1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Arasan NAND Flash Controller Driver
4 *
5 * Copyright (C) 2014 - 2020 Xilinx, Inc.
6 * Author:
7 * Miquel Raynal <miquel.raynal@bootlin.com>
8 * Original work (fully rewritten):
9 * Punnaiah Choudary Kalluri <punnaia@xilinx.com>
10 * Naga Sureshkumar Relli <nagasure@xilinx.com>
11 */
12
13#include <linux/bch.h>
14#include <linux/bitfield.h>
15#include <linux/clk.h>
16#include <linux/delay.h>
17#include <linux/dma-mapping.h>
18#include <linux/gpio/consumer.h>
19#include <linux/interrupt.h>
20#include <linux/iopoll.h>
21#include <linux/module.h>
22#include <linux/mtd/mtd.h>
23#include <linux/mtd/partitions.h>
24#include <linux/mtd/rawnand.h>
25#include <linux/of.h>
26#include <linux/platform_device.h>
27#include <linux/slab.h>
28
29#define PKT_REG 0x00
30#define PKT_SIZE(x) FIELD_PREP(GENMASK(10, 0), (x))
31#define PKT_STEPS(x) FIELD_PREP(GENMASK(23, 12), (x))
32
33#define MEM_ADDR1_REG 0x04
34
35#define MEM_ADDR2_REG 0x08
36#define ADDR2_STRENGTH(x) FIELD_PREP(GENMASK(27, 25), (x))
37#define ADDR2_CS(x) FIELD_PREP(GENMASK(31, 30), (x))
38
39#define CMD_REG 0x0C
40#define CMD_1(x) FIELD_PREP(GENMASK(7, 0), (x))
41#define CMD_2(x) FIELD_PREP(GENMASK(15, 8), (x))
42#define CMD_PAGE_SIZE(x) FIELD_PREP(GENMASK(25, 23), (x))
43#define CMD_DMA_ENABLE BIT(27)
44#define CMD_NADDRS(x) FIELD_PREP(GENMASK(30, 28), (x))
45#define CMD_ECC_ENABLE BIT(31)
46
47#define PROG_REG 0x10
48#define PROG_PGRD BIT(0)
49#define PROG_ERASE BIT(2)
50#define PROG_STATUS BIT(3)
51#define PROG_PGPROG BIT(4)
52#define PROG_RDID BIT(6)
53#define PROG_RDPARAM BIT(7)
54#define PROG_RST BIT(8)
55#define PROG_GET_FEATURE BIT(9)
56#define PROG_SET_FEATURE BIT(10)
57#define PROG_CHG_RD_COL_ENH BIT(14)
58
59#define INTR_STS_EN_REG 0x14
60#define INTR_SIG_EN_REG 0x18
61#define INTR_STS_REG 0x1C
62#define WRITE_READY BIT(0)
63#define READ_READY BIT(1)
64#define XFER_COMPLETE BIT(2)
65#define DMA_BOUNDARY BIT(6)
66#define EVENT_MASK GENMASK(7, 0)
67
68#define READY_STS_REG 0x20
69
70#define DMA_ADDR0_REG 0x50
71#define DMA_ADDR1_REG 0x24
72
73#define FLASH_STS_REG 0x28
74
75#define TIMING_REG 0x2C
76#define TCCS_TIME_500NS 0
77#define TCCS_TIME_300NS 3
78#define TCCS_TIME_200NS 2
79#define TCCS_TIME_100NS 1
80#define FAST_TCAD BIT(2)
81#define DQS_BUFF_SEL_IN(x) FIELD_PREP(GENMASK(6, 3), (x))
82#define DQS_BUFF_SEL_OUT(x) FIELD_PREP(GENMASK(18, 15), (x))
83
84#define DATA_PORT_REG 0x30
85
86#define ECC_CONF_REG 0x34
87#define ECC_CONF_COL(x) FIELD_PREP(GENMASK(15, 0), (x))
88#define ECC_CONF_LEN(x) FIELD_PREP(GENMASK(26, 16), (x))
89#define ECC_CONF_BCH_EN BIT(27)
90
91#define ECC_ERR_CNT_REG 0x38
92#define GET_PKT_ERR_CNT(x) FIELD_GET(GENMASK(7, 0), (x))
93#define GET_PAGE_ERR_CNT(x) FIELD_GET(GENMASK(16, 8), (x))
94
95#define ECC_SP_REG 0x3C
96#define ECC_SP_CMD1(x) FIELD_PREP(GENMASK(7, 0), (x))
97#define ECC_SP_CMD2(x) FIELD_PREP(GENMASK(15, 8), (x))
98#define ECC_SP_ADDRS(x) FIELD_PREP(GENMASK(30, 28), (x))
99
100#define ECC_1ERR_CNT_REG 0x40
101#define ECC_2ERR_CNT_REG 0x44
102
103#define DATA_INTERFACE_REG 0x6C
104#define DIFACE_SDR_MODE(x) FIELD_PREP(GENMASK(2, 0), (x))
105#define DIFACE_DDR_MODE(x) FIELD_PREP(GENMASK(5, 3), (x))
106#define DIFACE_SDR 0
107#define DIFACE_NVDDR BIT(9)
108
109#define ANFC_MAX_CS 2
110#define ANFC_DFLT_TIMEOUT_US 1000000
111#define ANFC_MAX_CHUNK_SIZE SZ_1M
112#define ANFC_MAX_PARAM_SIZE SZ_4K
113#define ANFC_MAX_STEPS SZ_2K
114#define ANFC_MAX_PKT_SIZE (SZ_2K - 1)
115#define ANFC_MAX_ADDR_CYC 5U
116#define ANFC_RSVD_ECC_BYTES 21
117
118#define ANFC_XLNX_SDR_DFLT_CORE_CLK 100000000
119#define ANFC_XLNX_SDR_HS_CORE_CLK 80000000
120
121static struct gpio_desc *anfc_default_cs_array[2] = {NULL, NULL};
122
123/**
124 * struct anfc_op - Defines how to execute an operation
125 * @pkt_reg: Packet register
126 * @addr1_reg: Memory address 1 register
127 * @addr2_reg: Memory address 2 register
128 * @cmd_reg: Command register
129 * @prog_reg: Program register
130 * @steps: Number of "packets" to read/write
131 * @rdy_timeout_ms: Timeout for waits on Ready/Busy pin
132 * @len: Data transfer length
133 * @read: Data transfer direction from the controller point of view
134 * @buf: Data buffer
135 */
136struct anfc_op {
137 u32 pkt_reg;
138 u32 addr1_reg;
139 u32 addr2_reg;
140 u32 cmd_reg;
141 u32 prog_reg;
142 int steps;
143 unsigned int rdy_timeout_ms;
144 unsigned int len;
145 bool read;
146 u8 *buf;
147};
148
149/**
150 * struct anand - Defines the NAND chip related information
151 * @node: Used to store NAND chips into a list
152 * @chip: NAND chip information structure
153 * @rb: Ready-busy line
154 * @page_sz: Register value of the page_sz field to use
155 * @clk: Expected clock frequency to use
156 * @data_iface: Data interface timing mode to use
157 * @timings: NV-DDR specific timings to use
158 * @ecc_conf: Hardware ECC configuration value
159 * @strength: Register value of the ECC strength
160 * @raddr_cycles: Row address cycle information
161 * @caddr_cycles: Column address cycle information
162 * @ecc_bits: Exact number of ECC bits per syndrome
163 * @ecc_total: Total number of ECC bytes
164 * @errloc: Array of errors located with soft BCH
165 * @hw_ecc: Buffer to store syndromes computed by hardware
166 * @bch: BCH structure
167 * @cs_idx: Array of chip-select for this device, values are indexes
168 * of the controller structure @gpio_cs array
169 * @ncs_idx: Size of the @cs_idx array
170 */
171struct anand {
172 struct list_head node;
173 struct nand_chip chip;
174 unsigned int rb;
175 unsigned int page_sz;
176 unsigned long clk;
177 u32 data_iface;
178 u32 timings;
179 u32 ecc_conf;
180 u32 strength;
181 u16 raddr_cycles;
182 u16 caddr_cycles;
183 unsigned int ecc_bits;
184 unsigned int ecc_total;
185 unsigned int *errloc;
186 u8 *hw_ecc;
187 struct bch_control *bch;
188 int *cs_idx;
189 int ncs_idx;
190};
191
192/**
193 * struct arasan_nfc - Defines the Arasan NAND flash controller driver instance
194 * @dev: Pointer to the device structure
195 * @base: Remapped register area
196 * @controller_clk: Pointer to the system clock
197 * @bus_clk: Pointer to the flash clock
198 * @controller: Base controller structure
199 * @chips: List of all NAND chips attached to the controller
200 * @cur_clk: Current clock rate
201 * @cs_array: CS array. Native CS are left empty, the other cells are
202 * populated with their corresponding GPIO descriptor.
