1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Broadcom GENET (Gigabit Ethernet) controller driver
4 *
5 * Copyright (c) 2014-2020 Broadcom
6 */
7
8#define pr_fmt(fmt) "bcmgenet: " fmt
9
10#include <linux/acpi.h>
11#include <linux/kernel.h>
12#include <linux/module.h>
13#include <linux/sched.h>
14#include <linux/types.h>
15#include <linux/fcntl.h>
16#include <linux/interrupt.h>
17#include <linux/string.h>
18#include <linux/if_ether.h>
19#include <linux/init.h>
20#include <linux/errno.h>
21#include <linux/delay.h>
22#include <linux/platform_device.h>
23#include <linux/dma-mapping.h>
24#include <linux/pm.h>
25#include <linux/clk.h>
26#include <net/arp.h>
27
28#include <linux/mii.h>
29#include <linux/ethtool.h>
30#include <linux/netdevice.h>
31#include <linux/inetdevice.h>
32#include <linux/etherdevice.h>
33#include <linux/skbuff.h>
34#include <linux/in.h>
35#include <linux/ip.h>
36#include <linux/ipv6.h>
37#include <linux/phy.h>
38#include <linux/platform_data/bcmgenet.h>
39
40#include <asm/unaligned.h>
41
42#include "bcmgenet.h"
43
44/* Maximum number of hardware queues, downsized if needed */
45#define GENET_MAX_MQ_CNT 4
46
47/* Default highest priority queue for multi queue support */
48#define GENET_Q0_PRIORITY 0
49
50#define GENET_Q16_RX_BD_CNT \
51 (TOTAL_DESC - priv->hw_params->rx_queues * priv->hw_params->rx_bds_per_q)
52#define GENET_Q16_TX_BD_CNT \
53 (TOTAL_DESC - priv->hw_params->tx_queues * priv->hw_params->tx_bds_per_q)
54
55#define RX_BUF_LENGTH 2048
56#define SKB_ALIGNMENT 32
57
58/* Tx/Rx DMA register offset, skip 256 descriptors */
59#define WORDS_PER_BD(p) (p->hw_params->words_per_bd)
60#define DMA_DESC_SIZE (WORDS_PER_BD(priv) * sizeof(u32))
61
62#define GENET_TDMA_REG_OFF (priv->hw_params->tdma_offset + \
63 TOTAL_DESC * DMA_DESC_SIZE)
64
65#define GENET_RDMA_REG_OFF (priv->hw_params->rdma_offset + \
66 TOTAL_DESC * DMA_DESC_SIZE)
67
68/* Forward declarations */
69static void bcmgenet_set_rx_mode(struct net_device *dev);
70
71static inline void bcmgenet_writel(u32 value, void __iomem *offset)
72{
73 /* MIPS chips strapped for BE will automagically configure the
74 * peripheral registers for CPU-native byte order.
75 */
76 if (IS_ENABLED(CONFIG_MIPS) && IS_ENABLED(CONFIG_CPU_BIG_ENDIAN))
77 __raw_writel(val: value, addr: offset);
78 else
79 writel_relaxed(value, offset);
80}
81
82static inline u32 bcmgenet_readl(void __iomem *offset)
83{
84 if (IS_ENABLED(CONFIG_MIPS) && IS_ENABLED(CONFIG_CPU_BIG_ENDIAN))
85 return __raw_readl(addr: offset);
86 else
87 return readl_relaxed(offset);
88}
89
90static inline void dmadesc_set_length_status(struct bcmgenet_priv *priv,
91 void __iomem *d, u32 value)
92{
93 bcmgenet_writel(value, offset: d + DMA_DESC_LENGTH_STATUS);
94}
95
96static inline void dmadesc_set_addr(struct bcmgenet_priv *priv,
97 void __iomem *d,
98 dma_addr_t addr)
99{
100 bcmgenet_writel(lower_32_bits(addr), offset: d + DMA_DESC_ADDRESS_LO);
101
102 /* Register writes to GISB bus can take couple hundred nanoseconds
103 * and are done for each packet, save these expensive writes unless
104 * the platform is explicitly configured for 64-bits/LPAE.
105 */
106#ifdef CONFIG_PHYS_ADDR_T_64BIT
107 if (priv->hw_params->flags & GENET_HAS_40BITS)
108 bcmgenet_writel(upper_32_bits(addr), offset: d + DMA_DESC_ADDRESS_HI);
109#endif
110}
111
112/* Combined address + length/status setter */
113static inline void dmadesc_set(struct bcmgenet_priv *priv,
114 void __iomem *d, dma_addr_t addr, u32 val)
115{
116 dmadesc_set_addr(priv, d, addr);
117 dmadesc_set_length_status(priv, d, value: val);
118}
119
120#define GENET_VER_FMT "%1d.%1d EPHY: 0x%04x"
121
122#define GENET_MSG_DEFAULT (NETIF_MSG_DRV | NETIF_MSG_PROBE | \
123 NETIF_MSG_LINK)
124
125static inline u32 bcmgenet_rbuf_ctrl_get(struct bcmgenet_priv *priv)
126{
127 if (GENET_IS_V1(priv))
128 return bcmgenet_rbuf_readl(priv, RBUF_FLUSH_CTRL_V1);
129 else
130 return bcmgenet_sys_readl(priv, SYS_RBUF_FLUSH_CTRL);
131}
132
133static inline void bcmgenet_rbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val)
134{
135 if (GENET_IS_V1(priv))
136 bcmgenet_rbuf_writel(priv, val, RBUF_FLUSH_CTRL_V1);
137 else
138 bcmgenet_sys_writel(priv, val, SYS_RBUF_FLUSH_CTRL);
139}
140
141/* These macros are defined to deal with register map change
142 * between GENET1.1 and GENET2. Only those currently being used
143 * by driver are defined.
144 */
145static inline u32 bcmgenet_tbuf_ctrl_get(struct bcmgenet_priv *priv)
146{
147 if (GENET_IS_V1(priv))
148 return bcmgenet_rbuf_readl(priv, TBUF_CTRL_V1);
149 else
150 return bcmgenet_readl(offset: priv->base +
151 priv->hw_params->tbuf_offset + TBUF_CTRL);
152}
153
154static inline void bcmgenet_tbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val)
155{
156 if (GENET_IS_V1(priv))
157 bcmgenet_rbuf_writel(priv, val, TBUF_CTRL_V1);
158 else
159 bcmgenet_writel(value: val, offset: priv->base +
160 priv->hw_params->tbuf_offset + TBUF_CTRL);
161}
162
163static inline u32 bcmgenet_bp_mc_get(struct bcmgenet_priv *priv)
164{
165 if (GENET_IS_V1(priv))
166 return bcmgenet_rbuf_readl(priv, TBUF_BP_MC_V1);
167 else
168 return bcmgenet_readl(offset: priv->base +
169 priv->hw_params->tbuf_offset + TBUF_BP_MC);
170}
171
172static inline void bcmgenet_bp_mc_set(struct bcmgenet_priv *priv, u32 val)
173{
174 if (GENET_IS_V1(priv))
175 bcmgenet_rbuf_writel(priv, val, TBUF_BP_MC_V1);
176 else
177 bcmgenet_writel(value: val, offset: priv->base +
178 priv->hw_params->tbuf_offset + TBUF_BP_MC);
179}
180
181/* RX/TX DMA register accessors */
182enum dma_reg {
183 DMA_RING_CFG = 0,
184 DMA_CTRL,
185 DMA_STATUS,
186 DMA_SCB_BURST_SIZE,
187 DMA_ARB_CTRL,
188 DMA_PRIORITY_0,
189 DMA_PRIORITY_1,
190 DMA_PRIORITY_2,
191 DMA_INDEX2RING_0,
192 DMA_INDEX2RING_1,
193 DMA_INDEX2RING_2,
194 DMA_INDEX2RING_3,
195 DMA_INDEX2RING_4,
196 DMA_INDEX2RING_5,
197 DMA_INDEX2RING_6,
198 DMA_INDEX2RING_7,
199 DMA_RING0_TIMEOUT,
200 DMA_RING1_TIMEOUT,
201 DMA_RING2_TIMEOUT,
202 DMA_RING3_TIMEOUT,
203 DMA_RING4_TIMEOUT,
204 DMA_RING5_TIMEOUT,
205 DMA_RING6_TIMEOUT,
206 DMA_RING7_TIMEOUT,
207 DMA_RING8_TIMEOUT,
208 DMA_RING9_TIMEOUT,
209 DMA_RING10_TIMEOUT,
210 DMA_RING11_TIMEOUT,
211 DMA_RING12_TIMEOUT,
212 DMA_RING13_TIMEOUT,
213 DMA_RING14_TIMEOUT,
214 DMA_RING15_TIMEOUT,
215 DMA_RING16_TIMEOUT,
216};
217
218static const u8 bcmgenet_dma_regs_v3plus[] = {
219 [DMA_RING_CFG] = 0x00,
220 [DMA_CTRL] = 0x04,
221 [DMA_STATUS] = 0x08,
222 [DMA_SCB_BURST_SIZE] = 0x0C,
223 [DMA_ARB_CTRL] = 0x2C,
224 [DMA_PRIORITY_0] = 0x30,
225 [DMA_PRIORITY_1] = 0x34,
226 [DMA_PRIORITY_2] = 0x38,
227 [DMA_RING0_TIMEOUT] = 0x2C,
228 [DMA_RING1_TIMEOUT] = 0x30,
229 [DMA_RING2_TIMEOUT] = 0x34,
230 [DMA_RING3_TIMEOUT] = 0x38,
231 [DMA_RING4_TIMEOUT] = 0x3c,
232 [DMA_RING5_TIMEOUT] = 0x40,
233 [DMA_RING6_TIMEOUT] = 0x44,
234 [DMA_RING7_TIMEOUT] = 0x48,
235 [DMA_RING8_TIMEOUT] = 0x4c,
236 [DMA_RING9_TIMEOUT] = 0x50,
237 [DMA_RING10_TIMEOUT] = 0x54,
238 [DMA_RING11_TIMEOUT] = 0x58,
239 [DMA_RING12_TIMEOUT] = 0x5c,
240 [DMA_RING13_TIMEOUT] = 0x60,
241 [DMA_RING14_TIMEOUT] = 0x64,
242 [DMA_RING15_TIMEOUT] = 0x68,
243 [DMA_RING16_TIMEOUT] = 0x6C,
244 [DMA_INDEX2RING_0] = 0x70,
245 [DMA_INDEX2RING_1] = 0x74,
246 [DMA_INDEX2RING_2] = 0x78,
247 [DMA_INDEX2RING_3] = 0x7C,
248 [DMA_INDEX2RING_4] = 0x80,
249 [DMA_INDEX2RING_5] = 0x84,
250 [DMA_INDEX2RING_6] = 0x88,
251 [DMA_INDEX2RING_7] = 0x8C,
252};
253
254static const u8 bcmgenet_dma_regs_v2[] = {
255 [DMA_RING_CFG] = 0x00,
256 [DMA_CTRL] = 0x04,
257 [DMA_STATUS] = 0x08,
258 [DMA_SCB_BURST_SIZE] = 0x0C,
259 [DMA_ARB_CTRL] = 0x30,
260 [DMA_PRIORITY_0] = 0x34,
261 [DMA_PRIORITY_1] = 0x38,
262 [DMA_PRIORITY_2] = 0x3C,
263 [DMA_RING0_TIMEOUT] = 0x2C,
264 [DMA_RING1_TIMEOUT] = 0x30,
265 [DMA_RING2_TIMEOUT] = 0x34,
266 [DMA_RING3_TIMEOUT] = 0x38,
267 [DMA_RING4_TIMEOUT] = 0x3c,
268 [DMA_RING5_TIMEOUT] = 0x40,
269 [DMA_RING6_TIMEOUT] = 0x44,
270 [DMA_RING7_TIMEOUT] = 0x48,
271 [DMA_RING8_TIMEOUT] = 0x4c,
272 [DMA_RING9_TIMEOUT] = 0x50,
273 [DMA_RING10_TIMEOUT] = 0x54,
274 [DMA_RING11_TIMEOUT] = 0x58,
275 [DMA_RING12_TIMEOUT] = 0x5c,
276 [DMA_RING13_TIMEOUT] = 0x60,
277 [DMA_RING14_TIMEOUT] = 0x64,
278 [DMA_RING15_TIMEOUT] = 0x68,
279 [DMA_RING16_TIMEOUT] = 0x6C,
280};
281
282static const u8 bcmgenet_dma_regs_v1[] = {
283 [DMA_CTRL] = 0x00,
284 [DMA_STATUS] = 0x04,
285 [DMA_SCB_BURST_SIZE] = 0x0C,
286 [DMA_ARB_CTRL] = 0x30,
287 [DMA_PRIORITY_0] = 0x34,
288 [DMA_PRIORITY_1] = 0x38,
289 [DMA_PRIORITY_2] = 0x3C,
290 [DMA_RING0_TIMEOUT] = 0x2C,
291 [DMA_RING1_TIMEOUT] = 0x30,
292 [DMA_RING2_TIMEOUT] = 0x34,
293 [DMA_RING3_TIMEOUT] = 0x38,
294 [DMA_RING4_TIMEOUT] = 0x3c,
295 [DMA_RING5_TIMEOUT] = 0x40,
296 [DMA_RING6_TIMEOUT] = 0x44,
297 [DMA_RING7_TIMEOUT] = 0x48,
298 [DMA_RING8_TIMEOUT] = 0x4c,
299 [DMA_RING9_TIMEOUT] = 0x50,
300 [DMA_RING10_TIMEOUT] = 0x54,
301 [DMA_RING11_TIMEOUT] = 0x58,
302 [DMA_RING12_TIMEOUT] = 0x5c,
303 [DMA_RING13_TIMEOUT] = 0x60,
304 [DMA_RING14_TIMEOUT] = 0x64,
305 [DMA_RING15_TIMEOUT] = 0x68,
306 [DMA_RING16_TIMEOUT] = 0x6C,
307};
308
309/* Set at runtime once bcmgenet version is known */
310static const u8 *bcmgenet_dma_regs;
311
312static inline struct bcmgenet_priv *dev_to_priv(struct device *dev)
313{
314 return netdev_priv(dev: dev_get_drvdata(dev));
315}
316
317static inline u32 bcmgenet_tdma_readl(struct bcmgenet_priv *priv,
318 enum dma_reg r)
319{
320 return bcmgenet_readl(offset: priv->base + GENET_TDMA_REG_OFF +
321 DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
322}
323
324static inline void bcmgenet_tdma_writel(struct bcmgenet_priv *priv,
325 u32 val, enum dma_reg r)
326{
327 bcmgenet_writel(value: val, offset: priv->base + GENET_TDMA_REG_OFF +
328 DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
329}
330
331static inline u32 bcmgenet_rdma_readl(struct bcmgenet_priv *priv,
332 enum dma_reg r)
333{
334 return bcmgenet_readl(offset: priv->base + GENET_RDMA_REG_OFF +
335 DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
336}
337
338static inline void bcmgenet_rdma_writel(struct bcmgenet_priv *priv,
339 u32 val, enum dma_reg r)
340{
341 bcmgenet_writel(value: val, offset: priv->base + GENET_RDMA_REG_OFF +
342 DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
343}
344
345/* RDMA/TDMA ring registers and accessors
346 * we merge the common fields and just prefix with T/D the registers
347 * having different meaning depending on the direction
348 */
349enum dma_ring_reg {
350 TDMA_READ_PTR = 0,
351 RDMA_WRITE_PTR = TDMA_READ_PTR,
352 TDMA_READ_PTR_HI,
353 RDMA_WRITE_PTR_HI = TDMA_READ_PTR_HI,
354 TDMA_CONS_INDEX,
355 RDMA_PROD_INDEX = TDMA_CONS_INDEX,
356 TDMA_PROD_INDEX,
357 RDMA_CONS_INDEX = TDMA_PROD_INDEX,
358 DMA_RING_BUF_SIZE,
359 DMA_START_ADDR,
360 DMA_START_ADDR_HI,
361 DMA_END_ADDR,
362 DMA_END_ADDR_HI,
363 DMA_MBUF_DONE_THRESH,
364 TDMA_FLOW_PERIOD,
365 RDMA_XON_XOFF_THRESH = TDMA_FLOW_PERIOD,
366 TDMA_WRITE_PTR,
367 RDMA_READ_PTR = TDMA_WRITE_PTR,
368 TDMA_WRITE_PTR_HI,
369 RDMA_READ_PTR_HI = TDMA_WRITE_PTR_HI
370};
371
372/* GENET v4 supports 40-bits pointer addressing
373 * for obvious reasons the LO and HI word parts
374 * are contiguous, but this offsets the other
375 * registers.
