1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * Copyright 2004-2007 Freescale Semiconductor, Inc. All Rights Reserved.
4 * Copyright 2008 Sascha Hauer, kernel@pengutronix.de
5 */
6
7#include <linux/delay.h>
8#include <linux/slab.h>
9#include <linux/init.h>
10#include <linux/module.h>
11#include <linux/mtd/mtd.h>
12#include <linux/mtd/rawnand.h>
13#include <linux/mtd/partitions.h>
14#include <linux/interrupt.h>
15#include <linux/device.h>
16#include <linux/platform_device.h>
17#include <linux/clk.h>
18#include <linux/err.h>
19#include <linux/io.h>
20#include <linux/irq.h>
21#include <linux/completion.h>
22#include <linux/of.h>
23
24#define DRIVER_NAME "mxc_nand"
25
26/* Addresses for NFC registers */
27#define NFC_V1_V2_BUF_SIZE (host->regs + 0x00)
28#define NFC_V1_V2_BUF_ADDR (host->regs + 0x04)
29#define NFC_V1_V2_FLASH_ADDR (host->regs + 0x06)
30#define NFC_V1_V2_FLASH_CMD (host->regs + 0x08)
31#define NFC_V1_V2_CONFIG (host->regs + 0x0a)
32#define NFC_V1_V2_ECC_STATUS_RESULT (host->regs + 0x0c)
33#define NFC_V1_V2_RSLTMAIN_AREA (host->regs + 0x0e)
34#define NFC_V21_RSLTSPARE_AREA (host->regs + 0x10)
35#define NFC_V1_V2_WRPROT (host->regs + 0x12)
36#define NFC_V1_UNLOCKSTART_BLKADDR (host->regs + 0x14)
37#define NFC_V1_UNLOCKEND_BLKADDR (host->regs + 0x16)
38#define NFC_V21_UNLOCKSTART_BLKADDR0 (host->regs + 0x20)
39#define NFC_V21_UNLOCKSTART_BLKADDR1 (host->regs + 0x24)
40#define NFC_V21_UNLOCKSTART_BLKADDR2 (host->regs + 0x28)
41#define NFC_V21_UNLOCKSTART_BLKADDR3 (host->regs + 0x2c)
42#define NFC_V21_UNLOCKEND_BLKADDR0 (host->regs + 0x22)
43#define NFC_V21_UNLOCKEND_BLKADDR1 (host->regs + 0x26)
44#define NFC_V21_UNLOCKEND_BLKADDR2 (host->regs + 0x2a)
45#define NFC_V21_UNLOCKEND_BLKADDR3 (host->regs + 0x2e)
46#define NFC_V1_V2_NF_WRPRST (host->regs + 0x18)
47#define NFC_V1_V2_CONFIG1 (host->regs + 0x1a)
48#define NFC_V1_V2_CONFIG2 (host->regs + 0x1c)
49
50#define NFC_V2_CONFIG1_ECC_MODE_4 (1 << 0)
51#define NFC_V1_V2_CONFIG1_SP_EN (1 << 2)
52#define NFC_V1_V2_CONFIG1_ECC_EN (1 << 3)
53#define NFC_V1_V2_CONFIG1_INT_MSK (1 << 4)
54#define NFC_V1_V2_CONFIG1_BIG (1 << 5)
55#define NFC_V1_V2_CONFIG1_RST (1 << 6)
56#define NFC_V1_V2_CONFIG1_CE (1 << 7)
57#define NFC_V2_CONFIG1_ONE_CYCLE (1 << 8)
58#define NFC_V2_CONFIG1_PPB(x) (((x) & 0x3) << 9)
59#define NFC_V2_CONFIG1_FP_INT (1 << 11)
60
61#define NFC_V1_V2_CONFIG2_INT (1 << 15)
62
63/*
64 * Operation modes for the NFC. Valid for v1, v2 and v3
65 * type controllers.
66 */
67#define NFC_CMD (1 << 0)
68#define NFC_ADDR (1 << 1)
69#define NFC_INPUT (1 << 2)
70#define NFC_OUTPUT (1 << 3)
71#define NFC_ID (1 << 4)
72#define NFC_STATUS (1 << 5)
73
74#define NFC_V3_FLASH_CMD (host->regs_axi + 0x00)
75#define NFC_V3_FLASH_ADDR0 (host->regs_axi + 0x04)
76
77#define NFC_V3_CONFIG1 (host->regs_axi + 0x34)
78#define NFC_V3_CONFIG1_SP_EN (1 << 0)
79#define NFC_V3_CONFIG1_RBA(x) (((x) & 0x7 ) << 4)
80
81#define NFC_V3_ECC_STATUS_RESULT (host->regs_axi + 0x38)
82
83#define NFC_V3_LAUNCH (host->regs_axi + 0x40)
84
85#define NFC_V3_WRPROT (host->regs_ip + 0x0)
86#define NFC_V3_WRPROT_LOCK_TIGHT (1 << 0)
87#define NFC_V3_WRPROT_LOCK (1 << 1)
88#define NFC_V3_WRPROT_UNLOCK (1 << 2)
89#define NFC_V3_WRPROT_BLS_UNLOCK (2 << 6)
90
91#define NFC_V3_WRPROT_UNLOCK_BLK_ADD0 (host->regs_ip + 0x04)
92
93#define NFC_V3_CONFIG2 (host->regs_ip + 0x24)
94#define NFC_V3_CONFIG2_PS_512 (0 << 0)
95#define NFC_V3_CONFIG2_PS_2048 (1 << 0)
96#define NFC_V3_CONFIG2_PS_4096 (2 << 0)
97#define NFC_V3_CONFIG2_ONE_CYCLE (1 << 2)
98#define NFC_V3_CONFIG2_ECC_EN (1 << 3)
99#define NFC_V3_CONFIG2_2CMD_PHASES (1 << 4)
100#define NFC_V3_CONFIG2_NUM_ADDR_PHASE0 (1 << 5)
101#define NFC_V3_CONFIG2_ECC_MODE_8 (1 << 6)
102#define NFC_V3_CONFIG2_PPB(x, shift) (((x) & 0x3) << shift)
103#define NFC_V3_CONFIG2_NUM_ADDR_PHASE1(x) (((x) & 0x3) << 12)
104#define NFC_V3_CONFIG2_INT_MSK (1 << 15)
105#define NFC_V3_CONFIG2_ST_CMD(x) (((x) & 0xff) << 24)
106#define NFC_V3_CONFIG2_SPAS(x) (((x) & 0xff) << 16)
107
108#define NFC_V3_CONFIG3 (host->regs_ip + 0x28)
109#define NFC_V3_CONFIG3_ADD_OP(x) (((x) & 0x3) << 0)
110#define NFC_V3_CONFIG3_FW8 (1 << 3)
111#define NFC_V3_CONFIG3_SBB(x) (((x) & 0x7) << 8)
112#define NFC_V3_CONFIG3_NUM_OF_DEVICES(x) (((x) & 0x7) << 12)
113#define NFC_V3_CONFIG3_RBB_MODE (1 << 15)
114#define NFC_V3_CONFIG3_NO_SDMA (1 << 20)
115
116#define NFC_V3_IPC (host->regs_ip + 0x2C)
117#define NFC_V3_IPC_CREQ (1 << 0)
118#define NFC_V3_IPC_INT (1 << 31)
119
120#define NFC_V3_DELAY_LINE (host->regs_ip + 0x34)
121
122struct mxc_nand_host;
123
124struct mxc_nand_devtype_data {
125 void (*preset)(struct mtd_info *);
126 int (*read_page)(struct nand_chip *chip, void *buf, void *oob, bool ecc,
127 int page);
128 void (*send_cmd)(struct mxc_nand_host *, uint16_t, int);
129 void (*send_addr)(struct mxc_nand_host *, uint16_t, int);
130 void (*send_page)(struct mtd_info *, unsigned int);
131 void (*send_read_id)(struct mxc_nand_host *);
132 uint16_t (*get_dev_status)(struct mxc_nand_host *);
133 int (*check_int)(struct mxc_nand_host *);
134 void (*irq_control)(struct mxc_nand_host *, int);
135 u32 (*get_ecc_status)(struct mxc_nand_host *);
136 const struct mtd_ooblayout_ops *ooblayout;
137 void (*select_chip)(struct nand_chip *chip, int cs);
138 int (*setup_interface)(struct nand_chip *chip, int csline,
139 const struct nand_interface_config *conf);
140 void (*enable_hwecc)(struct nand_chip *chip, bool enable);
141
142 /*
143 * On i.MX21 the CONFIG2:INT bit cannot be read if interrupts are masked
144 * (CONFIG1:INT_MSK is set). To handle this the driver uses
145 * enable_irq/disable_irq_nosync instead of CONFIG1:INT_MSK
146 */
147 int irqpending_quirk;
148 int needs_ip;
149
150 size_t regs_offset;
151 size_t spare0_offset;
152 size_t axi_offset;
153
154 int spare_len;
155 int eccbytes;
156 int eccsize;
157 int ppb_shift;
158};
159
160struct mxc_nand_host {
161 struct nand_chip nand;
162 struct device *dev;
163
164 void __iomem *spare0;
165 void __iomem *main_area0;
166
167 void __iomem *base;
168 void __iomem *regs;
169 void __iomem *regs_axi;
170 void __iomem *regs_ip;
171 int status_request;
172 struct clk *clk;
173 int clk_act;
174 int irq;
175 int eccsize;
176 int used_oobsize;
177 int active_cs;
178
179 struct completion op_completion;
180
181 uint8_t *data_buf;
182 unsigned int buf_start;
183
184 const struct mxc_nand_devtype_data *devtype_data;
185};
186
187static const char * const part_probes[] = {
188 "cmdlinepart", "RedBoot", "ofpart", NULL };
189
190static void memcpy32_fromio(void *trg, const void __iomem *src, size_t size)
191{
192 int i;
193 u32 *t = trg;
194 const __iomem u32 *s = src;
195
196 for (i = 0; i < (size >> 2); i++)
197 *t++ = __raw_readl(addr: s++);
198}
199
200static void memcpy16_fromio(void *trg, const void __iomem *src, size_t size)
201{
202 int i;
203 u16 *t = trg;
204 const __iomem u16 *s = src;
205
206 /* We assume that src (IO) is always 32bit aligned */
207 if (PTR_ALIGN(trg, 4) == trg && IS_ALIGNED(size, 4)) {
208 memcpy32_fromio(trg, src, size);
209 return;
210 }
211
212 for (i = 0; i < (size >> 1); i++)
213 *t++ = __raw_readw(addr: s++);
214}
215
216static inline void memcpy32_toio(void __iomem *trg, const void *src, int size)
217{
218 /* __iowrite32_copy use 32bit size values so divide by 4 */
219 __iowrite32_copy(to: trg, from: src, count: size / 4);
220}
221
222static void memcpy16_toio(void __iomem *trg, const void *src, int size)
223{
224 int i;
225 __iomem u16 *t = trg;
226 const u16 *s = src;
227
228 /* We assume that trg (IO) is always 32bit aligned */
229 if (PTR_ALIGN(src, 4) == src && IS_ALIGNED(size, 4)) {
230 memcpy32_toio(trg, src, size);
231 return;
232 }
233
234 for (i = 0; i < (size >> 1); i++)
235 __raw_writew(val: *s++, addr: t++);
236}
237
238/*
239 * The controller splits a page into data chunks of 512 bytes + partial oob.
