1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2018 Stefan Agner <stefan@agner.ch>
4 * Copyright (C) 2014-2015 Lucas Stach <dev@lynxeye.de>
5 * Copyright (C) 2012 Avionic Design GmbH
6 */
7
8#include <linux/clk.h>
9#include <linux/completion.h>
10#include <linux/dma-mapping.h>
11#include <linux/err.h>
12#include <linux/gpio/consumer.h>
13#include <linux/interrupt.h>
14#include <linux/io.h>
15#include <linux/module.h>
16#include <linux/mtd/partitions.h>
17#include <linux/mtd/rawnand.h>
18#include <linux/of.h>
19#include <linux/platform_device.h>
20#include <linux/pm_runtime.h>
21#include <linux/reset.h>
22
23#include <soc/tegra/common.h>
24
25#define COMMAND 0x00
26#define COMMAND_GO BIT(31)
27#define COMMAND_CLE BIT(30)
28#define COMMAND_ALE BIT(29)
29#define COMMAND_PIO BIT(28)
30#define COMMAND_TX BIT(27)
31#define COMMAND_RX BIT(26)
32#define COMMAND_SEC_CMD BIT(25)
33#define COMMAND_AFT_DAT BIT(24)
34#define COMMAND_TRANS_SIZE(size) ((((size) - 1) & 0xf) << 20)
35#define COMMAND_A_VALID BIT(19)
36#define COMMAND_B_VALID BIT(18)
37#define COMMAND_RD_STATUS_CHK BIT(17)
38#define COMMAND_RBSY_CHK BIT(16)
39#define COMMAND_CE(x) BIT(8 + ((x) & 0x7))
40#define COMMAND_CLE_SIZE(size) ((((size) - 1) & 0x3) << 4)
41#define COMMAND_ALE_SIZE(size) ((((size) - 1) & 0xf) << 0)
42
43#define STATUS 0x04
44
45#define ISR 0x08
46#define ISR_CORRFAIL_ERR BIT(24)
47#define ISR_UND BIT(7)
48#define ISR_OVR BIT(6)
49#define ISR_CMD_DONE BIT(5)
50#define ISR_ECC_ERR BIT(4)
51
52#define IER 0x0c
53#define IER_ERR_TRIG_VAL(x) (((x) & 0xf) << 16)
54#define IER_UND BIT(7)
55#define IER_OVR BIT(6)
56#define IER_CMD_DONE BIT(5)
57#define IER_ECC_ERR BIT(4)
58#define IER_GIE BIT(0)
59
60#define CONFIG 0x10
61#define CONFIG_HW_ECC BIT(31)
62#define CONFIG_ECC_SEL BIT(30)
63#define CONFIG_ERR_COR BIT(29)
64#define CONFIG_PIPE_EN BIT(28)
65#define CONFIG_TVAL_4 (0 << 24)
66#define CONFIG_TVAL_6 (1 << 24)
67#define CONFIG_TVAL_8 (2 << 24)
68#define CONFIG_SKIP_SPARE BIT(23)
69#define CONFIG_BUS_WIDTH_16 BIT(21)
70#define CONFIG_COM_BSY BIT(20)
71#define CONFIG_PS_256 (0 << 16)
72#define CONFIG_PS_512 (1 << 16)
73#define CONFIG_PS_1024 (2 << 16)
74#define CONFIG_PS_2048 (3 << 16)
75#define CONFIG_PS_4096 (4 << 16)
76#define CONFIG_SKIP_SPARE_SIZE_4 (0 << 14)
77#define CONFIG_SKIP_SPARE_SIZE_8 (1 << 14)
78#define CONFIG_SKIP_SPARE_SIZE_12 (2 << 14)
79#define CONFIG_SKIP_SPARE_SIZE_16 (3 << 14)
80#define CONFIG_TAG_BYTE_SIZE(x) ((x) & 0xff)
81
82#define TIMING_1 0x14
83#define TIMING_TRP_RESP(x) (((x) & 0xf) << 28)
84#define TIMING_TWB(x) (((x) & 0xf) << 24)
85#define TIMING_TCR_TAR_TRR(x) (((x) & 0xf) << 20)
86#define TIMING_TWHR(x) (((x) & 0xf) << 16)
87#define TIMING_TCS(x) (((x) & 0x3) << 14)
88#define TIMING_TWH(x) (((x) & 0x3) << 12)
89#define TIMING_TWP(x) (((x) & 0xf) << 8)
90#define TIMING_TRH(x) (((x) & 0x3) << 4)
91#define TIMING_TRP(x) (((x) & 0xf) << 0)
92
93#define RESP 0x18
94
95#define TIMING_2 0x1c
96#define TIMING_TADL(x) ((x) & 0xf)
97
98#define CMD_REG1 0x20
99#define CMD_REG2 0x24
100#define ADDR_REG1 0x28
101#define ADDR_REG2 0x2c
102
103#define DMA_MST_CTRL 0x30
104#define DMA_MST_CTRL_GO BIT(31)
105#define DMA_MST_CTRL_IN (0 << 30)
106#define DMA_MST_CTRL_OUT BIT(30)
107#define DMA_MST_CTRL_PERF_EN BIT(29)
108#define DMA_MST_CTRL_IE_DONE BIT(28)
109#define DMA_MST_CTRL_REUSE BIT(27)
110#define DMA_MST_CTRL_BURST_1 (2 << 24)
111#define DMA_MST_CTRL_BURST_4 (3 << 24)
112#define DMA_MST_CTRL_BURST_8 (4 << 24)
113#define DMA_MST_CTRL_BURST_16 (5 << 24)
114#define DMA_MST_CTRL_IS_DONE BIT(20)
115#define DMA_MST_CTRL_EN_A BIT(2)
116#define DMA_MST_CTRL_EN_B BIT(1)
117
118#define DMA_CFG_A 0x34
119#define DMA_CFG_B 0x38
120
121#define FIFO_CTRL 0x3c
122#define FIFO_CTRL_CLR_ALL BIT(3)
123
124#define DATA_PTR 0x40
125#define TAG_PTR 0x44
126#define ECC_PTR 0x48
127
128#define DEC_STATUS 0x4c
129#define DEC_STATUS_A_ECC_FAIL BIT(1)
130#define DEC_STATUS_ERR_COUNT_MASK 0x00ff0000
131#define DEC_STATUS_ERR_COUNT_SHIFT 16
132
133#define HWSTATUS_CMD 0x50
134#define HWSTATUS_MASK 0x54