203 * @ncs: Size of @cs_array
204 * @cur_cs: Index in @cs_array of the currently in use CS
205 * @native_cs: Currently selected native CS
206 * @spare_cs: Native CS that is not wired (may be selected when a GPIO
207 * CS is in use)
208 */
209struct arasan_nfc {
210 struct device *dev;
211 void __iomem *base;
212 struct clk *controller_clk;
213 struct clk *bus_clk;
214 struct nand_controller controller;
215 struct list_head chips;
216 unsigned int cur_clk;
217 struct gpio_desc **cs_array;
218 unsigned int ncs;
219 int cur_cs;
220 unsigned int native_cs;
221 unsigned int spare_cs;
222};
223
224static struct anand *to_anand(struct nand_chip *nand)
225{
226 return container_of(nand, struct anand, chip);
227}
228
229static struct arasan_nfc *to_anfc(struct nand_controller *ctrl)
230{
231 return container_of(ctrl, struct arasan_nfc, controller);
232}
233
234static int anfc_wait_for_event(struct arasan_nfc *nfc, unsigned int event)
235{
236 u32 val;
237 int ret;
238
239 ret = readl_relaxed_poll_timeout(nfc->base + INTR_STS_REG, val,
240 val & event, 0,
241 ANFC_DFLT_TIMEOUT_US);
242 if (ret) {
243 dev_err(nfc->dev, "Timeout waiting for event 0x%x\n", event);
244 return -ETIMEDOUT;
245 }
246
247 writel_relaxed(event, nfc->base + INTR_STS_REG);
248
249 return 0;
250}
251
252static int anfc_wait_for_rb(struct arasan_nfc *nfc, struct nand_chip *chip,
253 unsigned int timeout_ms)
254{
255 struct anand *anand = to_anand(nand: chip);
256 u32 val;
257 int ret;
258
259 /* There is no R/B interrupt, we must poll a register */
260 ret = readl_relaxed_poll_timeout(nfc->base + READY_STS_REG, val,
261 val & BIT(anand->rb),
262 1, timeout_ms * 1000);
263 if (ret) {
264 dev_err(nfc->dev, "Timeout waiting for R/B 0x%x\n",
265 readl_relaxed(nfc->base + READY_STS_REG));
266 return -ETIMEDOUT;
267 }
268
269 return 0;
270}
271
272static void anfc_trigger_op(struct arasan_nfc *nfc, struct anfc_op *nfc_op)
273{
274 writel_relaxed(nfc_op->pkt_reg, nfc->base + PKT_REG);
275 writel_relaxed(nfc_op->addr1_reg, nfc->base + MEM_ADDR1_REG);
276 writel_relaxed(nfc_op->addr2_reg, nfc->base + MEM_ADDR2_REG);
277 writel_relaxed(nfc_op->cmd_reg, nfc->base + CMD_REG);
278 writel_relaxed(nfc_op->prog_reg, nfc->base + PROG_REG);
279}
280
281static int anfc_pkt_len_config(unsigned int len, unsigned int *steps,
282 unsigned int *pktsize)
283{
284 unsigned int nb, sz;
285
286 for (nb = 1; nb < ANFC_MAX_STEPS; nb *= 2) {
287 sz = len / nb;
288 if (sz <= ANFC_MAX_PKT_SIZE)
289 break;
290 }
291
292 if (sz * nb != len)
293 return -ENOTSUPP;
294
295 if (steps)
296 *steps = nb;
297
298 if (pktsize)
299 *pktsize = sz;
300
301 return 0;
302}
303
304static bool anfc_is_gpio_cs(struct arasan_nfc *nfc, int nfc_cs)
305{
306 return nfc_cs >= 0 && nfc->cs_array[nfc_cs];
307}
308
309static int anfc_relative_to_absolute_cs(struct anand *anand, int num)
310{
311 return anand->cs_idx[num];
312}
313
314static void anfc_assert_cs(struct arasan_nfc *nfc, unsigned int nfc_cs_idx)
315{
316 /* CS did not change: do nothing */
317 if (nfc->cur_cs == nfc_cs_idx)
318 return;
319
320 /* Deassert the previous CS if it was a GPIO */
321 if (anfc_is_gpio_cs(nfc, nfc_cs: nfc->cur_cs))
322 gpiod_set_value_cansleep(desc: nfc->cs_array[nfc->cur_cs], value: 1);
323
324 /* Assert the new one */
325 if (anfc_is_gpio_cs(nfc, nfc_cs: nfc_cs_idx)) {
326 nfc->native_cs = nfc->spare_cs;
327 gpiod_set_value_cansleep(desc: nfc->cs_array[nfc_cs_idx], value: 0);
328 } else {
329 nfc->native_cs = nfc_cs_idx;
330 }
331
332 nfc->cur_cs = nfc_cs_idx;
333}
334
335static int anfc_select_target(struct nand_chip *chip, int target)
336{
337 struct anand *anand = to_anand(nand: chip);
338 struct arasan_nfc *nfc = to_anfc(ctrl: chip->controller);
339 unsigned int nfc_cs_idx = anfc_relative_to_absolute_cs(anand, num: target);
340 int ret;
341
342 anfc_assert_cs(nfc, nfc_cs_idx);
343
344 /* Update the controller timings and the potential ECC configuration */
345 writel_relaxed(anand->data_iface, nfc->base + DATA_INTERFACE_REG);
346 writel_relaxed(anand->timings, nfc->base + TIMING_REG);
347
348 /* Update clock frequency */
349 if (nfc->cur_clk != anand->clk) {
350 clk_disable_unprepare(clk: nfc->bus_clk);
351 ret = clk_set_rate(clk: nfc->bus_clk, rate: anand->clk);
352 if (ret) {
353 dev_err(nfc->dev, "Failed to change clock rate\n");
354 return ret;
355 }
356
357 ret = clk_prepare_enable(clk: nfc->bus_clk);
358 if (ret) {
359 dev_err(nfc->dev,
360 "Failed to re-enable the bus clock\n");
361 return ret;
362 }
363
364 nfc->cur_clk = anand->clk;
365 }
366
367 return 0;
368}
369
370/*
371 * When using the embedded hardware ECC engine, the controller is in charge of
372 * feeding the engine with, first, the ECC residue present in the data array.
373 * A typical read operation is:
374 * 1/ Assert the read operation by sending the relevant command/address cycles
375 * but targeting the column of the first ECC bytes in the OOB area instead of
376 * the main data directly.