240 * There are writesize / 512 such chunks, the size of the partial oob parts is
241 * oobsize / #chunks rounded down to a multiple of 2. The last oob chunk then
242 * contains additionally the byte lost by rounding (if any).
243 * This function handles the needed shuffling between host->data_buf (which
244 * holds a page in natural order, i.e. writesize bytes data + oobsize bytes
245 * spare) and the NFC buffer.
246 */
247static void copy_spare(struct mtd_info *mtd, bool bfrom, void *buf)
248{
249 struct nand_chip *this = mtd_to_nand(mtd);
250 struct mxc_nand_host *host = nand_get_controller_data(chip: this);
251 u16 i, oob_chunk_size;
252 u16 num_chunks = mtd->writesize / 512;
253
254 u8 *d = buf;
255 u8 __iomem *s = host->spare0;
256 u16 sparebuf_size = host->devtype_data->spare_len;
257
258 /* size of oob chunk for all but possibly the last one */
259 oob_chunk_size = (host->used_oobsize / num_chunks) & ~1;
260
261 if (bfrom) {
262 for (i = 0; i < num_chunks - 1; i++)
263 memcpy16_fromio(trg: d + i * oob_chunk_size,
264 src: s + i * sparebuf_size,
265 size: oob_chunk_size);
266
267 /* the last chunk */
268 memcpy16_fromio(trg: d + i * oob_chunk_size,
269 src: s + i * sparebuf_size,
270 size: host->used_oobsize - i * oob_chunk_size);
271 } else {
272 for (i = 0; i < num_chunks - 1; i++)
273 memcpy16_toio(trg: &s[i * sparebuf_size],
274 src: &d[i * oob_chunk_size],
275 size: oob_chunk_size);
276
277 /* the last chunk */
278 memcpy16_toio(trg: &s[i * sparebuf_size],
279 src: &d[i * oob_chunk_size],
280 size: host->used_oobsize - i * oob_chunk_size);
281 }
282}
283
284/*
285 * MXC NANDFC can only perform full page+spare or spare-only read/write. When
286 * the upper layers perform a read/write buf operation, the saved column address
287 * is used to index into the full page. So usually this function is called with
288 * column == 0 (unless no column cycle is needed indicated by column == -1)
289 */
290static void mxc_do_addr_cycle(struct mtd_info *mtd, int column, int page_addr)
291{
292 struct nand_chip *nand_chip = mtd_to_nand(mtd);
293 struct mxc_nand_host *host = nand_get_controller_data(chip: nand_chip);
294
295 /* Write out column address, if necessary */
296 if (column != -1) {
297 host->devtype_data->send_addr(host, column & 0xff,
298 page_addr == -1);
299 if (mtd->writesize > 512)
300 /* another col addr cycle for 2k page */
301 host->devtype_data->send_addr(host,
302 (column >> 8) & 0xff,
303 false);
304 }
305
306 /* Write out page address, if necessary */
307 if (page_addr != -1) {
308 /* paddr_0 - p_addr_7 */
309 host->devtype_data->send_addr(host, (page_addr & 0xff), false);
310
311 if (mtd->writesize > 512) {
312 if (mtd->size >= 0x10000000) {
313 /* paddr_8 - paddr_15 */
314 host->devtype_data->send_addr(host,
315 (page_addr >> 8) & 0xff,
316 false);
317 host->devtype_data->send_addr(host,
318 (page_addr >> 16) & 0xff,
319 true);
320 } else
321 /* paddr_8 - paddr_15 */
322 host->devtype_data->send_addr(host,
323 (page_addr >> 8) & 0xff, true);
324 } else {
325 if (nand_chip->options & NAND_ROW_ADDR_3) {
326 /* paddr_8 - paddr_15 */
327 host->devtype_data->send_addr(host,
328 (page_addr >> 8) & 0xff,
329 false);
330 host->devtype_data->send_addr(host,
331 (page_addr >> 16) & 0xff,
332 true);
333 } else
334 /* paddr_8 - paddr_15 */
335 host->devtype_data->send_addr(host,
336 (page_addr >> 8) & 0xff, true);
337 }
338 }
339}
340
341static int check_int_v3(struct mxc_nand_host *host)
342{
343 uint32_t tmp;
344
345 tmp = readl(NFC_V3_IPC);
346 if (!(tmp & NFC_V3_IPC_INT))
347 return 0;
348
349 tmp &= ~NFC_V3_IPC_INT;
350 writel(val: tmp, NFC_V3_IPC);
351
352 return 1;
353}
354
355static int check_int_v1_v2(struct mxc_nand_host *host)
356{
357 uint32_t tmp;
358
359 tmp = readw(NFC_V1_V2_CONFIG2);
360 if (!(tmp & NFC_V1_V2_CONFIG2_INT))
361 return 0;
362
363 if (!host->devtype_data->irqpending_quirk)
364 writew(val: tmp & ~NFC_V1_V2_CONFIG2_INT, NFC_V1_V2_CONFIG2);
365
366 return 1;
367}
368
369static void irq_control_v1_v2(struct mxc_nand_host *host, int activate)
370{
371 uint16_t tmp;
372
373 tmp = readw(NFC_V1_V2_CONFIG1);
374
375 if (activate)
376 tmp &= ~NFC_V1_V2_CONFIG1_INT_MSK;
377 else
378 tmp |= NFC_V1_V2_CONFIG1_INT_MSK;
379
380 writew(val: tmp, NFC_V1_V2_CONFIG1);
381}
382
383static void irq_control_v3(struct mxc_nand_host *host, int activate)
384{
385 uint32_t tmp;
386
387 tmp = readl(NFC_V3_CONFIG2);
388
389 if (activate)
390 tmp &= ~NFC_V3_CONFIG2_INT_MSK;
391 else
392 tmp |= NFC_V3_CONFIG2_INT_MSK;
393
394 writel(val: tmp, NFC_V3_CONFIG2);
395}
396
397static void irq_control(struct mxc_nand_host *host, int activate)
398{
399 if (host->devtype_data->irqpending_quirk) {
400 if (activate)
401 enable_irq(irq: host->irq);
402 else
403 disable_irq_nosync(irq: host->irq);
404 } else {
405 host->devtype_data->irq_control(host, activate);
406 }
407}
408
409static u32 get_ecc_status_v1(struct mxc_nand_host *host)
410{
411 return readw(NFC_V1_V2_ECC_STATUS_RESULT);
412}
413
414static u32 get_ecc_status_v2(struct mxc_nand_host *host)
415{
416 return readl(NFC_V1_V2_ECC_STATUS_RESULT);
417}
418
419static u32 get_ecc_status_v3(struct mxc_nand_host *host)
420{
421 return readl(NFC_V3_ECC_STATUS_RESULT);
422}
423
424static irqreturn_t mxc_nfc_irq(int irq, void *dev_id)
425{
426 struct mxc_nand_host *host = dev_id;
427
428 if (!host->devtype_data->check_int(host))
429 return IRQ_NONE;
430
431 irq_control(host, activate: 0);
432
433 complete(&host->op_completion);
434
435 return IRQ_HANDLED;
436}
437
438/* This function polls the NANDFC to wait for the basic operation to
439 * complete by checking the INT bit of config2 register.