135#define HWSTATUS_RDSTATUS_MASK(x) (((x) & 0xff) << 24)
136#define HWSTATUS_RDSTATUS_VALUE(x) (((x) & 0xff) << 16)
137#define HWSTATUS_RBSY_MASK(x) (((x) & 0xff) << 8)
138#define HWSTATUS_RBSY_VALUE(x) (((x) & 0xff) << 0)
139
140#define BCH_CONFIG 0xcc
141#define BCH_ENABLE BIT(0)
142#define BCH_TVAL_4 (0 << 4)
143#define BCH_TVAL_8 (1 << 4)
144#define BCH_TVAL_14 (2 << 4)
145#define BCH_TVAL_16 (3 << 4)
146
147#define DEC_STAT_RESULT 0xd0
148#define DEC_STAT_BUF 0xd4
149#define DEC_STAT_BUF_FAIL_SEC_FLAG_MASK 0xff000000
150#define DEC_STAT_BUF_FAIL_SEC_FLAG_SHIFT 24
151#define DEC_STAT_BUF_CORR_SEC_FLAG_MASK 0x00ff0000
152#define DEC_STAT_BUF_CORR_SEC_FLAG_SHIFT 16
153#define DEC_STAT_BUF_MAX_CORR_CNT_MASK 0x00001f00
154#define DEC_STAT_BUF_MAX_CORR_CNT_SHIFT 8
155
156#define OFFSET(val, off) ((val) < (off) ? 0 : (val) - (off))
157
158#define SKIP_SPARE_BYTES 4
159#define BITS_PER_STEP_RS 18
160#define BITS_PER_STEP_BCH 13
161
162#define INT_MASK (IER_UND | IER_OVR | IER_CMD_DONE | IER_GIE)
163#define HWSTATUS_CMD_DEFAULT NAND_STATUS_READY
164#define HWSTATUS_MASK_DEFAULT (HWSTATUS_RDSTATUS_MASK(1) | \
165 HWSTATUS_RDSTATUS_VALUE(0) | \
166 HWSTATUS_RBSY_MASK(NAND_STATUS_READY) | \
167 HWSTATUS_RBSY_VALUE(NAND_STATUS_READY))
168
169struct tegra_nand_controller {
170 struct nand_controller controller;
171 struct device *dev;
172 void __iomem *regs;
173 int irq;
174 struct clk *clk;
175 struct completion command_complete;
176 struct completion dma_complete;
177 bool last_read_error;
178 int cur_cs;
179 struct nand_chip *chip;
180};
181
182struct tegra_nand_chip {
183 struct nand_chip chip;
184 struct gpio_desc *wp_gpio;
185 struct mtd_oob_region ecc;
186 u32 config;
187 u32 config_ecc;
188 u32 bch_config;
189 int cs[1];
190};
191
192static inline struct tegra_nand_controller *
193 to_tegra_ctrl(struct nand_controller *hw_ctrl)
194{
195 return container_of(hw_ctrl, struct tegra_nand_controller, controller);
196}
197
198static inline struct tegra_nand_chip *to_tegra_chip(struct nand_chip *chip)
199{
200 return container_of(chip, struct tegra_nand_chip, chip);
201}
202
203static int tegra_nand_ooblayout_rs_ecc(struct mtd_info *mtd, int section,
204 struct mtd_oob_region *oobregion)
205{
206 struct nand_chip *chip = mtd_to_nand(mtd);
207 int bytes_per_step = DIV_ROUND_UP(BITS_PER_STEP_RS * chip->ecc.strength,
208 BITS_PER_BYTE);
209
210 if (section > 0)
211 return -ERANGE;
212
213 oobregion->offset = SKIP_SPARE_BYTES;
214 oobregion->length = round_up(bytes_per_step * chip->ecc.steps, 4);
215
216 return 0;
217}
218
219static int tegra_nand_ooblayout_no_free(struct mtd_info *mtd, int section,
220 struct mtd_oob_region *oobregion)
221{
222 return -ERANGE;
223}
224
225static const struct mtd_ooblayout_ops tegra_nand_oob_rs_ops = {
226 .ecc = tegra_nand_ooblayout_rs_ecc,
227 .free = tegra_nand_ooblayout_no_free,
228};
229
230static int tegra_nand_ooblayout_bch_ecc(struct mtd_info *mtd, int section,
231 struct mtd_oob_region *oobregion)
232{
233 struct nand_chip *chip = mtd_to_nand(mtd);
234 int bytes_per_step = DIV_ROUND_UP(BITS_PER_STEP_BCH * chip->ecc.strength,
235 BITS_PER_BYTE);
236
237 if (section > 0)
238 return -ERANGE;
239
240 oobregion->offset = SKIP_SPARE_BYTES;
241 oobregion->length = round_up(bytes_per_step * chip->ecc.steps, 4);
242
243 return 0;
244}
245
246static const struct mtd_ooblayout_ops tegra_nand_oob_bch_ops = {
247 .ecc = tegra_nand_ooblayout_bch_ecc,
248 .free = tegra_nand_ooblayout_no_free,
249};
250
251static irqreturn_t tegra_nand_irq(int irq, void *data)
252{
253 struct tegra_nand_controller *ctrl = data;
254 u32 isr, dma;
255
256 isr = readl_relaxed(ctrl->regs + ISR);
257 dma = readl_relaxed(ctrl->regs + DMA_MST_CTRL);
258 dev_dbg(ctrl->dev, "isr %08x\n", isr);
259
260 if (!isr && !(dma & DMA_MST_CTRL_IS_DONE))
261 return IRQ_NONE;
262
263 /*
264 * The bit name is somewhat missleading: This is also set when
265 * HW ECC was successful. The data sheet states:
266 * Correctable OR Un-correctable errors occurred in the DMA transfer...
