1// SPDX-License-Identifier: GPL-2.0
2/* Copyright(c) 1999 - 2018 Intel Corporation. */
3
4/* 82562G 10/100 Network Connection
5 * 82562G-2 10/100 Network Connection
6 * 82562GT 10/100 Network Connection
7 * 82562GT-2 10/100 Network Connection
8 * 82562V 10/100 Network Connection
9 * 82562V-2 10/100 Network Connection
10 * 82566DC-2 Gigabit Network Connection
11 * 82566DC Gigabit Network Connection
12 * 82566DM-2 Gigabit Network Connection
13 * 82566DM Gigabit Network Connection
14 * 82566MC Gigabit Network Connection
15 * 82566MM Gigabit Network Connection
16 * 82567LM Gigabit Network Connection
17 * 82567LF Gigabit Network Connection
18 * 82567V Gigabit Network Connection
19 * 82567LM-2 Gigabit Network Connection
20 * 82567LF-2 Gigabit Network Connection
21 * 82567V-2 Gigabit Network Connection
22 * 82567LF-3 Gigabit Network Connection
23 * 82567LM-3 Gigabit Network Connection
24 * 82567LM-4 Gigabit Network Connection
25 * 82577LM Gigabit Network Connection
26 * 82577LC Gigabit Network Connection
27 * 82578DM Gigabit Network Connection
28 * 82578DC Gigabit Network Connection
29 * 82579LM Gigabit Network Connection
30 * 82579V Gigabit Network Connection
31 * Ethernet Connection I217-LM
32 * Ethernet Connection I217-V
33 * Ethernet Connection I218-V
34 * Ethernet Connection I218-LM
35 * Ethernet Connection (2) I218-LM
36 * Ethernet Connection (2) I218-V
37 * Ethernet Connection (3) I218-LM
38 * Ethernet Connection (3) I218-V
39 */
40
41#include "e1000.h"
42
43/* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
44/* Offset 04h HSFSTS */
45union ich8_hws_flash_status {
46 struct ich8_hsfsts {
47 u16 flcdone:1; /* bit 0 Flash Cycle Done */
48 u16 flcerr:1; /* bit 1 Flash Cycle Error */
49 u16 dael:1; /* bit 2 Direct Access error Log */
50 u16 berasesz:2; /* bit 4:3 Sector Erase Size */
51 u16 flcinprog:1; /* bit 5 flash cycle in Progress */
52 u16 reserved1:2; /* bit 13:6 Reserved */
53 u16 reserved2:6; /* bit 13:6 Reserved */
54 u16 fldesvalid:1; /* bit 14 Flash Descriptor Valid */
55 u16 flockdn:1; /* bit 15 Flash Config Lock-Down */
56 } hsf_status;
57 u16 regval;
58};
59
60/* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
61/* Offset 06h FLCTL */
62union ich8_hws_flash_ctrl {
63 struct ich8_hsflctl {
64 u16 flcgo:1; /* 0 Flash Cycle Go */
65 u16 flcycle:2; /* 2:1 Flash Cycle */
66 u16 reserved:5; /* 7:3 Reserved */
67 u16 fldbcount:2; /* 9:8 Flash Data Byte Count */
68 u16 flockdn:6; /* 15:10 Reserved */
69 } hsf_ctrl;
70 u16 regval;
71};
72
73/* ICH Flash Region Access Permissions */
74union ich8_hws_flash_regacc {
75 struct ich8_flracc {
76 u32 grra:8; /* 0:7 GbE region Read Access */
77 u32 grwa:8; /* 8:15 GbE region Write Access */
78 u32 gmrag:8; /* 23:16 GbE Master Read Access Grant */
79 u32 gmwag:8; /* 31:24 GbE Master Write Access Grant */
80 } hsf_flregacc;
81 u16 regval;
82};
83
84/* ICH Flash Protected Region */
85union ich8_flash_protected_range {
86 struct ich8_pr {
87 u32 base:13; /* 0:12 Protected Range Base */
88 u32 reserved1:2; /* 13:14 Reserved */
89 u32 rpe:1; /* 15 Read Protection Enable */
90 u32 limit:13; /* 16:28 Protected Range Limit */
91 u32 reserved2:2; /* 29:30 Reserved */
92 u32 wpe:1; /* 31 Write Protection Enable */
93 } range;
94 u32 regval;
95};
96
97static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
98static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
99static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
100static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
101 u32 offset, u8 byte);
102static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
103 u8 *data);
104static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
105 u16 *data);
106static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
107 u8 size, u16 *data);
108static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
109 u32 *data);
110static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw,
111 u32 offset, u32 *data);
112static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw,
113 u32 offset, u32 data);
114static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw,
115 u32 offset, u32 dword);
116static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
117static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
118static s32 e1000_led_on_ich8lan(struct e1000_hw *hw);
119static s32 e1000_led_off_ich8lan(struct e1000_hw *hw);
120static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
121static s32 e1000_setup_led_pchlan(struct e1000_hw *hw);
122static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw);
123static s32 e1000_led_on_pchlan(struct e1000_hw *hw);
124static s32 e1000_led_off_pchlan(struct e1000_hw *hw);
125static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
126static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw);
127static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw);
128static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
129static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw);
130static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw);
131static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw);
132static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index);
133static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index);
134static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw);
135static s32 e1000_k1_workaround_lv(struct e1000_hw *hw);
136static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate);
137static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force);
138static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw);
139static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state);
140
141static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg)
142{
143 return readw(addr: hw->flash_address + reg);
144}
145
146static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg)
147{
148 return readl(addr: hw->flash_address + reg);
149}
150
151static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val)
152{
153 writew(val, addr: hw->flash_address + reg);
154}
155
156static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val)
157{
158 writel(val, addr: hw->flash_address + reg);
159}
160
161#define er16flash(reg) __er16flash(hw, (reg))
162#define er32flash(reg) __er32flash(hw, (reg))
163#define ew16flash(reg, val) __ew16flash(hw, (reg), (val))
164#define ew32flash(reg, val) __ew32flash(hw, (reg), (val))
165
166/**
167 * e1000_phy_is_accessible_pchlan - Check if able to access PHY registers
168 * @hw: pointer to the HW structure
169 *
170 * Test access to the PHY registers by reading the PHY ID registers. If
171 * the PHY ID is already known (e.g. resume path) compare it with known ID,
172 * otherwise assume the read PHY ID is correct if it is valid.
173 *
174 * Assumes the sw/fw/hw semaphore is already acquired.