440 */
441static int wait_op_done(struct mxc_nand_host *host, int useirq)
442{
443 int ret = 0;
444
445 /*
446 * If operation is already complete, don't bother to setup an irq or a
447 * loop.
448 */
449 if (host->devtype_data->check_int(host))
450 return 0;
451
452 if (useirq) {
453 unsigned long timeout;
454
455 reinit_completion(x: &host->op_completion);
456
457 irq_control(host, activate: 1);
458
459 timeout = wait_for_completion_timeout(x: &host->op_completion, HZ);
460 if (!timeout && !host->devtype_data->check_int(host)) {
461 dev_dbg(host->dev, "timeout waiting for irq\n");
462 ret = -ETIMEDOUT;
463 }
464 } else {
465 int max_retries = 8000;
466 int done;
467
468 do {
469 udelay(1);
470
471 done = host->devtype_data->check_int(host);
472 if (done)
473 break;
474
475 } while (--max_retries);
476
477 if (!done) {
478 dev_dbg(host->dev, "timeout polling for completion\n");
479 ret = -ETIMEDOUT;
480 }
481 }
482
483 WARN_ONCE(ret < 0, "timeout! useirq=%d\n", useirq);
484
485 return ret;
486}
487
488static void send_cmd_v3(struct mxc_nand_host *host, uint16_t cmd, int useirq)
489{
490 /* fill command */
491 writel(val: cmd, NFC_V3_FLASH_CMD);
492
493 /* send out command */
494 writel(NFC_CMD, NFC_V3_LAUNCH);
495
496 /* Wait for operation to complete */
497 wait_op_done(host, useirq);
498}
499
500/* This function issues the specified command to the NAND device and
501 * waits for completion. */
502static void send_cmd_v1_v2(struct mxc_nand_host *host, uint16_t cmd, int useirq)
503{
504 dev_dbg(host->dev, "send_cmd(host, 0x%x, %d)\n", cmd, useirq);
505
506 writew(val: cmd, NFC_V1_V2_FLASH_CMD);
507 writew(NFC_CMD, NFC_V1_V2_CONFIG2);
508
509 if (host->devtype_data->irqpending_quirk && (cmd == NAND_CMD_RESET)) {
510 int max_retries = 100;
511 /* Reset completion is indicated by NFC_CONFIG2 */
512 /* being set to 0 */
513 while (max_retries-- > 0) {
514 if (readw(NFC_V1_V2_CONFIG2) == 0) {
515 break;
516 }
517 udelay(1);
518 }
519 if (max_retries < 0)
520 dev_dbg(host->dev, "%s: RESET failed\n", __func__);
521 } else {
522 /* Wait for operation to complete */
523 wait_op_done(host, useirq);
524 }
525}
526
527static void send_addr_v3(struct mxc_nand_host *host, uint16_t addr, int islast)
528{
529 /* fill address */
530 writel(val: addr, NFC_V3_FLASH_ADDR0);
531
532 /* send out address */
533 writel(NFC_ADDR, NFC_V3_LAUNCH);
534
535 wait_op_done(host, useirq: 0);
536}
537
538/* This function sends an address (or partial address) to the
539 * NAND device. The address is used to select the source/destination for
540 * a NAND command. */
541static void send_addr_v1_v2(struct mxc_nand_host *host, uint16_t addr, int islast)
542{
543 dev_dbg(host->dev, "send_addr(host, 0x%x %d)\n", addr, islast);
544
545 writew(val: addr, NFC_V1_V2_FLASH_ADDR);
546 writew(NFC_ADDR, NFC_V1_V2_CONFIG2);
547
548 /* Wait for operation to complete */
549 wait_op_done(host, useirq: islast);
550}
551
552static void send_page_v3(struct mtd_info *mtd, unsigned int ops)
553{
554 struct nand_chip *nand_chip = mtd_to_nand(mtd);
555 struct mxc_nand_host *host = nand_get_controller_data(chip: nand_chip);
556 uint32_t tmp;
557
558 tmp = readl(NFC_V3_CONFIG1);
559 tmp &= ~(7 << 4);
560 writel(val: tmp, NFC_V3_CONFIG1);
561
562 /* transfer data from NFC ram to nand */
563 writel(val: ops, NFC_V3_LAUNCH);
564
565 wait_op_done(host, useirq: false);
566}
567
568static void send_page_v2(struct mtd_info *mtd, unsigned int ops)
569{
570 struct nand_chip *nand_chip = mtd_to_nand(mtd);
571 struct mxc_nand_host *host = nand_get_controller_data(chip: nand_chip);
572
573 /* NANDFC buffer 0 is used for page read/write */
574 writew(val: host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
575
576 writew(val: ops, NFC_V1_V2_CONFIG2);
577
578 /* Wait for operation to complete */
579 wait_op_done(host, useirq: true);
580}
581
582static void send_page_v1(struct mtd_info *mtd, unsigned int ops)
583{
584 struct nand_chip *nand_chip = mtd_to_nand(mtd);
585 struct mxc_nand_host *host = nand_get_controller_data(chip: nand_chip);
586 int bufs, i;
587
588 if (mtd->writesize > 512)
589 bufs = 4;
590 else
591 bufs = 1;
592
593 for (i = 0; i < bufs; i++) {
594
595 /* NANDFC buffer 0 is used for page read/write */
596 writew(val: (host->active_cs << 4) | i, NFC_V1_V2_BUF_ADDR);
597
598 writew(val: ops, NFC_V1_V2_CONFIG2);
599
600 /* Wait for operation to complete */
601 wait_op_done(host, useirq: true);
602 }
603}
604
605static void send_read_id_v3(struct mxc_nand_host *host)
606{
607 /* Read ID into main buffer */
608 writel(NFC_ID, NFC_V3_LAUNCH);
609
610 wait_op_done(host, useirq: true);
611
612 memcpy32_fromio(trg: host->data_buf, src: host->main_area0, size: 16);
613}
614
615/* Request the NANDFC to perform a read of the NAND device ID. */
616static void send_read_id_v1_v2(struct mxc_nand_host *host)
617{
618 /* NANDFC buffer 0 is used for device ID output */
619 writew(val: host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
620
621 writew(NFC_ID, NFC_V1_V2_CONFIG2);
622
623 /* Wait for operation to complete */
624 wait_op_done(host, useirq: true);
625
626 memcpy32_fromio(trg: host->data_buf, src: host->main_area0, size: 16);
627}
628
629static uint16_t get_dev_status_v3(struct mxc_nand_host *host)
630{
631 writew(NFC_STATUS, NFC_V3_LAUNCH);
632 wait_op_done(host, useirq: true);
633
634 return readl(NFC_V3_CONFIG1) >> 16;
635}
636
637/* This function requests the NANDFC to perform a read of the
638 * NAND device status and returns the current status. */
639static uint16_t get_dev_status_v1_v2(struct mxc_nand_host *host)
640{
641 void __iomem *main_buf = host->main_area0;
642 uint32_t store;
643 uint16_t ret;
644
645 writew(val: host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
646
647 /*
648 * The device status is stored in main_area0. To
649 * prevent corruption of the buffer save the value
650 * and restore it afterwards.
651 */
652 store = readl(addr: main_buf);
653
654 writew(NFC_STATUS, NFC_V1_V2_CONFIG2);
655 wait_op_done(host, useirq: true);
656
657 ret = readw(addr: main_buf);
658
659 writel(val: store, addr: main_buf);
660
661 return ret;
662}
663
664static void mxc_nand_enable_hwecc_v1_v2(struct nand_chip *chip, bool enable)
665{
666 struct mxc_nand_host *host = nand_get_controller_data(chip);
667 uint16_t config1;
668
669 if (chip->ecc.engine_type != NAND_ECC_ENGINE_TYPE_ON_HOST)
670 return;
671
672 config1 = readw(NFC_V1_V2_CONFIG1);
673
674 if (enable)
675 config1 |= NFC_V1_V2_CONFIG1_ECC_EN;
676 else
677 config1 &= ~NFC_V1_V2_CONFIG1_ECC_EN;
678
679 writew(val: config1, NFC_V1_V2_CONFIG1);
680}
681
682static void mxc_nand_enable_hwecc_v3(struct nand_chip *chip, bool enable)
683{
684 struct mxc_nand_host *host = nand_get_controller_data(chip);
685 uint32_t config2;
686
687 if (chip->ecc.engine_type != NAND_ECC_ENGINE_TYPE_ON_HOST)
688 return;
689
690 config2 = readl(NFC_V3_CONFIG2);
691
692 if (enable)
693 config2 |= NFC_V3_CONFIG2_ECC_EN;
694 else
695 config2 &= ~NFC_V3_CONFIG2_ECC_EN;
696
697 writel(val: config2, NFC_V3_CONFIG2);
698}
699
700/* This functions is used by upper layer to checks if device is ready */
701static int mxc_nand_dev_ready(struct nand_chip *chip)
702{
703 /*
704 * NFC handles R/B internally. Therefore, this function
705 * always returns status as ready.