376 */
377static const u8 genet_dma_ring_regs_v4[] = {
378 [TDMA_READ_PTR] = 0x00,
379 [TDMA_READ_PTR_HI] = 0x04,
380 [TDMA_CONS_INDEX] = 0x08,
381 [TDMA_PROD_INDEX] = 0x0C,
382 [DMA_RING_BUF_SIZE] = 0x10,
383 [DMA_START_ADDR] = 0x14,
384 [DMA_START_ADDR_HI] = 0x18,
385 [DMA_END_ADDR] = 0x1C,
386 [DMA_END_ADDR_HI] = 0x20,
387 [DMA_MBUF_DONE_THRESH] = 0x24,
388 [TDMA_FLOW_PERIOD] = 0x28,
389 [TDMA_WRITE_PTR] = 0x2C,
390 [TDMA_WRITE_PTR_HI] = 0x30,
391};
392
393static const u8 genet_dma_ring_regs_v123[] = {
394 [TDMA_READ_PTR] = 0x00,
395 [TDMA_CONS_INDEX] = 0x04,
396 [TDMA_PROD_INDEX] = 0x08,
397 [DMA_RING_BUF_SIZE] = 0x0C,
398 [DMA_START_ADDR] = 0x10,
399 [DMA_END_ADDR] = 0x14,
400 [DMA_MBUF_DONE_THRESH] = 0x18,
401 [TDMA_FLOW_PERIOD] = 0x1C,
402 [TDMA_WRITE_PTR] = 0x20,
403};
404
405/* Set at runtime once GENET version is known */
406static const u8 *genet_dma_ring_regs;
407
408static inline u32 bcmgenet_tdma_ring_readl(struct bcmgenet_priv *priv,
409 unsigned int ring,
410 enum dma_ring_reg r)
411{
412 return bcmgenet_readl(offset: priv->base + GENET_TDMA_REG_OFF +
413 (DMA_RING_SIZE * ring) +
414 genet_dma_ring_regs[r]);
415}
416
417static inline void bcmgenet_tdma_ring_writel(struct bcmgenet_priv *priv,
418 unsigned int ring, u32 val,
419 enum dma_ring_reg r)
420{
421 bcmgenet_writel(value: val, offset: priv->base + GENET_TDMA_REG_OFF +
422 (DMA_RING_SIZE * ring) +
423 genet_dma_ring_regs[r]);
424}
425
426static inline u32 bcmgenet_rdma_ring_readl(struct bcmgenet_priv *priv,
427 unsigned int ring,
428 enum dma_ring_reg r)
429{
430 return bcmgenet_readl(offset: priv->base + GENET_RDMA_REG_OFF +
431 (DMA_RING_SIZE * ring) +
432 genet_dma_ring_regs[r]);
433}
434
435static inline void bcmgenet_rdma_ring_writel(struct bcmgenet_priv *priv,
436 unsigned int ring, u32 val,
437 enum dma_ring_reg r)
438{
439 bcmgenet_writel(value: val, offset: priv->base + GENET_RDMA_REG_OFF +
440 (DMA_RING_SIZE * ring) +
441 genet_dma_ring_regs[r]);
442}
443
444static void bcmgenet_hfb_enable_filter(struct bcmgenet_priv *priv, u32 f_index)
445{
446 u32 offset;
447 u32 reg;
448
449 offset = HFB_FLT_ENABLE_V3PLUS + (f_index < 32) * sizeof(u32);
450 reg = bcmgenet_hfb_reg_readl(priv, off: offset);
451 reg |= (1 << (f_index % 32));
452 bcmgenet_hfb_reg_writel(priv, val: reg, off: offset);
453 reg = bcmgenet_hfb_reg_readl(priv, HFB_CTRL);
454 reg |= RBUF_HFB_EN;
455 bcmgenet_hfb_reg_writel(priv, val: reg, HFB_CTRL);
456}
457
458static void bcmgenet_hfb_disable_filter(struct bcmgenet_priv *priv, u32 f_index)
459{
460 u32 offset, reg, reg1;
461
462 offset = HFB_FLT_ENABLE_V3PLUS;
463 reg = bcmgenet_hfb_reg_readl(priv, off: offset);
464 reg1 = bcmgenet_hfb_reg_readl(priv, off: offset + sizeof(u32));
465 if (f_index < 32) {
466 reg1 &= ~(1 << (f_index % 32));
467 bcmgenet_hfb_reg_writel(priv, val: reg1, off: offset + sizeof(u32));
468 } else {
469 reg &= ~(1 << (f_index % 32));
470 bcmgenet_hfb_reg_writel(priv, val: reg, off: offset);
471 }
472 if (!reg && !reg1) {
473 reg = bcmgenet_hfb_reg_readl(priv, HFB_CTRL);
474 reg &= ~RBUF_HFB_EN;
475 bcmgenet_hfb_reg_writel(priv, val: reg, HFB_CTRL);
476 }
477}
478
479static void bcmgenet_hfb_set_filter_rx_queue_mapping(struct bcmgenet_priv *priv,
480 u32 f_index, u32 rx_queue)
481{
482 u32 offset;
483 u32 reg;
484
485 offset = f_index / 8;
486 reg = bcmgenet_rdma_readl(priv, r: DMA_INDEX2RING_0 + offset);
487 reg &= ~(0xF << (4 * (f_index % 8)));
488 reg |= ((rx_queue & 0xF) << (4 * (f_index % 8)));
489 bcmgenet_rdma_writel(priv, val: reg, r: DMA_INDEX2RING_0 + offset);
490}
491
492static void bcmgenet_hfb_set_filter_length(struct bcmgenet_priv *priv,
493 u32 f_index, u32 f_length)
494{
495 u32 offset;
496 u32 reg;
497
498 offset = HFB_FLT_LEN_V3PLUS +
499 ((priv->hw_params->hfb_filter_cnt - 1 - f_index) / 4) *
500 sizeof(u32);
501 reg = bcmgenet_hfb_reg_readl(priv, off: offset);
502 reg &= ~(0xFF << (8 * (f_index % 4)));
503 reg |= ((f_length & 0xFF) << (8 * (f_index % 4)));
504 bcmgenet_hfb_reg_writel(priv, val: reg, off: offset);
505}
506
507static int bcmgenet_hfb_validate_mask(void *mask, size_t size)
508{
509 while (size) {
510 switch (*(unsigned char *)mask++) {
511 case 0x00:
512 case 0x0f:
513 case 0xf0:
514 case 0xff:
515 size--;
516 continue;
517 default:
518 return -EINVAL;
519 }
520 }
521
522 return 0;
523}
524
525#define VALIDATE_MASK(x) \
526 bcmgenet_hfb_validate_mask(&(x), sizeof(x))
527
528static int bcmgenet_hfb_insert_data(struct bcmgenet_priv *priv, u32 f_index,
529 u32 offset, void *val, void *mask,
530 size_t size)
531{
532 u32 index, tmp;
533
534 index = f_index * priv->hw_params->hfb_filter_size + offset / 2;
535 tmp = bcmgenet_hfb_readl(priv, off: index * sizeof(u32));
536
537 while (size--) {
538 if (offset++ & 1) {
539 tmp &= ~0x300FF;
540 tmp |= (*(unsigned char *)val++);
541 switch ((*(unsigned char *)mask++)) {
542 case 0xFF:
543 tmp |= 0x30000;
544 break;
545 case 0xF0:
546 tmp |= 0x20000;
547 break;
548 case 0x0F:
549 tmp |= 0x10000;
550 break;
551 }
552 bcmgenet_hfb_writel(priv, val: tmp, off: index++ * sizeof(u32));
553 if (size)
554 tmp = bcmgenet_hfb_readl(priv,
555 off: index * sizeof(u32));
556 } else {
557 tmp &= ~0xCFF00;
558 tmp |= (*(unsigned char *)val++) << 8;
559 switch ((*(unsigned char *)mask++)) {
560 case 0xFF:
561 tmp |= 0xC0000;
562 break;
563 case 0xF0:
564 tmp |= 0x80000;
565 break;
566 case 0x0F:
567 tmp |= 0x40000;
568 break;
569 }
570 if (!size)
571 bcmgenet_hfb_writel(priv, val: tmp, off: index * sizeof(u32));
572 }
573 }
574
575 return 0;
576}
577
578static void bcmgenet_hfb_create_rxnfc_filter(struct bcmgenet_priv *priv,
579 struct bcmgenet_rxnfc_rule *rule)
580{
581 struct ethtool_rx_flow_spec *fs = &rule->fs;
582 u32 offset = 0, f_length = 0, f;
583 u8 val_8, mask_8;
584 __be16 val_16;
585 u16 mask_16;
586 size_t size;
587
588 f = fs->location;
589 if (fs->flow_type & FLOW_MAC_EXT) {
590 bcmgenet_hfb_insert_data(priv, f_index: f, offset: 0,
591 val: &fs->h_ext.h_dest, mask: &fs->m_ext.h_dest,
592 size: sizeof(fs->h_ext.h_dest));
593 }
594
595 if (fs->flow_type & FLOW_EXT) {
596 if (fs->m_ext.vlan_etype ||
597 fs->m_ext.vlan_tci) {
598 bcmgenet_hfb_insert_data(priv, f_index: f, offset: 12,
599 val: &fs->h_ext.vlan_etype,
600 mask: &fs->m_ext.vlan_etype,
601 size: sizeof(fs->h_ext.vlan_etype));
602 bcmgenet_hfb_insert_data(priv, f_index: f, offset: 14,
603 val: &fs->h_ext.vlan_tci,
604 mask: &fs->m_ext.vlan_tci,
605 size: sizeof(fs->h_ext.vlan_tci));
606 offset += VLAN_HLEN;
607 f_length += DIV_ROUND_UP(VLAN_HLEN, 2);
608 }
609 }
610
611 switch (fs->flow_type & ~(FLOW_EXT | FLOW_MAC_EXT)) {
612 case ETHER_FLOW:
613 f_length += DIV_ROUND_UP(ETH_HLEN, 2);
614 bcmgenet_hfb_insert_data(priv, f_index: f, offset: 0,
615 val: &fs->h_u.ether_spec.h_dest,
616 mask: &fs->m_u.ether_spec.h_dest,
617 size: sizeof(fs->h_u.ether_spec.h_dest));
618 bcmgenet_hfb_insert_data(priv, f_index: f, ETH_ALEN,
619 val: &fs->h_u.ether_spec.h_source,
620 mask: &fs->m_u.ether_spec.h_source,
621 size: sizeof(fs->h_u.ether_spec.h_source));
622 bcmgenet_hfb_insert_data(priv, f_index: f, offset: (2 * ETH_ALEN) + offset,
623 val: &fs->h_u.ether_spec.h_proto,
624 mask: &fs->m_u.ether_spec.h_proto,
625 size: sizeof(fs->h_u.ether_spec.h_proto));
626 break;
627 case IP_USER_FLOW:
628 f_length += DIV_ROUND_UP(ETH_HLEN + 20, 2);
629 /* Specify IP Ether Type */
630 val_16 = htons(ETH_P_IP);
631 mask_16 = 0xFFFF;
632 bcmgenet_hfb_insert_data(priv, f_index: f, offset: (2 * ETH_ALEN) + offset,
633 val: &val_16, mask: &mask_16, size: sizeof(val_16));
634 bcmgenet_hfb_insert_data(priv, f_index: f, offset: 15 + offset,
635 val: &fs->h_u.usr_ip4_spec.tos,
636 mask: &fs->m_u.usr_ip4_spec.tos,
637 size: sizeof(fs->h_u.usr_ip4_spec.tos));
638 bcmgenet_hfb_insert_data(priv, f_index: f, offset: 23 + offset,
639 val: &fs->h_u.usr_ip4_spec.proto,
640 mask: &fs->m_u.usr_ip4_spec.proto,
641 size: sizeof(fs->h_u.usr_ip4_spec.proto));
642 bcmgenet_hfb_insert_data(priv, f_index: f, offset: 26 + offset,
643 val: &fs->h_u.usr_ip4_spec.ip4src,
644 mask: &fs->m_u.usr_ip4_spec.ip4src,
645 size: sizeof(fs->h_u.usr_ip4_spec.ip4src));
646 bcmgenet_hfb_insert_data(priv, f_index: f, offset: 30 + offset,
647 val: &fs->h_u.usr_ip4_spec.ip4dst,
648 mask: &fs->m_u.usr_ip4_spec.ip4dst,
649 size: sizeof(fs->h_u.usr_ip4_spec.ip4dst));
650 if (!fs->m_u.usr_ip4_spec.l4_4_bytes)
651 break;
652
653 /* Only supports 20 byte IPv4 header */
654 val_8 = 0x45;
655 mask_8 = 0xFF;
656 bcmgenet_hfb_insert_data(priv, f_index: f, ETH_HLEN + offset,
657 val: &val_8, mask: &mask_8,
658 size: sizeof(val_8));
659 size = sizeof(fs->h_u.usr_ip4_spec.l4_4_bytes);
660 bcmgenet_hfb_insert_data(priv, f_index: f,
661 ETH_HLEN + 20 + offset,
662 val: &fs->h_u.usr_ip4_spec.l4_4_bytes,
663 mask: &fs->m_u.usr_ip4_spec.l4_4_bytes,
664 size);
665 f_length += DIV_ROUND_UP(size, 2);
666 break;
667 }
668
669 bcmgenet_hfb_set_filter_length(priv, f_index: f, f_length: 2 * f_length);
670 if (!fs->ring_cookie || fs->ring_cookie == RX_CLS_FLOW_WAKE) {
671 /* Ring 0 flows can be handled by the default Descriptor Ring
672 * We'll map them to ring 0, but don't enable the filter
673 */
674 bcmgenet_hfb_set_filter_rx_queue_mapping(priv, f_index: f, rx_queue: 0);
675 rule->state = BCMGENET_RXNFC_STATE_DISABLED;
676 } else {
677 /* Other Rx rings are direct mapped here */
678 bcmgenet_hfb_set_filter_rx_queue_mapping(priv, f_index: f,
679 rx_queue: fs->ring_cookie);
680 bcmgenet_hfb_enable_filter(priv, f_index: f);
681 rule->state = BCMGENET_RXNFC_STATE_ENABLED;
682 }
683}
684
685/* bcmgenet_hfb_clear
686 *
687 * Clear Hardware Filter Block and disable all filtering.
688 */
689static void bcmgenet_hfb_clear_filter(struct bcmgenet_priv *priv, u32 f_index)
690{
691 u32 base, i;
692
693 base = f_index * priv->hw_params->hfb_filter_size;
694 for (i = 0; i < priv->hw_params->hfb_filter_size; i++)
695 bcmgenet_hfb_writel(priv, val: 0x0, off: (base + i) * sizeof(u32));
696}
697
698static void bcmgenet_hfb_clear(struct bcmgenet_priv *priv)
699{
700 u32 i;
701
702 if (GENET_IS_V1(priv) || GENET_IS_V2(priv))
703 return;
704
705 bcmgenet_hfb_reg_writel(priv, val: 0x0, HFB_CTRL);
706 bcmgenet_hfb_reg_writel(priv, val: 0x0, HFB_FLT_ENABLE_V3PLUS);
707 bcmgenet_hfb_reg_writel(priv, val: 0x0, HFB_FLT_ENABLE_V3PLUS + 4);
708
709 for (i = DMA_INDEX2RING_0; i <= DMA_INDEX2RING_7; i++)
710 bcmgenet_rdma_writel(priv, val: 0x0, r: i);
711
712 for (i = 0; i < (priv->hw_params->hfb_filter_cnt / 4); i++)
713 bcmgenet_hfb_reg_writel(priv, val: 0x0,
714 HFB_FLT_LEN_V3PLUS + i * sizeof(u32));
715
716 for (i = 0; i < priv->hw_params->hfb_filter_cnt; i++)
717 bcmgenet_hfb_clear_filter(priv, f_index: i);
718}
719
720static void bcmgenet_hfb_init(struct bcmgenet_priv *priv)
721{
722 int i;
723
724 INIT_LIST_HEAD(list: &priv->rxnfc_list);
725 if (GENET_IS_V1(priv) || GENET_IS_V2(priv))
726 return;
727
728 for (i = 0; i < MAX_NUM_OF_FS_RULES; i++) {
729 INIT_LIST_HEAD(list: &priv->rxnfc_rules[i].list);
730 priv->rxnfc_rules[i].state = BCMGENET_RXNFC_STATE_UNUSED;
731 }
732
733 bcmgenet_hfb_clear(priv);
734}
735
736static int bcmgenet_begin(struct net_device *dev)
737{
738 struct bcmgenet_priv *priv = netdev_priv(dev);
739
740 /* Turn on the clock */
741 return clk_prepare_enable(clk: priv->clk);
742}
743
744static void bcmgenet_complete(struct net_device *dev)
745{
746 struct bcmgenet_priv *priv = netdev_priv(dev);
747
748 /* Turn off the clock */
749 clk_disable_unprepare(clk: priv->clk);
750}
751
752static int bcmgenet_get_link_ksettings(struct net_device *dev,
753 struct ethtool_link_ksettings *cmd)
754{
755 if (!netif_running(dev))
756 return -EINVAL;
757
758 if (!dev->phydev)
759 return -ENODEV;
760
761 phy_ethtool_ksettings_get(phydev: dev->phydev, cmd);
762
763 return 0;
764}
765
766static int bcmgenet_set_link_ksettings(struct net_device *dev,
767 const struct ethtool_link_ksettings *cmd)
768{
769 if (!netif_running(dev))
770 return -EINVAL;
771
772 if (!dev->phydev)
773 return -ENODEV;
774
775 return phy_ethtool_ksettings_set(phydev: dev->phydev, cmd);
776}
777
778static int bcmgenet_set_features(struct net_device *dev,
779 netdev_features_t features)
780{
781 struct bcmgenet_priv *priv = netdev_priv(dev);
782 u32 reg;
783 int ret;
784
785 ret = clk_prepare_enable(clk: priv->clk);
786 if (ret)
787 return ret;
788
789 /* Make sure we reflect the value of CRC_CMD_FWD */
790 reg = bcmgenet_umac_readl(priv, UMAC_CMD);
791 priv->crc_fwd_en = !!(reg & CMD_CRC_FWD);
792
793 clk_disable_unprepare(clk: priv->clk);
794
795 return ret;
796}
797
798static u32 bcmgenet_get_msglevel(struct net_device *dev)
799{
800 struct bcmgenet_priv *priv = netdev_priv(dev);
801
802 return priv->msg_enable;
803}
804
805static void bcmgenet_set_msglevel(struct net_device *dev, u32 level)
806{
807 struct bcmgenet_priv *priv = netdev_priv(dev);
808
809 priv->msg_enable = level;
810}
811
812static int bcmgenet_get_coalesce(struct net_device *dev,
813 struct ethtool_coalesce *ec,
814 struct kernel_ethtool_coalesce *kernel_coal,
815 struct netlink_ext_ack *extack)
816{
817 struct bcmgenet_priv *priv = netdev_priv(dev);
818 struct bcmgenet_rx_ring *ring;
819 unsigned int i;
820
821 ec->tx_max_coalesced_frames =
822 bcmgenet_tdma_ring_readl(priv, DESC_INDEX,
823 r: DMA_MBUF_DONE_THRESH);
824 ec->rx_max_coalesced_frames =
825 bcmgenet_rdma_ring_readl(priv, DESC_INDEX,
826 r: DMA_MBUF_DONE_THRESH);
827 ec->rx_coalesce_usecs =
828 bcmgenet_rdma_readl(priv, r: DMA_RING16_TIMEOUT) * 8192 / 1000;
829
830 for (i = 0; i < priv->hw_params->rx_queues; i++) {
831 ring = &priv->rx_rings[i];
832 ec->use_adaptive_rx_coalesce |= ring->dim.use_dim;
833 }
834 ring = &priv->rx_rings[DESC_INDEX];
835 ec->use_adaptive_rx_coalesce |= ring->dim.use_dim;
836
837 return 0;
838}
839
840static void bcmgenet_set_rx_coalesce(struct bcmgenet_rx_ring *ring,
841 u32 usecs, u32 pkts)
842{
843 struct bcmgenet_priv *priv = ring->priv;
844 unsigned int i = ring->index;
845 u32 reg;
846
847 bcmgenet_rdma_ring_writel(priv, ring: i, val: pkts, r: DMA_MBUF_DONE_THRESH);
848
849 reg = bcmgenet_rdma_readl(priv, r: DMA_RING0_TIMEOUT + i);
850 reg &= ~DMA_TIMEOUT_MASK;
851 reg |= DIV_ROUND_UP(usecs * 1000, 8192);
852 bcmgenet_rdma_writel(priv, val: reg, r: DMA_RING0_TIMEOUT + i);
853}
854
855static void bcmgenet_set_ring_rx_coalesce(struct bcmgenet_rx_ring *ring,
856 struct ethtool_coalesce *ec)
857{
858 struct dim_cq_moder moder;
859 u32 usecs, pkts;
860
861 ring->rx_coalesce_usecs = ec->rx_coalesce_usecs;
862 ring->rx_max_coalesced_frames = ec->rx_max_coalesced_frames;
863 usecs = ring->rx_coalesce_usecs;
864 pkts = ring->rx_max_coalesced_frames;
865
866 if (ec->use_adaptive_rx_coalesce && !ring->dim.use_dim) {
867 moder = net_dim_get_def_rx_moderation(cq_period_mode: ring->dim.dim.mode);
868 usecs = moder.usec;
869 pkts = moder.pkts;
870 }
871
872 ring->dim.use_dim = ec->use_adaptive_rx_coalesce;
873 bcmgenet_set_rx_coalesce(ring, usecs, pkts);
874}
875
876static int bcmgenet_set_coalesce(struct net_device *dev,
877 struct ethtool_coalesce *ec,
878 struct kernel_ethtool_coalesce *kernel_coal,
879 struct netlink_ext_ack *extack)
880{
881 struct bcmgenet_priv *priv = netdev_priv(dev);
882 unsigned int i;
883
884 /* Base system clock is 125Mhz, DMA timeout is this reference clock
885 * divided by 1024, which yields roughly 8.192us, our maximum value
886 * has to fit in the DMA_TIMEOUT_MASK (16 bits)
887 */
888 if (ec->tx_max_coalesced_frames > DMA_INTR_THRESHOLD_MASK ||
889 ec->tx_max_coalesced_frames == 0 ||
890 ec->rx_max_coalesced_frames > DMA_INTR_THRESHOLD_MASK ||
891 ec->rx_coalesce_usecs > (DMA_TIMEOUT_MASK * 8) + 1)
892 return -EINVAL;
893
894 if (ec->rx_coalesce_usecs == 0 && ec->rx_max_coalesced_frames == 0)
895 return -EINVAL;
896
897 /* GENET TDMA hardware does not support a configurable timeout, but will
898 * always generate an interrupt either after MBDONE packets have been
899 * transmitted, or when the ring is empty.
900 */
901
902 /* Program all TX queues with the same values, as there is no
903 * ethtool knob to do coalescing on a per-queue basis
904 */
905 for (i = 0; i < priv->hw_params->tx_queues; i++)
906 bcmgenet_tdma_ring_writel(priv, ring: i,
907 val: ec->tx_max_coalesced_frames,
908 r: DMA_MBUF_DONE_THRESH);
909 bcmgenet_tdma_ring_writel(priv, DESC_INDEX,
910 val: ec->tx_max_coalesced_frames,
911 r: DMA_MBUF_DONE_THRESH);
912
913 for (i = 0; i < priv->hw_params->rx_queues; i++)
914 bcmgenet_set_ring_rx_coalesce(ring: &priv->rx_rings[i], ec);
915 bcmgenet_set_ring_rx_coalesce(ring: &priv->rx_rings[DESC_INDEX], ec);
916
917 return 0;
918}
919
920static void bcmgenet_get_pauseparam(struct net_device *dev,
921 struct ethtool_pauseparam *epause)
922{
923 struct bcmgenet_priv *priv;
924 u32 umac_cmd;
925
926 priv = netdev_priv(dev);
927
928 epause->autoneg = priv->autoneg_pause;
929
930 if (netif_carrier_ok(dev)) {
931 /* report active state when link is up */
932 umac_cmd = bcmgenet_umac_readl(priv, UMAC_CMD);
933 epause->tx_pause = !(umac_cmd & CMD_TX_PAUSE_IGNORE);
934 epause->rx_pause = !(umac_cmd & CMD_RX_PAUSE_IGNORE);
935 } else {
936 /* otherwise report stored settings */
937 epause->tx_pause = priv->tx_pause;
938 epause->rx_pause = priv->rx_pause;
939 }
940}
941
942static int bcmgenet_set_pauseparam(struct net_device *dev,
943 struct ethtool_pauseparam *epause)
944{
945 struct bcmgenet_priv *priv = netdev_priv(dev);
946
947 if (!dev->phydev)
948 return -ENODEV;
949