377 * 2/ After having read the relevant number of ECC bytes, the controller uses
378 * the RNDOUT/RNDSTART commands which are set into the "ECC Spare Command
379 * Register" to move the pointer back at the beginning of the main data.
380 * 3/ It will read the content of the main area for a given size (pktsize) and
381 * will feed the ECC engine with this buffer again.
382 * 4/ The ECC engine derives the ECC bytes for the given data and compare them
383 * with the ones already received. It eventually trigger status flags and
384 * then set the "Buffer Read Ready" flag.
385 * 5/ The corrected data is then available for reading from the data port
386 * register.
387 *
388 * The hardware BCH ECC engine is known to be inconstent in BCH mode and never
389 * reports uncorrectable errors. Because of this bug, we have to use the
390 * software BCH implementation in the read path.
391 */
392static int anfc_read_page_hw_ecc(struct nand_chip *chip, u8 *buf,
393 int oob_required, int page)
394{
395 struct arasan_nfc *nfc = to_anfc(ctrl: chip->controller);
396 struct mtd_info *mtd = nand_to_mtd(chip);
397 struct anand *anand = to_anand(nand: chip);
398 unsigned int len = mtd->writesize + (oob_required ? mtd->oobsize : 0);
399 unsigned int max_bitflips = 0;
400 dma_addr_t dma_addr;
401 int step, ret;
402 struct anfc_op nfc_op = {
403 .pkt_reg =
404 PKT_SIZE(chip->ecc.size) |
405 PKT_STEPS(chip->ecc.steps),
406 .addr1_reg =
407 (page & 0xFF) << (8 * (anand->caddr_cycles)) |
408 (((page >> 8) & 0xFF) << (8 * (1 + anand->caddr_cycles))),
409 .addr2_reg =
410 ((page >> 16) & 0xFF) |
411 ADDR2_STRENGTH(anand->strength) |
412 ADDR2_CS(nfc->native_cs),
413 .cmd_reg =
414 CMD_1(NAND_CMD_READ0) |
415 CMD_2(NAND_CMD_READSTART) |
416 CMD_PAGE_SIZE(anand->page_sz) |
417 CMD_DMA_ENABLE |
418 CMD_NADDRS(anand->caddr_cycles +
419 anand->raddr_cycles),
420 .prog_reg = PROG_PGRD,
421 };
422
423 dma_addr = dma_map_single(nfc->dev, (void *)buf, len, DMA_FROM_DEVICE);
424 if (dma_mapping_error(dev: nfc->dev, dma_addr)) {
425 dev_err(nfc->dev, "Buffer mapping error");
426 return -EIO;
427 }
428
429 writel_relaxed(lower_32_bits(dma_addr), nfc->base + DMA_ADDR0_REG);
430 writel_relaxed(upper_32_bits(dma_addr), nfc->base + DMA_ADDR1_REG);
431
432 anfc_trigger_op(nfc, nfc_op: &nfc_op);
433
434 ret = anfc_wait_for_event(nfc, XFER_COMPLETE);
435 dma_unmap_single(nfc->dev, dma_addr, len, DMA_FROM_DEVICE);
436 if (ret) {
437 dev_err(nfc->dev, "Error reading page %d\n", page);
438 return ret;
439 }
440
441 /* Store the raw OOB bytes as well */
442 ret = nand_change_read_column_op(chip, offset_in_page: mtd->writesize, buf: chip->oob_poi,
443 len: mtd->oobsize, force_8bit: 0);
444 if (ret)
445 return ret;
446
447 /*
448 * For each step, compute by softare the BCH syndrome over the raw data.
449 * Compare the theoretical amount of errors and compare with the
450 * hardware engine feedback.
451 */
452 for (step = 0; step < chip->ecc.steps; step++) {
453 u8 *raw_buf = &buf[step * chip->ecc.size];
454 unsigned int bit, byte;
455 int bf, i;
456
457 /* Extract the syndrome, it is not necessarily aligned */
458 memset(anand->hw_ecc, 0, chip->ecc.bytes);
459 nand_extract_bits(dst: anand->hw_ecc, dst_off: 0,
460 src: &chip->oob_poi[mtd->oobsize - anand->ecc_total],
461 src_off: anand->ecc_bits * step, nbits: anand->ecc_bits);
462
463 bf = bch_decode(bch: anand->bch, data: raw_buf, len: chip->ecc.size,
464 recv_ecc: anand->hw_ecc, NULL, NULL, errloc: anand->errloc);
465 if (!bf) {
466 continue;
467 } else if (bf > 0) {
468 for (i = 0; i < bf; i++) {
469 /* Only correct the data, not the syndrome */
470 if (anand->errloc[i] < (chip->ecc.size * 8)) {
471 bit = BIT(anand->errloc[i] & 7);
472 byte = anand->errloc[i] >> 3;
473 raw_buf[byte] ^= bit;
474 }
475 }
476
477 mtd->ecc_stats.corrected += bf;
478 max_bitflips = max_t(unsigned int, max_bitflips, bf);
479
480 continue;
481 }
482
483 bf = nand_check_erased_ecc_chunk(data: raw_buf, datalen: chip->ecc.size,
484 ecc: anand->hw_ecc, ecclen: chip->ecc.bytes, NULL, extraooblen: 0,
485 threshold: chip->ecc.strength);
486 if (bf > 0) {
487 mtd->ecc_stats.corrected += bf;
488 max_bitflips = max_t(unsigned int, max_bitflips, bf);
489 memset(raw_buf, 0xFF, chip->ecc.size);
490 } else if (bf < 0) {
491 mtd->ecc_stats.failed++;
492 }
493 }
494
495 return 0;
496}
497
498static int anfc_sel_read_page_hw_ecc(struct nand_chip *chip, u8 *buf,
499 int oob_required, int page)
500{
501 int ret;
502
503 ret = anfc_select_target(chip, target: chip->cur_cs);
504 if (ret)
505 return ret;
506
507 return anfc_read_page_hw_ecc(chip, buf, oob_required, page);
508};
509
510static int anfc_write_page_hw_ecc(struct nand_chip *chip, const u8 *buf,
511 int oob_required, int page)
512{
513 struct anand *anand = to_anand(nand: chip);
514 struct arasan_nfc *nfc = to_anfc(ctrl: chip->controller);
515 struct mtd_info *mtd = nand_to_mtd(chip);
516 unsigned int len = mtd->writesize + (oob_required ? mtd->oobsize : 0);
517 dma_addr_t dma_addr;
518 u8 status;
519 int ret;
520 struct anfc_op nfc_op = {
521 .pkt_reg =
522 PKT_SIZE(chip->ecc.size) |
523 PKT_STEPS(chip->ecc.steps),
524 .addr1_reg =
525 (page & 0xFF) << (8 * (anand->caddr_cycles)) |
526 (((page >> 8) & 0xFF) << (8 * (1 + anand->caddr_cycles))),
527 .addr2_reg =
528 ((page >> 16) & 0xFF) |
529 ADDR2_STRENGTH(anand->strength) |
530 ADDR2_CS(nfc->native_cs),
531 .cmd_reg =
532 CMD_1(NAND_CMD_SEQIN) |
533 CMD_2(NAND_CMD_PAGEPROG) |
534 CMD_PAGE_SIZE(anand->page_sz) |
535 CMD_DMA_ENABLE |
536 CMD_NADDRS(anand->caddr_cycles +
537 anand->raddr_cycles) |
538 CMD_ECC_ENABLE,
539 .prog_reg = PROG_PGPROG,
540 };
541
542 writel_relaxed(anand->ecc_conf, nfc->base + ECC_CONF_REG);
543 writel_relaxed(ECC_SP_CMD1(NAND_CMD_RNDIN) |
544 ECC_SP_ADDRS(anand->caddr_cycles),
545 nfc->base + ECC_SP_REG);
546
547 dma_addr = dma_map_single(nfc->dev, (void *)buf, len, DMA_TO_DEVICE);
548 if (dma_mapping_error(dev: nfc->dev, dma_addr)) {
549 dev_err(nfc->dev, "Buffer mapping error");
550 return -EIO;
551 }
552
553 writel_relaxed(lower_32_bits(dma_addr), nfc->base + DMA_ADDR0_REG);
554 writel_relaxed(upper_32_bits(dma_addr), nfc->base + DMA_ADDR1_REG);
555
556 anfc_trigger_op(nfc, nfc_op: &nfc_op);