706 */
707 return 1;
708}
709
710static int mxc_nand_read_page_v1(struct nand_chip *chip, void *buf, void *oob,
711 bool ecc, int page)
712{
713 struct mtd_info *mtd = nand_to_mtd(chip);
714 struct mxc_nand_host *host = nand_get_controller_data(chip);
715 unsigned int bitflips_corrected = 0;
716 int no_subpages;
717 int i;
718
719 host->devtype_data->enable_hwecc(chip, ecc);
720
721 host->devtype_data->send_cmd(host, NAND_CMD_READ0, false);
722 mxc_do_addr_cycle(mtd, column: 0, page_addr: page);
723
724 if (mtd->writesize > 512)
725 host->devtype_data->send_cmd(host, NAND_CMD_READSTART, true);
726
727 no_subpages = mtd->writesize >> 9;
728
729 for (i = 0; i < no_subpages; i++) {
730 uint16_t ecc_stats;
731
732 /* NANDFC buffer 0 is used for page read/write */
733 writew(val: (host->active_cs << 4) | i, NFC_V1_V2_BUF_ADDR);
734
735 writew(NFC_OUTPUT, NFC_V1_V2_CONFIG2);
736
737 /* Wait for operation to complete */
738 wait_op_done(host, useirq: true);
739
740 ecc_stats = get_ecc_status_v1(host);
741
742 ecc_stats >>= 2;
743
744 if (buf && ecc) {
745 switch (ecc_stats & 0x3) {
746 case 0:
747 default:
748 break;
749 case 1:
750 mtd->ecc_stats.corrected++;
751 bitflips_corrected = 1;
752 break;
753 case 2:
754 mtd->ecc_stats.failed++;
755 break;
756 }
757 }
758 }
759
760 if (buf)
761 memcpy32_fromio(trg: buf, src: host->main_area0, size: mtd->writesize);
762 if (oob)
763 copy_spare(mtd, bfrom: true, buf: oob);
764
765 return bitflips_corrected;
766}
767
768static int mxc_nand_read_page_v2_v3(struct nand_chip *chip, void *buf,
769 void *oob, bool ecc, int page)
770{
771 struct mtd_info *mtd = nand_to_mtd(chip);
772 struct mxc_nand_host *host = nand_get_controller_data(chip);
773 unsigned int max_bitflips = 0;
774 u32 ecc_stat, err;
775 int no_subpages;
776 u8 ecc_bit_mask, err_limit;
777
778 host->devtype_data->enable_hwecc(chip, ecc);
779
780 host->devtype_data->send_cmd(host, NAND_CMD_READ0, false);
781 mxc_do_addr_cycle(mtd, column: 0, page_addr: page);
782
783 if (mtd->writesize > 512)
784 host->devtype_data->send_cmd(host,
785 NAND_CMD_READSTART, true);
786
787 host->devtype_data->send_page(mtd, NFC_OUTPUT);
788
789 if (buf)
790 memcpy32_fromio(trg: buf, src: host->main_area0, size: mtd->writesize);
791 if (oob)
792 copy_spare(mtd, bfrom: true, buf: oob);
793
794 ecc_bit_mask = (host->eccsize == 4) ? 0x7 : 0xf;
795 err_limit = (host->eccsize == 4) ? 0x4 : 0x8;
796
797 no_subpages = mtd->writesize >> 9;
798
799 ecc_stat = host->devtype_data->get_ecc_status(host);
800
801 do {
802 err = ecc_stat & ecc_bit_mask;
803 if (err > err_limit) {
804 mtd->ecc_stats.failed++;
805 } else {
806 mtd->ecc_stats.corrected += err;
807 max_bitflips = max_t(unsigned int, max_bitflips, err);
808 }
809
810 ecc_stat >>= 4;
811 } while (--no_subpages);
812
813 return max_bitflips;
814}
815
816static int mxc_nand_read_page(struct nand_chip *chip, uint8_t *buf,
817 int oob_required, int page)
818{
819 struct mxc_nand_host *host = nand_get_controller_data(chip);
820 void *oob_buf;
821
822 if (oob_required)
823 oob_buf = chip->oob_poi;
824 else
825 oob_buf = NULL;
826
827 return host->devtype_data->read_page(chip, buf, oob_buf, 1, page);
828}
829
830static int mxc_nand_read_page_raw(struct nand_chip *chip, uint8_t *buf,
831 int oob_required, int page)
832{
833 struct mxc_nand_host *host = nand_get_controller_data(chip);
834 void *oob_buf;
835
836 if (oob_required)
837 oob_buf = chip->oob_poi;
838 else
839 oob_buf = NULL;
840
841 return host->devtype_data->read_page(chip, buf, oob_buf, 0, page);
842}
843
844static int mxc_nand_read_oob(struct nand_chip *chip, int page)
845{
846 struct mxc_nand_host *host = nand_get_controller_data(chip);
847
848 return host->devtype_data->read_page(chip, NULL, chip->oob_poi, 0,
849 page);
850}
851
852static int mxc_nand_write_page(struct nand_chip *chip, const uint8_t *buf,
853 bool ecc, int page)
854{
855 struct mtd_info *mtd = nand_to_mtd(chip);
856 struct mxc_nand_host *host = nand_get_controller_data(chip);
857
858 host->devtype_data->enable_hwecc(chip, ecc);
859
860 host->devtype_data->send_cmd(host, NAND_CMD_SEQIN, false);
861 mxc_do_addr_cycle(mtd, column: 0, page_addr: page);
862
863 memcpy32_toio(trg: host->main_area0, src: buf, size: mtd->writesize);
864 copy_spare(mtd, bfrom: false, buf: chip->oob_poi);
865
866 host->devtype_data->send_page(mtd, NFC_INPUT);
867 host->devtype_data->send_cmd(host, NAND_CMD_PAGEPROG, true);
868 mxc_do_addr_cycle(mtd, column: 0, page_addr: page);
869
870 return 0;
871}
872
873static int mxc_nand_write_page_ecc(struct nand_chip *chip, const uint8_t *buf,
874 int oob_required, int page)
875{
876 return mxc_nand_write_page(chip, buf, ecc: true, page);
877}
878
879static int mxc_nand_write_page_raw(struct nand_chip *chip, const uint8_t *buf,
880 int oob_required, int page)
881{
882 return mxc_nand_write_page(chip, buf, ecc: false, page);
883}
884
885static int mxc_nand_write_oob(struct nand_chip *chip, int page)
886{
887 struct mtd_info *mtd = nand_to_mtd(chip);
888 struct mxc_nand_host *host = nand_get_controller_data(chip);
889
890 memset(host->data_buf, 0xff, mtd->writesize);
891
892 return mxc_nand_write_page(chip, buf: host->data_buf, ecc: false, page);
893}
894
895static u_char mxc_nand_read_byte(struct nand_chip *nand_chip)
896{
897 struct mxc_nand_host *host = nand_get_controller_data(chip: nand_chip);
898 uint8_t ret;
899
900 /* Check for status request */
901 if (host->status_request)
902 return host->devtype_data->get_dev_status(host) & 0xFF;
903
904 if (nand_chip->options & NAND_BUSWIDTH_16) {
905 /* only take the lower byte of each word */
906 ret = *(uint16_t *)(host->data_buf + host->buf_start);
907
908 host->buf_start += 2;
909 } else {
910 ret = *(uint8_t *)(host->data_buf + host->buf_start);
911 host->buf_start++;
912 }
913
914 dev_dbg(host->dev, "%s: ret=0x%hhx (start=%u)\n", __func__, ret, host->buf_start);
915 return ret;
916}
917
918/* Write data of length len to buffer buf. The data to be
919 * written on NAND Flash is first copied to RAMbuffer. After the Data Input
920 * Operation by the NFC, the data is written to NAND Flash */
921static void mxc_nand_write_buf(struct nand_chip *nand_chip, const u_char *buf,
922 int len)
923{
924 struct mtd_info *mtd = nand_to_mtd(chip: nand_chip);
925 struct mxc_nand_host *host = nand_get_controller_data(chip: nand_chip);
926 u16 col = host->buf_start;
927 int n = mtd->oobsize + mtd->writesize - col;
928
929 n = min(n, len);
930
931 memcpy(host->data_buf + col, buf, n);
932
933 host->buf_start += n;
934}
935
936/* Read the data buffer from the NAND Flash. To read the data from NAND
937 * Flash first the data output cycle is initiated by the NFC, which copies
938 * the data to RAMbuffer. This data of length len is then copied to buffer buf.