950 if (!phy_validate_pause(phydev: dev->phydev, pp: epause))
951 return -EINVAL;
952
953 priv->autoneg_pause = !!epause->autoneg;
954 priv->tx_pause = !!epause->tx_pause;
955 priv->rx_pause = !!epause->rx_pause;
956
957 bcmgenet_phy_pause_set(dev, rx: priv->rx_pause, tx: priv->tx_pause);
958
959 return 0;
960}
961
962/* standard ethtool support functions. */
963enum bcmgenet_stat_type {
964 BCMGENET_STAT_NETDEV = -1,
965 BCMGENET_STAT_MIB_RX,
966 BCMGENET_STAT_MIB_TX,
967 BCMGENET_STAT_RUNT,
968 BCMGENET_STAT_MISC,
969 BCMGENET_STAT_SOFT,
970};
971
972struct bcmgenet_stats {
973 char stat_string[ETH_GSTRING_LEN];
974 int stat_sizeof;
975 int stat_offset;
976 enum bcmgenet_stat_type type;
977 /* reg offset from UMAC base for misc counters */
978 u16 reg_offset;
979};
980
981#define STAT_NETDEV(m) { \
982 .stat_string = __stringify(m), \
983 .stat_sizeof = sizeof(((struct net_device_stats *)0)->m), \
984 .stat_offset = offsetof(struct net_device_stats, m), \
985 .type = BCMGENET_STAT_NETDEV, \
986}
987
988#define STAT_GENET_MIB(str, m, _type) { \
989 .stat_string = str, \
990 .stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \
991 .stat_offset = offsetof(struct bcmgenet_priv, m), \
992 .type = _type, \
993}
994
995#define STAT_GENET_MIB_RX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_RX)
996#define STAT_GENET_MIB_TX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_TX)
997#define STAT_GENET_RUNT(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_RUNT)
998#define STAT_GENET_SOFT_MIB(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_SOFT)
999
1000#define STAT_GENET_MISC(str, m, offset) { \
1001 .stat_string = str, \
1002 .stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \
1003 .stat_offset = offsetof(struct bcmgenet_priv, m), \
1004 .type = BCMGENET_STAT_MISC, \
1005 .reg_offset = offset, \
1006}
1007
1008#define STAT_GENET_Q(num) \
1009 STAT_GENET_SOFT_MIB("txq" __stringify(num) "_packets", \
1010 tx_rings[num].packets), \
1011 STAT_GENET_SOFT_MIB("txq" __stringify(num) "_bytes", \
1012 tx_rings[num].bytes), \
1013 STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_bytes", \
1014 rx_rings[num].bytes), \
1015 STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_packets", \
1016 rx_rings[num].packets), \
1017 STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_errors", \
1018 rx_rings[num].errors), \
1019 STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_dropped", \
1020 rx_rings[num].dropped)
1021
1022/* There is a 0xC gap between the end of RX and beginning of TX stats and then
1023 * between the end of TX stats and the beginning of the RX RUNT
1024 */
1025#define BCMGENET_STAT_OFFSET 0xc
1026
1027/* Hardware counters must be kept in sync because the order/offset
1028 * is important here (order in structure declaration = order in hardware)
1029 */
1030static const struct bcmgenet_stats bcmgenet_gstrings_stats[] = {
1031 /* general stats */
1032 STAT_NETDEV(rx_packets),
1033 STAT_NETDEV(tx_packets),
1034 STAT_NETDEV(rx_bytes),
1035 STAT_NETDEV(tx_bytes),
1036 STAT_NETDEV(rx_errors),
1037 STAT_NETDEV(tx_errors),
1038 STAT_NETDEV(rx_dropped),
1039 STAT_NETDEV(tx_dropped),
1040 STAT_NETDEV(multicast),
1041 /* UniMAC RSV counters */
1042 STAT_GENET_MIB_RX("rx_64_octets", mib.rx.pkt_cnt.cnt_64),
1043 STAT_GENET_MIB_RX("rx_65_127_oct", mib.rx.pkt_cnt.cnt_127),
1044 STAT_GENET_MIB_RX("rx_128_255_oct", mib.rx.pkt_cnt.cnt_255),
1045 STAT_GENET_MIB_RX("rx_256_511_oct", mib.rx.pkt_cnt.cnt_511),
1046 STAT_GENET_MIB_RX("rx_512_1023_oct", mib.rx.pkt_cnt.cnt_1023),
1047 STAT_GENET_MIB_RX("rx_1024_1518_oct", mib.rx.pkt_cnt.cnt_1518),
1048 STAT_GENET_MIB_RX("rx_vlan_1519_1522_oct", mib.rx.pkt_cnt.cnt_mgv),
1049 STAT_GENET_MIB_RX("rx_1522_2047_oct", mib.rx.pkt_cnt.cnt_2047),
1050 STAT_GENET_MIB_RX("rx_2048_4095_oct", mib.rx.pkt_cnt.cnt_4095),
1051 STAT_GENET_MIB_RX("rx_4096_9216_oct", mib.rx.pkt_cnt.cnt_9216),
1052 STAT_GENET_MIB_RX("rx_pkts", mib.rx.pkt),
1053 STAT_GENET_MIB_RX("rx_bytes", mib.rx.bytes),
1054 STAT_GENET_MIB_RX("rx_multicast", mib.rx.mca),
1055 STAT_GENET_MIB_RX("rx_broadcast", mib.rx.bca),
1056 STAT_GENET_MIB_RX("rx_fcs", mib.rx.fcs),
1057 STAT_GENET_MIB_RX("rx_control", mib.rx.cf),
1058 STAT_GENET_MIB_RX("rx_pause", mib.rx.pf),
1059 STAT_GENET_MIB_RX("rx_unknown", mib.rx.uo),
1060 STAT_GENET_MIB_RX("rx_align", mib.rx.aln),
1061 STAT_GENET_MIB_RX("rx_outrange", mib.rx.flr),
1062 STAT_GENET_MIB_RX("rx_code", mib.rx.cde),
1063 STAT_GENET_MIB_RX("rx_carrier", mib.rx.fcr),
1064 STAT_GENET_MIB_RX("rx_oversize", mib.rx.ovr),
1065 STAT_GENET_MIB_RX("rx_jabber", mib.rx.jbr),
1066 STAT_GENET_MIB_RX("rx_mtu_err", mib.rx.mtue),
1067 STAT_GENET_MIB_RX("rx_good_pkts", mib.rx.pok),
1068 STAT_GENET_MIB_RX("rx_unicast", mib.rx.uc),
1069 STAT_GENET_MIB_RX("rx_ppp", mib.rx.ppp),
1070 STAT_GENET_MIB_RX("rx_crc", mib.rx.rcrc),
1071 /* UniMAC TSV counters */
1072 STAT_GENET_MIB_TX("tx_64_octets", mib.tx.pkt_cnt.cnt_64),
1073 STAT_GENET_MIB_TX("tx_65_127_oct", mib.tx.pkt_cnt.cnt_127),
1074 STAT_GENET_MIB_TX("tx_128_255_oct", mib.tx.pkt_cnt.cnt_255),
1075 STAT_GENET_MIB_TX("tx_256_511_oct", mib.tx.pkt_cnt.cnt_511),
1076 STAT_GENET_MIB_TX("tx_512_1023_oct", mib.tx.pkt_cnt.cnt_1023),
1077 STAT_GENET_MIB_TX("tx_1024_1518_oct", mib.tx.pkt_cnt.cnt_1518),
1078 STAT_GENET_MIB_TX("tx_vlan_1519_1522_oct", mib.tx.pkt_cnt.cnt_mgv),
1079 STAT_GENET_MIB_TX("tx_1522_2047_oct", mib.tx.pkt_cnt.cnt_2047),
1080 STAT_GENET_MIB_TX("tx_2048_4095_oct", mib.tx.pkt_cnt.cnt_4095),
1081 STAT_GENET_MIB_TX("tx_4096_9216_oct", mib.tx.pkt_cnt.cnt_9216),
1082 STAT_GENET_MIB_TX("tx_pkts", mib.tx.pkts),
1083 STAT_GENET_MIB_TX("tx_multicast", mib.tx.mca),
1084 STAT_GENET_MIB_TX("tx_broadcast", mib.tx.bca),
1085 STAT_GENET_MIB_TX("tx_pause", mib.tx.pf),
1086 STAT_GENET_MIB_TX("tx_control", mib.tx.cf),
1087 STAT_GENET_MIB_TX("tx_fcs_err", mib.tx.fcs),
1088 STAT_GENET_MIB_TX("tx_oversize", mib.tx.ovr),
1089 STAT_GENET_MIB_TX("tx_defer", mib.tx.drf),
1090 STAT_GENET_MIB_TX("tx_excess_defer", mib.tx.edf),
1091 STAT_GENET_MIB_TX("tx_single_col", mib.tx.scl),
1092 STAT_GENET_MIB_TX("tx_multi_col", mib.tx.mcl),
1093 STAT_GENET_MIB_TX("tx_late_col", mib.tx.lcl),
1094 STAT_GENET_MIB_TX("tx_excess_col", mib.tx.ecl),
1095 STAT_GENET_MIB_TX("tx_frags", mib.tx.frg),
1096 STAT_GENET_MIB_TX("tx_total_col", mib.tx.ncl),
1097 STAT_GENET_MIB_TX("tx_jabber", mib.tx.jbr),
1098 STAT_GENET_MIB_TX("tx_bytes", mib.tx.bytes),
1099 STAT_GENET_MIB_TX("tx_good_pkts", mib.tx.pok),
1100 STAT_GENET_MIB_TX("tx_unicast", mib.tx.uc),
1101 /* UniMAC RUNT counters */
1102 STAT_GENET_RUNT("rx_runt_pkts", mib.rx_runt_cnt),
1103 STAT_GENET_RUNT("rx_runt_valid_fcs", mib.rx_runt_fcs),
1104 STAT_GENET_RUNT("rx_runt_inval_fcs_align", mib.rx_runt_fcs_align),
1105 STAT_GENET_RUNT("rx_runt_bytes", mib.rx_runt_bytes),
1106 /* Misc UniMAC counters */
1107 STAT_GENET_MISC("rbuf_ovflow_cnt", mib.rbuf_ovflow_cnt,
1108 UMAC_RBUF_OVFL_CNT_V1),
1109 STAT_GENET_MISC("rbuf_err_cnt", mib.rbuf_err_cnt,
1110 UMAC_RBUF_ERR_CNT_V1),
1111 STAT_GENET_MISC("mdf_err_cnt", mib.mdf_err_cnt, UMAC_MDF_ERR_CNT),
1112 STAT_GENET_SOFT_MIB("alloc_rx_buff_failed", mib.alloc_rx_buff_failed),
1113 STAT_GENET_SOFT_MIB("rx_dma_failed", mib.rx_dma_failed),
1114 STAT_GENET_SOFT_MIB("tx_dma_failed", mib.tx_dma_failed),
1115 STAT_GENET_SOFT_MIB("tx_realloc_tsb", mib.tx_realloc_tsb),
1116 STAT_GENET_SOFT_MIB("tx_realloc_tsb_failed",
1117 mib.tx_realloc_tsb_failed),
1118 /* Per TX queues */
1119 STAT_GENET_Q(0),
1120 STAT_GENET_Q(1),
1121 STAT_GENET_Q(2),
1122 STAT_GENET_Q(3),
1123 STAT_GENET_Q(16),
1124};
1125
1126#define BCMGENET_STATS_LEN ARRAY_SIZE(bcmgenet_gstrings_stats)
1127
1128static void bcmgenet_get_drvinfo(struct net_device *dev,
1129 struct ethtool_drvinfo *info)
1130{
1131 strscpy(info->driver, "bcmgenet", sizeof(info->driver));
1132}
1133
1134static int bcmgenet_get_sset_count(struct net_device *dev, int string_set)
1135{
1136 switch (string_set) {
1137 case ETH_SS_STATS:
1138 return BCMGENET_STATS_LEN;
1139 default:
1140 return -EOPNOTSUPP;
1141 }
1142}
1143
1144static void bcmgenet_get_strings(struct net_device *dev, u32 stringset,
1145 u8 *data)
1146{
1147 int i;
1148
1149 switch (stringset) {
1150 case ETH_SS_STATS:
1151 for (i = 0; i < BCMGENET_STATS_LEN; i++) {
1152 memcpy(data + i * ETH_GSTRING_LEN,
1153 bcmgenet_gstrings_stats[i].stat_string,
1154 ETH_GSTRING_LEN);
1155 }
1156 break;
1157 }
1158}
1159
1160static u32 bcmgenet_update_stat_misc(struct bcmgenet_priv *priv, u16 offset)
1161{
1162 u16 new_offset;
1163 u32 val;
1164
1165 switch (offset) {
1166 case UMAC_RBUF_OVFL_CNT_V1:
1167 if (GENET_IS_V2(priv))
1168 new_offset = RBUF_OVFL_CNT_V2;
1169 else
1170 new_offset = RBUF_OVFL_CNT_V3PLUS;
1171
1172 val = bcmgenet_rbuf_readl(priv, off: new_offset);
1173 /* clear if overflowed */
1174 if (val == ~0)
1175 bcmgenet_rbuf_writel(priv, val: 0, off: new_offset);
1176 break;
1177 case UMAC_RBUF_ERR_CNT_V1:
1178 if (GENET_IS_V2(priv))
1179 new_offset = RBUF_ERR_CNT_V2;
1180 else
1181 new_offset = RBUF_ERR_CNT_V3PLUS;
1182
1183 val = bcmgenet_rbuf_readl(priv, off: new_offset);
1184 /* clear if overflowed */
1185 if (val == ~0)
1186 bcmgenet_rbuf_writel(priv, val: 0, off: new_offset);
1187 break;
1188 default:
1189 val = bcmgenet_umac_readl(priv, off: offset);
1190 /* clear if overflowed */
1191 if (val == ~0)
1192 bcmgenet_umac_writel(priv, val: 0, off: offset);
1193 break;
1194 }
1195
1196 return val;
1197}
1198
1199static void bcmgenet_update_mib_counters(struct bcmgenet_priv *priv)
1200{
1201 int i, j = 0;
1202
1203 for (i = 0; i < BCMGENET_STATS_LEN; i++) {
1204 const struct bcmgenet_stats *s;
1205 u8 offset = 0;
1206 u32 val = 0;
1207 char *p;
1208
1209 s = &bcmgenet_gstrings_stats[i];
1210 switch (s->type) {
1211 case BCMGENET_STAT_NETDEV:
1212 case BCMGENET_STAT_SOFT:
1213 continue;
1214 case BCMGENET_STAT_RUNT:
1215 offset += BCMGENET_STAT_OFFSET;
1216 fallthrough;
1217 case BCMGENET_STAT_MIB_TX:
1218 offset += BCMGENET_STAT_OFFSET;
1219 fallthrough;
1220 case BCMGENET_STAT_MIB_RX:
1221 val = bcmgenet_umac_readl(priv,
1222 UMAC_MIB_START + j + offset);
1223 offset = 0; /* Reset Offset */
1224 break;
1225 case BCMGENET_STAT_MISC:
1226 if (GENET_IS_V1(priv)) {
1227 val = bcmgenet_umac_readl(priv, off: s->reg_offset);
1228 /* clear if overflowed */
1229 if (val == ~0)
1230 bcmgenet_umac_writel(priv, val: 0,
1231 off: s->reg_offset);
1232 } else {
1233 val = bcmgenet_update_stat_misc(priv,
1234 offset: s->reg_offset);
1235 }
1236 break;
1237 }
1238
1239 j += s->stat_sizeof;
1240 p = (char *)priv + s->stat_offset;
1241 *(u32 *)p = val;
1242 }
1243}
1244
1245static void bcmgenet_get_ethtool_stats(struct net_device *dev,
1246 struct ethtool_stats *stats,
1247 u64 *data)
1248{
1249 struct bcmgenet_priv *priv = netdev_priv(dev);
1250 int i;
1251
1252 if (netif_running(dev))
1253 bcmgenet_update_mib_counters(priv);
1254
1255 dev->netdev_ops->ndo_get_stats(dev);
1256
1257 for (i = 0; i < BCMGENET_STATS_LEN; i++) {
1258 const struct bcmgenet_stats *s;
1259 char *p;
1260
1261 s = &bcmgenet_gstrings_stats[i];
1262 if (s->type == BCMGENET_STAT_NETDEV)
1263 p = (char *)&dev->stats;
1264 else
1265 p = (char *)priv;
1266 p += s->stat_offset;
1267 if (sizeof(unsigned long) != sizeof(u32) &&
1268 s->stat_sizeof == sizeof(unsigned long))
1269 data[i] = *(unsigned long *)p;
1270 else
1271 data[i] = *(u32 *)p;
1272 }
1273}
1274
1275void bcmgenet_eee_enable_set(struct net_device *dev, bool enable,
1276 bool tx_lpi_enabled)
1277{
1278 struct bcmgenet_priv *priv = netdev_priv(dev);
1279 u32 off = priv->hw_params->tbuf_offset + TBUF_ENERGY_CTRL;
1280 u32 reg;
1281
1282 if (enable && !priv->clk_eee_enabled) {
1283 clk_prepare_enable(clk: priv->clk_eee);
1284 priv->clk_eee_enabled = true;
1285 }
1286
1287 reg = bcmgenet_umac_readl(priv, UMAC_EEE_CTRL);
1288 if (enable)
1289 reg |= EEE_EN;
1290 else
1291 reg &= ~EEE_EN;
1292 bcmgenet_umac_writel(priv, val: reg, UMAC_EEE_CTRL);
1293
1294 /* Enable EEE and switch to a 27Mhz clock automatically */
1295 reg = bcmgenet_readl(offset: priv->base + off);
1296 if (tx_lpi_enabled)
1297 reg |= TBUF_EEE_EN | TBUF_PM_EN;
1298 else
1299 reg &= ~(TBUF_EEE_EN | TBUF_PM_EN);
1300 bcmgenet_writel(value: reg, offset: priv->base + off);
1301
1302 /* Do the same for thing for RBUF */
1303 reg = bcmgenet_rbuf_readl(priv, RBUF_ENERGY_CTRL);
1304 if (enable)
1305 reg |= RBUF_EEE_EN | RBUF_PM_EN;
1306 else
1307 reg &= ~(RBUF_EEE_EN | RBUF_PM_EN);
1308 bcmgenet_rbuf_writel(priv, val: reg, RBUF_ENERGY_CTRL);
1309
1310 if (!enable && priv->clk_eee_enabled) {
1311 clk_disable_unprepare(clk: priv->clk_eee);
1312 priv->clk_eee_enabled = false;
1313 }
1314
1315 priv->eee.eee_enabled = enable;
1316 priv->eee.tx_lpi_enabled = tx_lpi_enabled;
1317}
1318
1319static int bcmgenet_get_eee(struct net_device *dev, struct ethtool_keee *e)
1320{
1321 struct bcmgenet_priv *priv = netdev_priv(dev);
1322 struct ethtool_keee *p = &priv->eee;
1323
1324 if (GENET_IS_V1(priv))
1325 return -EOPNOTSUPP;
1326
1327 if (!dev->phydev)
1328 return -ENODEV;
1329
1330 e->tx_lpi_enabled = p->tx_lpi_enabled;
1331 e->tx_lpi_timer = bcmgenet_umac_readl(priv, UMAC_EEE_LPI_TIMER);
1332
1333 return phy_ethtool_get_eee(phydev: dev->phydev, data: e);
1334}
1335
1336static int bcmgenet_set_eee(struct net_device *dev, struct ethtool_keee *e)
1337{
1338 struct bcmgenet_priv *priv = netdev_priv(dev);
1339 struct ethtool_keee *p = &priv->eee;
1340 bool active;
1341
1342 if (GENET_IS_V1(priv))
1343 return -EOPNOTSUPP;
1344
1345 if (!dev->phydev)
1346 return -ENODEV;
1347
1348 p->eee_enabled = e->eee_enabled;
1349
1350 if (!p->eee_enabled) {
1351 bcmgenet_eee_enable_set(dev, enable: false, tx_lpi_enabled: false);
1352 } else {
1353 active = phy_init_eee(phydev: dev->phydev, clk_stop_enable: false) >= 0;
1354 bcmgenet_umac_writel(priv, val: e->tx_lpi_timer, UMAC_EEE_LPI_TIMER);
1355 bcmgenet_eee_enable_set(dev, enable: active, tx_lpi_enabled: e->tx_lpi_enabled);
1356 }
1357
1358 return phy_ethtool_set_eee(phydev: dev->phydev, data: e);
1359}
1360
1361static int bcmgenet_validate_flow(struct net_device *dev,
1362 struct ethtool_rxnfc *cmd)
1363{
1364 struct ethtool_usrip4_spec *l4_mask;
1365 struct ethhdr *eth_mask;
1366
1367 if (cmd->fs.location >= MAX_NUM_OF_FS_RULES &&
1368 cmd->fs.location != RX_CLS_LOC_ANY) {
1369 netdev_err(dev, format: "rxnfc: Invalid location (%d)\n",
1370 cmd->fs.location);
1371 return -EINVAL;
1372 }
1373
1374 switch (cmd->fs.flow_type & ~(FLOW_EXT | FLOW_MAC_EXT)) {
1375 case IP_USER_FLOW:
1376 l4_mask = &cmd->fs.m_u.usr_ip4_spec;
1377 /* don't allow mask which isn't valid */
1378 if (VALIDATE_MASK(l4_mask->ip4src) ||
1379 VALIDATE_MASK(l4_mask->ip4dst) ||
1380 VALIDATE_MASK(l4_mask->l4_4_bytes) ||
1381 VALIDATE_MASK(l4_mask->proto) ||
1382 VALIDATE_MASK(l4_mask->ip_ver) ||
1383 VALIDATE_MASK(l4_mask->tos)) {
1384 netdev_err(dev, format: "rxnfc: Unsupported mask\n");
1385 return -EINVAL;
1386 }
1387 break;
1388 case ETHER_FLOW:
1389 eth_mask = &cmd->fs.m_u.ether_spec;
1390 /* don't allow mask which isn't valid */
1391 if (VALIDATE_MASK(eth_mask->h_dest) ||
1392 VALIDATE_MASK(eth_mask->h_source) ||
1393 VALIDATE_MASK(eth_mask->h_proto)) {
1394 netdev_err(dev, format: "rxnfc: Unsupported mask\n");
1395 return -EINVAL;
1396 }
1397 break;
1398 default:
1399 netdev_err(dev, format: "rxnfc: Unsupported flow type (0x%x)\n",
1400 cmd->fs.flow_type);
1401 return -EINVAL;
1402 }
1403
1404 if ((cmd->fs.flow_type & FLOW_EXT)) {
1405 /* don't allow mask which isn't valid */
1406 if (VALIDATE_MASK(cmd->fs.m_ext.vlan_etype) ||
1407 VALIDATE_MASK(cmd->fs.m_ext.vlan_tci)) {
1408 netdev_err(dev, format: "rxnfc: Unsupported mask\n");
1409 return -EINVAL;
1410 }
1411 if (cmd->fs.m_ext.data[0] || cmd->fs.m_ext.data[1]) {
1412 netdev_err(dev, format: "rxnfc: user-def not supported\n");
1413 return -EINVAL;
1414 }
1415 }
1416
1417 if ((cmd->fs.flow_type & FLOW_MAC_EXT)) {
1418 /* don't allow mask which isn't valid */
1419 if (VALIDATE_MASK(cmd->fs.m_ext.h_dest)) {
1420 netdev_err(dev, format: "rxnfc: Unsupported mask\n");
1421 return -EINVAL;
1422 }
1423 }
1424
1425 return 0;
1426}
1427
1428static int bcmgenet_insert_flow(struct net_device *dev,
1429 struct ethtool_rxnfc *cmd)
1430{
1431 struct bcmgenet_priv *priv = netdev_priv(dev);
1432 struct bcmgenet_rxnfc_rule *loc_rule;
1433 int err, i;
1434
1435 if (priv->hw_params->hfb_filter_size < 128) {
1436 netdev_err(dev, format: "rxnfc: Not supported by this device\n");
1437 return -EINVAL;
1438 }
1439
1440 if (cmd->fs.ring_cookie > priv->hw_params->rx_queues &&
1441 cmd->fs.ring_cookie != RX_CLS_FLOW_WAKE) {
1442 netdev_err(dev, format: "rxnfc: Unsupported action (%llu)\n",
1443 cmd->fs.ring_cookie);
1444 return -EINVAL;
1445 }
1446
1447 err = bcmgenet_validate_flow(dev, cmd);
1448 if (err)
1449 return err;
1450
1451 if (cmd->fs.location == RX_CLS_LOC_ANY) {
1452 list_for_each_entry(loc_rule, &priv->rxnfc_list, list) {
1453 cmd->fs.location = loc_rule->fs.location;
1454 err = memcmp(p: &loc_rule->fs, q: &cmd->fs,
1455 size: sizeof(struct ethtool_rx_flow_spec));
1456 if (!err)
1457 /* rule exists so return current location */
1458 return 0;
1459 }
1460 for (i = 0; i < MAX_NUM_OF_FS_RULES; i++) {
1461 loc_rule = &priv->rxnfc_rules[i];
1462 if (loc_rule->state == BCMGENET_RXNFC_STATE_UNUSED) {
1463 cmd->fs.location = i;
1464 break;
1465 }
1466 }
1467 if (i == MAX_NUM_OF_FS_RULES) {
1468 cmd->fs.location = RX_CLS_LOC_ANY;
1469 return -ENOSPC;
1470 }
1471 } else {