175 **/
176static bool e1000_phy_is_accessible_pchlan(struct e1000_hw *hw)
177{
178 u16 phy_reg = 0;
179 u32 phy_id = 0;
180 s32 ret_val = 0;
181 u16 retry_count;
182 u32 mac_reg = 0;
183
184 for (retry_count = 0; retry_count < 2; retry_count++) {
185 ret_val = e1e_rphy_locked(hw, MII_PHYSID1, data: &phy_reg);
186 if (ret_val || (phy_reg == 0xFFFF))
187 continue;
188 phy_id = (u32)(phy_reg << 16);
189
190 ret_val = e1e_rphy_locked(hw, MII_PHYSID2, data: &phy_reg);
191 if (ret_val || (phy_reg == 0xFFFF)) {
192 phy_id = 0;
193 continue;
194 }
195 phy_id |= (u32)(phy_reg & PHY_REVISION_MASK);
196 break;
197 }
198
199 if (hw->phy.id) {
200 if (hw->phy.id == phy_id)
201 goto out;
202 } else if (phy_id) {
203 hw->phy.id = phy_id;
204 hw->phy.revision = (u32)(phy_reg & ~PHY_REVISION_MASK);
205 goto out;
206 }
207
208 /* In case the PHY needs to be in mdio slow mode,
209 * set slow mode and try to get the PHY id again.
210 */
211 if (hw->mac.type < e1000_pch_lpt) {
212 hw->phy.ops.release(hw);
213 ret_val = e1000_set_mdio_slow_mode_hv(hw);
214 if (!ret_val)
215 ret_val = e1000e_get_phy_id(hw);
216 hw->phy.ops.acquire(hw);
217 }
218
219 if (ret_val)
220 return false;
221out:
222 if (hw->mac.type >= e1000_pch_lpt) {
223 /* Only unforce SMBus if ME is not active */
224 if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
225 /* Switching PHY interface always returns MDI error
226 * so disable retry mechanism to avoid wasting time
227 */
228 e1000e_disable_phy_retry(hw);
229
230 /* Unforce SMBus mode in PHY */
231 e1e_rphy_locked(hw, CV_SMB_CTRL, data: &phy_reg);
232 phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
233 e1e_wphy_locked(hw, CV_SMB_CTRL, data: phy_reg);
234
235 e1000e_enable_phy_retry(hw);
236
237 /* Unforce SMBus mode in MAC */
238 mac_reg = er32(CTRL_EXT);
239 mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
240 ew32(CTRL_EXT, mac_reg);
241 }
242 }
243
244 return true;
245}
246
247/**
248 * e1000_toggle_lanphypc_pch_lpt - toggle the LANPHYPC pin value
249 * @hw: pointer to the HW structure
250 *
251 * Toggling the LANPHYPC pin value fully power-cycles the PHY and is
252 * used to reset the PHY to a quiescent state when necessary.
253 **/
254static void e1000_toggle_lanphypc_pch_lpt(struct e1000_hw *hw)
255{
256 u32 mac_reg;
257
258 /* Set Phy Config Counter to 50msec */
259 mac_reg = er32(FEXTNVM3);
260 mac_reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
261 mac_reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
262 ew32(FEXTNVM3, mac_reg);
263
264 /* Toggle LANPHYPC Value bit */
265 mac_reg = er32(CTRL);
266 mac_reg |= E1000_CTRL_LANPHYPC_OVERRIDE;
267 mac_reg &= ~E1000_CTRL_LANPHYPC_VALUE;
268 ew32(CTRL, mac_reg);
269 e1e_flush();
270 usleep_range(min: 10, max: 20);
271 mac_reg &= ~E1000_CTRL_LANPHYPC_OVERRIDE;
272 ew32(CTRL, mac_reg);
273 e1e_flush();
274
275 if (hw->mac.type < e1000_pch_lpt) {
276 msleep(msecs: 50);
277 } else {
278 u16 count = 20;
279
280 do {
281 usleep_range(min: 5000, max: 6000);
282 } while (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LPCD) && count--);
283
284 msleep(msecs: 30);
285 }
286}
287
288/**
289 * e1000_init_phy_workarounds_pchlan - PHY initialization workarounds
290 * @hw: pointer to the HW structure
291 *
292 * Workarounds/flow necessary for PHY initialization during driver load
293 * and resume paths.
294 **/
295static s32 e1000_init_phy_workarounds_pchlan(struct e1000_hw *hw)
296{
297 struct e1000_adapter *adapter = hw->adapter;
298 u32 mac_reg, fwsm = er32(FWSM);
299 s32 ret_val;
300
301 /* Gate automatic PHY configuration by hardware on managed and
302 * non-managed 82579 and newer adapters.
303 */
304 e1000_gate_hw_phy_config_ich8lan(hw, gate: true);
305
306 /* It is not possible to be certain of the current state of ULP
307 * so forcibly disable it.
308 */
309 hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_unknown;
310 ret_val = e1000_disable_ulp_lpt_lp(hw, force: true);
311 if (ret_val)
312 e_warn("Failed to disable ULP\n");
313
314 ret_val = hw->phy.ops.acquire(hw);
315 if (ret_val) {
316 e_dbg("Failed to initialize PHY flow\n");
317 goto out;
318 }
319
320 /* There is no guarantee that the PHY is accessible at this time
321 * so disable retry mechanism to avoid wasting time
322 */
323 e1000e_disable_phy_retry(hw);
324
325 /* The MAC-PHY interconnect may be in SMBus mode. If the PHY is
326 * inaccessible and resetting the PHY is not blocked, toggle the
327 * LANPHYPC Value bit to force the interconnect to PCIe mode.
328 */
329 switch (hw->mac.type) {
330 case e1000_pch_lpt:
331 case e1000_pch_spt:
332 case e1000_pch_cnp:
333 case e1000_pch_tgp:
334 case e1000_pch_adp:
335 case e1000_pch_mtp:
336 case e1000_pch_lnp:
337 case e1000_pch_ptp:
338 case e1000_pch_nvp:
339 if (e1000_phy_is_accessible_pchlan(hw))
340 break;
341
342 /* Before toggling LANPHYPC, see if PHY is accessible by
343 * forcing MAC to SMBus mode first.
344 */
345 mac_reg = er32(CTRL_EXT);
346 mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
347 ew32(CTRL_EXT, mac_reg);
348
349 /* Wait 50 milliseconds for MAC to finish any retries
350 * that it might be trying to perform from previous
351 * attempts to acknowledge any phy read requests.
352 */
353 msleep(msecs: 50);
354
355 fallthrough;
356 case e1000_pch2lan:
357 if (e1000_phy_is_accessible_pchlan(hw))
358 break;
359
360 fallthrough;
361 case e1000_pchlan:
362 if ((hw->mac.type == e1000_pchlan) &&
363 (fwsm & E1000_ICH_FWSM_FW_VALID))
364 break;
365
366 if (hw->phy.ops.check_reset_block(hw)) {
367 e_dbg("Required LANPHYPC toggle blocked by ME\n");
368 ret_val = -E1000_ERR_PHY;
369 break;
370 }
371
372 /* Toggle LANPHYPC Value bit */
373 e1000_toggle_lanphypc_pch_lpt(hw);
374 if (hw->mac.type >= e1000_pch_lpt) {
375 if (e1000_phy_is_accessible_pchlan(hw))
376 break;
377
378 /* Toggling LANPHYPC brings the PHY out of SMBus mode
379 * so ensure that the MAC is also out of SMBus mode
380 */
381 mac_reg = er32(CTRL_EXT);
382 mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
383 ew32(CTRL_EXT, mac_reg);
384
385 if (e1000_phy_is_accessible_pchlan(hw))
386 break;
387
388 ret_val = -E1000_ERR_PHY;
389 }
390 break;
391 default:
392 break;
393 }
394
395 e1000e_enable_phy_retry(hw);
396
397 hw->phy.ops.release(hw);
398 if (!ret_val) {
399
400 /* Check to see if able to reset PHY. Print error if not */
401 if (hw->phy.ops.check_reset_block(hw)) {
402 e_err("Reset blocked by ME\n");
403 goto out;
404 }
405
406 /* Reset the PHY before any access to it. Doing so, ensures
407 * that the PHY is in a known good state before we read/write
408 * PHY registers. The generic reset is sufficient here,
409 * because we haven't determined the PHY type yet.