267 */
268 if (isr & ISR_CORRFAIL_ERR)
269 ctrl->last_read_error = true;
270
271 if (isr & ISR_CMD_DONE)
272 complete(&ctrl->command_complete);
273
274 if (isr & ISR_UND)
275 dev_err(ctrl->dev, "FIFO underrun\n");
276
277 if (isr & ISR_OVR)
278 dev_err(ctrl->dev, "FIFO overrun\n");
279
280 /* handle DMA interrupts */
281 if (dma & DMA_MST_CTRL_IS_DONE) {
282 writel_relaxed(dma, ctrl->regs + DMA_MST_CTRL);
283 complete(&ctrl->dma_complete);
284 }
285
286 /* clear interrupts */
287 writel_relaxed(isr, ctrl->regs + ISR);
288
289 return IRQ_HANDLED;
290}
291
292static const char * const tegra_nand_reg_names[] = {
293 "COMMAND",
294 "STATUS",
295 "ISR",
296 "IER",
297 "CONFIG",
298 "TIMING",
299 NULL,
300 "TIMING2",
301 "CMD_REG1",
302 "CMD_REG2",
303 "ADDR_REG1",
304 "ADDR_REG2",
305 "DMA_MST_CTRL",
306 "DMA_CFG_A",
307 "DMA_CFG_B",
308 "FIFO_CTRL",
309};
310
311static void tegra_nand_dump_reg(struct tegra_nand_controller *ctrl)
312{
313 u32 reg;
314 int i;
315
316 dev_err(ctrl->dev, "Tegra NAND controller register dump\n");
317 for (i = 0; i < ARRAY_SIZE(tegra_nand_reg_names); i++) {
318 const char *reg_name = tegra_nand_reg_names[i];
319
320 if (!reg_name)
321 continue;
322
323 reg = readl_relaxed(ctrl->regs + (i * 4));
324 dev_err(ctrl->dev, "%s: 0x%08x\n", reg_name, reg);
325 }
326}
327
328static void tegra_nand_controller_abort(struct tegra_nand_controller *ctrl)
329{
330 u32 isr, dma;
331
332 disable_irq(irq: ctrl->irq);
333
334 /* Abort current command/DMA operation */
335 writel_relaxed(0, ctrl->regs + DMA_MST_CTRL);
336 writel_relaxed(0, ctrl->regs + COMMAND);
337
338 /* clear interrupts */
339 isr = readl_relaxed(ctrl->regs + ISR);
340 writel_relaxed(isr, ctrl->regs + ISR);
341 dma = readl_relaxed(ctrl->regs + DMA_MST_CTRL);
342 writel_relaxed(dma, ctrl->regs + DMA_MST_CTRL);
343
344 reinit_completion(x: &ctrl->command_complete);
345 reinit_completion(x: &ctrl->dma_complete);
346
347 enable_irq(irq: ctrl->irq);
348}
349
350static int tegra_nand_cmd(struct nand_chip *chip,
351 const struct nand_subop *subop)
352{
353 const struct nand_op_instr *instr;
354 const struct nand_op_instr *instr_data_in = NULL;
355 struct tegra_nand_controller *ctrl = to_tegra_ctrl(hw_ctrl: chip->controller);
356 unsigned int op_id, size = 0, offset = 0;
357 bool first_cmd = true;
358 u32 reg, cmd = 0;
359 int ret;
360
361 for (op_id = 0; op_id < subop->ninstrs; op_id++) {
362 unsigned int naddrs, i;
363 const u8 *addrs;
364 u32 addr1 = 0, addr2 = 0;
365
366 instr = &subop->instrs[op_id];
367
368 switch (instr->type) {
369 case NAND_OP_CMD_INSTR:
370 if (first_cmd) {
371 cmd |= COMMAND_CLE;
372 writel_relaxed(instr->ctx.cmd.opcode,
373 ctrl->regs + CMD_REG1);
374 } else {
375 cmd |= COMMAND_SEC_CMD;
376 writel_relaxed(instr->ctx.cmd.opcode,
377 ctrl->regs + CMD_REG2);
378 }
379 first_cmd = false;
380 break;
381
382 case NAND_OP_ADDR_INSTR:
383 offset = nand_subop_get_addr_start_off(subop, op_id);
384 naddrs = nand_subop_get_num_addr_cyc(subop, op_id);
385 addrs = &instr->ctx.addr.addrs[offset];
386
387 cmd |= COMMAND_ALE | COMMAND_ALE_SIZE(naddrs);
388 for (i = 0; i < min_t(unsigned int, 4, naddrs); i++)
389 addr1 |= *addrs++ << (BITS_PER_BYTE * i);
390 naddrs -= i;
391 for (i = 0; i < min_t(unsigned int, 4, naddrs); i++)
392 addr2 |= *addrs++ << (BITS_PER_BYTE * i);
393
394 writel_relaxed(addr1, ctrl->regs + ADDR_REG1);
395 writel_relaxed(addr2, ctrl->regs + ADDR_REG2);
396 break;
397
398 case NAND_OP_DATA_IN_INSTR:
399 size = nand_subop_get_data_len(subop, op_id);
400 offset = nand_subop_get_data_start_off(subop, op_id);
401
402 cmd |= COMMAND_TRANS_SIZE(size) | COMMAND_PIO |
403 COMMAND_RX | COMMAND_A_VALID;
404
405 instr_data_in = instr;
406 break;
407
408 case NAND_OP_DATA_OUT_INSTR:
409 size = nand_subop_get_data_len(subop, op_id);
410 offset = nand_subop_get_data_start_off(subop, op_id);
411
412 cmd |= COMMAND_TRANS_SIZE(size) | COMMAND_PIO |
413 COMMAND_TX | COMMAND_A_VALID;
414 memcpy(&reg, instr->ctx.data.buf.out + offset, size);
415
416 writel_relaxed(reg, ctrl->regs + RESP);
417 break;
418
419 case NAND_OP_WAITRDY_INSTR:
420 cmd |= COMMAND_RBSY_CHK;
421 break;
422 }
423 }
424
425 cmd |= COMMAND_GO | COMMAND_CE(ctrl->cur_cs);
426 writel_relaxed(cmd, ctrl->regs + COMMAND);
427 ret = wait_for_completion_timeout(x: &ctrl->command_complete,
428 timeout: msecs_to_jiffies(m: 500));
429 if (!ret) {
430 dev_err(ctrl->dev, "COMMAND timeout\n");
431 tegra_nand_dump_reg(ctrl);
432 tegra_nand_controller_abort(ctrl);
433 return -ETIMEDOUT;
434 }
435
436 if (instr_data_in) {
437 reg = readl_relaxed(ctrl->regs + RESP);
438 memcpy(instr_data_in->ctx.data.buf.in + offset, &reg, size);
439 }
440
441 return 0;
442}
443
444static const struct nand_op_parser tegra_nand_op_parser = NAND_OP_PARSER(
445 NAND_OP_PARSER_PATTERN(tegra_nand_cmd,
446 NAND_OP_PARSER_PAT_CMD_ELEM(true),
447 NAND_OP_PARSER_PAT_ADDR_ELEM(true, 8),
448 NAND_OP_PARSER_PAT_CMD_ELEM(true),
449 NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)),
450 NAND_OP_PARSER_PATTERN(tegra_nand_cmd,
451 NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, 4)),
452 NAND_OP_PARSER_PATTERN(tegra_nand_cmd,
453 NAND_OP_PARSER_PAT_CMD_ELEM(true),
454 NAND_OP_PARSER_PAT_ADDR_ELEM(true, 8),
455 NAND_OP_PARSER_PAT_CMD_ELEM(true),
456 NAND_OP_PARSER_PAT_WAITRDY_ELEM(true),