1472 loc_rule = &priv->rxnfc_rules[cmd->fs.location];
1473 }
1474 if (loc_rule->state == BCMGENET_RXNFC_STATE_ENABLED)
1475 bcmgenet_hfb_disable_filter(priv, f_index: cmd->fs.location);
1476 if (loc_rule->state != BCMGENET_RXNFC_STATE_UNUSED) {
1477 list_del(entry: &loc_rule->list);
1478 bcmgenet_hfb_clear_filter(priv, f_index: cmd->fs.location);
1479 }
1480 loc_rule->state = BCMGENET_RXNFC_STATE_UNUSED;
1481 memcpy(&loc_rule->fs, &cmd->fs,
1482 sizeof(struct ethtool_rx_flow_spec));
1483
1484 bcmgenet_hfb_create_rxnfc_filter(priv, rule: loc_rule);
1485
1486 list_add_tail(new: &loc_rule->list, head: &priv->rxnfc_list);
1487
1488 return 0;
1489}
1490
1491static int bcmgenet_delete_flow(struct net_device *dev,
1492 struct ethtool_rxnfc *cmd)
1493{
1494 struct bcmgenet_priv *priv = netdev_priv(dev);
1495 struct bcmgenet_rxnfc_rule *rule;
1496 int err = 0;
1497
1498 if (cmd->fs.location >= MAX_NUM_OF_FS_RULES)
1499 return -EINVAL;
1500
1501 rule = &priv->rxnfc_rules[cmd->fs.location];
1502 if (rule->state == BCMGENET_RXNFC_STATE_UNUSED) {
1503 err = -ENOENT;
1504 goto out;
1505 }
1506
1507 if (rule->state == BCMGENET_RXNFC_STATE_ENABLED)
1508 bcmgenet_hfb_disable_filter(priv, f_index: cmd->fs.location);
1509 if (rule->state != BCMGENET_RXNFC_STATE_UNUSED) {
1510 list_del(entry: &rule->list);
1511 bcmgenet_hfb_clear_filter(priv, f_index: cmd->fs.location);
1512 }
1513 rule->state = BCMGENET_RXNFC_STATE_UNUSED;
1514 memset(&rule->fs, 0, sizeof(struct ethtool_rx_flow_spec));
1515
1516out:
1517 return err;
1518}
1519
1520static int bcmgenet_set_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd)
1521{
1522 struct bcmgenet_priv *priv = netdev_priv(dev);
1523 int err = 0;
1524
1525 switch (cmd->cmd) {
1526 case ETHTOOL_SRXCLSRLINS:
1527 err = bcmgenet_insert_flow(dev, cmd);
1528 break;
1529 case ETHTOOL_SRXCLSRLDEL:
1530 err = bcmgenet_delete_flow(dev, cmd);
1531 break;
1532 default:
1533 netdev_warn(dev: priv->dev, format: "Unsupported ethtool command. (%d)\n",
1534 cmd->cmd);
1535 return -EINVAL;
1536 }
1537
1538 return err;
1539}
1540
1541static int bcmgenet_get_flow(struct net_device *dev, struct ethtool_rxnfc *cmd,
1542 int loc)
1543{
1544 struct bcmgenet_priv *priv = netdev_priv(dev);
1545 struct bcmgenet_rxnfc_rule *rule;
1546 int err = 0;
1547
1548 if (loc < 0 || loc >= MAX_NUM_OF_FS_RULES)
1549 return -EINVAL;
1550
1551 rule = &priv->rxnfc_rules[loc];
1552 if (rule->state == BCMGENET_RXNFC_STATE_UNUSED)
1553 err = -ENOENT;
1554 else
1555 memcpy(&cmd->fs, &rule->fs,
1556 sizeof(struct ethtool_rx_flow_spec));
1557
1558 return err;
1559}
1560
1561static int bcmgenet_get_num_flows(struct bcmgenet_priv *priv)
1562{
1563 struct list_head *pos;
1564 int res = 0;
1565
1566 list_for_each(pos, &priv->rxnfc_list)
1567 res++;
1568
1569 return res;
1570}
1571
1572static int bcmgenet_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd,
1573 u32 *rule_locs)
1574{
1575 struct bcmgenet_priv *priv = netdev_priv(dev);
1576 struct bcmgenet_rxnfc_rule *rule;
1577 int err = 0;
1578 int i = 0;
1579
1580 switch (cmd->cmd) {
1581 case ETHTOOL_GRXRINGS:
1582 cmd->data = priv->hw_params->rx_queues ?: 1;
1583 break;
1584 case ETHTOOL_GRXCLSRLCNT:
1585 cmd->rule_cnt = bcmgenet_get_num_flows(priv);
1586 cmd->data = MAX_NUM_OF_FS_RULES | RX_CLS_LOC_SPECIAL;
1587 break;
1588 case ETHTOOL_GRXCLSRULE:
1589 err = bcmgenet_get_flow(dev, cmd, loc: cmd->fs.location);
1590 break;
1591 case ETHTOOL_GRXCLSRLALL:
1592 list_for_each_entry(rule, &priv->rxnfc_list, list)
1593 if (i < cmd->rule_cnt)
1594 rule_locs[i++] = rule->fs.location;
1595 cmd->rule_cnt = i;
1596 cmd->data = MAX_NUM_OF_FS_RULES;
1597 break;
1598 default:
1599 err = -EOPNOTSUPP;
1600 break;
1601 }
1602
1603 return err;
1604}
1605
1606/* standard ethtool support functions. */
1607static const struct ethtool_ops bcmgenet_ethtool_ops = {
1608 .supported_coalesce_params = ETHTOOL_COALESCE_RX_USECS |
1609 ETHTOOL_COALESCE_MAX_FRAMES |
1610 ETHTOOL_COALESCE_USE_ADAPTIVE_RX,
1611 .begin = bcmgenet_begin,
1612 .complete = bcmgenet_complete,
1613 .get_strings = bcmgenet_get_strings,
1614 .get_sset_count = bcmgenet_get_sset_count,
1615 .get_ethtool_stats = bcmgenet_get_ethtool_stats,
1616 .get_drvinfo = bcmgenet_get_drvinfo,
1617 .get_link = ethtool_op_get_link,
1618 .get_msglevel = bcmgenet_get_msglevel,
1619 .set_msglevel = bcmgenet_set_msglevel,
1620 .get_wol = bcmgenet_get_wol,
1621 .set_wol = bcmgenet_set_wol,
1622 .get_eee = bcmgenet_get_eee,
1623 .set_eee = bcmgenet_set_eee,
1624 .nway_reset = phy_ethtool_nway_reset,
1625 .get_coalesce = bcmgenet_get_coalesce,
1626 .set_coalesce = bcmgenet_set_coalesce,
1627 .get_link_ksettings = bcmgenet_get_link_ksettings,
1628 .set_link_ksettings = bcmgenet_set_link_ksettings,
1629 .get_ts_info = ethtool_op_get_ts_info,
1630 .get_rxnfc = bcmgenet_get_rxnfc,
1631 .set_rxnfc = bcmgenet_set_rxnfc,
1632 .get_pauseparam = bcmgenet_get_pauseparam,
1633 .set_pauseparam = bcmgenet_set_pauseparam,
1634};
1635
1636/* Power down the unimac, based on mode. */
1637static int bcmgenet_power_down(struct bcmgenet_priv *priv,
1638 enum bcmgenet_power_mode mode)
1639{
1640 int ret = 0;
1641 u32 reg;
1642
1643 switch (mode) {
1644 case GENET_POWER_CABLE_SENSE:
1645 phy_detach(phydev: priv->dev->phydev);
1646 break;
1647
1648 case GENET_POWER_WOL_MAGIC:
1649 ret = bcmgenet_wol_power_down_cfg(priv, mode);
1650 break;
1651
1652 case GENET_POWER_PASSIVE:
1653 /* Power down LED */
1654 if (priv->hw_params->flags & GENET_HAS_EXT) {
1655 reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
1656 if (GENET_IS_V5(priv) && !priv->ephy_16nm)
1657 reg |= EXT_PWR_DOWN_PHY_EN |
1658 EXT_PWR_DOWN_PHY_RD |
1659 EXT_PWR_DOWN_PHY_SD |
1660 EXT_PWR_DOWN_PHY_RX |
1661 EXT_PWR_DOWN_PHY_TX |
1662 EXT_IDDQ_GLBL_PWR;
1663 else
1664 reg |= EXT_PWR_DOWN_PHY;
1665
1666 reg |= (EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_BIAS);
1667 bcmgenet_ext_writel(priv, val: reg, EXT_EXT_PWR_MGMT);
1668
1669 bcmgenet_phy_power_set(dev: priv->dev, enable: false);
1670 }
1671 break;
1672 default:
1673 break;
1674 }
1675
1676 return ret;
1677}
1678
1679static void bcmgenet_power_up(struct bcmgenet_priv *priv,
1680 enum bcmgenet_power_mode mode)
1681{
1682 u32 reg;
1683
1684 if (!(priv->hw_params->flags & GENET_HAS_EXT))
1685 return;
1686
1687 reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
1688
1689 switch (mode) {
1690 case GENET_POWER_PASSIVE:
1691 reg &= ~(EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_BIAS |
1692 EXT_ENERGY_DET_MASK);
1693 if (GENET_IS_V5(priv) && !priv->ephy_16nm) {
1694 reg &= ~(EXT_PWR_DOWN_PHY_EN |
1695 EXT_PWR_DOWN_PHY_RD |
1696 EXT_PWR_DOWN_PHY_SD |
1697 EXT_PWR_DOWN_PHY_RX |
1698 EXT_PWR_DOWN_PHY_TX |
1699 EXT_IDDQ_GLBL_PWR);
1700 reg |= EXT_PHY_RESET;
1701 bcmgenet_ext_writel(priv, val: reg, EXT_EXT_PWR_MGMT);
1702 mdelay(1);
1703
1704 reg &= ~EXT_PHY_RESET;
1705 } else {
1706 reg &= ~EXT_PWR_DOWN_PHY;
1707 reg |= EXT_PWR_DN_EN_LD;
1708 }
1709 bcmgenet_ext_writel(priv, val: reg, EXT_EXT_PWR_MGMT);
1710 bcmgenet_phy_power_set(dev: priv->dev, enable: true);
1711 break;
1712
1713 case GENET_POWER_CABLE_SENSE:
1714 /* enable APD */
1715 if (!GENET_IS_V5(priv)) {
1716 reg |= EXT_PWR_DN_EN_LD;
1717 bcmgenet_ext_writel(priv, val: reg, EXT_EXT_PWR_MGMT);
1718 }
1719 break;
1720 case GENET_POWER_WOL_MAGIC:
1721 bcmgenet_wol_power_up_cfg(priv, mode);
1722 return;
1723 default:
1724 break;
1725 }
1726}
1727
1728static struct enet_cb *bcmgenet_get_txcb(struct bcmgenet_priv *priv,
1729 struct bcmgenet_tx_ring *ring)
1730{
1731 struct enet_cb *tx_cb_ptr;
1732
1733 tx_cb_ptr = ring->cbs;
1734 tx_cb_ptr += ring->write_ptr - ring->cb_ptr;
1735
1736 /* Advancing local write pointer */
1737 if (ring->write_ptr == ring->end_ptr)
1738 ring->write_ptr = ring->cb_ptr;
1739 else
1740 ring->write_ptr++;
1741
1742 return tx_cb_ptr;
1743}
1744
1745static struct enet_cb *bcmgenet_put_txcb(struct bcmgenet_priv *priv,
1746 struct bcmgenet_tx_ring *ring)
1747{
1748 struct enet_cb *tx_cb_ptr;
1749
1750 tx_cb_ptr = ring->cbs;
1751 tx_cb_ptr += ring->write_ptr - ring->cb_ptr;
1752
1753 /* Rewinding local write pointer */
1754 if (ring->write_ptr == ring->cb_ptr)
1755 ring->write_ptr = ring->end_ptr;
1756 else
1757 ring->write_ptr--;
1758
1759 return tx_cb_ptr;
1760}
1761
1762static inline void bcmgenet_rx_ring16_int_disable(struct bcmgenet_rx_ring *ring)
1763{
1764 bcmgenet_intrl2_0_writel(priv: ring->priv, UMAC_IRQ_RXDMA_DONE,
1765 INTRL2_CPU_MASK_SET);
1766}
1767
1768static inline void bcmgenet_rx_ring16_int_enable(struct bcmgenet_rx_ring *ring)
1769{
1770 bcmgenet_intrl2_0_writel(priv: ring->priv, UMAC_IRQ_RXDMA_DONE,
1771 INTRL2_CPU_MASK_CLEAR);
1772}
1773
1774static inline void bcmgenet_rx_ring_int_disable(struct bcmgenet_rx_ring *ring)
1775{
1776 bcmgenet_intrl2_1_writel(priv: ring->priv,
1777 val: 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index),
1778 INTRL2_CPU_MASK_SET);
1779}
1780
1781static inline void bcmgenet_rx_ring_int_enable(struct bcmgenet_rx_ring *ring)
1782{
1783 bcmgenet_intrl2_1_writel(priv: ring->priv,
1784 val: 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index),
1785 INTRL2_CPU_MASK_CLEAR);
1786}
1787
1788static inline void bcmgenet_tx_ring16_int_disable(struct bcmgenet_tx_ring *ring)
1789{
1790 bcmgenet_intrl2_0_writel(priv: ring->priv, UMAC_IRQ_TXDMA_DONE,
1791 INTRL2_CPU_MASK_SET);
1792}
1793
1794static inline void bcmgenet_tx_ring16_int_enable(struct bcmgenet_tx_ring *ring)
1795{
1796 bcmgenet_intrl2_0_writel(priv: ring->priv, UMAC_IRQ_TXDMA_DONE,
1797 INTRL2_CPU_MASK_CLEAR);
1798}
1799
1800static inline void bcmgenet_tx_ring_int_enable(struct bcmgenet_tx_ring *ring)
1801{
1802 bcmgenet_intrl2_1_writel(priv: ring->priv, val: 1 << ring->index,
1803 INTRL2_CPU_MASK_CLEAR);
1804}
1805
1806static inline void bcmgenet_tx_ring_int_disable(struct bcmgenet_tx_ring *ring)
1807{
1808 bcmgenet_intrl2_1_writel(priv: ring->priv, val: 1 << ring->index,
1809 INTRL2_CPU_MASK_SET);
1810}
1811
1812/* Simple helper to free a transmit control block's resources
1813 * Returns an skb when the last transmit control block associated with the
1814 * skb is freed. The skb should be freed by the caller if necessary.
1815 */
1816static struct sk_buff *bcmgenet_free_tx_cb(struct device *dev,
1817 struct enet_cb *cb)
1818{
1819 struct sk_buff *skb;
1820
1821 skb = cb->skb;
1822
1823 if (skb) {
1824 cb->skb = NULL;
1825 if (cb == GENET_CB(skb)->first_cb)
1826 dma_unmap_single(dev, dma_unmap_addr(cb, dma_addr),
1827 dma_unmap_len(cb, dma_len),
1828 DMA_TO_DEVICE);
1829 else
1830 dma_unmap_page(dev, dma_unmap_addr(cb, dma_addr),
1831 dma_unmap_len(cb, dma_len),
1832 DMA_TO_DEVICE);
1833 dma_unmap_addr_set(cb, dma_addr, 0);
1834
1835 if (cb == GENET_CB(skb)->last_cb)
1836 return skb;
1837
1838 } else if (dma_unmap_addr(cb, dma_addr)) {
1839 dma_unmap_page(dev,
1840 dma_unmap_addr(cb, dma_addr),
1841 dma_unmap_len(cb, dma_len),
1842 DMA_TO_DEVICE);
1843 dma_unmap_addr_set(cb, dma_addr, 0);
1844 }
1845
1846 return NULL;
1847}
1848
1849/* Simple helper to free a receive control block's resources */
1850static struct sk_buff *bcmgenet_free_rx_cb(struct device *dev,
1851 struct enet_cb *cb)
1852{
1853 struct sk_buff *skb;
1854
1855 skb = cb->skb;
1856 cb->skb = NULL;
1857
1858 if (dma_unmap_addr(cb, dma_addr)) {
1859 dma_unmap_single(dev, dma_unmap_addr(cb, dma_addr),
1860 dma_unmap_len(cb, dma_len), DMA_FROM_DEVICE);
1861 dma_unmap_addr_set(cb, dma_addr, 0);
1862 }
1863
1864 return skb;
1865}
1866
1867/* Unlocked version of the reclaim routine */
1868static unsigned int __bcmgenet_tx_reclaim(struct net_device *dev,
1869 struct bcmgenet_tx_ring *ring)
1870{
1871 struct bcmgenet_priv *priv = netdev_priv(dev);
1872 unsigned int txbds_processed = 0;
1873 unsigned int bytes_compl = 0;
1874 unsigned int pkts_compl = 0;
1875 unsigned int txbds_ready;
1876 unsigned int c_index;
1877 struct sk_buff *skb;
1878
1879 /* Clear status before servicing to reduce spurious interrupts */
1880 if (ring->index == DESC_INDEX)
1881 bcmgenet_intrl2_0_writel(priv, UMAC_IRQ_TXDMA_DONE,
1882 INTRL2_CPU_CLEAR);
1883 else
1884 bcmgenet_intrl2_1_writel(priv, val: (1 << ring->index),
1885 INTRL2_CPU_CLEAR);
1886
1887 /* Compute how many buffers are transmitted since last xmit call */
1888 c_index = bcmgenet_tdma_ring_readl(priv, ring: ring->index, r: TDMA_CONS_INDEX)
1889 & DMA_C_INDEX_MASK;
1890 txbds_ready = (c_index - ring->c_index) & DMA_C_INDEX_MASK;
1891
1892 netif_dbg(priv, tx_done, dev,
1893 "%s ring=%d old_c_index=%u c_index=%u txbds_ready=%u\n",
1894 __func__, ring->index, ring->c_index, c_index, txbds_ready);
1895
1896 /* Reclaim transmitted buffers */
1897 while (txbds_processed < txbds_ready) {
1898 skb = bcmgenet_free_tx_cb(dev: &priv->pdev->dev,
1899 cb: &priv->tx_cbs[ring->clean_ptr]);
1900 if (skb) {
1901 pkts_compl++;
1902 bytes_compl += GENET_CB(skb)->bytes_sent;
1903 dev_consume_skb_any(skb);
1904 }
1905
1906 txbds_processed++;
1907 if (likely(ring->clean_ptr < ring->end_ptr))
1908 ring->clean_ptr++;
1909 else
1910 ring->clean_ptr = ring->cb_ptr;
1911 }
1912
1913 ring->free_bds += txbds_processed;
1914 ring->c_index = c_index;
1915
1916 ring->packets += pkts_compl;
1917 ring->bytes += bytes_compl;
1918
1919 netdev_tx_completed_queue(dev_queue: netdev_get_tx_queue(dev, index: ring->queue),
1920 pkts: pkts_compl, bytes: bytes_compl);
1921
1922 return txbds_processed;
1923}
1924
1925static unsigned int bcmgenet_tx_reclaim(struct net_device *dev,
1926 struct bcmgenet_tx_ring *ring)
1927{
1928 unsigned int released;
1929
1930 spin_lock_bh(lock: &ring->lock);
1931 released = __bcmgenet_tx_reclaim(dev, ring);
1932 spin_unlock_bh(lock: &ring->lock);
1933
1934 return released;
1935}
1936
1937static int bcmgenet_tx_poll(struct napi_struct *napi, int budget)
1938{
1939 struct bcmgenet_tx_ring *ring =
1940 container_of(napi, struct bcmgenet_tx_ring, napi);
1941 unsigned int work_done = 0;
1942 struct netdev_queue *txq;
1943
1944 spin_lock(lock: &ring->lock);
1945 work_done = __bcmgenet_tx_reclaim(dev: ring->priv->dev, ring);
1946 if (ring->free_bds > (MAX_SKB_FRAGS + 1)) {
1947 txq = netdev_get_tx_queue(dev: ring->priv->dev, index: ring->queue);
1948 netif_tx_wake_queue(dev_queue: txq);
1949 }
1950 spin_unlock(lock: &ring->lock);
1951
1952 if (work_done == 0) {
1953 napi_complete(n: napi);
1954 ring->int_enable(ring);
1955
1956 return 0;
1957 }
1958
1959 return budget;
1960}
1961
1962static void bcmgenet_tx_reclaim_all(struct net_device *dev)
1963{
1964 struct bcmgenet_priv *priv = netdev_priv(dev);
1965 int i;
1966
1967 if (netif_is_multiqueue(dev)) {
1968 for (i = 0; i < priv->hw_params->tx_queues; i++)
1969 bcmgenet_tx_reclaim(dev, ring: &priv->tx_rings[i]);
1970 }
1971
1972 bcmgenet_tx_reclaim(dev, ring: &priv->tx_rings[DESC_INDEX]);
1973}
1974
1975/* Reallocate the SKB to put enough headroom in front of it and insert
1976 * the transmit checksum offsets in the descriptors
1977 */
1978static struct sk_buff *bcmgenet_add_tsb(struct net_device *dev,
1979 struct sk_buff *skb)
1980{
1981 struct bcmgenet_priv *priv = netdev_priv(dev);
1982 struct status_64 *status = NULL;
1983 struct sk_buff *new_skb;
1984 u16 offset;
1985 u8 ip_proto;
1986 __be16 ip_ver;
1987 u32 tx_csum_info;
1988
1989 if (unlikely(skb_headroom(skb) < sizeof(*status))) {
1990 /* If 64 byte status block enabled, must make sure skb has
1991 * enough headroom for us to insert 64B status block.
1992 */
1993 new_skb = skb_realloc_headroom(skb, headroom: sizeof(*status));
1994 if (!new_skb) {
1995 dev_kfree_skb_any(skb);
1996 priv->mib.tx_realloc_tsb_failed++;
1997 dev->stats.tx_dropped++;
1998 return NULL;
1999 }
2000 dev_consume_skb_any(skb);
2001 skb = new_skb;
2002 priv->mib.tx_realloc_tsb++;
2003 }
2004
2005 skb_push(skb, len: sizeof(*status));
2006 status = (struct status_64 *)skb->data;
2007
2008 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2009 ip_ver = skb->protocol;
2010 switch (ip_ver) {
2011 case htons(ETH_P_IP):
2012 ip_proto = ip_hdr(skb)->protocol;
2013 break;
2014 case htons(ETH_P_IPV6):
2015 ip_proto = ipv6_hdr(skb)->nexthdr;
2016 break;
2017 default:
2018 /* don't use UDP flag */
2019 ip_proto = 0;
2020 break;
2021 }
2022
2023 offset = skb_checksum_start_offset(skb) - sizeof(*status);
2024 tx_csum_info = (offset << STATUS_TX_CSUM_START_SHIFT) |
2025 (offset + skb->csum_offset) |
2026 STATUS_TX_CSUM_LV;
2027
2028 /* Set the special UDP flag for UDP */
2029 if (ip_proto == IPPROTO_UDP)
2030 tx_csum_info |= STATUS_TX_CSUM_PROTO_UDP;
2031
2032 status->tx_csum_info = tx_csum_info;
2033 }
2034
2035 return skb;
2036}
2037
2038static void bcmgenet_hide_tsb(struct sk_buff *skb)
2039{
2040 __skb_pull(skb, len: sizeof(struct status_64));
2041}
2042
2043static netdev_tx_t bcmgenet_xmit(struct sk_buff *skb, struct net_device *dev)
2044{
2045 struct bcmgenet_priv *priv = netdev_priv(dev);
2046 struct device *kdev = &priv->pdev->dev;
2047 struct bcmgenet_tx_ring *ring = NULL;
2048 struct enet_cb *tx_cb_ptr;
2049 struct netdev_queue *txq;
2050 int nr_frags, index;
2051 dma_addr_t mapping;
2052 unsigned int size;
2053 skb_frag_t *frag;
2054 u32 len_stat;
2055 int ret;
2056 int i;
2057
2058 index = skb_get_queue_mapping(skb);
2059 /* Mapping strategy:
2060 * queue_mapping = 0, unclassified, packet xmited through ring16
2061 * queue_mapping = 1, goes to ring 0. (highest priority queue
2062 * queue_mapping = 2, goes to ring 1.
2063 * queue_mapping = 3, goes to ring 2.
2064 * queue_mapping = 4, goes to ring 3.