410 */
411 ret_val = e1000e_phy_hw_reset_generic(hw);
412 if (ret_val)
413 goto out;
414
415 /* On a successful reset, possibly need to wait for the PHY
416 * to quiesce to an accessible state before returning control
417 * to the calling function. If the PHY does not quiesce, then
418 * return E1000E_BLK_PHY_RESET, as this is the condition that
419 * the PHY is in.
420 */
421 ret_val = hw->phy.ops.check_reset_block(hw);
422 if (ret_val)
423 e_err("ME blocked access to PHY after reset\n");
424 }
425
426out:
427 /* Ungate automatic PHY configuration on non-managed 82579 */
428 if ((hw->mac.type == e1000_pch2lan) &&
429 !(fwsm & E1000_ICH_FWSM_FW_VALID)) {
430 usleep_range(min: 10000, max: 11000);
431 e1000_gate_hw_phy_config_ich8lan(hw, gate: false);
432 }
433
434 return ret_val;
435}
436
437/**
438 * e1000_init_phy_params_pchlan - Initialize PHY function pointers
439 * @hw: pointer to the HW structure
440 *
441 * Initialize family-specific PHY parameters and function pointers.
442 **/
443static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
444{
445 struct e1000_phy_info *phy = &hw->phy;
446 s32 ret_val;
447
448 phy->addr = 1;
449 phy->reset_delay_us = 100;
450
451 phy->ops.set_page = e1000_set_page_igp;
452 phy->ops.read_reg = e1000_read_phy_reg_hv;
453 phy->ops.read_reg_locked = e1000_read_phy_reg_hv_locked;
454 phy->ops.read_reg_page = e1000_read_phy_reg_page_hv;
455 phy->ops.set_d0_lplu_state = e1000_set_lplu_state_pchlan;
456 phy->ops.set_d3_lplu_state = e1000_set_lplu_state_pchlan;
457 phy->ops.write_reg = e1000_write_phy_reg_hv;
458 phy->ops.write_reg_locked = e1000_write_phy_reg_hv_locked;
459 phy->ops.write_reg_page = e1000_write_phy_reg_page_hv;
460 phy->ops.power_up = e1000_power_up_phy_copper;
461 phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
462 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
463
464 phy->id = e1000_phy_unknown;
465
466 if (hw->mac.type == e1000_pch_mtp) {
467 phy->retry_count = 2;
468 e1000e_enable_phy_retry(hw);
469 }
470
471 ret_val = e1000_init_phy_workarounds_pchlan(hw);
472 if (ret_val)
473 return ret_val;
474
475 if (phy->id == e1000_phy_unknown)
476 switch (hw->mac.type) {
477 default:
478 ret_val = e1000e_get_phy_id(hw);
479 if (ret_val)
480 return ret_val;
481 if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK))
482 break;
483 fallthrough;
484 case e1000_pch2lan:
485 case e1000_pch_lpt:
486 case e1000_pch_spt:
487 case e1000_pch_cnp:
488 case e1000_pch_tgp:
489 case e1000_pch_adp:
490 case e1000_pch_mtp:
491 case e1000_pch_lnp:
492 case e1000_pch_ptp:
493 case e1000_pch_nvp:
494 /* In case the PHY needs to be in mdio slow mode,
495 * set slow mode and try to get the PHY id again.
496 */
497 ret_val = e1000_set_mdio_slow_mode_hv(hw);
498 if (ret_val)
499 return ret_val;
500 ret_val = e1000e_get_phy_id(hw);
501 if (ret_val)
502 return ret_val;
503 break;
504 }
505 phy->type = e1000e_get_phy_type_from_id(phy_id: phy->id);
506
507 switch (phy->type) {
508 case e1000_phy_82577:
509 case e1000_phy_82579:
510 case e1000_phy_i217:
511 phy->ops.check_polarity = e1000_check_polarity_82577;
512 phy->ops.force_speed_duplex =
513 e1000_phy_force_speed_duplex_82577;
514 phy->ops.get_cable_length = e1000_get_cable_length_82577;
515 phy->ops.get_info = e1000_get_phy_info_82577;
516 phy->ops.commit = e1000e_phy_sw_reset;
517 break;
518 case e1000_phy_82578:
519 phy->ops.check_polarity = e1000_check_polarity_m88;
520 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
521 phy->ops.get_cable_length = e1000e_get_cable_length_m88;
522 phy->ops.get_info = e1000e_get_phy_info_m88;
523 break;
524 default:
525 ret_val = -E1000_ERR_PHY;
526 break;
527 }
528
529 return ret_val;
530}
531
532/**
533 * e1000_init_phy_params_ich8lan - Initialize PHY function pointers
534 * @hw: pointer to the HW structure
535 *
536 * Initialize family-specific PHY parameters and function pointers.