557 ret = anfc_wait_for_event(nfc, XFER_COMPLETE);
558 dma_unmap_single(nfc->dev, dma_addr, len, DMA_TO_DEVICE);
559 if (ret) {
560 dev_err(nfc->dev, "Error writing page %d\n", page);
561 return ret;
562 }
563
564 /* Spare data is not protected */
565 if (oob_required) {
566 ret = nand_write_oob_std(chip, page);
567 if (ret)
568 return ret;
569 }
570
571 /* Check write status on the chip side */
572 ret = nand_status_op(chip, status: &status);
573 if (ret)
574 return ret;
575
576 if (status & NAND_STATUS_FAIL)
577 return -EIO;
578
579 return 0;
580}
581
582static int anfc_sel_write_page_hw_ecc(struct nand_chip *chip, const u8 *buf,
583 int oob_required, int page)
584{
585 int ret;
586
587 ret = anfc_select_target(chip, target: chip->cur_cs);
588 if (ret)
589 return ret;
590
591 return anfc_write_page_hw_ecc(chip, buf, oob_required, page);
592};
593
594/* NAND framework ->exec_op() hooks and related helpers */
595static int anfc_parse_instructions(struct nand_chip *chip,
596 const struct nand_subop *subop,
597 struct anfc_op *nfc_op)
598{
599 struct arasan_nfc *nfc = to_anfc(ctrl: chip->controller);
600 struct anand *anand = to_anand(nand: chip);
601 const struct nand_op_instr *instr = NULL;
602 bool first_cmd = true;
603 unsigned int op_id;
604 int ret, i;
605
606 memset(nfc_op, 0, sizeof(*nfc_op));
607 nfc_op->addr2_reg = ADDR2_CS(nfc->native_cs);
608 nfc_op->cmd_reg = CMD_PAGE_SIZE(anand->page_sz);
609
610 for (op_id = 0; op_id < subop->ninstrs; op_id++) {
611 unsigned int offset, naddrs, pktsize;
612 const u8 *addrs;
613 u8 *buf;
614
615 instr = &subop->instrs[op_id];
616
617 switch (instr->type) {
618 case NAND_OP_CMD_INSTR:
619 if (first_cmd)
620 nfc_op->cmd_reg |= CMD_1(instr->ctx.cmd.opcode);
621 else
622 nfc_op->cmd_reg |= CMD_2(instr->ctx.cmd.opcode);
623
624 first_cmd = false;
625 break;
626
627 case NAND_OP_ADDR_INSTR:
628 offset = nand_subop_get_addr_start_off(subop, op_id);
629 naddrs = nand_subop_get_num_addr_cyc(subop, op_id);
630 addrs = &instr->ctx.addr.addrs[offset];
631 nfc_op->cmd_reg |= CMD_NADDRS(naddrs);
632
633 for (i = 0; i < min(ANFC_MAX_ADDR_CYC, naddrs); i++) {
634 if (i < 4)
635 nfc_op->addr1_reg |= (u32)addrs[i] << i * 8;
636 else
637 nfc_op->addr2_reg |= addrs[i];
638 }
639
640 break;
641 case NAND_OP_DATA_IN_INSTR:
642 nfc_op->read = true;
643 fallthrough;
644 case NAND_OP_DATA_OUT_INSTR:
645 offset = nand_subop_get_data_start_off(subop, op_id);
646 buf = instr->ctx.data.buf.in;
647 nfc_op->buf = &buf[offset];
648 nfc_op->len = nand_subop_get_data_len(subop, op_id);
649 ret = anfc_pkt_len_config(len: nfc_op->len, steps: &nfc_op->steps,
650 pktsize: &pktsize);
651 if (ret)
652 return ret;
653
654 /*
655 * Number of DATA cycles must be aligned on 4, this
656 * means the controller might read/write more than
657 * requested. This is harmless most of the time as extra
658 * DATA are discarded in the write path and read pointer
659 * adjusted in the read path.
660 *
661 * FIXME: The core should mark operations where
662 * reading/writing more is allowed so the exec_op()
663 * implementation can take the right decision when the
664 * alignment constraint is not met: adjust the number of
665 * DATA cycles when it's allowed, reject the operation
666 * otherwise.
667 */
668 nfc_op->pkt_reg |= PKT_SIZE(round_up(pktsize, 4)) |
669 PKT_STEPS(nfc_op->steps);
670 break;
671 case NAND_OP_WAITRDY_INSTR:
672 nfc_op->rdy_timeout_ms = instr->ctx.waitrdy.timeout_ms;
673 break;
674 }
675 }
676
677 return 0;
678}
679
680static int anfc_rw_pio_op(struct arasan_nfc *nfc, struct anfc_op *nfc_op)
681{
682 unsigned int dwords = (nfc_op->len / 4) / nfc_op->steps;
683 unsigned int last_len = nfc_op->len % 4;
684 unsigned int offset, dir;
685 u8 *buf = nfc_op->buf;
686 int ret, i;
687
688 for (i = 0; i < nfc_op->steps; i++) {
689 dir = nfc_op->read ? READ_READY : WRITE_READY;
690 ret = anfc_wait_for_event(nfc, event: dir);
691 if (ret) {
692 dev_err(nfc->dev, "PIO %s ready signal not received\n",
693 nfc_op->read ? "Read" : "Write");
694 return ret;
695 }
696
697 offset = i * (dwords * 4);
698 if (nfc_op->read)
699 ioread32_rep(port: nfc->base + DATA_PORT_REG, buf: &buf[offset],
700 count: dwords);
701 else
702 iowrite32_rep(port: nfc->base + DATA_PORT_REG, buf: &buf[offset],
703 count: dwords);
704 }
705
706 if (last_len) {
707 u32 remainder;
708
709 offset = nfc_op->len - last_len;
710
711 if (nfc_op->read) {
712 remainder = readl_relaxed(nfc->base + DATA_PORT_REG);
713 memcpy(&buf[offset], &remainder, last_len);
714 } else {
715 memcpy(&remainder, &buf[offset], last_len);
716 writel_relaxed(remainder, nfc->base + DATA_PORT_REG);
717 }
718 }
719
720 return anfc_wait_for_event(nfc, XFER_COMPLETE);
721}
722
723static int anfc_misc_data_type_exec(struct nand_chip *chip,
724 const struct nand_subop *subop,
725 u32 prog_reg)
726{
727 struct arasan_nfc *nfc = to_anfc(ctrl: chip->controller);
728 struct anfc_op nfc_op = {};
729 int ret;
730
731 ret = anfc_parse_instructions(chip, subop, nfc_op: &nfc_op);
732 if (ret)
733 return ret;
734
735 nfc_op.prog_reg = prog_reg;
736 anfc_trigger_op(nfc, nfc_op: &nfc_op);
737
738 if (nfc_op.rdy_timeout_ms) {
739 ret = anfc_wait_for_rb(nfc, chip, timeout_ms: nfc_op.rdy_timeout_ms);
740 if (ret)
741 return ret;
742 }
743
744 return anfc_rw_pio_op(nfc, nfc_op: &nfc_op);
745}
746
747static int anfc_param_read_type_exec(struct nand_chip *chip,
748 const struct nand_subop *subop)
749{
750 return anfc_misc_data_type_exec(chip, subop, PROG_RDPARAM);
751}
752
753static int anfc_data_read_type_exec(struct nand_chip *chip,
754 const struct nand_subop *subop)
755{
756 u32 prog_reg = PROG_PGRD;
757
758 /*
759 * Experience shows that while in SDR mode sending a CHANGE READ COLUMN
760 * command through the READ PAGE "type" always works fine, when in
761 * NV-DDR mode the same command simply fails. However, it was also
762 * spotted that any CHANGE READ COLUMN command sent through the CHANGE
763 * READ COLUMN ENHANCED "type" would correctly work in both cases (SDR
764 * and NV-DDR). So, for simplicity, let's program the controller with
765 * the CHANGE READ COLUMN ENHANCED "type" whenever we are requested to
766 * perform a CHANGE READ COLUMN operation.