457 NAND_OP_PARSER_PAT_DATA_IN_ELEM(true, 4)),
458 );
459
460static void tegra_nand_select_target(struct nand_chip *chip,
461 unsigned int die_nr)
462{
463 struct tegra_nand_chip *nand = to_tegra_chip(chip);
464 struct tegra_nand_controller *ctrl = to_tegra_ctrl(hw_ctrl: chip->controller);
465
466 ctrl->cur_cs = nand->cs[die_nr];
467}
468
469static int tegra_nand_exec_op(struct nand_chip *chip,
470 const struct nand_operation *op,
471 bool check_only)
472{
473 if (!check_only)
474 tegra_nand_select_target(chip, die_nr: op->cs);
475
476 return nand_op_parser_exec_op(chip, parser: &tegra_nand_op_parser, op,
477 check_only);
478}
479
480static void tegra_nand_hw_ecc(struct tegra_nand_controller *ctrl,
481 struct nand_chip *chip, bool enable)
482{
483 struct tegra_nand_chip *nand = to_tegra_chip(chip);
484
485 if (chip->ecc.algo == NAND_ECC_ALGO_BCH && enable)
486 writel_relaxed(nand->bch_config, ctrl->regs + BCH_CONFIG);
487 else
488 writel_relaxed(0, ctrl->regs + BCH_CONFIG);
489
490 if (enable)
491 writel_relaxed(nand->config_ecc, ctrl->regs + CONFIG);
492 else
493 writel_relaxed(nand->config, ctrl->regs + CONFIG);
494}
495
496static int tegra_nand_page_xfer(struct mtd_info *mtd, struct nand_chip *chip,
497 void *buf, void *oob_buf, int oob_len, int page,
498 bool read)
499{
500 struct tegra_nand_controller *ctrl = to_tegra_ctrl(hw_ctrl: chip->controller);
501 enum dma_data_direction dir = read ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
502 dma_addr_t dma_addr = 0, dma_addr_oob = 0;
503 u32 addr1, cmd, dma_ctrl;
504 int ret;
505
506 tegra_nand_select_target(chip, die_nr: chip->cur_cs);
507
508 if (read) {
509 writel_relaxed(NAND_CMD_READ0, ctrl->regs + CMD_REG1);
510 writel_relaxed(NAND_CMD_READSTART, ctrl->regs + CMD_REG2);
511 } else {
512 writel_relaxed(NAND_CMD_SEQIN, ctrl->regs + CMD_REG1);
513 writel_relaxed(NAND_CMD_PAGEPROG, ctrl->regs + CMD_REG2);
514 }
515 cmd = COMMAND_CLE | COMMAND_SEC_CMD;
516
517 /* Lower 16-bits are column, by default 0 */
518 addr1 = page << 16;
519
520 if (!buf)
521 addr1 |= mtd->writesize;
522 writel_relaxed(addr1, ctrl->regs + ADDR_REG1);
523
524 if (chip->options & NAND_ROW_ADDR_3) {
525 writel_relaxed(page >> 16, ctrl->regs + ADDR_REG2);
526 cmd |= COMMAND_ALE | COMMAND_ALE_SIZE(5);
527 } else {
528 cmd |= COMMAND_ALE | COMMAND_ALE_SIZE(4);
529 }
530
531 if (buf) {
532 dma_addr = dma_map_single(ctrl->dev, buf, mtd->writesize, dir);
533 ret = dma_mapping_error(dev: ctrl->dev, dma_addr);
534 if (ret) {
535 dev_err(ctrl->dev, "dma mapping error\n");
536 return -EINVAL;
537 }
538
539 writel_relaxed(mtd->writesize - 1, ctrl->regs + DMA_CFG_A);
540 writel_relaxed(dma_addr, ctrl->regs + DATA_PTR);
541 }
542
543 if (oob_buf) {
544 dma_addr_oob = dma_map_single(ctrl->dev, oob_buf, mtd->oobsize,
545 dir);
546 ret = dma_mapping_error(dev: ctrl->dev, dma_addr: dma_addr_oob);
547 if (ret) {
548 dev_err(ctrl->dev, "dma mapping error\n");
549 ret = -EINVAL;
550 goto err_unmap_dma_page;
551 }
552
553 writel_relaxed(oob_len - 1, ctrl->regs + DMA_CFG_B);
554 writel_relaxed(dma_addr_oob, ctrl->regs + TAG_PTR);
555 }
556
557 dma_ctrl = DMA_MST_CTRL_GO | DMA_MST_CTRL_PERF_EN |
558 DMA_MST_CTRL_IE_DONE | DMA_MST_CTRL_IS_DONE |
559 DMA_MST_CTRL_BURST_16;
560
561 if (buf)
562 dma_ctrl |= DMA_MST_CTRL_EN_A;
563 if (oob_buf)
564 dma_ctrl |= DMA_MST_CTRL_EN_B;
565
566 if (read)
567 dma_ctrl |= DMA_MST_CTRL_IN | DMA_MST_CTRL_REUSE;
568 else
569 dma_ctrl |= DMA_MST_CTRL_OUT;
570
571 writel_relaxed(dma_ctrl, ctrl->regs + DMA_MST_CTRL);
572
573 cmd |= COMMAND_GO | COMMAND_RBSY_CHK | COMMAND_TRANS_SIZE(9) |
574 COMMAND_CE(ctrl->cur_cs);
575
576 if (buf)
577 cmd |= COMMAND_A_VALID;
578 if (oob_buf)
579 cmd |= COMMAND_B_VALID;
580
581 if (read)
582 cmd |= COMMAND_RX;
583 else
584 cmd |= COMMAND_TX | COMMAND_AFT_DAT;
585
586 writel_relaxed(cmd, ctrl->regs + COMMAND);
587
588 ret = wait_for_completion_timeout(x: &ctrl->command_complete,
589 timeout: msecs_to_jiffies(m: 500));
590 if (!ret) {
591 dev_err(ctrl->dev, "COMMAND timeout\n");
592 tegra_nand_dump_reg(ctrl);
593 tegra_nand_controller_abort(ctrl);
594 ret = -ETIMEDOUT;
595 goto err_unmap_dma;
596 }
597
598 ret = wait_for_completion_timeout(x: &ctrl->dma_complete,
599 timeout: msecs_to_jiffies(m: 500));
600 if (!ret) {
601 dev_err(ctrl->dev, "DMA timeout\n");
602 tegra_nand_dump_reg(ctrl);
603 tegra_nand_controller_abort(ctrl);
604 ret = -ETIMEDOUT;
605 goto err_unmap_dma;
606 }
607 ret = 0;
608
609err_unmap_dma:
610 if (oob_buf)
611 dma_unmap_single(ctrl->dev, dma_addr_oob, mtd->oobsize, dir);
612err_unmap_dma_page:
613 if (buf)
614 dma_unmap_single(ctrl->dev, dma_addr, mtd->writesize, dir);
615
616 return ret;
617}
618
619static int tegra_nand_read_page_raw(struct nand_chip *chip, u8 *buf,
620 int oob_required, int page)
621{
622 struct mtd_info *mtd = nand_to_mtd(chip);
623 void *oob_buf = oob_required ? chip->oob_poi : NULL;
624
625 return tegra_nand_page_xfer(mtd, chip, buf, oob_buf,
626 oob_len: mtd->oobsize, page, read: true);
627}
628
629static int tegra_nand_write_page_raw(struct nand_chip *chip, const u8 *buf,
630 int oob_required, int page)
631{
632 struct mtd_info *mtd = nand_to_mtd(chip);
633 void *oob_buf = oob_required ? chip->oob_poi : NULL;
634
635 return tegra_nand_page_xfer(mtd, chip, buf: (void *)buf, oob_buf,
