s5pc110_chip_probe(struct mtd_info *mtd)
689{
690 /* Now just return 0 */
691 return 0;
692}
693
694static int s3c_onenand_bbt_wait(struct mtd_info *mtd, int state)
695{
696 unsigned int flags = INT_ACT | LOAD_CMP;
697 unsigned int stat;
698 unsigned long timeout;
699
700 /* The 20 msec is enough */
701 timeout = jiffies + msecs_to_jiffies(m: 20);
702 while (time_before(jiffies, timeout)) {
703 stat = s3c_read_reg(INT_ERR_STAT_OFFSET);
704 if (stat & flags)
705 break;
706 }
707 /* To get correct interrupt status in timeout case */
708 stat = s3c_read_reg(INT_ERR_STAT_OFFSET);
709 s3c_write_reg(value: stat, INT_ERR_ACK_OFFSET);
710
711 if (stat & LD_FAIL_ECC_ERR) {
712 s3c_onenand_reset();
713 return ONENAND_BBT_READ_ERROR;
714 }
715
716 if (stat & LOAD_CMP) {
717 int ecc = s3c_read_reg(ECC_ERR_STAT_OFFSET);
718 if (ecc & ONENAND_ECC_4BIT_UNCORRECTABLE) {
719 s3c_onenand_reset();
720 return ONENAND_BBT_READ_ERROR;
721 }
722 }
723
724 return 0;
725}
726
727static void s3c_onenand_check_lock_status(struct mtd_info *mtd)
728{
729 struct onenand_chip *this = mtd->priv;
730 struct device *dev = &onenand->pdev->dev;
731 unsigned int block, end;
732
733 end = this->chipsize >> this->erase_shift;
734
735 for (block = 0; block < end; block++) {
736 unsigned int mem_addr = onenand->mem_addr(block, 0, 0);
737 s3c_read_cmd(CMD_MAP_01(onenand, mem_addr));
738
739 if (s3c_read_reg(INT_ERR_STAT_OFFSET) & LOCKED_BLK) {
740 dev_err(dev, "block %d is write-protected!\n", block);
741 s3c_write_reg(LOCKED_BLK, INT_ERR_ACK_OFFSET);
742 }
743 }
744}
745
746static void s3c_onenand_do_lock_cmd(struct mtd_info *mtd, loff_t ofs,
747 size_t len, int cmd)
748{
749 struct onenand_chip *this = mtd->priv;
750 int start, end, start_mem_addr, end_mem_addr;
751
752 start = ofs >> this->erase_shift;
753 start_mem_addr = onenand->mem_addr(start, 0, 0);
754 end = start + (len >> this->erase_shift) - 1;
755 end_mem_addr = onenand->mem_addr(end, 0, 0);
756
757 if (cmd == ONENAND_CMD_LOCK) {
758 s3c_write_cmd(ONENAND_LOCK_START, CMD_MAP_10(onenand,
759 start_mem_addr));
760 s3c_write_cmd(ONENAND_LOCK_END, CMD_MAP_10(onenand,
761 end_mem_addr));
762 } else {
763 s3c_write_cmd(ONENAND_UNLOCK_START, CMD_MAP_10(onenand,
764 start_mem_addr));
765 s3c_write_cmd(ONENAND_UNLOCK_END, CMD_MAP_10(onenand,
766 end_mem_addr));
767 }
768
769 this->wait(mtd, FL_LOCKING);
770}
771
772static void s3c_unlock_all(struct mtd_info *mtd)
773{
774 struct onenand_chip *this = mtd->priv;
775 loff_t ofs = 0;
776 size_t len = this->chipsize;
777
778 if (this->options & ONENAND_HAS_UNLOCK_ALL) {
779 /* Write unlock command */
780 this->command(mtd, ONENAND_CMD_UNLOCK_ALL, 0, 0);
781
782 /* No need to check return value */
783 this->wait(mtd, FL_LOCKING);
784
785 /* Workaround for all block unlock in DDP */
786 if (!ONENAND_IS_DDP(this)) {
787 s3c_onenand_check_lock_status(mtd);
788 return;
789 }
790
791 /* All blocks on another chip */
792 ofs = this->chipsize >> 1;
793 len = this->chipsize >> 1;