537 **/
538static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
539{
540 struct e1000_phy_info *phy = &hw->phy;
541 s32 ret_val;
542 u16 i = 0;
543
544 phy->addr = 1;
545 phy->reset_delay_us = 100;
546
547 phy->ops.power_up = e1000_power_up_phy_copper;
548 phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
549
550 /* We may need to do this twice - once for IGP and if that fails,
551 * we'll set BM func pointers and try again
552 */
553 ret_val = e1000e_determine_phy_address(hw);
554 if (ret_val) {
555 phy->ops.write_reg = e1000e_write_phy_reg_bm;
556 phy->ops.read_reg = e1000e_read_phy_reg_bm;
557 ret_val = e1000e_determine_phy_address(hw);
558 if (ret_val) {
559 e_dbg("Cannot determine PHY addr. Erroring out\n");
560 return ret_val;
561 }
562 }
563
564 phy->id = 0;
565 while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy_id: phy->id)) &&
566 (i++ < 100)) {
567 usleep_range(min: 1000, max: 1100);
568 ret_val = e1000e_get_phy_id(hw);
569 if (ret_val)
570 return ret_val;
571 }
572
573 /* Verify phy id */
574 switch (phy->id) {
575 case IGP03E1000_E_PHY_ID:
576 phy->type = e1000_phy_igp_3;
577 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
578 phy->ops.read_reg_locked = e1000e_read_phy_reg_igp_locked;
579 phy->ops.write_reg_locked = e1000e_write_phy_reg_igp_locked;
580 phy->ops.get_info = e1000e_get_phy_info_igp;
581 phy->ops.check_polarity = e1000_check_polarity_igp;
582 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_igp;
583 break;
584 case IFE_E_PHY_ID:
585 case IFE_PLUS_E_PHY_ID:
586 case IFE_C_E_PHY_ID:
587 phy->type = e1000_phy_ife;
588 phy->autoneg_mask = E1000_ALL_NOT_GIG;
589 phy->ops.get_info = e1000_get_phy_info_ife;
590 phy->ops.check_polarity = e1000_check_polarity_ife;
591 phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife;
592 break;
593 case BME1000_E_PHY_ID:
594 phy->type = e1000_phy_bm;
595 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
596 phy->ops.read_reg = e1000e_read_phy_reg_bm;
597 phy->ops.write_reg = e1000e_write_phy_reg_bm;
598 phy->ops.commit = e1000e_phy_sw_reset;
599 phy->ops.get_info = e1000e_get_phy_info_m88;
600 phy->ops.check_polarity = e1000_check_polarity_m88;
601 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
602 break;
603 default:
604 return -E1000_ERR_PHY;
605 }
606
607 return 0;
608}
609
610/**
611 * e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
612 * @hw: pointer to the HW structure
613 *
614 * Initialize family-specific NVM parameters and function
615 * pointers.
616 **/
617static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
618{
619 struct e1000_nvm_info *nvm = &hw->nvm;
620 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
621 u32 gfpreg, sector_base_addr, sector_end_addr;
622 u16 i;
623 u32 nvm_size;
624
625 nvm->type = e1000_nvm_flash_sw;
626
627 if (hw->mac.type >= e1000_pch_spt) {
628 /* in SPT, gfpreg doesn't exist. NVM size is taken from the
629 * STRAP register. This is because in SPT the GbE Flash region
630 * is no longer accessed through the flash registers. Instead,
631 * the mechanism has changed, and the Flash region access
632 * registers are now implemented in GbE memory space.
633 */
634 nvm->flash_base_addr = 0;
635 nvm_size = (((er32(STRAP) >> 1) & 0x1F) + 1)
636 * NVM_SIZE_MULTIPLIER;
637 nvm->flash_bank_size = nvm_size / 2;
638 /* Adjust to word count */
639 nvm->flash_bank_size /= sizeof(u16);
640 /* Set the base address for flash register access */
641 hw->flash_address = hw->hw_addr + E1000_FLASH_BASE_ADDR;
642 } else {
643 /* Can't read flash registers if register set isn't mapped. */
644 if (!hw->flash_address) {
645 e_dbg("ERROR: Flash registers not mapped\n");
646 return -E1000_ERR_CONFIG;
647 }
648
649 gfpreg = er32flash(ICH_FLASH_GFPREG);
650
651 /* sector_X_addr is a "sector"-aligned address (4096 bytes)
652 * Add 1 to sector_end_addr since this sector is included in
653 * the overall size.
654 */
655 sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
656 sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
657
658 /* flash_base_addr is byte-aligned */
659 nvm->flash_base_addr = sector_base_addr
660 << FLASH_SECTOR_ADDR_SHIFT;
661
662 /* find total size of the NVM, then cut in half since the total
663 * size represents two separate NVM banks.
664 */
665 nvm->flash_bank_size = ((sector_end_addr - sector_base_addr)
666 << FLASH_SECTOR_ADDR_SHIFT);
667 nvm->flash_bank_size /= 2;
668 /* Adjust to word count */
669 nvm->flash_bank_size /= sizeof(u16);
670 }
671
672 nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS;
673
674 /* Clear shadow ram */
675 for (i = 0; i < nvm->word_size; i++) {
676 dev_spec->shadow_ram[i].modified = false;
677 dev_spec->shadow_ram[i].value = 0xFFFF;
678 }
679
680 return 0;
681}
682
683/**
684 * e1000_init_mac_params_ich8lan - Initialize MAC function pointers
685 * @hw: pointer to the HW structure
686 *
687 * Initialize family-specific MAC parameters and function
688 * pointers.
689 **/
690static s32 e1000_init_mac_params_ich8lan(struct e1000_hw *hw)
691{
692 struct e1000_mac_info *mac = &hw->mac;
693
694 /* Set media type function pointer */
695 hw->phy.media_type = e1000_media_type_copper;
696
697 /* Set mta register count */
698 mac->mta_reg_count = 32;
699 /* Set rar entry count */
700 mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
701 if (mac->type == e1000_ich8lan)
702 mac->rar_entry_count--;
703 /* FWSM register */
704 mac->has_fwsm = true;
705 /* ARC subsystem not supported */
706 mac->arc_subsystem_valid = false;
707 /* Adaptive IFS supported */
708 mac->adaptive_ifs = true;
709
710 /* LED and other operations */
711 switch (mac->type) {
712 case e1000_ich8lan:
713 case e1000_ich9lan:
714 case e1000_ich10lan:
715 /* check management mode */
716 mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan;
717 /* ID LED init */
718 mac->ops.id_led_init = e1000e_id_led_init_generic;
719 /* blink LED */
720 mac->ops.blink_led = e1000e_blink_led_generic;
721 /* setup LED */
722 mac->ops.setup_led = e1000e_setup_led_generic;
723 /* cleanup LED */
724 mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
725 /* turn on/off LED */
726 mac->ops.led_on = e1000_led_on_ich8lan;
727 mac->ops.led_off = e1000_led_off_ich8lan;
728 break;
729 case e1000_pch2lan:
730 mac->rar_entry_count = E1000_PCH2_RAR_ENTRIES;
731 mac->ops.rar_set = e1000_rar_set_pch2lan;
732 fallthrough;
733 case e1000_pch_lpt:
734 case e1000_pch_spt:
735 case e1000_pch_cnp:
736 case e1000_pch_tgp:
737 case e1000_pch_adp:
738 case e1000_pch_mtp:
739 case e1000_pch_lnp:
740 case e1000_pch_ptp:
741 case e1000_pch_nvp:
742 case e1000_pchlan:
743 /* check management mode */
744 mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan;
745 /* ID LED init */
746 mac->ops.id_led_init = e1000_id_led_init_pchlan;
747 /* setup LED */
748 mac->ops.setup_led = e1000_setup_led_pchlan;
749 /* cleanup LED */
750 mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
751 /* turn on/off LED */
752 mac->ops.led_on = e1000_led_on_pchlan;
753 mac->ops.led_off = e1000_led_off_pchlan;
754 break;
755 default:
756 break;
757 }
758
759 if (mac->type >= e1000_pch_lpt) {
760 mac->rar_entry_count = E1000_PCH_LPT_RAR_ENTRIES;
761 mac->ops.rar_set = e1000_rar_set_pch_lpt;
762 mac->ops.setup_physical_interface =
763 e1000_setup_copper_link_pch_lpt;
764 mac->ops.rar_get_count = e1000_rar_get_count_pch_lpt;
765 }
766
767 /* Enable PCS Lock-loss workaround for ICH8 */
768 if (mac->type == e1000_ich8lan)
769 e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, state: true);
770
771 return 0;
772}
773
774/**
775 * __e1000_access_emi_reg_locked - Read/write EMI register
776 * @hw: pointer to the HW structure
777 * @address: EMI address to program
778 * @data: pointer to value to read/write from/to the EMI address
779 * @read: boolean flag to indicate read or write
780 *
781 * This helper function assumes the SW/FW/HW Semaphore is already acquired.