2065 */
2066 if (index == 0)
2067 index = DESC_INDEX;
2068 else
2069 index -= 1;
2070
2071 ring = &priv->tx_rings[index];
2072 txq = netdev_get_tx_queue(dev, index: ring->queue);
2073
2074 nr_frags = skb_shinfo(skb)->nr_frags;
2075
2076 spin_lock(lock: &ring->lock);
2077 if (ring->free_bds <= (nr_frags + 1)) {
2078 if (!netif_tx_queue_stopped(dev_queue: txq))
2079 netif_tx_stop_queue(dev_queue: txq);
2080 ret = NETDEV_TX_BUSY;
2081 goto out;
2082 }
2083
2084 /* Retain how many bytes will be sent on the wire, without TSB inserted
2085 * by transmit checksum offload
2086 */
2087 GENET_CB(skb)->bytes_sent = skb->len;
2088
2089 /* add the Transmit Status Block */
2090 skb = bcmgenet_add_tsb(dev, skb);
2091 if (!skb) {
2092 ret = NETDEV_TX_OK;
2093 goto out;
2094 }
2095
2096 for (i = 0; i <= nr_frags; i++) {
2097 tx_cb_ptr = bcmgenet_get_txcb(priv, ring);
2098
2099 BUG_ON(!tx_cb_ptr);
2100
2101 if (!i) {
2102 /* Transmit single SKB or head of fragment list */
2103 GENET_CB(skb)->first_cb = tx_cb_ptr;
2104 size = skb_headlen(skb);
2105 mapping = dma_map_single(kdev, skb->data, size,
2106 DMA_TO_DEVICE);
2107 } else {
2108 /* xmit fragment */
2109 frag = &skb_shinfo(skb)->frags[i - 1];
2110 size = skb_frag_size(frag);
2111 mapping = skb_frag_dma_map(dev: kdev, frag, offset: 0, size,
2112 dir: DMA_TO_DEVICE);
2113 }
2114
2115 ret = dma_mapping_error(dev: kdev, dma_addr: mapping);
2116 if (ret) {
2117 priv->mib.tx_dma_failed++;
2118 netif_err(priv, tx_err, dev, "Tx DMA map failed\n");
2119 ret = NETDEV_TX_OK;
2120 goto out_unmap_frags;
2121 }
2122 dma_unmap_addr_set(tx_cb_ptr, dma_addr, mapping);
2123 dma_unmap_len_set(tx_cb_ptr, dma_len, size);
2124
2125 tx_cb_ptr->skb = skb;
2126
2127 len_stat = (size << DMA_BUFLENGTH_SHIFT) |
2128 (priv->hw_params->qtag_mask << DMA_TX_QTAG_SHIFT);
2129
2130 /* Note: if we ever change from DMA_TX_APPEND_CRC below we
2131 * will need to restore software padding of "runt" packets
2132 */
2133 len_stat |= DMA_TX_APPEND_CRC;
2134
2135 if (!i) {
2136 len_stat |= DMA_SOP;
2137 if (skb->ip_summed == CHECKSUM_PARTIAL)
2138 len_stat |= DMA_TX_DO_CSUM;
2139 }
2140 if (i == nr_frags)
2141 len_stat |= DMA_EOP;
2142
2143 dmadesc_set(priv, d: tx_cb_ptr->bd_addr, addr: mapping, val: len_stat);
2144 }
2145
2146 GENET_CB(skb)->last_cb = tx_cb_ptr;
2147
2148 bcmgenet_hide_tsb(skb);
2149 skb_tx_timestamp(skb);
2150
2151 /* Decrement total BD count and advance our write pointer */
2152 ring->free_bds -= nr_frags + 1;
2153 ring->prod_index += nr_frags + 1;
2154 ring->prod_index &= DMA_P_INDEX_MASK;
2155
2156 netdev_tx_sent_queue(dev_queue: txq, GENET_CB(skb)->bytes_sent);
2157
2158 if (ring->free_bds <= (MAX_SKB_FRAGS + 1))
2159 netif_tx_stop_queue(dev_queue: txq);
2160
2161 if (!netdev_xmit_more() || netif_xmit_stopped(dev_queue: txq))
2162 /* Packets are ready, update producer index */
2163 bcmgenet_tdma_ring_writel(priv, ring: ring->index,
2164 val: ring->prod_index, r: TDMA_PROD_INDEX);
2165out:
2166 spin_unlock(lock: &ring->lock);
2167
2168 return ret;
2169
2170out_unmap_frags:
2171 /* Back up for failed control block mapping */
2172 bcmgenet_put_txcb(priv, ring);
2173
2174 /* Unmap successfully mapped control blocks */
2175 while (i-- > 0) {
2176 tx_cb_ptr = bcmgenet_put_txcb(priv, ring);
2177 bcmgenet_free_tx_cb(dev: kdev, cb: tx_cb_ptr);
2178 }
2179
2180 dev_kfree_skb(skb);
2181 goto out;
2182}
2183
2184static struct sk_buff *bcmgenet_rx_refill(struct bcmgenet_priv *priv,
2185 struct enet_cb *cb)
2186{
2187 struct device *kdev = &priv->pdev->dev;
2188 struct sk_buff *skb;
2189 struct sk_buff *rx_skb;
2190 dma_addr_t mapping;
2191
2192 /* Allocate a new Rx skb */
2193 skb = __netdev_alloc_skb(dev: priv->dev, length: priv->rx_buf_len + SKB_ALIGNMENT,
2194 GFP_ATOMIC | __GFP_NOWARN);
2195 if (!skb) {
2196 priv->mib.alloc_rx_buff_failed++;
2197 netif_err(priv, rx_err, priv->dev,
2198 "%s: Rx skb allocation failed\n", __func__);
2199 return NULL;
2200 }
2201
2202 /* DMA-map the new Rx skb */
2203 mapping = dma_map_single(kdev, skb->data, priv->rx_buf_len,
2204 DMA_FROM_DEVICE);
2205 if (dma_mapping_error(dev: kdev, dma_addr: mapping)) {
2206 priv->mib.rx_dma_failed++;
2207 dev_kfree_skb_any(skb);
2208 netif_err(priv, rx_err, priv->dev,
2209 "%s: Rx skb DMA mapping failed\n", __func__);
2210 return NULL;
2211 }
2212
2213 /* Grab the current Rx skb from the ring and DMA-unmap it */
2214 rx_skb = bcmgenet_free_rx_cb(dev: kdev, cb);
2215
2216 /* Put the new Rx skb on the ring */
2217 cb->skb = skb;
2218 dma_unmap_addr_set(cb, dma_addr, mapping);
2219 dma_unmap_len_set(cb, dma_len, priv->rx_buf_len);
2220 dmadesc_set_addr(priv, d: cb->bd_addr, addr: mapping);
2221
2222 /* Return the current Rx skb to caller */
2223 return rx_skb;
2224}
2225
2226/* bcmgenet_desc_rx - descriptor based rx process.
2227 * this could be called from bottom half, or from NAPI polling method.
2228 */
2229static unsigned int bcmgenet_desc_rx(struct bcmgenet_rx_ring *ring,
2230 unsigned int budget)
2231{
2232 struct bcmgenet_priv *priv = ring->priv;
2233 struct net_device *dev = priv->dev;
2234 struct enet_cb *cb;
2235 struct sk_buff *skb;
2236 u32 dma_length_status;
2237 unsigned long dma_flag;
2238 int len;
2239 unsigned int rxpktprocessed = 0, rxpkttoprocess;
2240 unsigned int bytes_processed = 0;
2241 unsigned int p_index, mask;
2242 unsigned int discards;
2243
2244 /* Clear status before servicing to reduce spurious interrupts */
2245 if (ring->index == DESC_INDEX) {
2246 bcmgenet_intrl2_0_writel(priv, UMAC_IRQ_RXDMA_DONE,
2247 INTRL2_CPU_CLEAR);
2248 } else {
2249 mask = 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index);
2250 bcmgenet_intrl2_1_writel(priv,
2251 val: mask,
2252 INTRL2_CPU_CLEAR);
2253 }
2254
2255 p_index = bcmgenet_rdma_ring_readl(priv, ring: ring->index, r: RDMA_PROD_INDEX);
2256
2257 discards = (p_index >> DMA_P_INDEX_DISCARD_CNT_SHIFT) &
2258 DMA_P_INDEX_DISCARD_CNT_MASK;
2259 if (discards > ring->old_discards) {
2260 discards = discards - ring->old_discards;
2261 ring->errors += discards;
2262 ring->old_discards += discards;
2263
2264 /* Clear HW register when we reach 75% of maximum 0xFFFF */
2265 if (ring->old_discards >= 0xC000) {
2266 ring->old_discards = 0;
2267 bcmgenet_rdma_ring_writel(priv, ring: ring->index, val: 0,
2268 r: RDMA_PROD_INDEX);
2269 }
2270 }
2271
2272 p_index &= DMA_P_INDEX_MASK;
2273 rxpkttoprocess = (p_index - ring->c_index) & DMA_C_INDEX_MASK;
2274
2275 netif_dbg(priv, rx_status, dev,
2276 "RDMA: rxpkttoprocess=%d\n", rxpkttoprocess);
2277
2278 while ((rxpktprocessed < rxpkttoprocess) &&
2279 (rxpktprocessed < budget)) {
2280 struct status_64 *status;
2281 __be16 rx_csum;
2282
2283 cb = &priv->rx_cbs[ring->read_ptr];
2284 skb = bcmgenet_rx_refill(priv, cb);
2285
2286 if (unlikely(!skb)) {
2287 ring->dropped++;
2288 goto next;
2289 }
2290
2291 status = (struct status_64 *)skb->data;
2292 dma_length_status = status->length_status;
2293 if (dev->features & NETIF_F_RXCSUM) {
2294 rx_csum = (__force __be16)(status->rx_csum & 0xffff);
2295 if (rx_csum) {
2296 skb->csum = (__force __wsum)ntohs(rx_csum);
2297 skb->ip_summed = CHECKSUM_COMPLETE;
2298 }
2299 }
2300
2301 /* DMA flags and length are still valid no matter how
2302 * we got the Receive Status Vector (64B RSB or register)
2303 */
2304 dma_flag = dma_length_status & 0xffff;
2305 len = dma_length_status >> DMA_BUFLENGTH_SHIFT;
2306
2307 netif_dbg(priv, rx_status, dev,
2308 "%s:p_ind=%d c_ind=%d read_ptr=%d len_stat=0x%08x\n",
2309 __func__, p_index, ring->c_index,
2310 ring->read_ptr, dma_length_status);
2311
2312 if (unlikely(len > RX_BUF_LENGTH)) {
2313 netif_err(priv, rx_status, dev, "oversized packet\n");
2314 dev->stats.rx_length_errors++;
2315 dev->stats.rx_errors++;
2316 dev_kfree_skb_any(skb);
2317 goto next;
2318 }
2319
2320 if (unlikely(!(dma_flag & DMA_EOP) || !(dma_flag & DMA_SOP))) {
2321 netif_err(priv, rx_status, dev,
2322 "dropping fragmented packet!\n");
2323 ring->errors++;
2324 dev_kfree_skb_any(skb);
2325 goto next;
2326 }
2327
2328 /* report errors */
2329 if (unlikely(dma_flag & (DMA_RX_CRC_ERROR |
2330 DMA_RX_OV |
2331 DMA_RX_NO |
2332 DMA_RX_LG |
2333 DMA_RX_RXER))) {
2334 netif_err(priv, rx_status, dev, "dma_flag=0x%x\n",
2335 (unsigned int)dma_flag);
2336 if (dma_flag & DMA_RX_CRC_ERROR)
2337 dev->stats.rx_crc_errors++;
2338 if (dma_flag & DMA_RX_OV)
2339 dev->stats.rx_over_errors++;
2340 if (dma_flag & DMA_RX_NO)
2341 dev->stats.rx_frame_errors++;
2342 if (dma_flag & DMA_RX_LG)
2343 dev->stats.rx_length_errors++;
2344 dev->stats.rx_errors++;
2345 dev_kfree_skb_any(skb);
2346 goto next;
2347 } /* error packet */
2348
2349 skb_put(skb, len);
2350
2351 /* remove RSB and hardware 2bytes added for IP alignment */
2352 skb_pull(skb, len: 66);
2353 len -= 66;
2354
2355 if (priv->crc_fwd_en) {
2356 skb_trim(skb, len: len - ETH_FCS_LEN);
2357 len -= ETH_FCS_LEN;
2358 }
2359
2360 bytes_processed += len;
2361
2362 /*Finish setting up the received SKB and send it to the kernel*/
2363 skb->protocol = eth_type_trans(skb, dev: priv->dev);
2364 ring->packets++;
2365 ring->bytes += len;
2366 if (dma_flag & DMA_RX_MULT)
2367 dev->stats.multicast++;
2368
2369 /* Notify kernel */
2370 napi_gro_receive(napi: &ring->napi, skb);
2371 netif_dbg(priv, rx_status, dev, "pushed up to kernel\n");
2372
2373next:
2374 rxpktprocessed++;
2375 if (likely(ring->read_ptr < ring->end_ptr))
2376 ring->read_ptr++;
2377 else
2378 ring->read_ptr = ring->cb_ptr;
2379
2380 ring->c_index = (ring->c_index + 1) & DMA_C_INDEX_MASK;
2381 bcmgenet_rdma_ring_writel(priv, ring: ring->index, val: ring->c_index, r: RDMA_CONS_INDEX);
2382 }
2383
2384 ring->dim.bytes = bytes_processed;
2385 ring->dim.packets = rxpktprocessed;
2386
2387 return rxpktprocessed;
2388}
2389
2390/* Rx NAPI polling method */
2391static int bcmgenet_rx_poll(struct napi_struct *napi, int budget)
2392{
2393 struct bcmgenet_rx_ring *ring = container_of(napi,
2394 struct bcmgenet_rx_ring, napi);
2395 struct dim_sample dim_sample = {};
2396 unsigned int work_done;
2397
2398 work_done = bcmgenet_desc_rx(ring, budget);
2399
2400 if (work_done < budget) {
2401 napi_complete_done(n: napi, work_done);
2402 ring->int_enable(ring);
2403 }
2404
2405 if (ring->dim.use_dim) {
2406 dim_update_sample(event_ctr: ring->dim.event_ctr, packets: ring->dim.packets,
2407 bytes: ring->dim.bytes, s: &dim_sample);
2408 net_dim(dim: &ring->dim.dim, end_sample: dim_sample);
2409 }
2410
2411 return work_done;
2412}
2413
2414static void bcmgenet_dim_work(struct work_struct *work)
2415{
2416 struct dim *dim = container_of(work, struct dim, work);
2417 struct bcmgenet_net_dim *ndim =
2418 container_of(dim, struct bcmgenet_net_dim, dim);
2419 struct bcmgenet_rx_ring *ring =
2420 container_of(ndim, struct bcmgenet_rx_ring, dim);
2421 struct dim_cq_moder cur_profile =
2422 net_dim_get_rx_moderation(cq_period_mode: dim->mode, ix: dim->profile_ix);
2423
2424 bcmgenet_set_rx_coalesce(ring, usecs: cur_profile.usec, pkts: cur_profile.pkts);
2425 dim->state = DIM_START_MEASURE;
2426}
2427
2428/* Assign skb to RX DMA descriptor. */
2429static int bcmgenet_alloc_rx_buffers(struct bcmgenet_priv *priv,
2430 struct bcmgenet_rx_ring *ring)
2431{
2432 struct enet_cb *cb;
2433 struct sk_buff *skb;
2434 int i;
2435
2436 netif_dbg(priv, hw, priv->dev, "%s\n", __func__);
2437
2438 /* loop here for each buffer needing assign */
2439 for (i = 0; i < ring->size; i++) {
2440 cb = ring->cbs + i;
2441 skb = bcmgenet_rx_refill(priv, cb);
2442 if (skb)
2443 dev_consume_skb_any(skb);
2444 if (!cb->skb)
2445 return -ENOMEM;
2446 }
2447
2448 return 0;
2449}
2450
2451static void bcmgenet_free_rx_buffers(struct bcmgenet_priv *priv)
2452{
2453 struct sk_buff *skb;
2454 struct enet_cb *cb;
2455 int i;
2456
2457 for (i = 0; i < priv->num_rx_bds; i++) {
2458 cb = &priv->rx_cbs[i];
2459
2460 skb = bcmgenet_free_rx_cb(dev: &priv->pdev->dev, cb);
2461 if (skb)
2462 dev_consume_skb_any(skb);
2463 }
2464}
2465
2466static void umac_enable_set(struct bcmgenet_priv *priv, u32 mask, bool enable)
2467{
2468 u32 reg;
2469
2470 reg = bcmgenet_umac_readl(priv, UMAC_CMD);
2471 if (reg & CMD_SW_RESET)
2472 return;
2473 if (enable)
2474 reg |= mask;
2475 else
2476 reg &= ~mask;
2477 bcmgenet_umac_writel(priv, val: reg, UMAC_CMD);
2478
2479 /* UniMAC stops on a packet boundary, wait for a full-size packet
2480 * to be processed
2481 */
2482 if (enable == 0)
2483 usleep_range(min: 1000, max: 2000);
2484}
2485
2486static void reset_umac(struct bcmgenet_priv *priv)
2487{
2488 /* 7358a0/7552a0: bad default in RBUF_FLUSH_CTRL.umac_sw_rst */
2489 bcmgenet_rbuf_ctrl_set(priv, val: 0);
2490 udelay(10);
2491
2492 /* issue soft reset and disable MAC while updating its registers */
2493 bcmgenet_umac_writel(priv, CMD_SW_RESET, UMAC_CMD);
2494 udelay(2);
2495}
2496
2497static void bcmgenet_intr_disable(struct bcmgenet_priv *priv)
2498{
2499 /* Mask all interrupts.*/
2500 bcmgenet_intrl2_0_writel(priv, val: 0xFFFFFFFF, INTRL2_CPU_MASK_SET);
2501 bcmgenet_intrl2_0_writel(priv, val: 0xFFFFFFFF, INTRL2_CPU_CLEAR);
2502 bcmgenet_intrl2_1_writel(priv, val: 0xFFFFFFFF, INTRL2_CPU_MASK_SET);
2503 bcmgenet_intrl2_1_writel(priv, val: 0xFFFFFFFF, INTRL2_CPU_CLEAR);
2504}
2505
2506static void bcmgenet_link_intr_enable(struct bcmgenet_priv *priv)
2507{
2508 u32 int0_enable = 0;
2509
2510 /* Monitor cable plug/unplugged event for internal PHY, external PHY
2511 * and MoCA PHY
2512 */
2513 if (priv->internal_phy) {
2514 int0_enable |= UMAC_IRQ_LINK_EVENT;
2515 if (GENET_IS_V1(priv) || GENET_IS_V2(priv) || GENET_IS_V3(priv))
2516 int0_enable |= UMAC_IRQ_PHY_DET_R;
2517 } else if (priv->ext_phy) {
2518 int0_enable |= UMAC_IRQ_LINK_EVENT;
2519 } else if (priv->phy_interface == PHY_INTERFACE_MODE_MOCA) {
2520 if (priv->hw_params->flags & GENET_HAS_MOCA_LINK_DET)
2521 int0_enable |= UMAC_IRQ_LINK_EVENT;
2522 }
2523 bcmgenet_intrl2_0_writel(priv, val: int0_enable, INTRL2_CPU_MASK_CLEAR);
2524}
2525
2526static void init_umac(struct bcmgenet_priv *priv)
2527{
2528 struct device *kdev = &priv->pdev->dev;
2529 u32 reg;
2530 u32 int0_enable = 0;
2531
2532 dev_dbg(&priv->pdev->dev, "bcmgenet: init_umac\n");
2533
2534 reset_umac(priv);
2535
2536 /* clear tx/rx counter */
2537 bcmgenet_umac_writel(priv,
2538 MIB_RESET_RX | MIB_RESET_TX | MIB_RESET_RUNT,
2539 UMAC_MIB_CTRL);
2540 bcmgenet_umac_writel(priv, val: 0, UMAC_MIB_CTRL);
2541
2542 bcmgenet_umac_writel(priv, ENET_MAX_MTU_SIZE, UMAC_MAX_FRAME_LEN);
2543
2544 /* init tx registers, enable TSB */
2545 reg = bcmgenet_tbuf_ctrl_get(priv);
2546 reg |= TBUF_64B_EN;
2547 bcmgenet_tbuf_ctrl_set(priv, val: reg);
2548
2549 /* init rx registers, enable ip header optimization and RSB */
2550 reg = bcmgenet_rbuf_readl(priv, RBUF_CTRL);
2551 reg |= RBUF_ALIGN_2B | RBUF_64B_EN;
2552 bcmgenet_rbuf_writel(priv, val: reg, RBUF_CTRL);
2553
2554 /* enable rx checksumming */
2555 reg = bcmgenet_rbuf_readl(priv, RBUF_CHK_CTRL);
2556 reg |= RBUF_RXCHK_EN | RBUF_L3_PARSE_DIS;
2557 /* If UniMAC forwards CRC, we need to skip over it to get
2558 * a valid CHK bit to be set in the per-packet status word
2559 */
2560 if (priv->crc_fwd_en)
2561 reg |= RBUF_SKIP_FCS;
2562 else
2563 reg &= ~RBUF_SKIP_FCS;
2564 bcmgenet_rbuf_writel(priv, val: reg, RBUF_CHK_CTRL);
2565
2566 if (!GENET_IS_V1(priv) && !GENET_IS_V2(priv))
2567 bcmgenet_rbuf_writel(priv, val: 1, RBUF_TBUF_SIZE_CTRL);
2568
2569 bcmgenet_intr_disable(priv);
2570
2571 /* Configure backpressure vectors for MoCA */
2572 if (priv->phy_interface == PHY_INTERFACE_MODE_MOCA) {
2573 reg = bcmgenet_bp_mc_get(priv);
2574 reg |= BIT(priv->hw_params->bp_in_en_shift);
2575
2576 /* bp_mask: back pressure mask */
2577 if (netif_is_multiqueue(dev: priv->dev))
2578 reg |= priv->hw_params->bp_in_mask;
2579 else
2580 reg &= ~priv->hw_params->bp_in_mask;
2581 bcmgenet_bp_mc_set(priv, val: reg);
2582 }
2583
2584 /* Enable MDIO interrupts on GENET v3+ */
2585 if (priv->hw_params->flags & GENET_HAS_MDIO_INTR)
2586 int0_enable |= (UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR);
2587
2588 bcmgenet_intrl2_0_writel(priv, val: int0_enable, INTRL2_CPU_MASK_CLEAR);
2589
2590 dev_dbg(kdev, "done init umac\n");
2591}
2592
2593static void bcmgenet_init_dim(struct bcmgenet_rx_ring *ring,
2594 void (*cb)(struct work_struct *work))
2595{
2596 struct bcmgenet_net_dim *dim = &ring->dim;
2597
2598 INIT_WORK(&dim->dim.work, cb);
2599 dim->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
2600 dim->event_ctr = 0;
2601 dim->packets = 0;
2602 dim->bytes = 0;
2603}
2604
2605static void bcmgenet_init_rx_coalesce(struct bcmgenet_rx_ring *ring)
2606{
2607 struct bcmgenet_net_dim *dim = &ring->dim;
2608 struct dim_cq_moder moder;
2609 u32 usecs, pkts;
2610
2611 usecs = ring->rx_coalesce_usecs;
2612 pkts = ring->rx_max_coalesced_frames;
2613
2614 /* If DIM was enabled, re-apply default parameters */
2615 if (dim->use_dim) {
2616 moder = net_dim_get_def_rx_moderation(cq_period_mode: dim->dim.mode);
2617 usecs = moder.usec;
2618 pkts = moder.pkts;
2619 }
2620
2621 bcmgenet_set_rx_coalesce(ring, usecs, pkts);
2622}
2623
2624/* Initialize a Tx ring along with corresponding hardware registers */
2625static void bcmgenet_init_tx_ring(struct bcmgenet_priv *priv,
2626 unsigned int index, unsigned int size,
2627 unsigned int start_ptr, unsigned int end_ptr)
2628{
2629 struct bcmgenet_tx_ring *ring = &priv->tx_rings[index];
2630 u32 words_per_bd = WORDS_PER_BD(priv);
2631 u32 flow_period_val = 0;
2632
2633 spin_lock_init(&ring->lock);
2634 ring->priv = priv;
2635 ring->index = index;
2636 if (index == DESC_INDEX) {
2637 ring->queue = 0;
2638 ring->int_enable = bcmgenet_tx_ring16_int_enable;
2639 ring->int_disable = bcmgenet_tx_ring16_int_disable;
2640 } else {
2641 ring->queue = index + 1;
2642 ring->int_enable = bcmgenet_tx_ring_int_enable;
2643 ring->int_disable = bcmgenet_tx_ring_int_disable;
2644 }
2645 ring->cbs = priv->tx_cbs + start_ptr;
2646 ring->size = size;
2647 ring->clean_ptr = start_ptr;
2648 ring->c_index = 0;
2649 ring->free_bds = size;
2650 ring->write_ptr = start_ptr;
2651 ring->cb_ptr = start_ptr;
2652 ring->end_ptr = end_ptr - 1;
2653 ring->prod_index = 0;
2654
2655 /* Set flow period for ring != 16 */
2656 if (index != DESC_INDEX)
2657 flow_period_val = ENET_MAX_MTU_SIZE << 16;
2658
2659 bcmgenet_tdma_ring_writel(priv, ring: index, val: 0, r: TDMA_PROD_INDEX);
2660 bcmgenet_tdma_ring_writel(priv, ring: index, val: 0, r: TDMA_CONS_INDEX);
2661 bcmgenet_tdma_ring_writel(priv, ring: index, val: 1, r: DMA_MBUF_DONE_THRESH);
2662 /* Disable rate control for now */
2663 bcmgenet_tdma_ring_writel(priv, ring: index, val: flow_period_val,
2664 r: TDMA_FLOW_PERIOD);
2665 bcmgenet_tdma_ring_writel(priv, ring: index,
2666 val: ((size << DMA_RING_SIZE_SHIFT) |
2667 RX_BUF_LENGTH), r: DMA_RING_BUF_SIZE);
2668
2669 /* Set start and end address, read and write pointers */
2670 bcmgenet_tdma_ring_writel(priv, ring: index, val: start_ptr * words_per_bd,
2671 r: DMA_START_ADDR);
2672 bcmgenet_tdma_ring_writel(priv, ring: index, val: start_ptr * words_per_bd,
2673 r: TDMA_READ_PTR);
2674 bcmgenet_tdma_ring_writel(priv, ring: index, val: start_ptr * words_per_bd,
2675 r: TDMA_WRITE_PTR);
2676 bcmgenet_tdma_ring_writel(priv, ring: index, val: end_ptr * words_per_bd - 1,
2677 r: DMA_END_ADDR);
2678
2679 /* Initialize Tx NAPI */
2680 netif_napi_add_tx(dev: priv->dev, napi: &ring->napi, poll: bcmgenet_tx_poll);
2681}
2682
2683/* Initialize a RDMA ring */
2684static int bcmgenet_init_rx_ring(struct bcmgenet_priv *priv,
2685 unsigned int index, unsigned int size,
2686 unsigned int start_ptr, unsigned int end_ptr)
2687{
2688 struct bcmgenet_rx_ring *ring = &priv->rx_rings[index];
2689 u32 words_per_bd = WORDS_PER_BD(priv);
2690 int ret;
2691
2692 ring->priv = priv;
2693 ring->index = index;
2694 if (index == DESC_INDEX) {
2695 ring->int_enable = bcmgenet_rx_ring16_int_enable;
2696 ring->int_disable = bcmgenet_rx_ring16_int_disable;
2697 } else {
2698 ring->int_enable = bcmgenet_rx_ring_int_enable;
2699 ring->int_disable = bcmgenet_rx_ring_int_disable;
2700 }
2701 ring->cbs = priv->rx_cbs + start_ptr;
2702 ring->size = size;
2703 ring->c_index = 0;
2704 ring->read_ptr = start_ptr;
2705 ring->cb_ptr = start_ptr;
2706 ring->end_ptr = end_ptr - 1;
2707
2708 ret = bcmgenet_alloc_rx_buffers(priv, ring);
2709 if (ret)
2710 return ret;
2711
2712 bcmgenet_init_dim(ring, cb: bcmgenet_dim_work);
2713 bcmgenet_init_rx_coalesce(ring);
2714
2715 /* Initialize Rx NAPI */
2716 netif_napi_add(dev: priv->dev, napi: &ring->napi, poll: bcmgenet_rx_poll);
2717
2718 bcmgenet_rdma_ring_writel(priv, ring: index, val: 0, r: RDMA_PROD_INDEX);
2719 bcmgenet_rdma_ring_writel(priv, ring: index, val: 0, r: RDMA_CONS_INDEX);
2720 bcmgenet_rdma_ring_writel(priv, ring: index,
2721 val: ((size << DMA_RING_SIZE_SHIFT) |
2722 RX_BUF_LENGTH), r: DMA_RING_BUF_SIZE);
2723 bcmgenet_rdma_ring_writel(priv, ring: index,
2724 val: (DMA_FC_THRESH_LO <<
2725 DMA_XOFF_THRESHOLD_SHIFT) |
2726 DMA_FC_THRESH_HI, r: RDMA_XON_XOFF_THRESH);
2727
2728 /* Set start and end address, read and write pointers */
2729 bcmgenet_rdma_ring_writel(priv, ring: index, val: start_ptr * words_per_bd,
2730 r: DMA_START_ADDR);
2731 bcmgenet_rdma_ring_writel(priv, ring: index, val: start_ptr * words_per_bd,
2732 r: RDMA_READ_PTR);
2733 bcmgenet_rdma_ring_writel(priv, ring: index, val: start_ptr * words_per_bd,
2734 r: RDMA_WRITE_PTR);
2735 bcmgenet_rdma_ring_writel(priv, ring: index, val: end_ptr * words_per_bd - 1,
2736 r: DMA_END_ADDR);
2737
2738 return ret;
2739}
2740
2741static void bcmgenet_enable_tx_napi(struct bcmgenet_priv *priv)
2742{
2743 unsigned int i;
2744 struct bcmgenet_tx_ring *ring;
2745
2746 for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2747 ring = &priv->tx_rings[i];
2748 napi_enable(n: &ring->napi);
2749 ring->int_enable(ring);
2750 }
2751
2752 ring = &priv->tx_rings[DESC_INDEX];
2753 napi_enable(n: &ring->napi);
2754 ring->int_enable(ring);
2755}
2756
2757static void bcmgenet_disable_tx_napi(struct bcmgenet_priv *priv)
2758{
2759 unsigned int i;
2760 struct bcmgenet_tx_ring *ring;
2761
2762 for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2763 ring = &priv->tx_rings[i];
2764 napi_disable(n: &ring->napi);
2765 }
2766
2767 ring = &priv->tx_rings[DESC_INDEX];
2768 napi_disable(n: &ring->napi);
2769}
2770
2771static void bcmgenet_fini_tx_napi(struct bcmgenet_priv *priv)
2772{
2773 unsigned int i;
2774 struct bcmgenet_tx_ring *ring;
2775
2776 for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2777 ring = &priv->tx_rings[i];
2778 netif_napi_del(napi: &ring->napi);
2779 }
2780
2781 ring = &priv->tx_rings[DESC_INDEX];
2782 netif_napi_del(napi: &ring->napi);
2783}
2784
2785/* Initialize Tx queues
2786 *
2787 * Queues 0-3 are priority-based, each one has 32 descriptors,
2788 * with queue 0 being the highest priority queue.