636 oob_len: mtd->oobsize, page, read: false);
637}
638
639static int tegra_nand_read_oob(struct nand_chip *chip, int page)
640{
641 struct mtd_info *mtd = nand_to_mtd(chip);
642
643 return tegra_nand_page_xfer(mtd, chip, NULL, oob_buf: chip->oob_poi,
644 oob_len: mtd->oobsize, page, read: true);
645}
646
647static int tegra_nand_write_oob(struct nand_chip *chip, int page)
648{
649 struct mtd_info *mtd = nand_to_mtd(chip);
650
651 return tegra_nand_page_xfer(mtd, chip, NULL, oob_buf: chip->oob_poi,
652 oob_len: mtd->oobsize, page, read: false);
653}
654
655static int tegra_nand_read_page_hwecc(struct nand_chip *chip, u8 *buf,
656 int oob_required, int page)
657{
658 struct mtd_info *mtd = nand_to_mtd(chip);
659 struct tegra_nand_controller *ctrl = to_tegra_ctrl(hw_ctrl: chip->controller);
660 struct tegra_nand_chip *nand = to_tegra_chip(chip);
661 void *oob_buf = oob_required ? chip->oob_poi : NULL;
662 u32 dec_stat, max_corr_cnt;
663 unsigned long fail_sec_flag;
664 int ret;
665
666 tegra_nand_hw_ecc(ctrl, chip, enable: true);
667 ret = tegra_nand_page_xfer(mtd, chip, buf, oob_buf, oob_len: 0, page, read: true);
668 tegra_nand_hw_ecc(ctrl, chip, enable: false);
669 if (ret)
670 return ret;
671
672 /* No correctable or un-correctable errors, page must have 0 bitflips */
673 if (!ctrl->last_read_error)
674 return 0;
675
676 /*
677 * Correctable or un-correctable errors occurred. Use DEC_STAT_BUF
678 * which contains information for all ECC selections.
679 *
680 * Note that since we do not use Command Queues DEC_RESULT does not
681 * state the number of pages we can read from the DEC_STAT_BUF. But
682 * since CORRFAIL_ERR did occur during page read we do have a valid
683 * result in DEC_STAT_BUF.
684 */
685 ctrl->last_read_error = false;
686 dec_stat = readl_relaxed(ctrl->regs + DEC_STAT_BUF);
687
688 fail_sec_flag = (dec_stat & DEC_STAT_BUF_FAIL_SEC_FLAG_MASK) >>
689 DEC_STAT_BUF_FAIL_SEC_FLAG_SHIFT;
690
691 max_corr_cnt = (dec_stat & DEC_STAT_BUF_MAX_CORR_CNT_MASK) >>
692 DEC_STAT_BUF_MAX_CORR_CNT_SHIFT;
693
694 if (fail_sec_flag) {
695 int bit, max_bitflips = 0;
696
697 /*
698 * Since we do not support subpage writes, a complete page
699 * is either written or not. We can take a shortcut here by
700 * checking wheather any of the sector has been successful
701 * read. If at least one sectors has been read successfully,
702 * the page must have been a written previously. It cannot
703 * be an erased page.
704 *
705 * E.g. controller might return fail_sec_flag with 0x4, which
706 * would mean only the third sector failed to correct. The
707 * page must have been written and the third sector is really
708 * not correctable anymore.
709 */
710 if (fail_sec_flag ^ GENMASK(chip->ecc.steps - 1, 0)) {
711 mtd->ecc_stats.failed += hweight8(fail_sec_flag);
712 return max_corr_cnt;
713 }
714
715 /*
716 * All sectors failed to correct, but the ECC isn't smart
717 * enough to figure out if a page is really just erased.
718 * Read OOB data and check whether data/OOB is completely
719 * erased or if error correction just failed for all sub-
720 * pages.
721 */
722 ret = tegra_nand_read_oob(chip, page);
723 if (ret < 0)
724 return ret;
725
726 for_each_set_bit(bit, &fail_sec_flag, chip->ecc.steps) {
727 u8 *data = buf + (chip->ecc.size * bit);
728 u8 *oob = chip->oob_poi + nand->ecc.offset +
729 (chip->ecc.bytes * bit);
730
731 ret = nand_check_erased_ecc_chunk(data, datalen: chip->ecc.size,
732 ecc: oob, ecclen: chip->ecc.bytes,
733 NULL, extraooblen: 0,
734 threshold: chip->ecc.strength);
735 if (ret < 0) {
736 mtd->ecc_stats.failed++;
737 } else {
738 mtd->ecc_stats.corrected += ret;
739 max_bitflips = max(ret, max_bitflips);
740 }
741 }
742
743 return max_t(unsigned int, max_corr_cnt, max_bitflips);
744 } else {
745 int corr_sec_flag;
746
747 corr_sec_flag = (dec_stat & DEC_STAT_BUF_CORR_SEC_FLAG_MASK) >>
748 DEC_STAT_BUF_CORR_SEC_FLAG_SHIFT;
749
750 /*
751 * The value returned in the register is the maximum of
752 * bitflips encountered in any of the ECC regions. As there is
753 * no way to get the number of bitflips in a specific regions
754 * we are not able to deliver correct stats but instead
755 * overestimate the number of corrected bitflips by assuming
756 * that all regions where errors have been corrected
757 * encountered the maximum number of bitflips.
758 */
759 mtd->ecc_stats.corrected += max_corr_cnt * hweight8(corr_sec_flag);
760
761 return max_corr_cnt;
762 }
763}
764
765static int tegra_nand_write_page_hwecc(struct nand_chip *chip, const u8 *buf,
766 int oob_required, int page)
767{
768 struct mtd_info *mtd = nand_to_mtd(chip);
769 struct tegra_nand_controller *ctrl = to_tegra_ctrl(hw_ctrl: chip->controller);
770 void *oob_buf = oob_required ? chip->oob_poi : NULL;
771 int ret;
772
773 tegra_nand_hw_ecc(ctrl, chip, enable: true);
774 ret = tegra_nand_page_xfer(mtd, chip, buf: (void *)buf, oob_buf,
775 oob_len: 0, page, read: false);
776 tegra_nand_hw_ecc(ctrl, chip, enable: false);
777
778 return ret;
779}
780
781static void tegra_nand_setup_timing(struct tegra_nand_controller *ctrl,
782 const struct nand_sdr_timings *timings)
783{
784 /*
785 * The period (and all other timings in this function) is in ps,
786 * so need to take care here to avoid integer overflows.