782 **/
783static s32 __e1000_access_emi_reg_locked(struct e1000_hw *hw, u16 address,
784 u16 *data, bool read)
785{
786 s32 ret_val;
787
788 ret_val = e1e_wphy_locked(hw, I82579_EMI_ADDR, data: address);
789 if (ret_val)
790 return ret_val;
791
792 if (read)
793 ret_val = e1e_rphy_locked(hw, I82579_EMI_DATA, data);
794 else
795 ret_val = e1e_wphy_locked(hw, I82579_EMI_DATA, data: *data);
796
797 return ret_val;
798}
799
800/**
801 * e1000_read_emi_reg_locked - Read Extended Management Interface register
802 * @hw: pointer to the HW structure
803 * @addr: EMI address to program
804 * @data: value to be read from the EMI address
805 *
806 * Assumes the SW/FW/HW Semaphore is already acquired.
807 **/
808s32 e1000_read_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 *data)
809{
810 return __e1000_access_emi_reg_locked(hw, address: addr, data, read: true);
811}
812
813/**
814 * e1000_write_emi_reg_locked - Write Extended Management Interface register
815 * @hw: pointer to the HW structure
816 * @addr: EMI address to program
817 * @data: value to be written to the EMI address
818 *
819 * Assumes the SW/FW/HW Semaphore is already acquired.
820 **/
821s32 e1000_write_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 data)
822{
823 return __e1000_access_emi_reg_locked(hw, address: addr, data: &data, read: false);
824}
825
826/**
827 * e1000_set_eee_pchlan - Enable/disable EEE support
828 * @hw: pointer to the HW structure
829 *
830 * Enable/disable EEE based on setting in dev_spec structure, the duplex of
831 * the link and the EEE capabilities of the link partner. The LPI Control
832 * register bits will remain set only if/when link is up.
833 *
834 * EEE LPI must not be asserted earlier than one second after link is up.
835 * On 82579, EEE LPI should not be enabled until such time otherwise there
836 * can be link issues with some switches. Other devices can have EEE LPI
837 * enabled immediately upon link up since they have a timer in hardware which
838 * prevents LPI from being asserted too early.
839 **/
840s32 e1000_set_eee_pchlan(struct e1000_hw *hw)
841{
842 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
843 s32 ret_val;
844 u16 lpa, pcs_status, adv, adv_addr, lpi_ctrl, data;
845
846 switch (hw->phy.type) {
847 case e1000_phy_82579:
848 lpa = I82579_EEE_LP_ABILITY;
849 pcs_status = I82579_EEE_PCS_STATUS;
850 adv_addr = I82579_EEE_ADVERTISEMENT;
851 break;
852 case e1000_phy_i217:
853 lpa = I217_EEE_LP_ABILITY;
854 pcs_status = I217_EEE_PCS_STATUS;
855 adv_addr = I217_EEE_ADVERTISEMENT;
856 break;
857 default:
858 return 0;
859 }
860
861 ret_val = hw->phy.ops.acquire(hw);
862 if (ret_val)
863 return ret_val;
864
865 ret_val = e1e_rphy_locked(hw, I82579_LPI_CTRL, data: &lpi_ctrl);
866 if (ret_val)
867 goto release;
868
869 /* Clear bits that enable EEE in various speeds */
870 lpi_ctrl &= ~I82579_LPI_CTRL_ENABLE_MASK;
871
872 /* Enable EEE if not disabled by user */
873 if (!dev_spec->eee_disable) {
874 /* Save off link partner's EEE ability */
875 ret_val = e1000_read_emi_reg_locked(hw, addr: lpa,
876 data: &dev_spec->eee_lp_ability);
877 if (ret_val)
878 goto release;
879
880 /* Read EEE advertisement */
881 ret_val = e1000_read_emi_reg_locked(hw, addr: adv_addr, data: &adv);
882 if (ret_val)
883 goto release;
884
885 /* Enable EEE only for speeds in which the link partner is
886 * EEE capable and for which we advertise EEE.
887 */
888 if (adv & dev_spec->eee_lp_ability & I82579_EEE_1000_SUPPORTED)
889 lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE;
890
891 if (adv & dev_spec->eee_lp_ability & I82579_EEE_100_SUPPORTED) {
892 e1e_rphy_locked(hw, MII_LPA, data: &data);
893 if (data & LPA_100FULL)
894 lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE;
895 else
896 /* EEE is not supported in 100Half, so ignore
897 * partner's EEE in 100 ability if full-duplex
898 * is not advertised.
899 */
900 dev_spec->eee_lp_ability &=
901 ~I82579_EEE_100_SUPPORTED;
902 }
903 }
904
905 if (hw->phy.type == e1000_phy_82579) {
906 ret_val = e1000_read_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
907 data: &data);
908 if (ret_val)
909 goto release;
910
911 data &= ~I82579_LPI_100_PLL_SHUT;
912 ret_val = e1000_write_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
913 data);
914 }
915
916 /* R/Clr IEEE MMD 3.1 bits 11:10 - Tx/Rx LPI Received */
917 ret_val = e1000_read_emi_reg_locked(hw, addr: pcs_status, data: &data);
918 if (ret_val)
919 goto release;
920
921 ret_val = e1e_wphy_locked(hw, I82579_LPI_CTRL, data: lpi_ctrl);
922release:
923 hw->phy.ops.release(hw);
924
925 return ret_val;
926}
927
928/**
929 * e1000_k1_workaround_lpt_lp - K1 workaround on Lynxpoint-LP
930 * @hw: pointer to the HW structure
931 * @link: link up bool flag
932 *
933 * When K1 is enabled for 1Gbps, the MAC can miss 2 DMA completion indications
934 * preventing further DMA write requests. Workaround the issue by disabling
935 * the de-assertion of the clock request when in 1Gpbs mode.
936 * Also, set appropriate Tx re-transmission timeouts for 10 and 100Half link
937 * speeds in order to avoid Tx hangs.