767 */
768 if (subop->instrs[0].ctx.cmd.opcode == NAND_CMD_RNDOUT &&
769 subop->instrs[2].ctx.cmd.opcode == NAND_CMD_RNDOUTSTART)
770 prog_reg = PROG_CHG_RD_COL_ENH;
771
772 return anfc_misc_data_type_exec(chip, subop, prog_reg);
773}
774
775static int anfc_param_write_type_exec(struct nand_chip *chip,
776 const struct nand_subop *subop)
777{
778 return anfc_misc_data_type_exec(chip, subop, PROG_SET_FEATURE);
779}
780
781static int anfc_data_write_type_exec(struct nand_chip *chip,
782 const struct nand_subop *subop)
783{
784 return anfc_misc_data_type_exec(chip, subop, PROG_PGPROG);
785}
786
787static int anfc_misc_zerolen_type_exec(struct nand_chip *chip,
788 const struct nand_subop *subop,
789 u32 prog_reg)
790{
791 struct arasan_nfc *nfc = to_anfc(ctrl: chip->controller);
792 struct anfc_op nfc_op = {};
793 int ret;
794
795 ret = anfc_parse_instructions(chip, subop, nfc_op: &nfc_op);
796 if (ret)
797 return ret;
798
799 nfc_op.prog_reg = prog_reg;
800 anfc_trigger_op(nfc, nfc_op: &nfc_op);
801
802 ret = anfc_wait_for_event(nfc, XFER_COMPLETE);
803 if (ret)
804 return ret;
805
806 if (nfc_op.rdy_timeout_ms)
807 ret = anfc_wait_for_rb(nfc, chip, timeout_ms: nfc_op.rdy_timeout_ms);
808
809 return ret;
810}
811
812static int anfc_status_type_exec(struct nand_chip *chip,
813 const struct nand_subop *subop)
814{
815 struct arasan_nfc *nfc = to_anfc(ctrl: chip->controller);
816 u32 tmp;
817 int ret;
818
819 /* See anfc_check_op() for details about this constraint */
820 if (subop->instrs[0].ctx.cmd.opcode != NAND_CMD_STATUS)
821 return -ENOTSUPP;
822
823 ret = anfc_misc_zerolen_type_exec(chip, subop, PROG_STATUS);
824 if (ret)
825 return ret;
826
827 tmp = readl_relaxed(nfc->base + FLASH_STS_REG);
828 memcpy(subop->instrs[1].ctx.data.buf.in, &tmp, 1);
829
830 return 0;
831}
832
833static int anfc_reset_type_exec(struct nand_chip *chip,
834 const struct nand_subop *subop)
835{
836 return anfc_misc_zerolen_type_exec(chip, subop, PROG_RST);
837}
838
839static int anfc_erase_type_exec(struct nand_chip *chip,
840 const struct nand_subop *subop)
841{
842 return anfc_misc_zerolen_type_exec(chip, subop, PROG_ERASE);
843}
844
845static int anfc_wait_type_exec(struct nand_chip *chip,
846 const struct nand_subop *subop)
847{
848 struct arasan_nfc *nfc = to_anfc(ctrl: chip->controller);
849 struct anfc_op nfc_op = {};
850 int ret;
851
852 ret = anfc_parse_instructions(chip, subop, nfc_op: &nfc_op);
853 if (ret)
854 return ret;
855
856 return anfc_wait_for_rb(nfc, chip, timeout_ms: nfc_op.rdy_timeout_ms);
857}
858
859static const struct nand_op_parser anfc_op_parser = NAND_OP_PARSER(
860 NAND_OP_PARSER_PATTERN(
861 anfc_param_read_type_exec,
862 NAND_OP_PARSER_PAT_CMD_ELEM(false),
863 NAND_OP_PARSER_PAT_ADDR_ELEM(false, ANFC_MAX_ADDR_CYC),
864 NAND_OP_PARSER_PAT_WAITRDY_ELEM(true),
865 NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, ANFC_MAX_CHUNK_SIZE)),
866 NAND_OP_PARSER_PATTERN(
867 anfc_param_write_type_exec,
868 NAND_OP_PARSER_PAT_CMD_ELEM(false),
869 NAND_OP_PARSER_PAT_ADDR_ELEM(false, ANFC_MAX_ADDR_CYC),
870 NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, ANFC_MAX_PARAM_SIZE)),
871 NAND_OP_PARSER_PATTERN(
872 anfc_data_read_type_exec,
873 NAND_OP_PARSER_PAT_CMD_ELEM(false),
874 NAND_OP_PARSER_PAT_ADDR_ELEM(false, ANFC_MAX_ADDR_CYC),
875 NAND_OP_PARSER_PAT_CMD_ELEM(false),
876 NAND_OP_PARSER_PAT_WAITRDY_ELEM(true),
877 NAND_OP_PARSER_PAT_DATA_IN_ELEM(true, ANFC_MAX_CHUNK_SIZE)),
878 NAND_OP_PARSER_PATTERN(
879 anfc_data_write_type_exec,
880 NAND_OP_PARSER_PAT_CMD_ELEM(false),
881 NAND_OP_PARSER_PAT_ADDR_ELEM(false, ANFC_MAX_ADDR_CYC),
882 NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, ANFC_MAX_CHUNK_SIZE),
883 NAND_OP_PARSER_PAT_CMD_ELEM(false)),
884 NAND_OP_PARSER_PATTERN(
885 anfc_reset_type_exec,
886 NAND_OP_PARSER_PAT_CMD_ELEM(false),
887 NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
888 NAND_OP_PARSER_PATTERN(
889 anfc_erase_type_exec,
890 NAND_OP_PARSER_PAT_CMD_ELEM(false),
891 NAND_OP_PARSER_PAT_ADDR_ELEM(false, ANFC_MAX_ADDR_CYC),
892 NAND_OP_PARSER_PAT_CMD_ELEM(false),
893 NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
894 NAND_OP_PARSER_PATTERN(
895 anfc_status_type_exec,
896 NAND_OP_PARSER_PAT_CMD_ELEM(false),
897 NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, ANFC_MAX_CHUNK_SIZE)),
898 NAND_OP_PARSER_PATTERN(
899 anfc_wait_type_exec,
900 NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
901 );
902
903static int anfc_check_op(struct nand_chip *chip,
904 const struct nand_operation *op)
905{
906 const struct nand_op_instr *instr;
907 int op_id;
908
909 /*
910 * The controller abstracts all the NAND operations and do not support
911 * data only operations.