2789 *
2790 * Queue 16 is the default Tx queue with
2791 * GENET_Q16_TX_BD_CNT = 256 - 4 * 32 = 128 descriptors.
2792 *
2793 * The transmit control block pool is then partitioned as follows:
2794 * - Tx queue 0 uses tx_cbs[0..31]
2795 * - Tx queue 1 uses tx_cbs[32..63]
2796 * - Tx queue 2 uses tx_cbs[64..95]
2797 * - Tx queue 3 uses tx_cbs[96..127]
2798 * - Tx queue 16 uses tx_cbs[128..255]
2799 */
2800static void bcmgenet_init_tx_queues(struct net_device *dev)
2801{
2802 struct bcmgenet_priv *priv = netdev_priv(dev);
2803 u32 i, dma_enable;
2804 u32 dma_ctrl, ring_cfg;
2805 u32 dma_priority[3] = {0, 0, 0};
2806
2807 dma_ctrl = bcmgenet_tdma_readl(priv, r: DMA_CTRL);
2808 dma_enable = dma_ctrl & DMA_EN;
2809 dma_ctrl &= ~DMA_EN;
2810 bcmgenet_tdma_writel(priv, val: dma_ctrl, r: DMA_CTRL);
2811
2812 dma_ctrl = 0;
2813 ring_cfg = 0;
2814
2815 /* Enable strict priority arbiter mode */
2816 bcmgenet_tdma_writel(priv, DMA_ARBITER_SP, r: DMA_ARB_CTRL);
2817
2818 /* Initialize Tx priority queues */
2819 for (i = 0; i < priv->hw_params->tx_queues; i++) {
2820 bcmgenet_init_tx_ring(priv, index: i, size: priv->hw_params->tx_bds_per_q,
2821 start_ptr: i * priv->hw_params->tx_bds_per_q,
2822 end_ptr: (i + 1) * priv->hw_params->tx_bds_per_q);
2823 ring_cfg |= (1 << i);
2824 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2825 dma_priority[DMA_PRIO_REG_INDEX(i)] |=
2826 ((GENET_Q0_PRIORITY + i) << DMA_PRIO_REG_SHIFT(i));
2827 }
2828
2829 /* Initialize Tx default queue 16 */
2830 bcmgenet_init_tx_ring(priv, DESC_INDEX, GENET_Q16_TX_BD_CNT,
2831 start_ptr: priv->hw_params->tx_queues *
2832 priv->hw_params->tx_bds_per_q,
2833 TOTAL_DESC);
2834 ring_cfg |= (1 << DESC_INDEX);
2835 dma_ctrl |= (1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT));
2836 dma_priority[DMA_PRIO_REG_INDEX(DESC_INDEX)] |=
2837 ((GENET_Q0_PRIORITY + priv->hw_params->tx_queues) <<
2838 DMA_PRIO_REG_SHIFT(DESC_INDEX));
2839
2840 /* Set Tx queue priorities */
2841 bcmgenet_tdma_writel(priv, val: dma_priority[0], r: DMA_PRIORITY_0);
2842 bcmgenet_tdma_writel(priv, val: dma_priority[1], r: DMA_PRIORITY_1);
2843 bcmgenet_tdma_writel(priv, val: dma_priority[2], r: DMA_PRIORITY_2);
2844
2845 /* Enable Tx queues */
2846 bcmgenet_tdma_writel(priv, val: ring_cfg, r: DMA_RING_CFG);
2847
2848 /* Enable Tx DMA */
2849 if (dma_enable)
2850 dma_ctrl |= DMA_EN;
2851 bcmgenet_tdma_writel(priv, val: dma_ctrl, r: DMA_CTRL);
2852}
2853
2854static void bcmgenet_enable_rx_napi(struct bcmgenet_priv *priv)
2855{
2856 unsigned int i;
2857 struct bcmgenet_rx_ring *ring;
2858
2859 for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2860 ring = &priv->rx_rings[i];
2861 napi_enable(n: &ring->napi);
2862 ring->int_enable(ring);
2863 }
2864
2865 ring = &priv->rx_rings[DESC_INDEX];
2866 napi_enable(n: &ring->napi);
2867 ring->int_enable(ring);
2868}
2869
2870static void bcmgenet_disable_rx_napi(struct bcmgenet_priv *priv)
2871{
2872 unsigned int i;
2873 struct bcmgenet_rx_ring *ring;
2874
2875 for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2876 ring = &priv->rx_rings[i];
2877 napi_disable(n: &ring->napi);
2878 cancel_work_sync(work: &ring->dim.dim.work);
2879 }
2880
2881 ring = &priv->rx_rings[DESC_INDEX];
2882 napi_disable(n: &ring->napi);
2883 cancel_work_sync(work: &ring->dim.dim.work);
2884}
2885
2886static void bcmgenet_fini_rx_napi(struct bcmgenet_priv *priv)
2887{
2888 unsigned int i;
2889 struct bcmgenet_rx_ring *ring;
2890
2891 for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2892 ring = &priv->rx_rings[i];
2893 netif_napi_del(napi: &ring->napi);
2894 }
2895
2896 ring = &priv->rx_rings[DESC_INDEX];
2897 netif_napi_del(napi: &ring->napi);
2898}
2899
2900/* Initialize Rx queues
2901 *
2902 * Queues 0-15 are priority queues. Hardware Filtering Block (HFB) can be
2903 * used to direct traffic to these queues.
2904 *
2905 * Queue 16 is the default Rx queue with GENET_Q16_RX_BD_CNT descriptors.
2906 */
2907static int bcmgenet_init_rx_queues(struct net_device *dev)
2908{
2909 struct bcmgenet_priv *priv = netdev_priv(dev);
2910 u32 i;
2911 u32 dma_enable;
2912 u32 dma_ctrl;
2913 u32 ring_cfg;
2914 int ret;
2915
2916 dma_ctrl = bcmgenet_rdma_readl(priv, r: DMA_CTRL);
2917 dma_enable = dma_ctrl & DMA_EN;
2918 dma_ctrl &= ~DMA_EN;
2919 bcmgenet_rdma_writel(priv, val: dma_ctrl, r: DMA_CTRL);
2920
2921 dma_ctrl = 0;
2922 ring_cfg = 0;
2923
2924 /* Initialize Rx priority queues */
2925 for (i = 0; i < priv->hw_params->rx_queues; i++) {
2926 ret = bcmgenet_init_rx_ring(priv, index: i,
2927 size: priv->hw_params->rx_bds_per_q,
2928 start_ptr: i * priv->hw_params->rx_bds_per_q,
2929 end_ptr: (i + 1) *
2930 priv->hw_params->rx_bds_per_q);
2931 if (ret)
2932 return ret;
2933
2934 ring_cfg |= (1 << i);
2935 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2936 }
2937
2938 /* Initialize Rx default queue 16 */
2939 ret = bcmgenet_init_rx_ring(priv, DESC_INDEX, GENET_Q16_RX_BD_CNT,
2940 start_ptr: priv->hw_params->rx_queues *
2941 priv->hw_params->rx_bds_per_q,
2942 TOTAL_DESC);
2943 if (ret)
2944 return ret;
2945
2946 ring_cfg |= (1 << DESC_INDEX);
2947 dma_ctrl |= (1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT));
2948
2949 /* Enable rings */
2950 bcmgenet_rdma_writel(priv, val: ring_cfg, r: DMA_RING_CFG);
2951
2952 /* Configure ring as descriptor ring and re-enable DMA if enabled */
2953 if (dma_enable)
2954 dma_ctrl |= DMA_EN;
2955 bcmgenet_rdma_writel(priv, val: dma_ctrl, r: DMA_CTRL);
2956
2957 return 0;
2958}
2959
2960static int bcmgenet_dma_teardown(struct bcmgenet_priv *priv)
2961{
2962 int ret = 0;
2963 int timeout = 0;
2964 u32 reg;
2965 u32 dma_ctrl;
2966 int i;
2967
2968 /* Disable TDMA to stop add more frames in TX DMA */
2969 reg = bcmgenet_tdma_readl(priv, r: DMA_CTRL);
2970 reg &= ~DMA_EN;
2971 bcmgenet_tdma_writel(priv, val: reg, r: DMA_CTRL);
2972
2973 /* Check TDMA status register to confirm TDMA is disabled */
2974 while (timeout++ < DMA_TIMEOUT_VAL) {
2975 reg = bcmgenet_tdma_readl(priv, r: DMA_STATUS);
2976 if (reg & DMA_DISABLED)
2977 break;
2978
2979 udelay(1);
2980 }
2981
2982 if (timeout == DMA_TIMEOUT_VAL) {
2983 netdev_warn(dev: priv->dev, format: "Timed out while disabling TX DMA\n");
2984 ret = -ETIMEDOUT;
2985 }
2986
2987 /* Wait 10ms for packet drain in both tx and rx dma */
2988 usleep_range(min: 10000, max: 20000);
2989
2990 /* Disable RDMA */
2991 reg = bcmgenet_rdma_readl(priv, r: DMA_CTRL);
2992 reg &= ~DMA_EN;
2993 bcmgenet_rdma_writel(priv, val: reg, r: DMA_CTRL);
2994
2995 timeout = 0;
2996 /* Check RDMA status register to confirm RDMA is disabled */
2997 while (timeout++ < DMA_TIMEOUT_VAL) {
2998 reg = bcmgenet_rdma_readl(priv, r: DMA_STATUS);
2999 if (reg & DMA_DISABLED)
3000 break;
3001
3002 udelay(1);
3003 }
3004
3005 if (timeout == DMA_TIMEOUT_VAL) {
3006 netdev_warn(dev: priv->dev, format: "Timed out while disabling RX DMA\n");
3007 ret = -ETIMEDOUT;
3008 }
3009
3010 dma_ctrl = 0;
3011 for (i = 0; i < priv->hw_params->rx_queues; i++)
3012 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
3013 reg = bcmgenet_rdma_readl(priv, r: DMA_CTRL);
3014 reg &= ~dma_ctrl;
3015 bcmgenet_rdma_writel(priv, val: reg, r: DMA_CTRL);
3016
3017 dma_ctrl = 0;
3018 for (i = 0; i < priv->hw_params->tx_queues; i++)
3019 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
3020 reg = bcmgenet_tdma_readl(priv, r: DMA_CTRL);
3021 reg &= ~dma_ctrl;
3022 bcmgenet_tdma_writel(priv, val: reg, r: DMA_CTRL);
3023
3024 return ret;
3025}
3026
3027static void bcmgenet_fini_dma(struct bcmgenet_priv *priv)
3028{
3029 struct netdev_queue *txq;
3030 int i;
3031
3032 bcmgenet_fini_rx_napi(priv);
3033 bcmgenet_fini_tx_napi(priv);
3034
3035 for (i = 0; i < priv->num_tx_bds; i++)
3036 dev_kfree_skb(bcmgenet_free_tx_cb(&priv->pdev->dev,
3037 priv->tx_cbs + i));
3038
3039 for (i = 0; i < priv->hw_params->tx_queues; i++) {
3040 txq = netdev_get_tx_queue(dev: priv->dev, index: priv->tx_rings[i].queue);
3041 netdev_tx_reset_queue(q: txq);
3042 }
3043
3044 txq = netdev_get_tx_queue(dev: priv->dev, index: priv->tx_rings[DESC_INDEX].queue);
3045 netdev_tx_reset_queue(q: txq);
3046
3047 bcmgenet_free_rx_buffers(priv);
3048 kfree(objp: priv->rx_cbs);
3049 kfree(objp: priv->tx_cbs);
3050}
3051
3052/* init_edma: Initialize DMA control register */
3053static int bcmgenet_init_dma(struct bcmgenet_priv *priv)
3054{
3055 int ret;
3056 unsigned int i;
3057 struct enet_cb *cb;
3058
3059 netif_dbg(priv, hw, priv->dev, "%s\n", __func__);
3060
3061 /* Initialize common Rx ring structures */
3062 priv->rx_bds = priv->base + priv->hw_params->rdma_offset;
3063 priv->num_rx_bds = TOTAL_DESC;
3064 priv->rx_cbs = kcalloc(n: priv->num_rx_bds, size: sizeof(struct enet_cb),
3065 GFP_KERNEL);
3066 if (!priv->rx_cbs)
3067 return -ENOMEM;
3068
3069 for (i = 0; i < priv->num_rx_bds; i++) {
3070 cb = priv->rx_cbs + i;
3071 cb->bd_addr = priv->rx_bds + i * DMA_DESC_SIZE;
3072 }
3073
3074 /* Initialize common TX ring structures */
3075 priv->tx_bds = priv->base + priv->hw_params->tdma_offset;
3076 priv->num_tx_bds = TOTAL_DESC;
3077 priv->tx_cbs = kcalloc(n: priv->num_tx_bds, size: sizeof(struct enet_cb),
3078 GFP_KERNEL);
3079 if (!priv->tx_cbs) {
3080 kfree(objp: priv->rx_cbs);
3081 return -ENOMEM;
3082 }
3083
3084 for (i = 0; i < priv->num_tx_bds; i++) {
3085 cb = priv->tx_cbs + i;
3086 cb->bd_addr = priv->tx_bds + i * DMA_DESC_SIZE;
3087 }
3088
3089 /* Init rDma */
3090 bcmgenet_rdma_writel(priv, val: priv->dma_max_burst_length,
3091 r: DMA_SCB_BURST_SIZE);
3092
3093 /* Initialize Rx queues */
3094 ret = bcmgenet_init_rx_queues(dev: priv->dev);
3095 if (ret) {
3096 netdev_err(dev: priv->dev, format: "failed to initialize Rx queues\n");
3097 bcmgenet_free_rx_buffers(priv);
3098 kfree(objp: priv->rx_cbs);
3099 kfree(objp: priv->tx_cbs);
3100 return ret;
3101 }
3102
3103 /* Init tDma */
3104 bcmgenet_tdma_writel(priv, val: priv->dma_max_burst_length,
3105 r: DMA_SCB_BURST_SIZE);
3106
3107 /* Initialize Tx queues */
3108 bcmgenet_init_tx_queues(dev: priv->dev);
3109
3110 return 0;
3111}
3112
3113/* Interrupt bottom half */
3114static void bcmgenet_irq_task(struct work_struct *work)
3115{
3116 unsigned int status;
3117 struct bcmgenet_priv *priv = container_of(
3118 work, struct bcmgenet_priv, bcmgenet_irq_work);
3119
3120 netif_dbg(priv, intr, priv->dev, "%s\n", __func__);
3121
3122 spin_lock_irq(lock: &priv->lock);
3123 status = priv->irq0_stat;
3124 priv->irq0_stat = 0;
3125 spin_unlock_irq(lock: &priv->lock);
3126
3127 if (status & UMAC_IRQ_PHY_DET_R &&
3128 priv->dev->phydev->autoneg != AUTONEG_ENABLE) {
3129 phy_init_hw(phydev: priv->dev->phydev);
3130 genphy_config_aneg(phydev: priv->dev->phydev);
3131 }
3132
3133 /* Link UP/DOWN event */
3134 if (status & UMAC_IRQ_LINK_EVENT)
3135 phy_mac_interrupt(phydev: priv->dev->phydev);
3136
3137}
3138
3139/* bcmgenet_isr1: handle Rx and Tx priority queues */
3140static irqreturn_t bcmgenet_isr1(int irq, void *dev_id)
3141{
3142 struct bcmgenet_priv *priv = dev_id;
3143 struct bcmgenet_rx_ring *rx_ring;
3144 struct bcmgenet_tx_ring *tx_ring;
3145 unsigned int index, status;
3146
3147 /* Read irq status */
3148 status = bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_STAT) &
3149 ~bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_MASK_STATUS);
3150
3151 /* clear interrupts */
3152 bcmgenet_intrl2_1_writel(priv, val: status, INTRL2_CPU_CLEAR);
3153
3154 netif_dbg(priv, intr, priv->dev,
3155 "%s: IRQ=0x%x\n", __func__, status);
3156
3157 /* Check Rx priority queue interrupts */
3158 for (index = 0; index < priv->hw_params->rx_queues; index++) {
3159 if (!(status & BIT(UMAC_IRQ1_RX_INTR_SHIFT + index)))
3160 continue;
3161
3162 rx_ring = &priv->rx_rings[index];
3163 rx_ring->dim.event_ctr++;
3164
3165 if (likely(napi_schedule_prep(&rx_ring->napi))) {
3166 rx_ring->int_disable(rx_ring);
3167 __napi_schedule_irqoff(n: &rx_ring->napi);
3168 }
3169 }
3170
3171 /* Check Tx priority queue interrupts */
3172 for (index = 0; index < priv->hw_params->tx_queues; index++) {
3173 if (!(status & BIT(index)))
3174 continue;
3175
3176 tx_ring = &priv->tx_rings[index];
3177
3178 if (likely(napi_schedule_prep(&tx_ring->napi))) {
3179 tx_ring->int_disable(tx_ring);
3180 __napi_schedule_irqoff(n: &tx_ring->napi);
3181 }
3182 }
3183
3184 return IRQ_HANDLED;
3185}
3186
3187/* bcmgenet_isr0: handle Rx and Tx default queues + other stuff */
3188static irqreturn_t bcmgenet_isr0(int irq, void *dev_id)
3189{
3190 struct bcmgenet_priv *priv = dev_id;
3191 struct bcmgenet_rx_ring *rx_ring;
3192 struct bcmgenet_tx_ring *tx_ring;
3193 unsigned int status;
3194 unsigned long flags;
3195
3196 /* Read irq status */
3197 status = bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_STAT) &
3198 ~bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS);
3199
3200 /* clear interrupts */
3201 bcmgenet_intrl2_0_writel(priv, val: status, INTRL2_CPU_CLEAR);
3202
3203 netif_dbg(priv, intr, priv->dev,
3204 "IRQ=0x%x\n", status);
3205
3206 if (status & UMAC_IRQ_RXDMA_DONE) {
3207 rx_ring = &priv->rx_rings[DESC_INDEX];
3208 rx_ring->dim.event_ctr++;
3209
3210 if (likely(napi_schedule_prep(&rx_ring->napi))) {
3211 rx_ring->int_disable(rx_ring);
3212 __napi_schedule_irqoff(n: &rx_ring->napi);
3213 }
3214 }
3215
3216 if (status & UMAC_IRQ_TXDMA_DONE) {
3217 tx_ring = &priv->tx_rings[DESC_INDEX];
3218
3219 if (likely(napi_schedule_prep(&tx_ring->napi))) {
3220 tx_ring->int_disable(tx_ring);
3221 __napi_schedule_irqoff(n: &tx_ring->napi);
3222 }
3223 }
3224
3225 if ((priv->hw_params->flags & GENET_HAS_MDIO_INTR) &&
3226 status & (UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR)) {
3227 wake_up(&priv->wq);
3228 }
3229
3230 /* all other interested interrupts handled in bottom half */
3231 status &= (UMAC_IRQ_LINK_EVENT | UMAC_IRQ_PHY_DET_R);
3232 if (status) {
3233 /* Save irq status for bottom-half processing. */
3234 spin_lock_irqsave(&priv->lock, flags);
3235 priv->irq0_stat |= status;
3236 spin_unlock_irqrestore(lock: &priv->lock, flags);
3237
3238 schedule_work(work: &priv->bcmgenet_irq_work);
3239 }
3240
3241 return IRQ_HANDLED;
3242}
3243
3244static irqreturn_t bcmgenet_wol_isr(int irq, void *dev_id)
3245{
3246 /* Acknowledge the interrupt */
3247 return IRQ_HANDLED;
3248}
3249
3250static void bcmgenet_umac_reset(struct bcmgenet_priv *priv)
3251{
3252 u32 reg;
3253
3254 reg = bcmgenet_rbuf_ctrl_get(priv);
3255 reg |= BIT(1);
3256 bcmgenet_rbuf_ctrl_set(priv, val: reg);
3257 udelay(10);
3258
3259 reg &= ~BIT(1);
3260 bcmgenet_rbuf_ctrl_set(priv, val: reg);
3261 udelay(10);
3262}
3263
3264static void bcmgenet_set_hw_addr(struct bcmgenet_priv *priv,
3265 const unsigned char *addr)
3266{
3267 bcmgenet_umac_writel(priv, val: get_unaligned_be32(p: &addr[0]), UMAC_MAC0);
3268 bcmgenet_umac_writel(priv, val: get_unaligned_be16(p: &addr[4]), UMAC_MAC1);
3269}
3270
3271static void bcmgenet_get_hw_addr(struct bcmgenet_priv *priv,
3272 unsigned char *addr)
3273{
3274 u32 addr_tmp;
3275
3276 addr_tmp = bcmgenet_umac_readl(priv, UMAC_MAC0);
3277 put_unaligned_be32(val: addr_tmp, p: &addr[0]);
3278 addr_tmp = bcmgenet_umac_readl(priv, UMAC_MAC1);
3279 put_unaligned_be16(val: addr_tmp, p: &addr[4]);
3280}
3281
3282/* Returns a reusable dma control register value */
3283static u32 bcmgenet_dma_disable(struct bcmgenet_priv *priv, bool flush_rx)
3284{
3285 unsigned int i;
3286 u32 reg;
3287 u32 dma_ctrl;
3288
3289 /* disable DMA */
3290 dma_ctrl = 1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT) | DMA_EN;
3291 for (i = 0; i < priv->hw_params->tx_queues; i++)
3292 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
3293 reg = bcmgenet_tdma_readl(priv, r: DMA_CTRL);
3294 reg &= ~dma_ctrl;
3295 bcmgenet_tdma_writel(priv, val: reg, r: DMA_CTRL);
3296
3297 dma_ctrl = 1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT) | DMA_EN;
3298 for (i = 0; i < priv->hw_params->rx_queues; i++)
3299 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
3300 reg = bcmgenet_rdma_readl(priv, r: DMA_CTRL);
3301 reg &= ~dma_ctrl;
3302 bcmgenet_rdma_writel(priv, val: reg, r: DMA_CTRL);
3303
3304 bcmgenet_umac_writel(priv, val: 1, UMAC_TX_FLUSH);
3305 udelay(10);
3306 bcmgenet_umac_writel(priv, val: 0, UMAC_TX_FLUSH);
3307
3308 if (flush_rx) {
3309 reg = bcmgenet_rbuf_ctrl_get(priv);
3310 bcmgenet_rbuf_ctrl_set(priv, val: reg | BIT(0));
3311 udelay(10);
3312 bcmgenet_rbuf_ctrl_set(priv, val: reg);
3313 udelay(10);
3314 }
3315
3316 return dma_ctrl;
3317}
3318
3319static void bcmgenet_enable_dma(struct bcmgenet_priv *priv, u32 dma_ctrl)