794 }
795
796 s3c_onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_UNLOCK);
797
798 s3c_onenand_check_lock_status(mtd);
799}
800
801static void s3c_onenand_setup(struct mtd_info *mtd)
802{
803 struct onenand_chip *this = mtd->priv;
804
805 onenand->mtd = mtd;
806
807 if (onenand->type == TYPE_S3C6400) {
808 onenand->mem_addr = s3c6400_mem_addr;
809 onenand->cmd_map = s3c64xx_cmd_map;
810 } else if (onenand->type == TYPE_S3C6410) {
811 onenand->mem_addr = s3c6410_mem_addr;
812 onenand->cmd_map = s3c64xx_cmd_map;
813 } else if (onenand->type == TYPE_S5PC110) {
814 /* Use generic onenand functions */
815 this->read_bufferram = s5pc110_read_bufferram;
816 this->chip_probe = s5pc110_chip_probe;
817 return;
818 } else {
819 BUG();
820 }
821
822 this->read_word = s3c_onenand_readw;
823 this->write_word = s3c_onenand_writew;
824
825 this->wait = s3c_onenand_wait;
826 this->bbt_wait = s3c_onenand_bbt_wait;
827 this->unlock_all = s3c_unlock_all;
828 this->command = s3c_onenand_command;
829
830 this->read_bufferram = onenand_read_bufferram;
831 this->write_bufferram = onenand_write_bufferram;
832}
833
834static int s3c_onenand_probe(struct platform_device *pdev)
835{
836 struct onenand_platform_data *pdata;
837 struct onenand_chip *this;
838 struct mtd_info *mtd;
839 struct resource *r;
840 int size, err;
841
842 pdata = dev_get_platdata(dev: &pdev->dev);
843 /* No need to check pdata. the platform data is optional */
844
845 size = sizeof(struct mtd_info) + sizeof(struct onenand_chip);
846 mtd = devm_kzalloc(dev: &pdev->dev, size, GFP_KERNEL);
847 if (!mtd)
848 return -ENOMEM;
849
850 onenand = devm_kzalloc(dev: &pdev->dev, size: sizeof(struct s3c_onenand),
851 GFP_KERNEL);
852 if (!onenand)
853 return -ENOMEM;
854
855 this = (struct onenand_chip *) &mtd[1];
856 mtd->priv = this;
857 mtd->dev.parent = &pdev->dev;
858 onenand->pdev = pdev;
859 onenand->type = platform_get_device_id(pdev)->driver_data;
860
861 s3c_onenand_setup(mtd);
862
863 onenand->base = devm_platform_get_and_ioremap_resource(pdev, index: 0, res: &r);
864 if (IS_ERR(ptr: onenand->base))
865 return PTR_ERR(ptr: onenand->base);
866
867 onenand->phys_base = r->start;
868
869 /* Set onenand_chip also */
870 this->base = onenand->base;
871
872 /* Use runtime badblock check */
873 this->options |= ONENAND_SKIP_UNLOCK_CHECK;
874
875 if (onenand->type != TYPE_S5PC110) {
876 onenand->ahb_addr = devm_platform_ioremap_resource(pdev, index: 1);
877 if (IS_ERR(ptr: onenand->ahb_addr))
878 return PTR_ERR(ptr: onenand->ahb_addr);
879
880 /* Allocate 4KiB BufferRAM */
881 onenand->page_buf = devm_kzalloc(dev: &pdev->dev, SZ_4K,
882 GFP_KERNEL);
883 if (!onenand->page_buf)
884 return -ENOMEM;
885
886 /* Allocate 128 SpareRAM */
887 onenand->oob_buf = devm_kzalloc(dev: &pdev->dev, size: 128, GFP_KERNEL);
888 if (!onenand->oob_buf)
889 return -ENOMEM;
890
891 /* S3C doesn't handle subpage write */
892 mtd->subpage_sft = 0;
893 this->subpagesize = mtd->writesize;