787 */
788 unsigned int rate = clk_get_rate(clk: ctrl->clk) / 1000000;
789 unsigned int period = DIV_ROUND_UP(1000000, rate);
790 u32 val, reg = 0;
791
792 val = DIV_ROUND_UP(max3(timings->tAR_min, timings->tRR_min,
793 timings->tRC_min), period);
794 reg |= TIMING_TCR_TAR_TRR(OFFSET(val, 3));
795
796 val = DIV_ROUND_UP(max(max(timings->tCS_min, timings->tCH_min),
797 max(timings->tALS_min, timings->tALH_min)),
798 period);
799 reg |= TIMING_TCS(OFFSET(val, 2));
800
801 val = DIV_ROUND_UP(max(timings->tRP_min, timings->tREA_max) + 6000,
802 period);
803 reg |= TIMING_TRP(OFFSET(val, 1)) | TIMING_TRP_RESP(OFFSET(val, 1));
804
805 reg |= TIMING_TWB(OFFSET(DIV_ROUND_UP(timings->tWB_max, period), 1));
806 reg |= TIMING_TWHR(OFFSET(DIV_ROUND_UP(timings->tWHR_min, period), 1));
807 reg |= TIMING_TWH(OFFSET(DIV_ROUND_UP(timings->tWH_min, period), 1));
808 reg |= TIMING_TWP(OFFSET(DIV_ROUND_UP(timings->tWP_min, period), 1));
809 reg |= TIMING_TRH(OFFSET(DIV_ROUND_UP(timings->tREH_min, period), 1));
810
811 writel_relaxed(reg, ctrl->regs + TIMING_1);
812
813 val = DIV_ROUND_UP(timings->tADL_min, period);
814 reg = TIMING_TADL(OFFSET(val, 3));
815
816 writel_relaxed(reg, ctrl->regs + TIMING_2);
817}
818
819static int tegra_nand_setup_interface(struct nand_chip *chip, int csline,
820 const struct nand_interface_config *conf)
821{
822 struct tegra_nand_controller *ctrl = to_tegra_ctrl(hw_ctrl: chip->controller);
823 const struct nand_sdr_timings *timings;
824
825 timings = nand_get_sdr_timings(conf);
826 if (IS_ERR(ptr: timings))
827 return PTR_ERR(ptr: timings);
828
829 if (csline == NAND_DATA_IFACE_CHECK_ONLY)
830 return 0;
831
832 tegra_nand_setup_timing(ctrl, timings);
833
834 return 0;
835}
836
837static const int rs_strength_bootable[] = { 4 };
838static const int rs_strength[] = { 4, 6, 8 };
839static const int bch_strength_bootable[] = { 8, 16 };
840static const int bch_strength[] = { 4, 8, 14, 16 };
841
842static int tegra_nand_get_strength(struct nand_chip *chip, const int *strength,
843 int strength_len, int bits_per_step,
844 int oobsize)
845{
846 struct nand_device *base = mtd_to_nanddev(mtd: nand_to_mtd(chip));
847 const struct nand_ecc_props *requirements =
848 nanddev_get_ecc_requirements(nand: base);
849 bool maximize = base->ecc.user_conf.flags & NAND_ECC_MAXIMIZE_STRENGTH;
850 int i;
851
852 /*
853 * Loop through available strengths. Backwards in case we try to
854 * maximize the BCH strength.
855 */
856 for (i = 0; i < strength_len; i++) {
857 int strength_sel, bytes_per_step, bytes_per_page;
858
859 if (maximize) {
860 strength_sel = strength[strength_len - i - 1];
861 } else {
862 strength_sel = strength[i];
863
864 if (strength_sel < requirements->strength)
865 continue;
866 }
867
868 bytes_per_step = DIV_ROUND_UP(bits_per_step * strength_sel,
869 BITS_PER_BYTE);
870 bytes_per_page = round_up(bytes_per_step * chip->ecc.steps, 4);
871
872 /* Check whether strength fits OOB */
873 if (bytes_per_page < (oobsize - SKIP_SPARE_BYTES))
874 return strength_sel;
875 }
876
877 return -EINVAL;
878}
879
880static int tegra_nand_select_strength(struct nand_chip *chip, int oobsize)
881{
882 const int *strength;
883 int strength_len, bits_per_step;
884
885 switch (chip->ecc.algo) {
886 case NAND_ECC_ALGO_RS:
887 bits_per_step = BITS_PER_STEP_RS;
888 if (chip->options & NAND_IS_BOOT_MEDIUM) {
889 strength = rs_strength_bootable;
890 strength_len = ARRAY_SIZE(rs_strength_bootable);
891 } else {
892 strength = rs_strength;
893 strength_len = ARRAY_SIZE(rs_strength);
894 }
895 break;
896 case NAND_ECC_ALGO_BCH:
897 bits_per_step = BITS_PER_STEP_BCH;
898 if (chip->options & NAND_IS_BOOT_MEDIUM) {
899 strength = bch_strength_bootable;
900 strength_len = ARRAY_SIZE(bch_strength_bootable);
901 } else {
902 strength = bch_strength;
903 strength_len = ARRAY_SIZE(bch_strength);
904 }
905 break;
906 default:
907 return -EINVAL;
908 }
909
910 return tegra_nand_get_strength(chip, strength, strength_len,
911 bits_per_step, oobsize);
912}
913
914static int tegra_nand_attach_chip(struct nand_chip *chip)
915{
916 struct tegra_nand_controller *ctrl = to_tegra_ctrl(hw_ctrl: chip->controller);
917 const struct nand_ecc_props *requirements =
918 nanddev_get_ecc_requirements(nand: &chip->base);
919 struct tegra_nand_chip *nand = to_tegra_chip(chip);
920 struct mtd_info *mtd = nand_to_mtd(chip);
921 int bits_per_step;
922 int ret;
923
924 if (chip->bbt_options & NAND_BBT_USE_FLASH)
925 chip->bbt_options |= NAND_BBT_NO_OOB;
926
927 chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
928 chip->ecc.size = 512;
929 chip->ecc.steps = mtd->writesize / chip->ecc.size;
930 if (requirements->step_size != 512) {
931 dev_err(ctrl->dev, "Unsupported step size %d\n",
932 requirements->step_size);
933 return -EINVAL;
934 }
935
936 chip->ecc.read_page = tegra_nand_read_page_hwecc;
937 chip->ecc.write_page = tegra_nand_write_page_hwecc;
938 chip->ecc.read_page_raw = tegra_nand_read_page_raw;
939 chip->ecc.write_page_raw = tegra_nand_write_page_raw;