939 */
940static void mxc_nand_read_buf(struct nand_chip *nand_chip, u_char *buf,
941 int len)
942{
943 struct mtd_info *mtd = nand_to_mtd(chip: nand_chip);
944 struct mxc_nand_host *host = nand_get_controller_data(chip: nand_chip);
945 u16 col = host->buf_start;
946 int n = mtd->oobsize + mtd->writesize - col;
947
948 n = min(n, len);
949
950 memcpy(buf, host->data_buf + col, n);
951
952 host->buf_start += n;
953}
954
955/* This function is used by upper layer for select and
956 * deselect of the NAND chip */
957static void mxc_nand_select_chip_v1_v3(struct nand_chip *nand_chip, int chip)
958{
959 struct mxc_nand_host *host = nand_get_controller_data(chip: nand_chip);
960
961 if (chip == -1) {
962 /* Disable the NFC clock */
963 if (host->clk_act) {
964 clk_disable_unprepare(clk: host->clk);
965 host->clk_act = 0;
966 }
967 return;
968 }
969
970 if (!host->clk_act) {
971 /* Enable the NFC clock */
972 clk_prepare_enable(clk: host->clk);
973 host->clk_act = 1;
974 }
975}
976
977static void mxc_nand_select_chip_v2(struct nand_chip *nand_chip, int chip)
978{
979 struct mxc_nand_host *host = nand_get_controller_data(chip: nand_chip);
980
981 if (chip == -1) {
982 /* Disable the NFC clock */
983 if (host->clk_act) {
984 clk_disable_unprepare(clk: host->clk);
985 host->clk_act = 0;
986 }
987 return;
988 }
989
990 if (!host->clk_act) {
991 /* Enable the NFC clock */
992 clk_prepare_enable(clk: host->clk);
993 host->clk_act = 1;
994 }
995
996 host->active_cs = chip;
997 writew(val: host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
998}
999
1000#define MXC_V1_ECCBYTES 5
1001
1002static int mxc_v1_ooblayout_ecc(struct mtd_info *mtd, int section,
1003 struct mtd_oob_region *oobregion)
1004{
1005 struct nand_chip *nand_chip = mtd_to_nand(mtd);
1006
1007 if (section >= nand_chip->ecc.steps)
1008 return -ERANGE;
1009
1010 oobregion->offset = (section * 16) + 6;
1011 oobregion->length = MXC_V1_ECCBYTES;
1012
1013 return 0;
1014}
1015
1016static int mxc_v1_ooblayout_free(struct mtd_info *mtd, int section,
1017 struct mtd_oob_region *oobregion)
1018{
1019 struct nand_chip *nand_chip = mtd_to_nand(mtd);
1020
1021 if (section > nand_chip->ecc.steps)
1022 return -ERANGE;
1023
1024 if (!section) {
1025 if (mtd->writesize <= 512) {
1026 oobregion->offset = 0;
1027 oobregion->length = 5;
1028 } else {
1029 oobregion->offset = 2;
1030 oobregion->length = 4;
1031 }
1032 } else {
1033 oobregion->offset = ((section - 1) * 16) + MXC_V1_ECCBYTES + 6;
1034 if (section < nand_chip->ecc.steps)
1035 oobregion->length = (section * 16) + 6 -
1036 oobregion->offset;
1037 else
1038 oobregion->length = mtd->oobsize - oobregion->offset;
1039 }
1040
1041 return 0;
1042}
1043
1044static const struct mtd_ooblayout_ops mxc_v1_ooblayout_ops = {
1045 .ecc = mxc_v1_ooblayout_ecc,
1046 .free = mxc_v1_ooblayout_free,
1047};
1048
1049static int mxc_v2_ooblayout_ecc(struct mtd_info *mtd, int section,
1050 struct mtd_oob_region *oobregion)
1051{
1052 struct nand_chip *nand_chip = mtd_to_nand(mtd);
1053 int stepsize = nand_chip->ecc.bytes == 9 ? 16 : 26;
1054
1055 if (section >= nand_chip->ecc.steps)
1056 return -ERANGE;
1057
1058 oobregion->offset = (section * stepsize) + 7;
1059 oobregion->length = nand_chip->ecc.bytes;
1060
1061 return 0;
1062}
1063
1064static int mxc_v2_ooblayout_free(struct mtd_info *mtd, int section,
1065 struct mtd_oob_region *oobregion)
1066{
1067 struct nand_chip *nand_chip = mtd_to_nand(mtd);
1068 int stepsize = nand_chip->ecc.bytes == 9 ? 16 : 26;
1069
1070 if (section >= nand_chip->ecc.steps)
1071 return -ERANGE;
1072
1073 if (!section) {
1074 if (mtd->writesize <= 512) {
1075 oobregion->offset = 0;
1076 oobregion->length = 5;
1077 } else {
1078 oobregion->offset = 2;
1079 oobregion->length = 4;
1080 }
1081 } else {
1082 oobregion->offset = section * stepsize;
1083 oobregion->length = 7;
1084 }
1085
1086 return 0;
1087}
1088
1089static const struct mtd_ooblayout_ops mxc_v2_ooblayout_ops = {
1090 .ecc = mxc_v2_ooblayout_ecc,
1091 .free = mxc_v2_ooblayout_free,
1092};
1093
1094/*
1095 * v2 and v3 type controllers can do 4bit or 8bit ecc depending
1096 * on how much oob the nand chip has. For 8bit ecc we need at least
1097 * 26 bytes of oob data per 512 byte block.
1098 */
1099static int get_eccsize(struct mtd_info *mtd)
1100{
1101 int oobbytes_per_512 = 0;
1102
1103 oobbytes_per_512 = mtd->oobsize * 512 / mtd->writesize;
1104
1105 if (oobbytes_per_512 < 26)
1106 return 4;
1107 else
1108 return 8;
1109}
1110
1111static void preset_v1(struct mtd_info *mtd)
1112{
1113 struct nand_chip *nand_chip = mtd_to_nand(mtd);
1114 struct mxc_nand_host *host = nand_get_controller_data(chip: nand_chip);
1115 uint16_t config1 = 0;
1116
1117 if (nand_chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_ON_HOST &&
1118 mtd->writesize)
1119 config1 |= NFC_V1_V2_CONFIG1_ECC_EN;
1120
1121 if (!host->devtype_data->irqpending_quirk)
1122 config1 |= NFC_V1_V2_CONFIG1_INT_MSK;
1123
1124 host->eccsize = 1;
1125
1126 writew(val: config1, NFC_V1_V2_CONFIG1);
1127 /* preset operation */
1128
1129 /* Unlock the internal RAM Buffer */
1130 writew(val: 0x2, NFC_V1_V2_CONFIG);
1131
1132 /* Blocks to be unlocked */
1133 writew(val: 0x0, NFC_V1_UNLOCKSTART_BLKADDR);
1134 writew(val: 0xffff, NFC_V1_UNLOCKEND_BLKADDR);
1135
1136 /* Unlock Block Command for given address range */
1137 writew(val: 0x4, NFC_V1_V2_WRPROT);
1138}
1139
1140static int mxc_nand_v2_setup_interface(struct nand_chip *chip, int csline,
1141 const struct nand_interface_config *conf)
1142{
1143 struct mxc_nand_host *host = nand_get_controller_data(chip);
1144 int tRC_min_ns, tRC_ps, ret;
1145 unsigned long rate, rate_round;
1146 const struct nand_sdr_timings *timings;
1147 u16 config1;
1148
1149 timings = nand_get_sdr_timings(conf);
1150 if (IS_ERR(ptr: timings))
1151 return -ENOTSUPP;
1152
1153 config1 = readw(NFC_V1_V2_CONFIG1);
1154
1155 tRC_min_ns = timings->tRC_min / 1000;
1156 rate = 1000000000 / tRC_min_ns;
1157
1158 /*
1159 * For tRC < 30ns we have to use EDO mode. In this case the controller
1160 * does one access per clock cycle. Otherwise the controller does one
1161 * access in two clock cycles, thus we have to double the rate to the
1162 * controller.