3320{
3321 u32 reg;
3322
3323 reg = bcmgenet_rdma_readl(priv, r: DMA_CTRL);
3324 reg |= dma_ctrl;
3325 bcmgenet_rdma_writel(priv, val: reg, r: DMA_CTRL);
3326
3327 reg = bcmgenet_tdma_readl(priv, r: DMA_CTRL);
3328 reg |= dma_ctrl;
3329 bcmgenet_tdma_writel(priv, val: reg, r: DMA_CTRL);
3330}
3331
3332static void bcmgenet_netif_start(struct net_device *dev)
3333{
3334 struct bcmgenet_priv *priv = netdev_priv(dev);
3335
3336 /* Start the network engine */
3337 bcmgenet_set_rx_mode(dev);
3338 bcmgenet_enable_rx_napi(priv);
3339
3340 umac_enable_set(priv, CMD_TX_EN | CMD_RX_EN, enable: true);
3341
3342 bcmgenet_enable_tx_napi(priv);
3343
3344 /* Monitor link interrupts now */
3345 bcmgenet_link_intr_enable(priv);
3346
3347 phy_start(phydev: dev->phydev);
3348}
3349
3350static int bcmgenet_open(struct net_device *dev)
3351{
3352 struct bcmgenet_priv *priv = netdev_priv(dev);
3353 unsigned long dma_ctrl;
3354 int ret;
3355
3356 netif_dbg(priv, ifup, dev, "bcmgenet_open\n");
3357
3358 /* Turn on the clock */
3359 clk_prepare_enable(clk: priv->clk);
3360
3361 /* If this is an internal GPHY, power it back on now, before UniMAC is
3362 * brought out of reset as absolutely no UniMAC activity is allowed
3363 */
3364 if (priv->internal_phy)
3365 bcmgenet_power_up(priv, mode: GENET_POWER_PASSIVE);
3366
3367 /* take MAC out of reset */
3368 bcmgenet_umac_reset(priv);
3369
3370 init_umac(priv);
3371
3372 /* Apply features again in case we changed them while interface was
3373 * down
3374 */
3375 bcmgenet_set_features(dev, features: dev->features);
3376
3377 bcmgenet_set_hw_addr(priv, addr: dev->dev_addr);
3378
3379 /* Disable RX/TX DMA and flush TX and RX queues */
3380 dma_ctrl = bcmgenet_dma_disable(priv, flush_rx: true);
3381
3382 /* Reinitialize TDMA and RDMA and SW housekeeping */
3383 ret = bcmgenet_init_dma(priv);
3384 if (ret) {
3385 netdev_err(dev, format: "failed to initialize DMA\n");
3386 goto err_clk_disable;
3387 }
3388
3389 /* Always enable ring 16 - descriptor ring */
3390 bcmgenet_enable_dma(priv, dma_ctrl);
3391
3392 /* HFB init */
3393 bcmgenet_hfb_init(priv);
3394
3395 ret = request_irq(irq: priv->irq0, handler: bcmgenet_isr0, IRQF_SHARED,
3396 name: dev->name, dev: priv);
3397 if (ret < 0) {
3398 netdev_err(dev, format: "can't request IRQ %d\n", priv->irq0);
3399 goto err_fini_dma;
3400 }
3401
3402 ret = request_irq(irq: priv->irq1, handler: bcmgenet_isr1, IRQF_SHARED,
3403 name: dev->name, dev: priv);
3404 if (ret < 0) {
3405 netdev_err(dev, format: "can't request IRQ %d\n", priv->irq1);
3406 goto err_irq0;
3407 }
3408
3409 ret = bcmgenet_mii_probe(dev);
3410 if (ret) {
3411 netdev_err(dev, format: "failed to connect to PHY\n");
3412 goto err_irq1;
3413 }
3414
3415 bcmgenet_phy_pause_set(dev, rx: priv->rx_pause, tx: priv->tx_pause);
3416
3417 bcmgenet_netif_start(dev);
3418
3419 netif_tx_start_all_queues(dev);
3420
3421 return 0;
3422
3423err_irq1:
3424 free_irq(priv->irq1, priv);
3425err_irq0:
3426 free_irq(priv->irq0, priv);
3427err_fini_dma:
3428 bcmgenet_dma_teardown(priv);
3429 bcmgenet_fini_dma(priv);
3430err_clk_disable:
3431 if (priv->internal_phy)
3432 bcmgenet_power_down(priv, mode: GENET_POWER_PASSIVE);
3433 clk_disable_unprepare(clk: priv->clk);
3434 return ret;
3435}
3436
3437static void bcmgenet_netif_stop(struct net_device *dev, bool stop_phy)
3438{
3439 struct bcmgenet_priv *priv = netdev_priv(dev);
3440
3441 bcmgenet_disable_tx_napi(priv);
3442 netif_tx_disable(dev);
3443
3444 /* Disable MAC receive */
3445 umac_enable_set(priv, CMD_RX_EN, enable: false);
3446
3447 bcmgenet_dma_teardown(priv);
3448
3449 /* Disable MAC transmit. TX DMA disabled must be done before this */
3450 umac_enable_set(priv, CMD_TX_EN, enable: false);
3451
3452 if (stop_phy)
3453 phy_stop(phydev: dev->phydev);
3454 bcmgenet_disable_rx_napi(priv);
3455 bcmgenet_intr_disable(priv);
3456
3457 /* Wait for pending work items to complete. Since interrupts are
3458 * disabled no new work will be scheduled.
3459 */
3460 cancel_work_sync(work: &priv->bcmgenet_irq_work);
3461
3462 /* tx reclaim */
3463 bcmgenet_tx_reclaim_all(dev);
3464 bcmgenet_fini_dma(priv);
3465}
3466
3467static int bcmgenet_close(struct net_device *dev)
3468{
3469 struct bcmgenet_priv *priv = netdev_priv(dev);
3470 int ret = 0;
3471
3472 netif_dbg(priv, ifdown, dev, "bcmgenet_close\n");
3473
3474 bcmgenet_netif_stop(dev, stop_phy: false);
3475
3476 /* Really kill the PHY state machine and disconnect from it */
3477 phy_disconnect(phydev: dev->phydev);
3478
3479 free_irq(priv->irq0, priv);
3480 free_irq(priv->irq1, priv);
3481
3482 if (priv->internal_phy)
3483 ret = bcmgenet_power_down(priv, mode: GENET_POWER_PASSIVE);
3484
3485 clk_disable_unprepare(clk: priv->clk);
3486
3487 return ret;
3488}
3489
3490static void bcmgenet_dump_tx_queue(struct bcmgenet_tx_ring *ring)
3491{
3492 struct bcmgenet_priv *priv = ring->priv;
3493 u32 p_index, c_index, intsts, intmsk;
3494 struct netdev_queue *txq;
3495 unsigned int free_bds;
3496 bool txq_stopped;
3497
3498 if (!netif_msg_tx_err(priv))
3499 return;
3500
3501 txq = netdev_get_tx_queue(dev: priv->dev, index: ring->queue);
3502
3503 spin_lock(lock: &ring->lock);
3504 if (ring->index == DESC_INDEX) {
3505 intsts = ~bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS);
3506 intmsk = UMAC_IRQ_TXDMA_DONE | UMAC_IRQ_TXDMA_MBDONE;
3507 } else {
3508 intsts = ~bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_MASK_STATUS);
3509 intmsk = 1 << ring->index;
3510 }
3511 c_index = bcmgenet_tdma_ring_readl(priv, ring: ring->index, r: TDMA_CONS_INDEX);
3512 p_index = bcmgenet_tdma_ring_readl(priv, ring: ring->index, r: TDMA_PROD_INDEX);
3513 txq_stopped = netif_tx_queue_stopped(dev_queue: txq);
3514 free_bds = ring->free_bds;
3515 spin_unlock(lock: &ring->lock);
3516
3517 netif_err(priv, tx_err, priv->dev, "Ring %d queue %d status summary\n"
3518 "TX queue status: %s, interrupts: %s\n"
3519 "(sw)free_bds: %d (sw)size: %d\n"
3520 "(sw)p_index: %d (hw)p_index: %d\n"
3521 "(sw)c_index: %d (hw)c_index: %d\n"
3522 "(sw)clean_p: %d (sw)write_p: %d\n"
3523 "(sw)cb_ptr: %d (sw)end_ptr: %d\n",
3524 ring->index, ring->queue,
3525 txq_stopped ? "stopped" : "active",
3526 intsts & intmsk ? "enabled" : "disabled",
3527 free_bds, ring->size,
3528 ring->prod_index, p_index & DMA_P_INDEX_MASK,
3529 ring->c_index, c_index & DMA_C_INDEX_MASK,
3530 ring->clean_ptr, ring->write_ptr,
3531 ring->cb_ptr, ring->end_ptr);
3532}
3533
3534static void bcmgenet_timeout(struct net_device *dev, unsigned int txqueue)
3535{
3536 struct bcmgenet_priv *priv = netdev_priv(dev);
3537 u32 int0_enable = 0;
3538 u32 int1_enable = 0;
3539 unsigned int q;
3540
3541 netif_dbg(priv, tx_err, dev, "bcmgenet_timeout\n");
3542
3543 for (q = 0; q < priv->hw_params->tx_queues; q++)
3544 bcmgenet_dump_tx_queue(ring: &priv->tx_rings[q]);
3545 bcmgenet_dump_tx_queue(ring: &priv->tx_rings[DESC_INDEX]);
3546
3547 bcmgenet_tx_reclaim_all(dev);
3548
3549 for (q = 0; q < priv->hw_params->tx_queues; q++)
3550 int1_enable |= (1 << q);
3551
3552 int0_enable = UMAC_IRQ_TXDMA_DONE;
3553
3554 /* Re-enable TX interrupts if disabled */
3555 bcmgenet_intrl2_0_writel(priv, val: int0_enable, INTRL2_CPU_MASK_CLEAR);
3556 bcmgenet_intrl2_1_writel(priv, val: int1_enable, INTRL2_CPU_MASK_CLEAR);
3557
3558 netif_trans_update(dev);
3559
3560 dev->stats.tx_errors++;
3561
3562 netif_tx_wake_all_queues(dev);
3563}
3564
3565#define MAX_MDF_FILTER 17
3566
3567static inline void bcmgenet_set_mdf_addr(struct bcmgenet_priv *priv,
3568 const unsigned char *addr,
3569 int *i)
3570{
3571 bcmgenet_umac_writel(priv, val: addr[0] << 8 | addr[1],
3572 UMAC_MDF_ADDR + (*i * 4));
3573 bcmgenet_umac_writel(priv, val: addr[2] << 24 | addr[3] << 16 |
3574 addr[4] << 8 | addr[5],
3575 UMAC_MDF_ADDR + ((*i + 1) * 4));
3576 *i += 2;
3577}
3578
3579static void bcmgenet_set_rx_mode(struct net_device *dev)
3580{
3581 struct bcmgenet_priv *priv = netdev_priv(dev);
3582 struct netdev_hw_addr *ha;
3583 int i, nfilter;
3584 u32 reg;
3585
3586 netif_dbg(priv, hw, dev, "%s: %08X\n", __func__, dev->flags);
3587
3588 /* Number of filters needed */
3589 nfilter = netdev_uc_count(dev) + netdev_mc_count(dev) + 2;
3590
3591 /*
3592 * Turn on promicuous mode for three scenarios
3593 * 1. IFF_PROMISC flag is set
3594 * 2. IFF_ALLMULTI flag is set
3595 * 3. The number of filters needed exceeds the number filters
3596 * supported by the hardware.
3597 */
3598 reg = bcmgenet_umac_readl(priv, UMAC_CMD);
3599 if ((dev->flags & (IFF_PROMISC | IFF_ALLMULTI)) ||
3600 (nfilter > MAX_MDF_FILTER)) {
3601 reg |= CMD_PROMISC;
3602 bcmgenet_umac_writel(priv, val: reg, UMAC_CMD);
3603 bcmgenet_umac_writel(priv, val: 0, UMAC_MDF_CTRL);
3604 return;
3605 } else {
3606 reg &= ~CMD_PROMISC;
3607 bcmgenet_umac_writel(priv, val: reg, UMAC_CMD);
3608 }
3609
3610 /* update MDF filter */
3611 i = 0;
3612 /* Broadcast */
3613 bcmgenet_set_mdf_addr(priv, addr: dev->broadcast, i: &i);
3614 /* my own address.*/
3615 bcmgenet_set_mdf_addr(priv, addr: dev->dev_addr, i: &i);
3616
3617 /* Unicast */
3618 netdev_for_each_uc_addr(ha, dev)
3619 bcmgenet_set_mdf_addr(priv, addr: ha->addr, i: &i);
3620
3621 /* Multicast */
3622 netdev_for_each_mc_addr(ha, dev)
3623 bcmgenet_set_mdf_addr(priv, addr: ha->addr, i: &i);
3624
3625 /* Enable filters */
3626 reg = GENMASK(MAX_MDF_FILTER - 1, MAX_MDF_FILTER - nfilter);
3627 bcmgenet_umac_writel(priv, val: reg, UMAC_MDF_CTRL);
3628}
3629
3630/* Set the hardware MAC address. */
3631static int bcmgenet_set_mac_addr(struct net_device *dev, void *p)
3632{
3633 struct sockaddr *addr = p;
3634
3635 /* Setting the MAC address at the hardware level is not possible
3636 * without disabling the UniMAC RX/TX enable bits.
3637 */
3638 if (netif_running(dev))
3639 return -EBUSY;
3640
3641 eth_hw_addr_set(dev, addr: addr->sa_data);
3642
3643 return 0;
3644}
3645
3646static struct net_device_stats *bcmgenet_get_stats(struct net_device *dev)
3647{
3648 struct bcmgenet_priv *priv = netdev_priv(dev);
3649 unsigned long tx_bytes = 0, tx_packets = 0;
3650 unsigned long rx_bytes = 0, rx_packets = 0;
3651 unsigned long rx_errors = 0, rx_dropped = 0;
3652 struct bcmgenet_tx_ring *tx_ring;
3653 struct bcmgenet_rx_ring *rx_ring;
3654 unsigned int q;
3655
3656 for (q = 0; q < priv->hw_params->tx_queues; q++) {
3657 tx_ring = &priv->tx_rings[q];
3658 tx_bytes += tx_ring->bytes;
3659 tx_packets += tx_ring->packets;
3660 }
3661 tx_ring = &priv->tx_rings[DESC_INDEX];
3662 tx_bytes += tx_ring->bytes;
3663 tx_packets += tx_ring->packets;
3664
3665 for (q = 0; q < priv->hw_params->rx_queues; q++) {
3666 rx_ring = &priv->rx_rings[q];
3667
3668 rx_bytes += rx_ring->bytes;
3669 rx_packets += rx_ring->packets;
3670 rx_errors += rx_ring->errors;
3671 rx_dropped += rx_ring->dropped;
3672 }
3673 rx_ring = &priv->rx_rings[DESC_INDEX];
3674 rx_bytes += rx_ring->bytes;
3675 rx_packets += rx_ring->packets;
3676 rx_errors += rx_ring->errors;
3677 rx_dropped += rx_ring->dropped;
3678
3679 dev->stats.tx_bytes = tx_bytes;
3680 dev->stats.tx_packets = tx_packets;
3681 dev->stats.rx_bytes = rx_bytes;
3682 dev->stats.rx_packets = rx_packets;
3683 dev->stats.rx_errors = rx_errors;
3684 dev->stats.rx_missed_errors = rx_errors;
3685 dev->stats.rx_dropped = rx_dropped;
3686 return &dev->stats;
3687}
3688
3689static int bcmgenet_change_carrier(struct net_device *dev, bool new_carrier)
3690{
3691 struct bcmgenet_priv *priv = netdev_priv(dev);
3692
3693 if (!dev->phydev || !phy_is_pseudo_fixed_link(phydev: dev->phydev) ||
3694 priv->phy_interface != PHY_INTERFACE_MODE_MOCA)
3695 return -EOPNOTSUPP;
3696
3697 if (new_carrier)
3698 netif_carrier_on(dev);
3699 else
3700 netif_carrier_off(dev);
3701
3702 return 0;
3703}
3704
3705static const struct net_device_ops bcmgenet_netdev_ops = {
3706 .ndo_open = bcmgenet_open,
3707 .ndo_stop = bcmgenet_close,
3708 .ndo_start_xmit = bcmgenet_xmit,
3709 .ndo_tx_timeout = bcmgenet_timeout,
3710 .ndo_set_rx_mode = bcmgenet_set_rx_mode,
3711 .ndo_set_mac_address = bcmgenet_set_mac_addr,
3712 .ndo_eth_ioctl = phy_do_ioctl_running,
3713 .ndo_set_features = bcmgenet_set_features,
3714 .ndo_get_stats = bcmgenet_get_stats,
3715 .ndo_change_carrier = bcmgenet_change_carrier,
3716};
3717
3718/* Array of GENET hardware parameters/characteristics */
3719static struct bcmgenet_hw_params bcmgenet_hw_params[] = {
3720 [GENET_V1] = {
3721 .tx_queues = 0,
3722 .tx_bds_per_q = 0,
3723 .rx_queues = 0,
3724 .rx_bds_per_q = 0,
3725 .bp_in_en_shift = 16,
3726 .bp_in_mask = 0xffff,
3727 .hfb_filter_cnt = 16,
3728 .qtag_mask = 0x1F,
3729 .hfb_offset = 0x1000,
3730 .rdma_offset = 0x2000,
3731 .tdma_offset = 0x3000,
3732 .words_per_bd = 2,
3733 },
3734 [GENET_V2] = {
3735 .tx_queues = 4,
3736 .tx_bds_per_q = 32,
3737 .rx_queues = 0,
3738 .rx_bds_per_q = 0,
3739 .bp_in_en_shift = 16,
3740 .bp_in_mask = 0xffff,
3741 .hfb_filter_cnt = 16,
3742 .qtag_mask = 0x1F,
3743 .tbuf_offset = 0x0600,
3744 .hfb_offset = 0x1000,
3745 .hfb_reg_offset = 0x2000,
3746 .rdma_offset = 0x3000,
3747 .tdma_offset = 0x4000,
3748 .words_per_bd = 2,
3749 .flags = GENET_HAS_EXT,
3750 },
3751 [GENET_V3] = {
3752 .tx_queues = 4,
3753 .tx_bds_per_q = 32,
3754 .rx_queues = 0,
3755 .rx_bds_per_q = 0,
3756 .bp_in_en_shift = 17,
3757 .bp_in_mask = 0x1ffff,
3758 .hfb_filter_cnt = 48,
3759 .hfb_filter_size = 128,
3760 .qtag_mask = 0x3F,
3761 .tbuf_offset = 0x0600,
3762 .hfb_offset = 0x8000,
3763 .hfb_reg_offset = 0xfc00,
3764 .rdma_offset = 0x10000,
3765 .tdma_offset = 0x11000,
3766 .words_per_bd = 2,
3767 .flags = GENET_HAS_EXT | GENET_HAS_MDIO_INTR |
3768 GENET_HAS_MOCA_LINK_DET,
3769 },
3770 [GENET_V4] = {
3771 .tx_queues = 4,
3772 .tx_bds_per_q = 32,
3773 .rx_queues = 0,
3774 .rx_bds_per_q = 0,
3775 .bp_in_en_shift = 17,
3776 .bp_in_mask = 0x1ffff,
3777 .hfb_filter_cnt = 48,
3778 .hfb_filter_size = 128,
3779 .qtag_mask = 0x3F,
3780 .tbuf_offset = 0x0600,
3781 .hfb_offset = 0x8000,
3782 .hfb_reg_offset = 0xfc00,
3783 .rdma_offset = 0x2000,
3784 .tdma_offset = 0x4000,
3785 .words_per_bd = 3,
3786 .flags = GENET_HAS_40BITS | GENET_HAS_EXT |
3787 GENET_HAS_MDIO_INTR | GENET_HAS_MOCA_LINK_DET,
3788 },
3789 [GENET_V5] = {
3790 .tx_queues = 4,
3791 .tx_bds_per_q = 32,
3792 .rx_queues = 0,
3793 .rx_bds_per_q = 0,
3794 .bp_in_en_shift = 17,
3795 .bp_in_mask = 0x1ffff,
3796 .hfb_filter_cnt = 48,
3797 .hfb_filter_size = 128,
3798 .qtag_mask = 0x3F,
3799 .tbuf_offset = 0x0600,
3800 .hfb_offset = 0x8000,
3801 .hfb_reg_offset = 0xfc00,
3802 .rdma_offset = 0x2000,
3803 .tdma_offset = 0x4000,
3804 .words_per_bd = 3,
3805 .flags = GENET_HAS_40BITS | GENET_HAS_EXT |
3806 GENET_HAS_MDIO_INTR | GENET_HAS_MOCA_LINK_DET,
3807 },
3808};
3809
3810/* Infer hardware parameters from the detected GENET version */
3811static void bcmgenet_set_hw_params(struct bcmgenet_priv *priv)
3812{
3813 struct bcmgenet_hw_params *params;
3814 u32 reg;
3815 u8 major;
3816 u16 gphy_rev;
3817
3818 if (GENET_IS_V5(priv) || GENET_IS_V4(priv)) {
3819 bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus;
3820 genet_dma_ring_regs = genet_dma_ring_regs_v4;
3821 } else if (GENET_IS_V3(priv)) {
3822 bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus;
3823 genet_dma_ring_regs = genet_dma_ring_regs_v123;
3824 } else if (GENET_IS_V2(priv)) {
3825 bcmgenet_dma_regs = bcmgenet_dma_regs_v2;
3826 genet_dma_ring_regs = genet_dma_ring_regs_v123;
3827 } else if (GENET_IS_V1(priv)) {
3828 bcmgenet_dma_regs = bcmgenet_dma_regs_v1;
3829 genet_dma_ring_regs = genet_dma_ring_regs_v123;
3830 }
3831
3832 /* enum genet_version starts at 1 */
3833 priv->hw_params = &bcmgenet_hw_params[priv->version];
3834 params = priv->hw_params;
3835
3836 /* Read GENET HW version */
3837 reg = bcmgenet_sys_readl(priv, SYS_REV_CTRL);
3838 major = (reg >> 24 & 0x0f);
3839 if (major == 6)
3840 major = 5;
3841 else if (major == 5)
3842 major = 4;
3843 else if (major == 0)
3844 major = 1;
3845 if (major != priv->version) {
3846 dev_err(&priv->pdev->dev,
3847 "GENET version mismatch, got: %d, configured for: %d\n",
3848 major, priv->version);
3849 }
3850
3851 /* Print the GENET core version */
3852 dev_info(&priv->pdev->dev, "GENET " GENET_VER_FMT,
3853 major, (reg >> 16) & 0x0f, reg & 0xffff);
3854
3855 /* Store the integrated PHY revision for the MDIO probing function
3856 * to pass this information to the PHY driver. The PHY driver expects
3857 * to find the PHY major revision in bits 15:8 while the GENET register
3858 * stores that information in bits 7:0, account for that.