940 chip->ecc.read_oob = tegra_nand_read_oob;
941 chip->ecc.write_oob = tegra_nand_write_oob;
942
943 if (chip->options & NAND_BUSWIDTH_16)
944 nand->config |= CONFIG_BUS_WIDTH_16;
945
946 if (chip->ecc.algo == NAND_ECC_ALGO_UNKNOWN) {
947 if (mtd->writesize < 2048)
948 chip->ecc.algo = NAND_ECC_ALGO_RS;
949 else
950 chip->ecc.algo = NAND_ECC_ALGO_BCH;
951 }
952
953 if (chip->ecc.algo == NAND_ECC_ALGO_BCH && mtd->writesize < 2048) {
954 dev_err(ctrl->dev, "BCH supports 2K or 4K page size only\n");
955 return -EINVAL;
956 }
957
958 if (!chip->ecc.strength) {
959 ret = tegra_nand_select_strength(chip, oobsize: mtd->oobsize);
960 if (ret < 0) {
961 dev_err(ctrl->dev,
962 "No valid strength found, minimum %d\n",
963 requirements->strength);
964 return ret;
965 }
966
967 chip->ecc.strength = ret;
968 }
969
970 nand->config_ecc = CONFIG_PIPE_EN | CONFIG_SKIP_SPARE |
971 CONFIG_SKIP_SPARE_SIZE_4;
972
973 switch (chip->ecc.algo) {
974 case NAND_ECC_ALGO_RS:
975 bits_per_step = BITS_PER_STEP_RS * chip->ecc.strength;
976 mtd_set_ooblayout(mtd, ooblayout: &tegra_nand_oob_rs_ops);
977 nand->config_ecc |= CONFIG_HW_ECC | CONFIG_ECC_SEL |
978 CONFIG_ERR_COR;
979 switch (chip->ecc.strength) {
980 case 4:
981 nand->config_ecc |= CONFIG_TVAL_4;
982 break;
983 case 6:
984 nand->config_ecc |= CONFIG_TVAL_6;
985 break;
986 case 8:
987 nand->config_ecc |= CONFIG_TVAL_8;
988 break;
989 default:
990 dev_err(ctrl->dev, "ECC strength %d not supported\n",
991 chip->ecc.strength);
992 return -EINVAL;
993 }
994 break;
995 case NAND_ECC_ALGO_BCH:
996 bits_per_step = BITS_PER_STEP_BCH * chip->ecc.strength;
997 mtd_set_ooblayout(mtd, ooblayout: &tegra_nand_oob_bch_ops);
998 nand->bch_config = BCH_ENABLE;
999 switch (chip->ecc.strength) {
1000 case 4:
1001 nand->bch_config |= BCH_TVAL_4;
1002 break;
1003 case 8:
1004 nand->bch_config |= BCH_TVAL_8;
1005 break;
1006 case 14:
1007 nand->bch_config |= BCH_TVAL_14;
1008 break;
1009 case 16:
1010 nand->bch_config |= BCH_TVAL_16;
1011 break;
1012 default:
1013 dev_err(ctrl->dev, "ECC strength %d not supported\n",
1014 chip->ecc.strength);
1015 return -EINVAL;
1016 }
1017 break;
1018 default:
1019 dev_err(ctrl->dev, "ECC algorithm not supported\n");
1020 return -EINVAL;
1021 }
1022
1023 dev_info(ctrl->dev, "Using %s with strength %d per 512 byte step\n",
1024 chip->ecc.algo == NAND_ECC_ALGO_BCH ? "BCH" : "RS",
1025 chip->ecc.strength);
1026
1027 chip->ecc.bytes = DIV_ROUND_UP(bits_per_step, BITS_PER_BYTE);
1028
1029 switch (mtd->writesize) {
1030 case 256:
1031 nand->config |= CONFIG_PS_256;
1032 break;
1033 case 512:
1034 nand->config |= CONFIG_PS_512;
1035 break;
1036 case 1024:
1037 nand->config |= CONFIG_PS_1024;
1038 break;
1039 case 2048:
1040 nand->config |= CONFIG_PS_2048;
1041 break;
1042 case 4096:
1043 nand->config |= CONFIG_PS_4096;
1044 break;
1045 default:
1046 dev_err(ctrl->dev, "Unsupported writesize %d\n",
1047 mtd->writesize);
1048 return -ENODEV;
1049 }
1050
1051 /* Store complete configuration for HW ECC in config_ecc */
1052 nand->config_ecc |= nand->config;
1053
1054 /* Non-HW ECC read/writes complete OOB */
1055 nand->config |= CONFIG_TAG_BYTE_SIZE(mtd->oobsize - 1);
1056 writel_relaxed(nand->config, ctrl->regs + CONFIG);
1057
1058 return 0;
1059}
1060
1061static const struct nand_controller_ops tegra_nand_controller_ops = {
1062 .attach_chip = &tegra_nand_attach_chip,
1063 .exec_op = tegra_nand_exec_op,
1064 .setup_interface = tegra_nand_setup_interface,
1065};
1066
1067static int tegra_nand_chips_init(struct device *dev,
1068 struct tegra_nand_controller *ctrl)
1069{
1070 struct device_node *np = dev->of_node;
1071 struct device_node *np_nand;
1072 int nsels, nchips = of_get_child_count(np);
1073 struct tegra_nand_chip *nand;
1074 struct mtd_info *mtd;
1075 struct nand_chip *chip;
1076 int ret;
1077 u32 cs;
1078
1079 if (nchips != 1) {
1080 dev_err(dev, "Currently only one NAND chip supported\n");
1081 return -EINVAL;
1082 }
1083
1084 np_nand = of_get_next_child(node: np, NULL);
1085
1086 nsels = of_property_count_elems_of_size(np: np_nand, propname: "reg", elem_size: sizeof(u32));
1087 if (nsels != 1) {
1088 dev_err(dev, "Missing/invalid reg property\n");
1089 return -EINVAL;
1090 }
1091
1092 /* Retrieve CS id, currently only single die NAND supported */
1093 ret = of_property_read_u32(np: np_nand, propname: "reg", out_value: &cs);
1094 if (ret) {
1095 dev_err(dev, "could not retrieve reg property: %d\n", ret);
1096 return ret;
1097 }
1098
1099 nand = devm_kzalloc(dev, size: sizeof(*nand), GFP_KERNEL);
1100 if (!nand)
1101 return -ENOMEM;
1102
1103 nand->cs[0] = cs;
1104
1105 nand->wp_gpio = devm_gpiod_get_optional(dev, con_id: "wp", flags: GPIOD_OUT_LOW);
1106
1107 if (IS_ERR(ptr: nand->wp_gpio)) {
1108 ret = PTR_ERR(ptr: nand->wp_gpio);
1109 dev_err(dev, "Failed to request WP GPIO: %d\n", ret);
1110 return ret;
1111 }
1112
1113 chip = &nand->chip;
1114 chip->controller = &ctrl->controller;
1115
1116 mtd = nand_to_mtd(chip);
1117
1118 mtd->dev.parent = dev;