1163 */
1164 if (tRC_min_ns < 30) {
1165 rate_round = clk_round_rate(clk: host->clk, rate);
1166 config1 |= NFC_V2_CONFIG1_ONE_CYCLE;
1167 tRC_ps = 1000000000 / (rate_round / 1000);
1168 } else {
1169 rate *= 2;
1170 rate_round = clk_round_rate(clk: host->clk, rate);
1171 config1 &= ~NFC_V2_CONFIG1_ONE_CYCLE;
1172 tRC_ps = 1000000000 / (rate_round / 1000 / 2);
1173 }
1174
1175 /*
1176 * The timing values compared against are from the i.MX25 Automotive
1177 * datasheet, Table 50. NFC Timing Parameters
1178 */
1179 if (timings->tCLS_min > tRC_ps - 1000 ||
1180 timings->tCLH_min > tRC_ps - 2000 ||
1181 timings->tCS_min > tRC_ps - 1000 ||
1182 timings->tCH_min > tRC_ps - 2000 ||
1183 timings->tWP_min > tRC_ps - 1500 ||
1184 timings->tALS_min > tRC_ps ||
1185 timings->tALH_min > tRC_ps - 3000 ||
1186 timings->tDS_min > tRC_ps ||
1187 timings->tDH_min > tRC_ps - 5000 ||
1188 timings->tWC_min > 2 * tRC_ps ||
1189 timings->tWH_min > tRC_ps - 2500 ||
1190 timings->tRR_min > 6 * tRC_ps ||
1191 timings->tRP_min > 3 * tRC_ps / 2 ||
1192 timings->tRC_min > 2 * tRC_ps ||
1193 timings->tREH_min > (tRC_ps / 2) - 2500) {
1194 dev_dbg(host->dev, "Timing out of bounds\n");
1195 return -EINVAL;
1196 }
1197
1198 if (csline == NAND_DATA_IFACE_CHECK_ONLY)
1199 return 0;
1200
1201 ret = clk_set_rate(clk: host->clk, rate);
1202 if (ret)
1203 return ret;
1204
1205 writew(val: config1, NFC_V1_V2_CONFIG1);
1206
1207 dev_dbg(host->dev, "Setting rate to %ldHz, %s mode\n", rate_round,
1208 config1 & NFC_V2_CONFIG1_ONE_CYCLE ? "One cycle (EDO)" :
1209 "normal");
1210
1211 return 0;
1212}
1213
1214static void preset_v2(struct mtd_info *mtd)
1215{
1216 struct nand_chip *nand_chip = mtd_to_nand(mtd);
1217 struct mxc_nand_host *host = nand_get_controller_data(chip: nand_chip);
1218 uint16_t config1 = 0;
1219
1220 config1 |= NFC_V2_CONFIG1_FP_INT;
1221
1222 if (!host->devtype_data->irqpending_quirk)
1223 config1 |= NFC_V1_V2_CONFIG1_INT_MSK;
1224
1225 if (mtd->writesize) {
1226 uint16_t pages_per_block = mtd->erasesize / mtd->writesize;
1227
1228 if (nand_chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_ON_HOST)
1229 config1 |= NFC_V1_V2_CONFIG1_ECC_EN;
1230
1231 host->eccsize = get_eccsize(mtd);
1232 if (host->eccsize == 4)
1233 config1 |= NFC_V2_CONFIG1_ECC_MODE_4;
1234
1235 config1 |= NFC_V2_CONFIG1_PPB(ffs(pages_per_block) - 6);
1236 } else {
1237 host->eccsize = 1;
1238 }
1239
1240 writew(val: config1, NFC_V1_V2_CONFIG1);
1241 /* preset operation */
1242
1243 /* spare area size in 16-bit half-words */
1244 writew(val: mtd->oobsize / 2, NFC_V21_RSLTSPARE_AREA);
1245
1246 /* Unlock the internal RAM Buffer */
1247 writew(val: 0x2, NFC_V1_V2_CONFIG);
1248
1249 /* Blocks to be unlocked */
1250 writew(val: 0x0, NFC_V21_UNLOCKSTART_BLKADDR0);
1251 writew(val: 0x0, NFC_V21_UNLOCKSTART_BLKADDR1);
1252 writew(val: 0x0, NFC_V21_UNLOCKSTART_BLKADDR2);
1253 writew(val: 0x0, NFC_V21_UNLOCKSTART_BLKADDR3);
1254 writew(val: 0xffff, NFC_V21_UNLOCKEND_BLKADDR0);
1255 writew(val: 0xffff, NFC_V21_UNLOCKEND_BLKADDR1);
1256 writew(val: 0xffff, NFC_V21_UNLOCKEND_BLKADDR2);
1257 writew(val: 0xffff, NFC_V21_UNLOCKEND_BLKADDR3);
1258
1259 /* Unlock Block Command for given address range */
1260 writew(val: 0x4, NFC_V1_V2_WRPROT);
1261}
1262
1263static void preset_v3(struct mtd_info *mtd)
1264{
1265 struct nand_chip *chip = mtd_to_nand(mtd);
1266 struct mxc_nand_host *host = nand_get_controller_data(chip);
1267 uint32_t config2, config3;
1268 int i, addr_phases;
1269
1270 writel(NFC_V3_CONFIG1_RBA(0), NFC_V3_CONFIG1);
1271 writel(NFC_V3_IPC_CREQ, NFC_V3_IPC);
1272
1273 /* Unlock the internal RAM Buffer */
1274 writel(NFC_V3_WRPROT_BLS_UNLOCK | NFC_V3_WRPROT_UNLOCK,
1275 NFC_V3_WRPROT);
1276
1277 /* Blocks to be unlocked */
1278 for (i = 0; i < NAND_MAX_CHIPS; i++)
1279 writel(val: 0xffff << 16, NFC_V3_WRPROT_UNLOCK_BLK_ADD0 + (i << 2));
1280
1281 writel(val: 0, NFC_V3_IPC);
1282
1283 config2 = NFC_V3_CONFIG2_ONE_CYCLE |
1284 NFC_V3_CONFIG2_2CMD_PHASES |
1285 NFC_V3_CONFIG2_SPAS(mtd->oobsize >> 1) |
1286 NFC_V3_CONFIG2_ST_CMD(0x70) |
1287 NFC_V3_CONFIG2_INT_MSK |
1288 NFC_V3_CONFIG2_NUM_ADDR_PHASE0;
1289
1290 addr_phases = fls(x: chip->pagemask) >> 3;
1291
1292 if (mtd->writesize == 2048) {
1293 config2 |= NFC_V3_CONFIG2_PS_2048;
1294 config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases);
1295 } else if (mtd->writesize == 4096) {
1296 config2 |= NFC_V3_CONFIG2_PS_4096;
1297 config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases);
1298 } else {
1299 config2 |= NFC_V3_CONFIG2_PS_512;
1300 config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases - 1);
1301 }
1302
1303 if (mtd->writesize) {
1304 if (chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_ON_HOST)
1305 config2 |= NFC_V3_CONFIG2_ECC_EN;
1306
1307 config2 |= NFC_V3_CONFIG2_PPB(
1308 ffs(mtd->erasesize / mtd->writesize) - 6,
1309 host->devtype_data->ppb_shift);
1310 host->eccsize = get_eccsize(mtd);
1311 if (host->eccsize == 8)
1312 config2 |= NFC_V3_CONFIG2_ECC_MODE_8;
1313 }
1314
1315 writel(val: config2, NFC_V3_CONFIG2);
1316
1317 config3 = NFC_V3_CONFIG3_NUM_OF_DEVICES(0) |
1318 NFC_V3_CONFIG3_NO_SDMA |
1319 NFC_V3_CONFIG3_RBB_MODE |
1320 NFC_V3_CONFIG3_SBB(6) | /* Reset default */
1321 NFC_V3_CONFIG3_ADD_OP(0);
1322
1323 if (!(chip->options & NAND_BUSWIDTH_16))
1324 config3 |= NFC_V3_CONFIG3_FW8;
1325
1326 writel(val: config3, NFC_V3_CONFIG3);
1327
1328 writel(val: 0, NFC_V3_DELAY_LINE);
1329}
1330
1331/* Used by the upper layer to write command to NAND Flash for
1332 * different operations to be carried out on NAND Flash */
1333static void mxc_nand_command(struct nand_chip *nand_chip, unsigned command,
1334 int column, int page_addr)
1335{
1336 struct mtd_info *mtd = nand_to_mtd(chip: nand_chip);
1337 struct mxc_nand_host *host = nand_get_controller_data(chip: nand_chip);
1338
1339 dev_dbg(host->dev, "mxc_nand_command (cmd = 0x%x, col = 0x%x, page = 0x%x)\n",
1340 command, column, page_addr);
1341
1342 /* Reset command state information */
1343 host->status_request = false;
1344
1345 /* Command pre-processing step */
1346 switch (command) {
1347 case NAND_CMD_RESET:
1348 host->devtype_data->preset(mtd);
1349 host->devtype_data->send_cmd(host, command, false);
1350 break;
1351
1352 case NAND_CMD_STATUS:
1353 host->buf_start = 0;
1354 host->status_request = true;
1355
1356 host->devtype_data->send_cmd(host, command, true);
1357 WARN_ONCE(column != -1 || page_addr != -1,
1358 "Unexpected column/row value (cmd=%u, col=%d, row=%d)\n",
1359 command, column, page_addr);
1360 mxc_do_addr_cycle(mtd, column, page_addr);
1361 break;
1362
1363 case NAND_CMD_READID:
1364 host->devtype_data->send_cmd(host, command, true);
1365 mxc_do_addr_cycle(mtd, column, page_addr);
1366 host->devtype_data->send_read_id(host);
1367 host->buf_start = 0;
1368 break;
1369
1370 case NAND_CMD_ERASE1:
1371 case NAND_CMD_ERASE2:
1372 host->devtype_data->send_cmd(host, command, false);
1373 WARN_ONCE(column != -1,
1374 "Unexpected column value (cmd=%u, col=%d)\n",
1375 command, column);
1376 mxc_do_addr_cycle(mtd, column, page_addr);
1377
1378 break;
1379 case NAND_CMD_PARAM:
1380 host->devtype_data->send_cmd(host, command, false);
1381 mxc_do_addr_cycle(mtd, column, page_addr);
1382 host->devtype_data->send_page(mtd, NFC_OUTPUT);
1383 memcpy32_fromio(trg: host->data_buf, src: host->main_area0, size: 512);
1384 host->buf_start = 0;
1385 break;
1386 default:
1387 WARN_ONCE(1, "Unimplemented command (cmd=%u)\n",
1388 command);
1389 break;
1390 }
1391}
1392
1393static int mxc_nand_set_features(struct nand_chip *chip, int addr,
1394 u8 *subfeature_param)
1395{
1396 struct mtd_info *mtd = nand_to_mtd(chip);
1397 struct mxc_nand_host *host = nand_get_controller_data(chip);
1398 int i;
1399
1400 host->buf_start = 0;
1401
1402 for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
1403 chip->legacy.write_byte(chip, subfeature_param[i]);
1404
1405 memcpy32_toio(trg: host->main_area0, src: host->data_buf, size: mtd->writesize);
1406 host->devtype_data->send_cmd(host, NAND_CMD_SET_FEATURES, false);
1407 mxc_do_addr_cycle(mtd, column: addr, page_addr: -1);
1408 host->devtype_data->send_page(mtd, NFC_INPUT);
1409
1410 return 0;
1411}
1412
1413static int mxc_nand_get_features(struct nand_chip *chip, int addr,
1414 u8 *subfeature_param)
1415{
1416 struct mtd_info *mtd = nand_to_mtd(chip);
1417 struct mxc_nand_host *host = nand_get_controller_data(chip);
1418 int i;
1419
1420 host->devtype_data->send_cmd(host, NAND_CMD_GET_FEATURES, false);
1421 mxc_do_addr_cycle(mtd, column: addr, page_addr: -1);
1422 host->devtype_data->send_page(mtd, NFC_OUTPUT);
1423 memcpy32_fromio(trg: host->data_buf, src: host->main_area0, size: 512);
1424 host->buf_start = 0;
1425
1426 for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
1427 *subfeature_param++ = chip->legacy.read_byte(chip);
1428
1429 return 0;
1430}
1431
1432/*
1433 * The generic flash bbt descriptors overlap with our ecc
1434 * hardware, so define some i.MX specific ones.