912 *
913 * TODO: The nand_op_parser framework should be extended to
914 * support custom checks on DATA instructions.
915 */
916 for (op_id = 0; op_id < op->ninstrs; op_id++) {
917 instr = &op->instrs[op_id];
918
919 switch (instr->type) {
920 case NAND_OP_ADDR_INSTR:
921 if (instr->ctx.addr.naddrs > ANFC_MAX_ADDR_CYC)
922 return -ENOTSUPP;
923
924 break;
925 case NAND_OP_DATA_IN_INSTR:
926 case NAND_OP_DATA_OUT_INSTR:
927 if (instr->ctx.data.len > ANFC_MAX_CHUNK_SIZE)
928 return -ENOTSUPP;
929
930 if (anfc_pkt_len_config(len: instr->ctx.data.len, NULL, NULL))
931 return -ENOTSUPP;
932
933 break;
934 default:
935 break;
936 }
937 }
938
939 /*
940 * The controller does not allow to proceed with a CMD+DATA_IN cycle
941 * manually on the bus by reading data from the data register. Instead,
942 * the controller abstract a status read operation with its own status
943 * register after ordering a read status operation. Hence, we cannot
944 * support any CMD+DATA_IN operation other than a READ STATUS.
945 *
946 * TODO: The nand_op_parser() framework should be extended to describe
947 * fixed patterns instead of open-coding this check here.
948 */
949 if (op->ninstrs == 2 &&
950 op->instrs[0].type == NAND_OP_CMD_INSTR &&
951 op->instrs[0].ctx.cmd.opcode != NAND_CMD_STATUS &&
952 op->instrs[1].type == NAND_OP_DATA_IN_INSTR)
953 return -ENOTSUPP;
954
955 return nand_op_parser_exec_op(chip, parser: &anfc_op_parser, op, check_only: true);
956}
957
958static int anfc_exec_op(struct nand_chip *chip,
959 const struct nand_operation *op,
960 bool check_only)
961{
962 int ret;
963
964 if (check_only)
965 return anfc_check_op(chip, op);
966
967 ret = anfc_select_target(chip, target: op->cs);
968 if (ret)
969 return ret;
970
971 return nand_op_parser_exec_op(chip, parser: &anfc_op_parser, op, check_only);
972}
973
974static int anfc_setup_interface(struct nand_chip *chip, int target,
975 const struct nand_interface_config *conf)
976{
977 struct anand *anand = to_anand(nand: chip);
978 struct arasan_nfc *nfc = to_anfc(ctrl: chip->controller);
979 struct device_node *np = nfc->dev->of_node;
980 const struct nand_sdr_timings *sdr;
981 const struct nand_nvddr_timings *nvddr;
982 unsigned int tccs_min, dqs_mode, fast_tcad;
983
984 if (nand_interface_is_nvddr(conf)) {
985 nvddr = nand_get_nvddr_timings(conf);
986 if (IS_ERR(ptr: nvddr))
987 return PTR_ERR(ptr: nvddr);
988 } else {
989 sdr = nand_get_sdr_timings(conf);
990 if (IS_ERR(ptr: sdr))
991 return PTR_ERR(ptr: sdr);
992 }
993
994 if (target < 0)
995 return 0;
996
997 if (nand_interface_is_sdr(conf)) {
998 anand->data_iface = DIFACE_SDR |
999 DIFACE_SDR_MODE(conf->timings.mode);
1000 anand->timings = 0;
1001 } else {
1002 anand->data_iface = DIFACE_NVDDR |
1003 DIFACE_DDR_MODE(conf->timings.mode);
1004
1005 if (conf->timings.nvddr.tCCS_min <= 100000)
1006 tccs_min = TCCS_TIME_100NS;
1007 else if (conf->timings.nvddr.tCCS_min <= 200000)
1008 tccs_min = TCCS_TIME_200NS;
1009 else if (conf->timings.nvddr.tCCS_min <= 300000)
1010 tccs_min = TCCS_TIME_300NS;
1011 else
1012 tccs_min = TCCS_TIME_500NS;
1013
1014 fast_tcad = 0;
1015 if (conf->timings.nvddr.tCAD_min < 45000)
1016 fast_tcad = FAST_TCAD;
1017
1018 switch (conf->timings.mode) {
1019 case 5:
1020 case 4:
1021 dqs_mode = 2;
1022 break;
1023 case 3:
1024 dqs_mode = 3;
1025 break;
1026 case 2:
1027 dqs_mode = 4;
1028 break;
1029 case 1:
1030 dqs_mode = 5;
1031 break;
1032 case 0:
1033 default:
1034 dqs_mode = 6;
1035 break;
1036 }
1037
1038 anand->timings = tccs_min | fast_tcad |
1039 DQS_BUFF_SEL_IN(dqs_mode) |
1040 DQS_BUFF_SEL_OUT(dqs_mode);
1041 }
1042
1043 if (nand_interface_is_sdr(conf)) {
1044 anand->clk = ANFC_XLNX_SDR_DFLT_CORE_CLK;
1045 } else {
1046 /* ONFI timings are defined in picoseconds */
1047 anand->clk = div_u64(dividend: (u64)NSEC_PER_SEC * 1000,
1048 divisor: conf->timings.nvddr.tCK_min);
1049 }
1050
1051 /*
1052 * Due to a hardware bug in the ZynqMP SoC, SDR timing modes 0-1 work
1053 * with f > 90MHz (default clock is 100MHz) but signals are unstable
1054 * with higher modes. Hence we decrease a little bit the clock rate to
1055 * 80MHz when using SDR modes 2-5 with this SoC.