938 **/
939static s32 e1000_k1_workaround_lpt_lp(struct e1000_hw *hw, bool link)
940{
941 u32 fextnvm6 = er32(FEXTNVM6);
942 u32 status = er32(STATUS);
943 s32 ret_val = 0;
944 u16 reg;
945
946 if (link && (status & E1000_STATUS_SPEED_1000)) {
947 ret_val = hw->phy.ops.acquire(hw);
948 if (ret_val)
949 return ret_val;
950
951 ret_val =
952 e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
953 data: &reg);
954 if (ret_val)
955 goto release;
956
957 ret_val =
958 e1000e_write_kmrn_reg_locked(hw,
959 E1000_KMRNCTRLSTA_K1_CONFIG,
960 data: reg &
961 ~E1000_KMRNCTRLSTA_K1_ENABLE);
962 if (ret_val)
963 goto release;
964
965 usleep_range(min: 10, max: 20);
966
967 ew32(FEXTNVM6, fextnvm6 | E1000_FEXTNVM6_REQ_PLL_CLK);
968
969 ret_val =
970 e1000e_write_kmrn_reg_locked(hw,
971 E1000_KMRNCTRLSTA_K1_CONFIG,
972 data: reg);
973release:
974 hw->phy.ops.release(hw);
975 } else {
976 /* clear FEXTNVM6 bit 8 on link down or 10/100 */
977 fextnvm6 &= ~E1000_FEXTNVM6_REQ_PLL_CLK;
978
979 if ((hw->phy.revision > 5) || !link ||
980 ((status & E1000_STATUS_SPEED_100) &&
981 (status & E1000_STATUS_FD)))
982 goto update_fextnvm6;
983
984 ret_val = e1e_rphy(hw, I217_INBAND_CTRL, data: &reg);
985 if (ret_val)
986 return ret_val;
987
988 /* Clear link status transmit timeout */
989 reg &= ~I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_MASK;
990
991 if (status & E1000_STATUS_SPEED_100) {
992 /* Set inband Tx timeout to 5x10us for 100Half */
993 reg |= 5 << I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
994
995 /* Do not extend the K1 entry latency for 100Half */
996 fextnvm6 &= ~E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
997 } else {
998 /* Set inband Tx timeout to 50x10us for 10Full/Half */
999 reg |= 50 <<
1000 I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
1001
1002 /* Extend the K1 entry latency for 10 Mbps */
1003 fextnvm6 |= E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
1004 }
1005
1006 ret_val = e1e_wphy(hw, I217_INBAND_CTRL, data: reg);
1007 if (ret_val)
1008 return ret_val;
1009
1010update_fextnvm6:
1011 ew32(FEXTNVM6, fextnvm6);
1012 }
1013
1014 return ret_val;
1015}
1016
1017/**
1018 * e1000_platform_pm_pch_lpt - Set platform power management values
1019 * @hw: pointer to the HW structure
1020 * @link: bool indicating link status
1021 *
1022 * Set the Latency Tolerance Reporting (LTR) values for the "PCIe-like"
1023 * GbE MAC in the Lynx Point PCH based on Rx buffer size and link speed
1024 * when link is up (which must not exceed the maximum latency supported
1025 * by the platform), otherwise specify there is no LTR requirement.
1026 * Unlike true-PCIe devices which set the LTR maximum snoop/no-snoop
1027 * latencies in the LTR Extended Capability Structure in the PCIe Extended
1028 * Capability register set, on this device LTR is set by writing the
1029 * equivalent snoop/no-snoop latencies in the LTRV register in the MAC and
1030 * set the SEND bit to send an Intel On-chip System Fabric sideband (IOSF-SB)
1031 * message to the PMC.
1032 **/
1033static s32 e1000_platform_pm_pch_lpt(struct e1000_hw *hw, bool link)
1034{
1035 u32 reg = link << (E1000_LTRV_REQ_SHIFT + E1000_LTRV_NOSNOOP_SHIFT) |
1036 link << E1000_LTRV_REQ_SHIFT | E1000_LTRV_SEND;
1037 u32 max_ltr_enc_d = 0; /* maximum LTR decoded by platform */
1038 u32 lat_enc_d = 0; /* latency decoded */
1039 u16 lat_enc = 0; /* latency encoded */
1040
1041 if (link) {
1042 u16 speed, duplex, scale = 0;
1043 u16 max_snoop, max_nosnoop;
1044 u16 max_ltr_enc; /* max LTR latency encoded */
1045 u64 value;
1046 u32 rxa;
1047
1048 if (!hw->adapter->max_frame_size) {
1049 e_dbg("max_frame_size not set.\n");
1050 return -E1000_ERR_CONFIG;
1051 }
1052
1053 hw->mac.ops.get_link_up_info(hw, &speed, &duplex);
1054 if (!speed) {
1055 e_dbg("Speed not set.\n");
1056 return -E1000_ERR_CONFIG;
1057 }
1058
1059 /* Rx Packet Buffer Allocation size (KB) */
1060 rxa = er32(PBA) & E1000_PBA_RXA_MASK;
1061
1062 /* Determine the maximum latency tolerated by the device.
1063 *
1064 * Per the PCIe spec, the tolerated latencies are encoded as
1065 * a 3-bit encoded scale (only 0-5 are valid) multiplied by
1066 * a 10-bit value (0-1023) to provide a range from 1 ns to
1067 * 2^25*(2^10-1) ns. The scale is encoded as 0=2^0ns,
1068 * 1=2^5ns, 2=2^10ns,...5=2^25ns.
1069 */
1070 rxa *= 512;
1071 value = (rxa > hw->adapter->max_frame_size) ?
1072 (rxa - hw->adapter->max_frame_size) * (16000 / speed) :
1073 0;
1074
1075 while (value > PCI_LTR_VALUE_MASK) {
1076 scale++;
1077 value = DIV_ROUND_UP(value, BIT(5));
1078 }
1079 if (scale > E1000_LTRV_SCALE_MAX) {
1080 e_dbg("Invalid LTR latency scale %d\n", scale);
1081 return -E1000_ERR_CONFIG;
1082 }
1083 lat_enc = (u16)((scale << PCI_LTR_SCALE_SHIFT) | value);
1084
1085 /* Determine the maximum latency tolerated by the platform */
1086 pci_read_config_word(dev: hw->adapter->pdev, E1000_PCI_LTR_CAP_LPT,
1087 val: &max_snoop);
1088 pci_read_config_word(dev: hw->adapter->pdev,
1089 E1000_PCI_LTR_CAP_LPT + 2, val: &max_nosnoop);
1090 max_ltr_enc = max_t(u16, max_snoop, max_nosnoop);
1091
1092 lat_enc_d = (lat_enc & E1000_LTRV_VALUE_MASK) *
1093 (1U << (E1000_LTRV_SCALE_FACTOR *
1094 FIELD_GET(E1000_LTRV_SCALE_MASK, lat_enc)));
1095
1096 max_ltr_enc_d = (max_ltr_enc & E1000_LTRV_VALUE_MASK) *
1097 (1U << (E1000_LTRV_SCALE_FACTOR *
1098 FIELD_GET(E1000_LTRV_SCALE_MASK, max_ltr_enc)));
1099
1100 if (lat_enc_d > max_ltr_enc_d)
1101 lat_enc = max_ltr_enc;
1102 }
1103
1104 /* Set Snoop and No-Snoop latencies the same */
1105 reg |= lat_enc | (lat_enc << E1000_LTRV_NOSNOOP_SHIFT);
1106 ew32(LTRV, reg);
1107
1108 return 0;
1109}
1110
1111/**
1112 * e1000_enable_ulp_lpt_lp - configure Ultra Low Power mode for LynxPoint-LP
1113 * @hw: pointer to the HW structure
1114 * @to_sx: boolean indicating a system power state transition to Sx
1115 *
1116 * When link is down, configure ULP mode to significantly reduce the power
1117 * to the PHY. If on a Manageability Engine (ME) enabled system, tell the
1118 * ME firmware to start the ULP configuration. If not on an ME enabled
1119 * system, configure the ULP mode by software.