1119 mtd->owner = THIS_MODULE;
1120
1121 nand_set_flash_node(chip, np: np_nand);
1122
1123 if (!mtd->name)
1124 mtd->name = "tegra_nand";
1125
1126 chip->options = NAND_NO_SUBPAGE_WRITE | NAND_USES_DMA;
1127
1128 ret = nand_scan(chip, max_chips: 1);
1129 if (ret)
1130 return ret;
1131
1132 mtd_ooblayout_ecc(mtd, section: 0, oobecc: &nand->ecc);
1133
1134 ret = mtd_device_register(mtd, NULL, 0);
1135 if (ret) {
1136 dev_err(dev, "Failed to register mtd device: %d\n", ret);
1137 nand_cleanup(chip);
1138 return ret;
1139 }
1140
1141 ctrl->chip = chip;
1142
1143 return 0;
1144}
1145
1146static int tegra_nand_probe(struct platform_device *pdev)
1147{
1148 struct reset_control *rst;
1149 struct tegra_nand_controller *ctrl;
1150 int err = 0;
1151
1152 ctrl = devm_kzalloc(dev: &pdev->dev, size: sizeof(*ctrl), GFP_KERNEL);
1153 if (!ctrl)
1154 return -ENOMEM;
1155
1156 ctrl->dev = &pdev->dev;
1157 platform_set_drvdata(pdev, data: ctrl);
1158 nand_controller_init(nfc: &ctrl->controller);
1159 ctrl->controller.ops = &tegra_nand_controller_ops;
1160
1161 ctrl->regs = devm_platform_ioremap_resource(pdev, index: 0);
1162 if (IS_ERR(ptr: ctrl->regs))
1163 return PTR_ERR(ptr: ctrl->regs);
1164
1165 rst = devm_reset_control_get(dev: &pdev->dev, id: "nand");
1166 if (IS_ERR(ptr: rst))
1167 return PTR_ERR(ptr: rst);
1168
1169 ctrl->clk = devm_clk_get(dev: &pdev->dev, id: "nand");
1170 if (IS_ERR(ptr: ctrl->clk))
1171 return PTR_ERR(ptr: ctrl->clk);
1172
1173 err = devm_tegra_core_dev_init_opp_table_common(dev: &pdev->dev);
1174 if (err)
1175 return err;
1176
1177 /*
1178 * This driver doesn't support active power management yet,
1179 * so we will simply keep device resumed.
1180 */
1181 pm_runtime_enable(dev: &pdev->dev);
1182 err = pm_runtime_resume_and_get(dev: &pdev->dev);
1183 if (err)
1184 goto err_dis_pm;
1185
1186 err = reset_control_reset(rstc: rst);
1187 if (err) {
1188 dev_err(ctrl->dev, "Failed to reset HW: %d\n", err);
1189 goto err_put_pm;
1190 }
1191
1192 writel_relaxed(HWSTATUS_CMD_DEFAULT, ctrl->regs + HWSTATUS_CMD);
1193 writel_relaxed(HWSTATUS_MASK_DEFAULT, ctrl->regs + HWSTATUS_MASK);
1194 writel_relaxed(INT_MASK, ctrl->regs + IER);
1195
1196 init_completion(x: &ctrl->command_complete);
1197 init_completion(x: &ctrl->dma_complete);
1198
1199 ctrl->irq = platform_get_irq(pdev, 0);
1200 if (ctrl->irq < 0) {
1201 err = ctrl->irq;
1202 goto err_put_pm;
1203 }
1204 err = devm_request_irq(dev: &pdev->dev, irq: ctrl->irq, handler: tegra_nand_irq, irqflags: 0,
1205 devname: dev_name(dev: &pdev->dev), dev_id: ctrl);
1206 if (err) {
1207 dev_err(ctrl->dev, "Failed to get IRQ: %d\n", err);
1208 goto err_put_pm;
1209 }
1210
1211 writel_relaxed(DMA_MST_CTRL_IS_DONE, ctrl->regs + DMA_MST_CTRL);
1212
1213 err = tegra_nand_chips_init(dev: ctrl->dev, ctrl);
1214 if (err)
1215 goto err_put_pm;
1216
1217 return 0;
1218
1219err_put_pm:
1220 pm_runtime_put_sync_suspend(dev: ctrl->dev);
1221 pm_runtime_force_suspend(dev: ctrl->dev);
1222err_dis_pm:
1223 pm_runtime_disable(dev: &pdev->dev);
1224 return err;
1225}
1226
1227static void tegra_nand_remove(struct platform_device *pdev)
1228{
1229 struct tegra_nand_controller *ctrl = platform_get_drvdata(pdev);
1230 struct nand_chip *chip = ctrl->chip;
1231 struct mtd_info *mtd = nand_to_mtd(chip);
1232
1233 WARN_ON(mtd_device_unregister(mtd));
1234
1235 nand_cleanup(chip);
1236
1237 pm_runtime_put_sync_suspend(dev: ctrl->dev);
1238 pm_runtime_force_suspend(dev: ctrl->dev);
1239}
1240
1241static int __maybe_unused tegra_nand_runtime_resume(struct device *dev)
1242{
1243 struct tegra_nand_controller *ctrl = dev_get_drvdata(dev);
1244 int err;
1245
1246 err = clk_prepare_enable(clk: ctrl->clk);
1247 if (err) {
1248 dev_err(dev, "Failed to enable clock: %d\n", err);
1249 return err;
1250 }
1251
1252 return 0;
1253}
1254
1255static int __maybe_unused tegra_nand_runtime_suspend(struct device *dev)
1256{
1257 struct tegra_nand_controller *ctrl = dev_get_drvdata(dev);
1258
1259 clk_disable_unprepare(clk: ctrl->clk);
1260
1261 return 0;
1262}
1263
1264static const struct dev_pm_ops tegra_nand_pm = {
1265 SET_RUNTIME_PM_OPS(tegra_nand_runtime_suspend, tegra_nand_runtime_resume,
1266 NULL)
1267};
1268
1269static const struct of_device_id tegra_nand_of_match[] = {
1270 { .compatible = "nvidia,tegra20-nand" },
1271 { /* sentinel */ }
1272};
1273MODULE_DEVICE_TABLE(of, tegra_nand_of_match);
1274
1275static struct platform_driver tegra_nand_driver = {
1276 .driver = {
1277 .name = "tegra-nand",
1278 .of_match_table = tegra_nand_of_match,
1279 .pm = &tegra_nand_pm,
1280 },
1281 .probe = tegra_nand_probe,
1282 .remove_new = tegra_nand_remove,
1283};
1284module_platform_driver(tegra_nand_driver);
1285
1286MODULE_DESCRIPTION("NVIDIA Tegra NAND driver");
1287MODULE_AUTHOR("Thierry Reding <thierry.reding@nvidia.com>");
1288MODULE_AUTHOR("Lucas Stach <dev@lynxeye.de>");
1289MODULE_AUTHOR("Stefan Agner <stefan@agner.ch>");
1290MODULE_LICENSE("GPL v2");
1291

source code of linux/drivers/mtd/nand/raw/tegra_nand.c