3859 *
3860 * On newer chips, starting with PHY revision G0, a new scheme is
3861 * deployed similar to the Starfighter 2 switch with GPHY major
3862 * revision in bits 15:8 and patch level in bits 7:0. Major revision 0
3863 * is reserved as well as special value 0x01ff, we have a small
3864 * heuristic to check for the new GPHY revision and re-arrange things
3865 * so the GPHY driver is happy.
3866 */
3867 gphy_rev = reg & 0xffff;
3868
3869 if (GENET_IS_V5(priv)) {
3870 /* The EPHY revision should come from the MDIO registers of
3871 * the PHY not from GENET.
3872 */
3873 if (gphy_rev != 0) {
3874 pr_warn("GENET is reporting EPHY revision: 0x%04x\n",
3875 gphy_rev);
3876 }
3877 /* This is reserved so should require special treatment */
3878 } else if (gphy_rev == 0 || gphy_rev == 0x01ff) {
3879 pr_warn("Invalid GPHY revision detected: 0x%04x\n", gphy_rev);
3880 return;
3881 /* This is the good old scheme, just GPHY major, no minor nor patch */
3882 } else if ((gphy_rev & 0xf0) != 0) {
3883 priv->gphy_rev = gphy_rev << 8;
3884 /* This is the new scheme, GPHY major rolls over with 0x10 = rev G0 */
3885 } else if ((gphy_rev & 0xff00) != 0) {
3886 priv->gphy_rev = gphy_rev;
3887 }
3888
3889#ifdef CONFIG_PHYS_ADDR_T_64BIT
3890 if (!(params->flags & GENET_HAS_40BITS))
3891 pr_warn("GENET does not support 40-bits PA\n");
3892#endif
3893
3894 pr_debug("Configuration for version: %d\n"
3895 "TXq: %1d, TXqBDs: %1d, RXq: %1d, RXqBDs: %1d\n"
3896 "BP << en: %2d, BP msk: 0x%05x\n"
3897 "HFB count: %2d, QTAQ msk: 0x%05x\n"
3898 "TBUF: 0x%04x, HFB: 0x%04x, HFBreg: 0x%04x\n"
3899 "RDMA: 0x%05x, TDMA: 0x%05x\n"
3900 "Words/BD: %d\n",
3901 priv->version,
3902 params->tx_queues, params->tx_bds_per_q,
3903 params->rx_queues, params->rx_bds_per_q,
3904 params->bp_in_en_shift, params->bp_in_mask,
3905 params->hfb_filter_cnt, params->qtag_mask,
3906 params->tbuf_offset, params->hfb_offset,
3907 params->hfb_reg_offset,
3908 params->rdma_offset, params->tdma_offset,
3909 params->words_per_bd);
3910}
3911
3912struct bcmgenet_plat_data {
3913 enum bcmgenet_version version;
3914 u32 dma_max_burst_length;
3915 bool ephy_16nm;
3916};
3917
3918static const struct bcmgenet_plat_data v1_plat_data = {
3919 .version = GENET_V1,
3920 .dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3921};
3922
3923static const struct bcmgenet_plat_data v2_plat_data = {
3924 .version = GENET_V2,
3925 .dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3926};
3927
3928static const struct bcmgenet_plat_data v3_plat_data = {
3929 .version = GENET_V3,
3930 .dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3931};
3932
3933static const struct bcmgenet_plat_data v4_plat_data = {
3934 .version = GENET_V4,
3935 .dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3936};
3937
3938static const struct bcmgenet_plat_data v5_plat_data = {
3939 .version = GENET_V5,
3940 .dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3941};
3942
3943static const struct bcmgenet_plat_data bcm2711_plat_data = {
3944 .version = GENET_V5,
3945 .dma_max_burst_length = 0x08,
3946};
3947
3948static const struct bcmgenet_plat_data bcm7712_plat_data = {
3949 .version = GENET_V5,
3950 .dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3951 .ephy_16nm = true,
3952};
3953
3954static const struct of_device_id bcmgenet_match[] = {
3955 { .compatible = "brcm,genet-v1", .data = &v1_plat_data },
3956 { .compatible = "brcm,genet-v2", .data = &v2_plat_data },
3957 { .compatible = "brcm,genet-v3", .data = &v3_plat_data },
3958 { .compatible = "brcm,genet-v4", .data = &v4_plat_data },
3959 { .compatible = "brcm,genet-v5", .data = &v5_plat_data },
3960 { .compatible = "brcm,bcm2711-genet-v5", .data = &bcm2711_plat_data },
3961 { .compatible = "brcm,bcm7712-genet-v5", .data = &bcm7712_plat_data },
3962 { },
3963};
3964MODULE_DEVICE_TABLE(of, bcmgenet_match);
3965
3966static int bcmgenet_probe(struct platform_device *pdev)
3967{
3968 struct bcmgenet_platform_data *pd = pdev->dev.platform_data;
3969 const struct bcmgenet_plat_data *pdata;
3970 struct bcmgenet_priv *priv;
3971 struct net_device *dev;
3972 unsigned int i;
3973 int err = -EIO;
3974
3975 /* Up to GENET_MAX_MQ_CNT + 1 TX queues and RX queues */
3976 dev = alloc_etherdev_mqs(sizeof_priv: sizeof(*priv), GENET_MAX_MQ_CNT + 1,
3977 GENET_MAX_MQ_CNT + 1);
3978 if (!dev) {
3979 dev_err(&pdev->dev, "can't allocate net device\n");
3980 return -ENOMEM;
3981 }
3982
3983 priv = netdev_priv(dev);
3984 priv->irq0 = platform_get_irq(pdev, 0);
3985 if (priv->irq0 < 0) {
3986 err = priv->irq0;
3987 goto err;
3988 }
3989 priv->irq1 = platform_get_irq(pdev, 1);
3990 if (priv->irq1 < 0) {
3991 err = priv->irq1;
3992 goto err;
3993 }
3994 priv->wol_irq = platform_get_irq_optional(pdev, 2);
3995 if (priv->wol_irq == -EPROBE_DEFER) {
3996 err = priv->wol_irq;
3997 goto err;
3998 }
3999
4000 priv->base = devm_platform_ioremap_resource(pdev, index: 0);
4001 if (IS_ERR(ptr: priv->base)) {
4002 err = PTR_ERR(ptr: priv->base);
4003 goto err;
4004 }
4005
4006 spin_lock_init(&priv->lock);
4007
4008 /* Set default pause parameters */
4009 priv->autoneg_pause = 1;
4010 priv->tx_pause = 1;
4011 priv->rx_pause = 1;
4012
4013 SET_NETDEV_DEV(dev, &pdev->dev);
4014 dev_set_drvdata(dev: &pdev->dev, data: dev);
4015 dev->watchdog_timeo = 2 * HZ;
4016 dev->ethtool_ops = &bcmgenet_ethtool_ops;
4017 dev->netdev_ops = &bcmgenet_netdev_ops;
4018
4019 priv->msg_enable = netif_msg_init(debug_value: -1, GENET_MSG_DEFAULT);
4020
4021 /* Set default features */
4022 dev->features |= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_HW_CSUM |
4023 NETIF_F_RXCSUM;
4024 dev->hw_features |= dev->features;
4025 dev->vlan_features |= dev->features;
4026
4027 /* Request the WOL interrupt and advertise suspend if available */
4028 priv->wol_irq_disabled = true;
4029 if (priv->wol_irq > 0) {
4030 err = devm_request_irq(dev: &pdev->dev, irq: priv->wol_irq,
4031 handler: bcmgenet_wol_isr, irqflags: 0, devname: dev->name, dev_id: priv);
4032 if (!err)
4033 device_set_wakeup_capable(dev: &pdev->dev, capable: 1);
4034 }
4035
4036 /* Set the needed headroom to account for any possible
4037 * features enabling/disabling at runtime
4038 */
4039 dev->needed_headroom += 64;
4040
4041 priv->dev = dev;
4042 priv->pdev = pdev;
4043
4044 pdata = device_get_match_data(dev: &pdev->dev);
4045 if (pdata) {
4046 priv->version = pdata->version;
4047 priv->dma_max_burst_length = pdata->dma_max_burst_length;
4048 priv->ephy_16nm = pdata->ephy_16nm;
4049 } else {
4050 priv->version = pd->genet_version;
4051 priv->dma_max_burst_length = DMA_MAX_BURST_LENGTH;
4052 }
4053
4054 priv->clk = devm_clk_get_optional(dev: &priv->pdev->dev, id: "enet");
4055 if (IS_ERR(ptr: priv->clk)) {
4056 dev_dbg(&priv->pdev->dev, "failed to get enet clock\n");
4057 err = PTR_ERR(ptr: priv->clk);
4058 goto err;
4059 }
4060
4061 err = clk_prepare_enable(clk: priv->clk);
4062 if (err)
4063 goto err;
4064
4065 bcmgenet_set_hw_params(priv);
4066
4067 err = -EIO;
4068 if (priv->hw_params->flags & GENET_HAS_40BITS)
4069 err = dma_set_mask_and_coherent(dev: &pdev->dev, DMA_BIT_MASK(40));
4070 if (err)
4071 err = dma_set_mask_and_coherent(dev: &pdev->dev, DMA_BIT_MASK(32));
4072 if (err)
4073 goto err_clk_disable;
4074
4075 /* Mii wait queue */
4076 init_waitqueue_head(&priv->wq);
4077 /* Always use RX_BUF_LENGTH (2KB) buffer for all chips */
4078 priv->rx_buf_len = RX_BUF_LENGTH;
4079 INIT_WORK(&priv->bcmgenet_irq_work, bcmgenet_irq_task);
4080
4081 priv->clk_wol = devm_clk_get_optional(dev: &priv->pdev->dev, id: "enet-wol");
4082 if (IS_ERR(ptr: priv->clk_wol)) {
4083 dev_dbg(&priv->pdev->dev, "failed to get enet-wol clock\n");
4084 err = PTR_ERR(ptr: priv->clk_wol);
4085 goto err_clk_disable;
4086 }
4087
4088 priv->clk_eee = devm_clk_get_optional(dev: &priv->pdev->dev, id: "enet-eee");
4089 if (IS_ERR(ptr: priv->clk_eee)) {
4090 dev_dbg(&priv->pdev->dev, "failed to get enet-eee clock\n");
4091 err = PTR_ERR(ptr: priv->clk_eee);
4092 goto err_clk_disable;
4093 }
4094
4095 /* If this is an internal GPHY, power it on now, before UniMAC is
4096 * brought out of reset as absolutely no UniMAC activity is allowed
4097 */
4098 if (device_get_phy_mode(dev: &pdev->dev) == PHY_INTERFACE_MODE_INTERNAL)
4099 bcmgenet_power_up(priv, mode: GENET_POWER_PASSIVE);
4100
4101 if (pd && !IS_ERR_OR_NULL(ptr: pd->mac_address))
4102 eth_hw_addr_set(dev, addr: pd->mac_address);
4103 else
4104 if (device_get_ethdev_address(dev: &pdev->dev, netdev: dev))
4105 if (has_acpi_companion(dev: &pdev->dev)) {
4106 u8 addr[ETH_ALEN];
4107
4108 bcmgenet_get_hw_addr(priv, addr);
4109 eth_hw_addr_set(dev, addr);
4110 }
4111
4112 if (!is_valid_ether_addr(addr: dev->dev_addr)) {
4113 dev_warn(&pdev->dev, "using random Ethernet MAC\n");
4114 eth_hw_addr_random(dev);
4115 }
4116
4117 reset_umac(priv);
4118
4119 err = bcmgenet_mii_init(dev);
4120 if (err)
4121 goto err_clk_disable;
4122
4123 /* setup number of real queues + 1 (GENET_V1 has 0 hardware queues
4124 * just the ring 16 descriptor based TX
4125 */
4126 netif_set_real_num_tx_queues(dev: priv->dev, txq: priv->hw_params->tx_queues + 1);
4127 netif_set_real_num_rx_queues(dev: priv->dev, rxq: priv->hw_params->rx_queues + 1);
4128
4129 /* Set default coalescing parameters */
4130 for (i = 0; i < priv->hw_params->rx_queues; i++)
4131 priv->rx_rings[i].rx_max_coalesced_frames = 1;
4132 priv->rx_rings[DESC_INDEX].rx_max_coalesced_frames = 1;
4133
4134 /* libphy will determine the link state */
4135 netif_carrier_off(dev);
4136
4137 /* Turn off the main clock, WOL clock is handled separately */
4138 clk_disable_unprepare(clk: priv->clk);
4139
4140 err = register_netdev(dev);
4141 if (err) {
4142 bcmgenet_mii_exit(dev);
4143 goto err;
4144 }
4145
4146 return err;
4147
4148err_clk_disable:
4149 clk_disable_unprepare(clk: priv->clk);
4150err:
4151 free_netdev(dev);
4152 return err;
4153}
4154
4155static void bcmgenet_remove(struct platform_device *pdev)
4156{
4157 struct bcmgenet_priv *priv = dev_to_priv(dev: &pdev->dev);
4158
4159 dev_set_drvdata(dev: &pdev->dev, NULL);
4160 unregister_netdev(dev: priv->dev);
4161 bcmgenet_mii_exit(dev: priv->dev);
4162 free_netdev(dev: priv->dev);
4163}
4164
4165static void bcmgenet_shutdown(struct platform_device *pdev)
4166{
4167 bcmgenet_remove(pdev);
4168}
4169
4170#ifdef CONFIG_PM_SLEEP
4171static int bcmgenet_resume_noirq(struct device *d)
4172{
4173 struct net_device *dev = dev_get_drvdata(dev: d);
4174 struct bcmgenet_priv *priv = netdev_priv(dev);
4175 int ret;
4176 u32 reg;
4177
4178 if (!netif_running(dev))
4179 return 0;
4180
4181 /* Turn on the clock */
4182 ret = clk_prepare_enable(clk: priv->clk);
4183 if (ret)
4184 return ret;
4185
4186 if (device_may_wakeup(dev: d) && priv->wolopts) {
4187 /* Account for Wake-on-LAN events and clear those events
4188 * (Some devices need more time between enabling the clocks
4189 * and the interrupt register reflecting the wake event so
4190 * read the register twice)
4191 */
4192 reg = bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_STAT);
4193 reg = bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_STAT);
4194 if (reg & UMAC_IRQ_WAKE_EVENT)
4195 pm_wakeup_event(dev: &priv->pdev->dev, msec: 0);
4196 }
4197
4198 bcmgenet_intrl2_0_writel(priv, UMAC_IRQ_WAKE_EVENT, INTRL2_CPU_CLEAR);
4199
4200 return 0;
4201}
4202
4203static int bcmgenet_resume(struct device *d)
4204{
4205 struct net_device *dev = dev_get_drvdata(dev: d);
4206 struct bcmgenet_priv *priv = netdev_priv(dev);
4207 struct bcmgenet_rxnfc_rule *rule;
4208 unsigned long dma_ctrl;
4209 int ret;
4210
4211 if (!netif_running(dev))
4212 return 0;
4213
4214 /* From WOL-enabled suspend, switch to regular clock */
4215 if (device_may_wakeup(dev: d) && priv->wolopts)
4216 bcmgenet_power_up(priv, mode: GENET_POWER_WOL_MAGIC);
4217
4218 /* If this is an internal GPHY, power it back on now, before UniMAC is
4219 * brought out of reset as absolutely no UniMAC activity is allowed
4220 */
4221 if (priv->internal_phy)
4222 bcmgenet_power_up(priv, mode: GENET_POWER_PASSIVE);
4223
4224 bcmgenet_umac_reset(priv);
4225
4226 init_umac(priv);
4227
4228 phy_init_hw(phydev: dev->phydev);
4229
4230 /* Speed settings must be restored */
4231 genphy_config_aneg(phydev: dev->phydev);
4232 bcmgenet_mii_config(dev: priv->dev, init: false);
4233
4234 /* Restore enabled features */
4235 bcmgenet_set_features(dev, features: dev->features);
4236
4237 bcmgenet_set_hw_addr(priv, addr: dev->dev_addr);
4238
4239 /* Restore hardware filters */
4240 bcmgenet_hfb_clear(priv);
4241 list_for_each_entry(rule, &priv->rxnfc_list, list)
4242 if (rule->state != BCMGENET_RXNFC_STATE_UNUSED)
4243 bcmgenet_hfb_create_rxnfc_filter(priv, rule);
4244
4245 /* Disable RX/TX DMA and flush TX queues */
4246 dma_ctrl = bcmgenet_dma_disable(priv, flush_rx: false);
4247
4248 /* Reinitialize TDMA and RDMA and SW housekeeping */
4249 ret = bcmgenet_init_dma(priv);
4250 if (ret) {
4251 netdev_err(dev, format: "failed to initialize DMA\n");
4252 goto out_clk_disable;
4253 }
4254
4255 /* Always enable ring 16 - descriptor ring */
4256 bcmgenet_enable_dma(priv, dma_ctrl);
4257
4258 if (!device_may_wakeup(dev: d))
4259 phy_resume(phydev: dev->phydev);
4260
4261 bcmgenet_netif_start(dev);
4262
4263 netif_device_attach(dev);
4264
4265 return 0;
4266
4267out_clk_disable:
4268 if (priv->internal_phy)
4269 bcmgenet_power_down(priv, mode: GENET_POWER_PASSIVE);
4270 clk_disable_unprepare(clk: priv->clk);
4271 return ret;
4272}
4273
4274static int bcmgenet_suspend(struct device *d)
4275{
4276 struct net_device *dev = dev_get_drvdata(dev: d);
4277 struct bcmgenet_priv *priv = netdev_priv(dev);
4278
4279 if (!netif_running(dev))
4280 return 0;
4281
4282 netif_device_detach(dev);
4283
4284 bcmgenet_netif_stop(dev, stop_phy: true);
4285
4286 if (!device_may_wakeup(dev: d))
4287 phy_suspend(phydev: dev->phydev);
4288
4289 /* Disable filtering */
4290 bcmgenet_hfb_reg_writel(priv, val: 0, HFB_CTRL);
4291
4292 return 0;
4293}
4294
4295static int bcmgenet_suspend_noirq(struct device *d)
4296{
4297 struct net_device *dev = dev_get_drvdata(dev: d);
4298 struct bcmgenet_priv *priv = netdev_priv(dev);
4299 int ret = 0;
4300
4301 if (!netif_running(dev))
4302 return 0;
4303
4304 /* Prepare the device for Wake-on-LAN and switch to the slow clock */
4305 if (device_may_wakeup(dev: d) && priv->wolopts)
4306 ret = bcmgenet_power_down(priv, mode: GENET_POWER_WOL_MAGIC);
4307 else if (priv->internal_phy)
4308 ret = bcmgenet_power_down(priv, mode: GENET_POWER_PASSIVE);
4309
4310 /* Let the framework handle resumption and leave the clocks on */
4311 if (ret)
4312 return ret;
4313
4314 /* Turn off the clocks */
4315 clk_disable_unprepare(clk: priv->clk);
4316
4317 return 0;
4318}
4319#else
4320#define bcmgenet_suspend NULL
4321#define bcmgenet_suspend_noirq NULL
4322#define bcmgenet_resume NULL
4323#define bcmgenet_resume_noirq NULL
4324#endif /* CONFIG_PM_SLEEP */
4325
4326static const struct dev_pm_ops bcmgenet_pm_ops = {
4327 .suspend = bcmgenet_suspend,
4328 .suspend_noirq = bcmgenet_suspend_noirq,
4329 .resume = bcmgenet_resume,
4330 .resume_noirq = bcmgenet_resume_noirq,
4331};
4332
4333static const struct acpi_device_id genet_acpi_match[] = {
4334 { "BCM6E4E", (kernel_ulong_t)&bcm2711_plat_data },
4335 { },
4336};
4337MODULE_DEVICE_TABLE(acpi, genet_acpi_match);
4338
4339static struct platform_driver bcmgenet_driver = {
4340 .probe = bcmgenet_probe,
4341 .remove_new = bcmgenet_remove,
4342 .shutdown = bcmgenet_shutdown,
4343 .driver = {
4344 .name = "bcmgenet",
4345 .of_match_table = bcmgenet_match,
4346 .pm = &bcmgenet_pm_ops,
4347 .acpi_match_table = genet_acpi_match,
4348 },
4349};
4350module_platform_driver(bcmgenet_driver);
4351
4352MODULE_AUTHOR("Broadcom Corporation");
4353MODULE_DESCRIPTION("Broadcom GENET Ethernet controller driver");
4354MODULE_ALIAS("platform:bcmgenet");
4355MODULE_LICENSE("GPL");
4356MODULE_SOFTDEP("pre: mdio-bcm-unimac");
4357

source code of linux/drivers/net/ethernet/broadcom/genet/bcmgenet.c