1120 */
1121s32 e1000_enable_ulp_lpt_lp(struct e1000_hw *hw, bool to_sx)
1122{
1123 u32 mac_reg;
1124 s32 ret_val = 0;
1125 u16 phy_reg;
1126 u16 oem_reg = 0;
1127
1128 if ((hw->mac.type < e1000_pch_lpt) ||
1129 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1130 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) ||
1131 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) ||
1132 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) ||
1133 (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_on))
1134 return 0;
1135
1136 if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
1137 /* Request ME configure ULP mode in the PHY */
1138 mac_reg = er32(H2ME);
1139 mac_reg |= E1000_H2ME_ULP | E1000_H2ME_ENFORCE_SETTINGS;
1140 ew32(H2ME, mac_reg);
1141
1142 goto out;
1143 }
1144
1145 if (!to_sx) {
1146 int i = 0;
1147
1148 /* Poll up to 5 seconds for Cable Disconnected indication */
1149 while (!(er32(FEXT) & E1000_FEXT_PHY_CABLE_DISCONNECTED)) {
1150 /* Bail if link is re-acquired */
1151 if (er32(STATUS) & E1000_STATUS_LU)
1152 return -E1000_ERR_PHY;
1153
1154 if (i++ == 100)
1155 break;
1156
1157 msleep(msecs: 50);
1158 }
1159 e_dbg("CABLE_DISCONNECTED %s set after %dmsec\n",
1160 (er32(FEXT) &
1161 E1000_FEXT_PHY_CABLE_DISCONNECTED) ? "" : "not", i * 50);
1162 }
1163
1164 ret_val = hw->phy.ops.acquire(hw);
1165 if (ret_val)
1166 goto out;
1167
1168 /* Si workaround for ULP entry flow on i127/rev6 h/w. Enable
1169 * LPLU and disable Gig speed when entering ULP
1170 */
1171 if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6)) {
1172 ret_val = e1000_read_phy_reg_hv_locked(hw, HV_OEM_BITS,
1173 data: &oem_reg);
1174 if (ret_val)
1175 goto release;
1176
1177 phy_reg = oem_reg;
1178 phy_reg |= HV_OEM_BITS_LPLU | HV_OEM_BITS_GBE_DIS;
1179
1180 ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS,
1181 data: phy_reg);
1182
1183 if (ret_val)
1184 goto release;
1185 }
1186
1187 /* Set Inband ULP Exit, Reset to SMBus mode and
1188 * Disable SMBus Release on PERST# in PHY
1189 */
1190 ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, data: &phy_reg);
1191 if (ret_val)
1192 goto release;
1193 phy_reg |= (I218_ULP_CONFIG1_RESET_TO_SMBUS |
1194 I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1195 if (to_sx) {
1196 if (er32(WUFC) & E1000_WUFC_LNKC)
1197 phy_reg |= I218_ULP_CONFIG1_WOL_HOST;
1198 else
1199 phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST;
1200
1201 phy_reg |= I218_ULP_CONFIG1_STICKY_ULP;
1202 phy_reg &= ~I218_ULP_CONFIG1_INBAND_EXIT;
1203 } else {
1204 phy_reg |= I218_ULP_CONFIG1_INBAND_EXIT;
1205 phy_reg &= ~I218_ULP_CONFIG1_STICKY_ULP;
1206 phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST;
1207 }
1208 e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, data: phy_reg);
1209
1210 /* Set Disable SMBus Release on PERST# in MAC */
1211 mac_reg = er32(FEXTNVM7);
1212 mac_reg |= E1000_FEXTNVM7_DISABLE_SMB_PERST;
1213 ew32(FEXTNVM7, mac_reg);
1214
1215 /* Commit ULP changes in PHY by starting auto ULP configuration */
1216 phy_reg |= I218_ULP_CONFIG1_START;
1217 e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, data: phy_reg);
1218
1219 if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6) &&
1220 to_sx && (er32(STATUS) & E1000_STATUS_LU)) {
1221 ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS,
1222 data: oem_reg);
1223 if (ret_val)
1224 goto release;
1225 }
1226
1227release:
1228 hw->phy.ops.release(hw);
1229out:
1230 if (ret_val)
1231 e_dbg("Error in ULP enable flow: %d\n", ret_val);
1232 else
1233 hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_on;
1234
1235 return ret_val;
1236}
1237
1238/**
1239 * e1000_disable_ulp_lpt_lp - unconfigure Ultra Low Power mode for LynxPoint-LP
1240 * @hw: pointer to the HW structure
1241 * @force: boolean indicating whether or not to force disabling ULP
1242 *
1243 * Un-configure ULP mode when link is up, the system is transitioned from
1244 * Sx or the driver is unloaded. If on a Manageability Engine (ME) enabled
1245 * system, poll for an indication from ME that ULP has been un-configured.
1246 * If not on an ME enabled system, un-configure the ULP mode by software.
1247 *
1248 * During nominal operation, this function is called when link is acquired
1249 * to disable ULP mode (force=false); otherwise, for example when unloading
1250 * the driver or during Sx->S0 transitions, this is called with force=true
1251 * to forcibly disable ULP.
1252 */
1253static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force)
1254{
1255 s32 ret_val = 0;
1256 u32 mac_reg;
1257 u16 phy_reg;
1258 int i = 0;
1259
1260 if ((hw->mac.type < e1000_pch_lpt) ||
1261 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1262 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) ||
1263 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) ||
1264 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) ||
1265 (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_off))
1266 return 0;
1267
1268 if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
1269 struct e1000_adapter *adapter = hw->adapter;
1270 bool firmware_bug = false;
1271
1272 if (force) {
1273 /* Request ME un-configure ULP mode in the PHY */
1274 mac_reg = er32(H2ME);
1275 mac_reg &= ~E1000_H2ME_ULP;
1276 mac_reg |= E1000_H2ME_ENFORCE_SETTINGS;
1277 ew32(H2ME, mac_reg);
1278 }
1279
1280 /* Poll up to 2.5 seconds for ME to clear ULP_CFG_DONE.