1435 */
1436static uint8_t bbt_pattern[] = { 'B', 'b', 't', '0' };
1437static uint8_t mirror_pattern[] = { '1', 't', 'b', 'B' };
1438
1439static struct nand_bbt_descr bbt_main_descr = {
1440 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
1441 | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
1442 .offs = 0,
1443 .len = 4,
1444 .veroffs = 4,
1445 .maxblocks = 4,
1446 .pattern = bbt_pattern,
1447};
1448
1449static struct nand_bbt_descr bbt_mirror_descr = {
1450 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
1451 | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
1452 .offs = 0,
1453 .len = 4,
1454 .veroffs = 4,
1455 .maxblocks = 4,
1456 .pattern = mirror_pattern,
1457};
1458
1459/* v1 + irqpending_quirk: i.MX21 */
1460static const struct mxc_nand_devtype_data imx21_nand_devtype_data = {
1461 .preset = preset_v1,
1462 .read_page = mxc_nand_read_page_v1,
1463 .send_cmd = send_cmd_v1_v2,
1464 .send_addr = send_addr_v1_v2,
1465 .send_page = send_page_v1,
1466 .send_read_id = send_read_id_v1_v2,
1467 .get_dev_status = get_dev_status_v1_v2,
1468 .check_int = check_int_v1_v2,
1469 .irq_control = irq_control_v1_v2,
1470 .get_ecc_status = get_ecc_status_v1,
1471 .ooblayout = &mxc_v1_ooblayout_ops,
1472 .select_chip = mxc_nand_select_chip_v1_v3,
1473 .enable_hwecc = mxc_nand_enable_hwecc_v1_v2,
1474 .irqpending_quirk = 1,
1475 .needs_ip = 0,
1476 .regs_offset = 0xe00,
1477 .spare0_offset = 0x800,
1478 .spare_len = 16,
1479 .eccbytes = 3,
1480 .eccsize = 1,
1481};
1482
1483/* v1 + !irqpending_quirk: i.MX27, i.MX31 */
1484static const struct mxc_nand_devtype_data imx27_nand_devtype_data = {
1485 .preset = preset_v1,
1486 .read_page = mxc_nand_read_page_v1,
1487 .send_cmd = send_cmd_v1_v2,
1488 .send_addr = send_addr_v1_v2,
1489 .send_page = send_page_v1,
1490 .send_read_id = send_read_id_v1_v2,
1491 .get_dev_status = get_dev_status_v1_v2,
1492 .check_int = check_int_v1_v2,
1493 .irq_control = irq_control_v1_v2,
1494 .get_ecc_status = get_ecc_status_v1,
1495 .ooblayout = &mxc_v1_ooblayout_ops,
1496 .select_chip = mxc_nand_select_chip_v1_v3,
1497 .enable_hwecc = mxc_nand_enable_hwecc_v1_v2,
1498 .irqpending_quirk = 0,
1499 .needs_ip = 0,
1500 .regs_offset = 0xe00,
1501 .spare0_offset = 0x800,
1502 .axi_offset = 0,
1503 .spare_len = 16,
1504 .eccbytes = 3,
1505 .eccsize = 1,
1506};
1507
1508/* v21: i.MX25, i.MX35 */
1509static const struct mxc_nand_devtype_data imx25_nand_devtype_data = {
1510 .preset = preset_v2,
1511 .read_page = mxc_nand_read_page_v2_v3,
1512 .send_cmd = send_cmd_v1_v2,
1513 .send_addr = send_addr_v1_v2,
1514 .send_page = send_page_v2,
1515 .send_read_id = send_read_id_v1_v2,
1516 .get_dev_status = get_dev_status_v1_v2,
1517 .check_int = check_int_v1_v2,
1518 .irq_control = irq_control_v1_v2,
1519 .get_ecc_status = get_ecc_status_v2,
1520 .ooblayout = &mxc_v2_ooblayout_ops,
1521 .select_chip = mxc_nand_select_chip_v2,
1522 .setup_interface = mxc_nand_v2_setup_interface,
1523 .enable_hwecc = mxc_nand_enable_hwecc_v1_v2,
1524 .irqpending_quirk = 0,
1525 .needs_ip = 0,
1526 .regs_offset = 0x1e00,
1527 .spare0_offset = 0x1000,
1528 .axi_offset = 0,
1529 .spare_len = 64,
1530 .eccbytes = 9,
1531 .eccsize = 0,
1532};
1533
1534/* v3.2a: i.MX51 */
1535static const struct mxc_nand_devtype_data imx51_nand_devtype_data = {
1536 .preset = preset_v3,
1537 .read_page = mxc_nand_read_page_v2_v3,
1538 .send_cmd = send_cmd_v3,
1539 .send_addr = send_addr_v3,
1540 .send_page = send_page_v3,
1541 .send_read_id = send_read_id_v3,
1542 .get_dev_status = get_dev_status_v3,
1543 .check_int = check_int_v3,
1544 .irq_control = irq_control_v3,
1545 .get_ecc_status = get_ecc_status_v3,
1546 .ooblayout = &mxc_v2_ooblayout_ops,
1547 .select_chip = mxc_nand_select_chip_v1_v3,
1548 .enable_hwecc = mxc_nand_enable_hwecc_v3,
1549 .irqpending_quirk = 0,
1550 .needs_ip = 1,
1551 .regs_offset = 0,
1552 .spare0_offset = 0x1000,
1553 .axi_offset = 0x1e00,
1554 .spare_len = 64,
1555 .eccbytes = 0,
1556 .eccsize = 0,
1557 .ppb_shift = 7,
1558};
1559
1560/* v3.2b: i.MX53 */
1561static const struct mxc_nand_devtype_data imx53_nand_devtype_data = {
1562 .preset = preset_v3,
1563 .read_page = mxc_nand_read_page_v2_v3,
1564 .send_cmd = send_cmd_v3,
1565 .send_addr = send_addr_v3,
1566 .send_page = send_page_v3,
1567 .send_read_id = send_read_id_v3,
1568 .get_dev_status = get_dev_status_v3,
1569 .check_int = check_int_v3,
1570 .irq_control = irq_control_v3,
1571 .get_ecc_status = get_ecc_status_v3,
1572 .ooblayout = &mxc_v2_ooblayout_ops,
1573 .select_chip = mxc_nand_select_chip_v1_v3,
1574 .enable_hwecc = mxc_nand_enable_hwecc_v3,
1575 .irqpending_quirk = 0,
1576 .needs_ip = 1,
1577 .regs_offset = 0,
1578 .spare0_offset = 0x1000,
1579 .axi_offset = 0x1e00,
1580 .spare_len = 64,
1581 .eccbytes = 0,
1582 .eccsize = 0,
1583 .ppb_shift = 8,
1584};
1585
1586static inline int is_imx21_nfc(struct mxc_nand_host *host)
1587{
1588 return host->devtype_data == &imx21_nand_devtype_data;
1589}
1590
1591static inline int is_imx27_nfc(struct mxc_nand_host *host)
1592{
1593 return host->devtype_data == &imx27_nand_devtype_data;
1594}
1595
1596static inline int is_imx25_nfc(struct mxc_nand_host *host)
1597{
1598 return host->devtype_data == &imx25_nand_devtype_data;
1599}
1600
1601static const struct of_device_id mxcnd_dt_ids[] = {
1602 { .compatible = "fsl,imx21-nand", .data = &imx21_nand_devtype_data, },
1603 { .compatible = "fsl,imx27-nand", .data = &imx27_nand_devtype_data, },
1604 { .compatible = "fsl,imx25-nand", .data = &imx25_nand_devtype_data, },
1605 { .compatible = "fsl,imx51-nand", .data = &imx51_nand_devtype_data, },
1606 { .compatible = "fsl,imx53-nand", .data = &imx53_nand_devtype_data, },
1607 { /* sentinel */ }
1608};
1609MODULE_DEVICE_TABLE(of, mxcnd_dt_ids);
1610
1611static int mxcnd_attach_chip(struct nand_chip *chip)
1612{
1613 struct mtd_info *mtd = nand_to_mtd(chip);
1614 struct mxc_nand_host *host = nand_get_controller_data(chip);
1615 struct device *dev = mtd->dev.parent;
1616
1617 chip->ecc.bytes = host->devtype_data->eccbytes;
1618 host->eccsize = host->devtype_data->eccsize;
1619 chip->ecc.size = 512;
1620 mtd_set_ooblayout(mtd, ooblayout: host->devtype_data->ooblayout);
1621
1622 switch (chip->ecc.engine_type) {
1623 case NAND_ECC_ENGINE_TYPE_ON_HOST:
1624 chip->ecc.read_page = mxc_nand_read_page;
1625 chip->ecc.read_page_raw = mxc_nand_read_page_raw;
1626 chip->ecc.read_oob = mxc_nand_read_oob;
1627 chip->ecc.write_page = mxc_nand_write_page_ecc;
1628 chip->ecc.write_page_raw = mxc_nand_write_page_raw;
1629 chip->ecc.write_oob = mxc_nand_write_oob;
1630 break;
1631
1632 case NAND_ECC_ENGINE_TYPE_SOFT:
1633 break;
1634
1635 default:
1636 return -EINVAL;
1637 }
1638
1639 if (chip->bbt_options & NAND_BBT_USE_FLASH) {
1640 chip->bbt_td = &bbt_main_descr;
1641 chip->bbt_md = &bbt_mirror_descr;
1642 }
1643
1644 /* Allocate the right size buffer now */
1645 devm_kfree(dev, p: (void *)host->data_buf);
1646 host->data_buf = devm_kzalloc(dev, size: mtd->writesize + mtd->oobsize,
1647 GFP_KERNEL);
1648 if (!host->data_buf)
1649 return -ENOMEM;
1650
1651 /* Call preset again, with correct writesize chip time */
1652 host->devtype_data->preset(mtd);
1653
1654 if (!chip->ecc.bytes) {
1655 if (host->eccsize == 8)
1656 chip->ecc.bytes = 18;
1657 else if (host->eccsize == 4)
1658 chip->ecc.bytes = 9;
1659 }
1660
1661 /*
1662 * Experimentation shows that i.MX NFC can only handle up to 218 oob
1663 * bytes. Limit used_oobsize to 218 so as to not confuse copy_spare()
1664 * into copying invalid data to/from the spare IO buffer, as this
1665 * might cause ECC data corruption when doing sub-page write to a
1666 * partially written page.