1056 */
1057 if (of_device_is_compatible(device: np, "xlnx,zynqmp-nand-controller") &&
1058 nand_interface_is_sdr(conf) && conf->timings.mode >= 2)
1059 anand->clk = ANFC_XLNX_SDR_HS_CORE_CLK;
1060
1061 return 0;
1062}
1063
1064static int anfc_calc_hw_ecc_bytes(int step_size, int strength)
1065{
1066 unsigned int bch_gf_mag, ecc_bits;
1067
1068 switch (step_size) {
1069 case SZ_512:
1070 bch_gf_mag = 13;
1071 break;
1072 case SZ_1K:
1073 bch_gf_mag = 14;
1074 break;
1075 default:
1076 return -EINVAL;
1077 }
1078
1079 ecc_bits = bch_gf_mag * strength;
1080
1081 return DIV_ROUND_UP(ecc_bits, 8);
1082}
1083
1084static const int anfc_hw_ecc_512_strengths[] = {4, 8, 12};
1085
1086static const int anfc_hw_ecc_1024_strengths[] = {24};
1087
1088static const struct nand_ecc_step_info anfc_hw_ecc_step_infos[] = {
1089 {
1090 .stepsize = SZ_512,
1091 .strengths = anfc_hw_ecc_512_strengths,
1092 .nstrengths = ARRAY_SIZE(anfc_hw_ecc_512_strengths),
1093 },
1094 {
1095 .stepsize = SZ_1K,
1096 .strengths = anfc_hw_ecc_1024_strengths,
1097 .nstrengths = ARRAY_SIZE(anfc_hw_ecc_1024_strengths),
1098 },
1099};
1100
1101static const struct nand_ecc_caps anfc_hw_ecc_caps = {
1102 .stepinfos = anfc_hw_ecc_step_infos,
1103 .nstepinfos = ARRAY_SIZE(anfc_hw_ecc_step_infos),
1104 .calc_ecc_bytes = anfc_calc_hw_ecc_bytes,
1105};
1106
1107static int anfc_init_hw_ecc_controller(struct arasan_nfc *nfc,
1108 struct nand_chip *chip)
1109{
1110 struct anand *anand = to_anand(nand: chip);
1111 struct mtd_info *mtd = nand_to_mtd(chip);
1112 struct nand_ecc_ctrl *ecc = &chip->ecc;
1113 unsigned int bch_prim_poly = 0, bch_gf_mag = 0, ecc_offset;
1114 int ret;
1115
1116 switch (mtd->writesize) {
1117 case SZ_512:
1118 case SZ_2K:
1119 case SZ_4K:
1120 case SZ_8K:
1121 case SZ_16K:
1122 break;
1123 default:
1124 dev_err(nfc->dev, "Unsupported page size %d\n", mtd->writesize);
1125 return -EINVAL;
1126 }
1127
1128 ret = nand_ecc_choose_conf(chip, caps: &anfc_hw_ecc_caps, oobavail: mtd->oobsize);
1129 if (ret)
1130 return ret;
1131
1132 switch (ecc->strength) {
1133 case 12:
1134 anand->strength = 0x1;
1135 break;
1136 case 8:
1137 anand->strength = 0x2;
1138 break;
1139 case 4:
1140 anand->strength = 0x3;
1141 break;
1142 case 24:
1143 anand->strength = 0x4;
1144 break;
1145 default:
1146 dev_err(nfc->dev, "Unsupported strength %d\n", ecc->strength);
1147 return -EINVAL;
1148 }
1149
1150 switch (ecc->size) {
1151 case SZ_512:
1152 bch_gf_mag = 13;
1153 bch_prim_poly = 0x201b;
1154 break;
1155 case SZ_1K:
1156 bch_gf_mag = 14;
1157 bch_prim_poly = 0x4443;
1158 break;
1159 default:
1160 dev_err(nfc->dev, "Unsupported step size %d\n", ecc->strength);
1161 return -EINVAL;
1162 }
1163
1164 mtd_set_ooblayout(mtd, ooblayout: nand_get_large_page_ooblayout());
1165
1166 ecc->steps = mtd->writesize / ecc->size;
1167 ecc->algo = NAND_ECC_ALGO_BCH;
1168 anand->ecc_bits = bch_gf_mag * ecc->strength;
1169 ecc->bytes = DIV_ROUND_UP(anand->ecc_bits, 8);
1170 anand->ecc_total = DIV_ROUND_UP(anand->ecc_bits * ecc->steps, 8);
1171 ecc_offset = mtd->writesize + mtd->oobsize - anand->ecc_total;
1172 anand->ecc_conf = ECC_CONF_COL(ecc_offset) |
1173 ECC_CONF_LEN(anand->ecc_total) |
1174 ECC_CONF_BCH_EN;
1175
1176 anand->errloc = devm_kmalloc_array(dev: nfc->dev, n: ecc->strength,
1177 size: sizeof(*anand->errloc), GFP_KERNEL);
1178 if (!anand->errloc)
1179 return -ENOMEM;
1180
1181 anand->hw_ecc = devm_kmalloc(dev: nfc->dev, size: ecc->bytes, GFP_KERNEL);
1182 if (!anand->hw_ecc)
1183 return -ENOMEM;
1184
1185 /* Enforce bit swapping to fit the hardware */
1186 anand->bch = bch_init(m: bch_gf_mag, t: ecc->strength, prim_poly: bch_prim_poly, swap_bits: true);
1187 if (!anand->bch)
1188 return -EINVAL;
1189
1190 ecc->read_page = anfc_sel_read_page_hw_ecc;
1191 ecc->write_page = anfc_sel_write_page_hw_ecc;
1192
1193 return 0;
1194}
1195
1196static int anfc_attach_chip(struct nand_chip *chip)
1197{
1198 struct anand *anand = to_anand(nand: chip);
1199 struct arasan_nfc *nfc = to_anfc(ctrl: chip->controller);
1200 struct mtd_info *mtd = nand_to_mtd(chip);
1201 int ret = 0;
1202
1203 if (mtd->writesize <= SZ_512)
1204 anand->caddr_cycles = 1;
1205 else
1206 anand->caddr_cycles = 2;
1207
1208 if (chip->options & NAND_ROW_ADDR_3)
1209 anand->raddr_cycles = 3;
1210 else
1211 anand->raddr_cycles = 2;
1212
1213 switch (mtd->writesize) {
1214 case 512:
1215 anand->page_sz = 0;
1216 break;
1217 case 1024:
1218 anand->page_sz = 5;
1219 break;
1220 case 2048:
1221 anand->page_sz = 1;
1222 break;
1223 case 4096:
1224 anand->page_sz = 2;
1225 break;
1226 case 8192:
1227 anand->page_sz = 3;
1228 break;
1229 case 16384:
1230 anand->page_sz = 4;
1231 break;
1232 default:
1233 return -EINVAL;
1234 }
1235
1236 /* These hooks are valid for all ECC providers */
1237 chip->ecc.read_page_raw = nand_monolithic_read_page_raw;
1238 chip->ecc.write_page_raw = nand_monolithic_write_page_raw;
1239
1240 switch (chip->ecc.engine_type) {
1241 case NAND_ECC_ENGINE_TYPE_NONE:
1242 case NAND_ECC_ENGINE_TYPE_SOFT:
1243 case NAND_ECC_ENGINE_TYPE_ON_DIE:
1244 break;
1245 case NAND_ECC_ENGINE_TYPE_ON_HOST:
1246 ret = anfc_init_hw_ecc_controller(nfc, chip);
1247 break;
1248 default:
1249 dev_err(nfc->dev, "Unsupported ECC mode: %d\n",
1250 chip->ecc.engine_type);
1251 return -EINVAL;
1252 }
1253
1254 return ret;
1255}
1256
1257static void anfc_detach_chip(struct nand_chip *chip)
1258{
1259 struct anand *anand = to_anand(nand: chip);
1260
1261 if (anand->bch)
1262 bch_free(bch: anand->bch);
1263}
1264
1265static const struct nand_controller_ops anfc_ops = {
1266 .exec_op = anfc_exec_op,
1267 .setup_interface = anfc_setup_interface,
1268 .attach_chip = anfc_attach_chip,
1269 .detach_chip = anfc_detach_chip,
1270};
1271
1272static int anfc_chip_init(struct arasan_nfc *nfc, struct device_node *np)
1273{
1274 struct anand *anand;
1275 struct nand_chip *chip;
1276 struct mtd_info *mtd;
1277 int rb, ret, i;
1278
1279 anand = devm_kzalloc(dev: nfc->dev, size: sizeof(*anand), GFP_KERNEL);
1280 if (!anand)
1281 return -ENOMEM;
1282
1283 /* Chip-select init */
1284 anand->ncs_idx = of_property_count_elems_of_size(np, propname: "reg", elem_size: sizeof(u32));