894
895 } else { /* S5PC110 */
896 onenand->dma_addr = devm_platform_ioremap_resource(pdev, index: 1);
897 if (IS_ERR(ptr: onenand->dma_addr))
898 return PTR_ERR(ptr: onenand->dma_addr);
899
900 s5pc110_dma_ops = s5pc110_dma_poll;
901 /* Interrupt support */
902 r = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
903 if (r) {
904 init_completion(x: &onenand->complete);
905 s5pc110_dma_ops = s5pc110_dma_irq;
906 err = devm_request_irq(dev: &pdev->dev, irq: r->start,
907 handler: s5pc110_onenand_irq,
908 IRQF_SHARED, devname: "onenand",
909 dev_id: &onenand);
910 if (err) {
911 dev_err(&pdev->dev, "failed to get irq\n");
912 return err;
913 }
914 }
915 }
916
917 err = onenand_scan(mtd, max_chips: 1);
918 if (err)
919 return err;
920
921 if (onenand->type != TYPE_S5PC110) {
922 /* S3C doesn't handle subpage write */
923 mtd->subpage_sft = 0;
924 this->subpagesize = mtd->writesize;
925 }
926
927 if (s3c_read_reg(MEM_CFG_OFFSET) & ONENAND_SYS_CFG1_SYNC_READ)
928 dev_info(&onenand->pdev->dev, "OneNAND Sync. Burst Read enabled\n");
929
930 err = mtd_device_register(mtd, pdata ? pdata->parts : NULL,
931 pdata ? pdata->nr_parts : 0);
932 if (err) {
933 dev_err(&pdev->dev, "failed to parse partitions and register the MTD device\n");
934 onenand_release(mtd);
935 return err;
936 }
937
938 platform_set_drvdata(pdev, data: mtd);
939
940 return 0;
941}
942
943static void s3c_onenand_remove(struct platform_device *pdev)
944{
945 struct mtd_info *mtd = platform_get_drvdata(pdev);
946
947 onenand_release(mtd);
948}
949
950static int s3c_pm_ops_suspend(struct device *dev)
951{
952 struct mtd_info *mtd = dev_get_drvdata(dev);
953 struct onenand_chip *this = mtd->priv;
954
955 this->wait(mtd, FL_PM_SUSPENDED);
956 return 0;
957}
958
959static int s3c_pm_ops_resume(struct device *dev)
960{
961 struct mtd_info *mtd = dev_get_drvdata(dev);
962 struct onenand_chip *this = mtd->priv;
963
964 this->unlock_all(mtd);
965 return 0;
966}
967
968static const struct dev_pm_ops s3c_pm_ops = {
969 .suspend = s3c_pm_ops_suspend,
970 .resume = s3c_pm_ops_resume,
971};
972
973static const struct platform_device_id s3c_onenand_driver_ids[] = {
974 {
975 .name = "s3c6400-onenand",
976 .driver_data = TYPE_S3C6400,
977 }, {
978 .name = "s3c6410-onenand",
979 .driver_data = TYPE_S3C6410,
980 }, {
981 .name = "s5pc110-onenand",
982 .driver_data = TYPE_S5PC110,
983 }, { },
984};
985MODULE_DEVICE_TABLE(platform, s3c_onenand_driver_ids);
986
987static struct platform_driver s3c_onenand_driver = {
988 .driver = {
989 .name = "samsung-onenand",
990 .pm = &s3c_pm_ops,
991 },
992 .id_table = s3c_onenand_driver_ids,
993 .probe = s3c_onenand_probe,
994 .remove_new = s3c_onenand_remove,
995};
996
997module_platform_driver(s3c_onenand_driver);
998
999MODULE_LICENSE("GPL");
1000MODULE_AUTHOR("Kyungmin Park <kyungmin.park@samsung.com>");
1001MODULE_DESCRIPTION("Samsung OneNAND controller support");
1002

source code of linux/drivers/mtd/nand/onenand/onenand_samsung.c