1667 */
1668 host->used_oobsize = min(mtd->oobsize, 218U);
1669
1670 if (chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_ON_HOST) {
1671 if (is_imx21_nfc(host) || is_imx27_nfc(host))
1672 chip->ecc.strength = 1;
1673 else
1674 chip->ecc.strength = (host->eccsize == 4) ? 4 : 8;
1675 }
1676
1677 return 0;
1678}
1679
1680static int mxcnd_setup_interface(struct nand_chip *chip, int chipnr,
1681 const struct nand_interface_config *conf)
1682{
1683 struct mxc_nand_host *host = nand_get_controller_data(chip);
1684
1685 return host->devtype_data->setup_interface(chip, chipnr, conf);
1686}
1687
1688static const struct nand_controller_ops mxcnd_controller_ops = {
1689 .attach_chip = mxcnd_attach_chip,
1690 .setup_interface = mxcnd_setup_interface,
1691};
1692
1693static int mxcnd_probe(struct platform_device *pdev)
1694{
1695 struct nand_chip *this;
1696 struct mtd_info *mtd;
1697 struct mxc_nand_host *host;
1698 int err = 0;
1699
1700 /* Allocate memory for MTD device structure and private data */
1701 host = devm_kzalloc(dev: &pdev->dev, size: sizeof(struct mxc_nand_host),
1702 GFP_KERNEL);
1703 if (!host)
1704 return -ENOMEM;
1705
1706 /* allocate a temporary buffer for the nand_scan_ident() */
1707 host->data_buf = devm_kzalloc(dev: &pdev->dev, PAGE_SIZE, GFP_KERNEL);
1708 if (!host->data_buf)
1709 return -ENOMEM;
1710
1711 host->dev = &pdev->dev;
1712 /* structures must be linked */
1713 this = &host->nand;
1714 mtd = nand_to_mtd(chip: this);
1715 mtd->dev.parent = &pdev->dev;
1716 mtd->name = DRIVER_NAME;
1717
1718 /* 50 us command delay time */
1719 this->legacy.chip_delay = 5;
1720
1721 nand_set_controller_data(chip: this, priv: host);
1722 nand_set_flash_node(chip: this, np: pdev->dev.of_node);
1723 this->legacy.dev_ready = mxc_nand_dev_ready;
1724 this->legacy.cmdfunc = mxc_nand_command;
1725 this->legacy.read_byte = mxc_nand_read_byte;
1726 this->legacy.write_buf = mxc_nand_write_buf;
1727 this->legacy.read_buf = mxc_nand_read_buf;
1728 this->legacy.set_features = mxc_nand_set_features;
1729 this->legacy.get_features = mxc_nand_get_features;
1730
1731 host->clk = devm_clk_get(dev: &pdev->dev, NULL);
1732 if (IS_ERR(ptr: host->clk))
1733 return PTR_ERR(ptr: host->clk);
1734
1735 host->devtype_data = device_get_match_data(dev: &pdev->dev);
1736
1737 if (!host->devtype_data->setup_interface)
1738 this->options |= NAND_KEEP_TIMINGS;
1739
1740 if (host->devtype_data->needs_ip) {
1741 host->regs_ip = devm_platform_ioremap_resource(pdev, index: 0);
1742 if (IS_ERR(ptr: host->regs_ip))
1743 return PTR_ERR(ptr: host->regs_ip);
1744
1745 host->base = devm_platform_ioremap_resource(pdev, index: 1);
1746 } else {
1747 host->base = devm_platform_ioremap_resource(pdev, index: 0);
1748 }
1749
1750 if (IS_ERR(ptr: host->base))
1751 return PTR_ERR(ptr: host->base);
1752
1753 host->main_area0 = host->base;
1754
1755 if (host->devtype_data->regs_offset)
1756 host->regs = host->base + host->devtype_data->regs_offset;
1757 host->spare0 = host->base + host->devtype_data->spare0_offset;
1758 if (host->devtype_data->axi_offset)
1759 host->regs_axi = host->base + host->devtype_data->axi_offset;
1760
1761 this->legacy.select_chip = host->devtype_data->select_chip;
1762
1763 init_completion(x: &host->op_completion);
1764
1765 host->irq = platform_get_irq(pdev, 0);
1766 if (host->irq < 0)
1767 return host->irq;
1768
1769 /*
1770 * Use host->devtype_data->irq_control() here instead of irq_control()
1771 * because we must not disable_irq_nosync without having requested the
1772 * irq.
1773 */
1774 host->devtype_data->irq_control(host, 0);
1775
1776 err = devm_request_irq(dev: &pdev->dev, irq: host->irq, handler: mxc_nfc_irq,
1777 irqflags: 0, DRIVER_NAME, dev_id: host);
1778 if (err)
1779 return err;
1780
1781 err = clk_prepare_enable(clk: host->clk);
1782 if (err)
1783 return err;
1784 host->clk_act = 1;
1785
1786 /*
1787 * Now that we "own" the interrupt make sure the interrupt mask bit is
1788 * cleared on i.MX21. Otherwise we can't read the interrupt status bit
1789 * on this machine.
1790 */
1791 if (host->devtype_data->irqpending_quirk) {
1792 disable_irq_nosync(irq: host->irq);
1793 host->devtype_data->irq_control(host, 1);
1794 }
1795
1796 /* Scan the NAND device */
1797 this->legacy.dummy_controller.ops = &mxcnd_controller_ops;
1798 err = nand_scan(chip: this, max_chips: is_imx25_nfc(host) ? 4 : 1);
1799 if (err)
1800 goto escan;
1801
1802 /* Register the partitions */
1803 err = mtd_device_parse_register(mtd, part_probe_types: part_probes, NULL, NULL, defnr_parts: 0);
1804 if (err)
1805 goto cleanup_nand;
1806
1807 platform_set_drvdata(pdev, data: host);
1808
1809 return 0;
1810
1811cleanup_nand:
1812 nand_cleanup(chip: this);
1813escan:
1814 if (host->clk_act)
1815 clk_disable_unprepare(clk: host->clk);
1816
1817 return err;
1818}
1819
1820static void mxcnd_remove(struct platform_device *pdev)
1821{
1822 struct mxc_nand_host *host = platform_get_drvdata(pdev);
1823 struct nand_chip *chip = &host->nand;
1824 int ret;
1825
1826 ret = mtd_device_unregister(master: nand_to_mtd(chip));
1827 WARN_ON(ret);
1828 nand_cleanup(chip);
1829 if (host->clk_act)
1830 clk_disable_unprepare(clk: host->clk);
1831}
1832
1833static struct platform_driver mxcnd_driver = {
1834 .driver = {
1835 .name = DRIVER_NAME,
1836 .of_match_table = mxcnd_dt_ids,
1837 },
1838 .probe = mxcnd_probe,
1839 .remove_new = mxcnd_remove,
1840};
1841module_platform_driver(mxcnd_driver);
1842
1843MODULE_AUTHOR("Freescale Semiconductor, Inc.");
1844MODULE_DESCRIPTION("MXC NAND MTD driver");
1845MODULE_LICENSE("GPL");
1846

source code of linux/drivers/mtd/nand/raw/mxc_nand.c