1285 if (anand->ncs_idx <= 0 || anand->ncs_idx > nfc->ncs) {
1286 dev_err(nfc->dev, "Invalid reg property\n");
1287 return -EINVAL;
1288 }
1289
1290 anand->cs_idx = devm_kcalloc(dev: nfc->dev, n: anand->ncs_idx,
1291 size: sizeof(*anand->cs_idx), GFP_KERNEL);
1292 if (!anand->cs_idx)
1293 return -ENOMEM;
1294
1295 for (i = 0; i < anand->ncs_idx; i++) {
1296 ret = of_property_read_u32_index(np, propname: "reg", index: i,
1297 out_value: &anand->cs_idx[i]);
1298 if (ret) {
1299 dev_err(nfc->dev, "invalid CS property: %d\n", ret);
1300 return ret;
1301 }
1302 }
1303
1304 /* Ready-busy init */
1305 ret = of_property_read_u32(np, propname: "nand-rb", out_value: &rb);
1306 if (ret)
1307 return ret;
1308
1309 if (rb >= ANFC_MAX_CS) {
1310 dev_err(nfc->dev, "Wrong RB %d\n", rb);
1311 return -EINVAL;
1312 }
1313
1314 anand->rb = rb;
1315
1316 chip = &anand->chip;
1317 mtd = nand_to_mtd(chip);
1318 mtd->dev.parent = nfc->dev;
1319 chip->controller = &nfc->controller;
1320 chip->options = NAND_BUSWIDTH_AUTO | NAND_NO_SUBPAGE_WRITE |
1321 NAND_USES_DMA;
1322
1323 nand_set_flash_node(chip, np);
1324 if (!mtd->name) {
1325 dev_err(nfc->dev, "NAND label property is mandatory\n");
1326 return -EINVAL;
1327 }
1328
1329 ret = nand_scan(chip, max_chips: anand->ncs_idx);
1330 if (ret) {
1331 dev_err(nfc->dev, "Scan operation failed\n");
1332 return ret;
1333 }
1334
1335 ret = mtd_device_register(mtd, NULL, 0);
1336 if (ret) {
1337 nand_cleanup(chip);
1338 return ret;
1339 }
1340
1341 list_add_tail(new: &anand->node, head: &nfc->chips);
1342
1343 return 0;
1344}
1345
1346static void anfc_chips_cleanup(struct arasan_nfc *nfc)
1347{
1348 struct anand *anand, *tmp;
1349 struct nand_chip *chip;
1350 int ret;
1351
1352 list_for_each_entry_safe(anand, tmp, &nfc->chips, node) {
1353 chip = &anand->chip;
1354 ret = mtd_device_unregister(master: nand_to_mtd(chip));
1355 WARN_ON(ret);
1356 nand_cleanup(chip);
1357 list_del(entry: &anand->node);
1358 }
1359}
1360
1361static int anfc_chips_init(struct arasan_nfc *nfc)
1362{
1363 struct device_node *np = nfc->dev->of_node, *nand_np;
1364 int nchips = of_get_child_count(np);
1365 int ret;
1366
1367 if (!nchips) {
1368 dev_err(nfc->dev, "Incorrect number of NAND chips (%d)\n",
1369 nchips);
1370 return -EINVAL;
1371 }
1372
1373 for_each_child_of_node(np, nand_np) {
1374 ret = anfc_chip_init(nfc, np: nand_np);
1375 if (ret) {
1376 of_node_put(node: nand_np);
1377 anfc_chips_cleanup(nfc);
1378 break;
1379 }
1380 }
1381
1382 return ret;
1383}
1384
1385static void anfc_reset(struct arasan_nfc *nfc)
1386{
1387 /* Disable interrupt signals */
1388 writel_relaxed(0, nfc->base + INTR_SIG_EN_REG);
1389
1390 /* Enable interrupt status */
1391 writel_relaxed(EVENT_MASK, nfc->base + INTR_STS_EN_REG);
1392
1393 nfc->cur_cs = -1;
1394}
1395
1396static int anfc_parse_cs(struct arasan_nfc *nfc)
1397{
1398 int ret;
1399
1400 /* Check the gpio-cs property */
1401 ret = rawnand_dt_parse_gpio_cs(dev: nfc->dev, cs_array: &nfc->cs_array, ncs_array: &nfc->ncs);
1402 if (ret)
1403 return ret;
1404
1405 /*
1406 * The controller native CS cannot be both disabled at the same time.
1407 * Hence, only one native CS can be used if GPIO CS are needed, so that
1408 * the other is selected when a non-native CS must be asserted (not
1409 * wired physically or configured as GPIO instead of NAND CS). In this
1410 * case, the "not" chosen CS is assigned to nfc->spare_cs and selected
1411 * whenever a GPIO CS must be asserted.
1412 */
1413 if (nfc->cs_array && nfc->ncs > 2) {
1414 if (!nfc->cs_array[0] && !nfc->cs_array[1]) {
1415 dev_err(nfc->dev,
1416 "Assign a single native CS when using GPIOs\n");
1417 return -EINVAL;
1418 }
1419
1420 if (nfc->cs_array[0])
1421 nfc->spare_cs = 0;
1422 else
1423 nfc->spare_cs = 1;
1424 }
1425
1426 if (!nfc->cs_array) {
1427 nfc->cs_array = anfc_default_cs_array;
1428 nfc->ncs = ANFC_MAX_CS;
1429 return 0;
1430 }
1431
1432 return 0;
1433}
1434
1435static int anfc_probe(struct platform_device *pdev)
1436{
1437 struct arasan_nfc *nfc;
1438 int ret;
1439
1440 nfc = devm_kzalloc(dev: &pdev->dev, size: sizeof(*nfc), GFP_KERNEL);
1441 if (!nfc)
1442 return -ENOMEM;
1443
1444 nfc->dev = &pdev->dev;
1445 nand_controller_init(nfc: &nfc->controller);
1446 nfc->controller.ops = &anfc_ops;
1447 INIT_LIST_HEAD(list: &nfc->chips);
1448
1449 nfc->base = devm_platform_ioremap_resource(pdev, index: 0);
1450 if (IS_ERR(ptr: nfc->base))
1451 return PTR_ERR(ptr: nfc->base);
1452
1453 anfc_reset(nfc);
1454
1455 nfc->controller_clk = devm_clk_get_enabled(dev: &pdev->dev, id: "controller");
1456 if (IS_ERR(ptr: nfc->controller_clk))
1457 return PTR_ERR(ptr: nfc->controller_clk);
1458
1459 nfc->bus_clk = devm_clk_get_enabled(dev: &pdev->dev, id: "bus");
1460 if (IS_ERR(ptr: nfc->bus_clk))
1461 return PTR_ERR(ptr: nfc->bus_clk);
1462
1463 ret = dma_set_mask(dev: &pdev->dev, DMA_BIT_MASK(64));
1464 if (ret)
1465 return ret;
1466
1467 ret = anfc_parse_cs(nfc);
1468 if (ret)
1469 return ret;
1470
1471 ret = anfc_chips_init(nfc);
1472 if (ret)
1473 return ret;
1474
1475 platform_set_drvdata(pdev, data: nfc);
1476
1477 return 0;
1478}
1479
1480static void anfc_remove(struct platform_device *pdev)
1481{
1482 struct arasan_nfc *nfc = platform_get_drvdata(pdev);
1483
1484 anfc_chips_cleanup(nfc);
1485}
1486
1487static const struct of_device_id anfc_ids[] = {
1488 {
1489 .compatible = "xlnx,zynqmp-nand-controller",
1490 },
1491 {
1492 .compatible = "arasan,nfc-v3p10",
1493 },
1494 {}
1495};
1496MODULE_DEVICE_TABLE(of, anfc_ids);
1497
1498static struct platform_driver anfc_driver = {
1499 .driver = {
1500 .name = "arasan-nand-controller",
1501 .of_match_table = anfc_ids,
1502 },
1503 .probe = anfc_probe,
1504 .remove_new = anfc_remove,
1505};
1506module_platform_driver(anfc_driver);
1507
1508MODULE_LICENSE("GPL v2");
1509MODULE_AUTHOR("Punnaiah Choudary Kalluri <punnaia@xilinx.com>");
1510MODULE_AUTHOR("Naga Sureshkumar Relli <nagasure@xilinx.com>");
1511MODULE_AUTHOR("Miquel Raynal <miquel.raynal@bootlin.com>");
1512MODULE_DESCRIPTION("Arasan NAND Flash Controller Driver");
1513

source code of linux/drivers/mtd/nand/raw/arasan-nand-controller.c