1281 * If this takes more than 1 second, show a warning indicating a
1282 * firmware bug
1283 */
1284 while (er32(FWSM) & E1000_FWSM_ULP_CFG_DONE) {
1285 if (i++ == 250) {
1286 ret_val = -E1000_ERR_PHY;
1287 goto out;
1288 }
1289 if (i > 100 && !firmware_bug)
1290 firmware_bug = true;
1291
1292 usleep_range(min: 10000, max: 11000);
1293 }
1294 if (firmware_bug)
1295 e_warn("ULP_CONFIG_DONE took %d msec. This is a firmware bug\n",
1296 i * 10);
1297 else
1298 e_dbg("ULP_CONFIG_DONE cleared after %d msec\n",
1299 i * 10);
1300
1301 if (force) {
1302 mac_reg = er32(H2ME);
1303 mac_reg &= ~E1000_H2ME_ENFORCE_SETTINGS;
1304 ew32(H2ME, mac_reg);
1305 } else {
1306 /* Clear H2ME.ULP after ME ULP configuration */
1307 mac_reg = er32(H2ME);
1308 mac_reg &= ~E1000_H2ME_ULP;
1309 ew32(H2ME, mac_reg);
1310 }
1311
1312 goto out;
1313 }
1314
1315 ret_val = hw->phy.ops.acquire(hw);
1316 if (ret_val)
1317 goto out;
1318
1319 if (force)
1320 /* Toggle LANPHYPC Value bit */
1321 e1000_toggle_lanphypc_pch_lpt(hw);
1322
1323 /* Switching PHY interface always returns MDI error
1324 * so disable retry mechanism to avoid wasting time
1325 */
1326 e1000e_disable_phy_retry(hw);
1327
1328 /* Unforce SMBus mode in PHY */
1329 ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, data: &phy_reg);
1330 if (ret_val) {
1331 /* The MAC might be in PCIe mode, so temporarily force to
1332 * SMBus mode in order to access the PHY.
1333 */
1334 mac_reg = er32(CTRL_EXT);
1335 mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1336 ew32(CTRL_EXT, mac_reg);
1337
1338 msleep(msecs: 50);
1339
1340 ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL,
1341 data: &phy_reg);
1342 if (ret_val)
1343 goto release;
1344 }
1345 phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
1346 e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, data: phy_reg);
1347
1348 e1000e_enable_phy_retry(hw);
1349
1350 /* Unforce SMBus mode in MAC */
1351 mac_reg = er32(CTRL_EXT);
1352 mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
1353 ew32(CTRL_EXT, mac_reg);
1354
1355 /* When ULP mode was previously entered, K1 was disabled by the
1356 * hardware. Re-Enable K1 in the PHY when exiting ULP.
1357 */
1358 ret_val = e1000_read_phy_reg_hv_locked(hw, HV_PM_CTRL, data: &phy_reg);
1359 if (ret_val)
1360 goto release;
1361 phy_reg |= HV_PM_CTRL_K1_ENABLE;
1362 e1000_write_phy_reg_hv_locked(hw, HV_PM_CTRL, data: phy_reg);
1363
1364 /* Clear ULP enabled configuration */
1365 ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, data: &phy_reg);
1366 if (ret_val)
1367 goto release;
1368 phy_reg &= ~(I218_ULP_CONFIG1_IND |
1369 I218_ULP_CONFIG1_STICKY_ULP |
1370 I218_ULP_CONFIG1_RESET_TO_SMBUS |
1371 I218_ULP_CONFIG1_WOL_HOST |
1372 I218_ULP_CONFIG1_INBAND_EXIT |
1373 I218_ULP_CONFIG1_EN_ULP_LANPHYPC |
1374 I218_ULP_CONFIG1_DIS_CLR_STICKY_ON_PERST |
1375 I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1376 e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, data: phy_reg);
1377
1378 /* Commit ULP changes by starting auto ULP configuration */
1379 phy_reg |= I218_ULP_CONFIG1_START;
1380 e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, data: phy_reg);
1381
1382 /* Clear Disable SMBus Release on PERST# in MAC */
1383 mac_reg = er32(FEXTNVM7);
1384 mac_reg &= ~E1000_FEXTNVM7_DISABLE_SMB_PERST;
1385 ew32(FEXTNVM7, mac_reg);
1386
1387release:
1388 hw->phy.ops.release(hw);
1389 if (force) {
1390 e1000_phy_hw_reset(hw);
1391 msleep(msecs: 50);
1392 }
1393out:
1394 if (ret_val)
1395 e_dbg("Error in ULP disable flow: %d\n", ret_val);
1396 else
1397 hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_off;
1398
1399 return ret_val;
1400}
1401
1402/**
1403 * e1000_check_for_copper_link_ich8lan - Check for link (Copper)
1404 * @hw: pointer to the HW structure
1405 *
1406 * Checks to see of the link status of the hardware has changed. If a
1407 * change in link status has been detected, then we read the PHY registers
1408 * to get the current speed/duplex if link exists.
1409 **/
1410static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
1411{
1412 struct e1000_mac_info *mac = &hw->mac;
1413 s32 ret_val, tipg_reg = 0;
1414 u16 emi_addr, emi_val = 0;
1415 bool link;
1416 u16 phy_reg;
1417
1418 /* We only want to go out to the PHY registers to see if Auto-Neg
1419 * has completed and/or if our link status has changed. The
1420 * get_link_status flag is set upon receiving a Link Status
1421 * Change or Rx Sequence Error interrupt.
1422 */
1423 if (!mac->get_link_status)
1424 return 0;
1425 mac->get_link_status = false;
1426
1427 /* First we want to see if the MII Status Register reports
1428 * link. If so, then we want to get the current speed/duplex
1429 * of the PHY.
1430 */
1431 ret_val = e1000e_phy_has_link_generic(hw, iterations: 1, usec_interval: 0, success: &link);
1432 if (ret_val)
1433 goto out;
1434
1435 if (hw->mac.type == e1000_pchlan) {
1436 ret_val = e1000_k1_gig_workaround_hv(hw, link);
1437 if (ret_val)
1438 goto out;
1439 }
1440
1441 /* When connected at 10Mbps half-duplex, some parts are excessively
1442 * aggressive resulting in many collisions. To avoid this, increase
1443 * the IPG and reduce Rx latency in the PHY.
1444 */
1445 if ((hw->mac.type >= e1000_pch2lan) && link) {
1446 u16 speed, duplex;
1447
1448 e1000e_get_speed_and_duplex_copper(hw, speed: &speed, duplex: &duplex);
1449 tipg_reg = er32(TIPG);
1450 tipg_reg &= ~E1000_TIPG_IPGT_MASK;
1451
1452 if (duplex == HALF_DUPLEX && speed == SPEED_10) {
1453 tipg_reg |= 0xFF;
1454 /* Reduce Rx latency in analog PHY */
1455 emi_val = 0;
1456 } else if (hw->mac.type >= e1000_pch_spt &&
1457 duplex == FULL_DUPLEX && speed != SPEED_1000) {
1458 tipg_reg |= 0xC;
1459 emi_val = 1;
1460 } else {
1461
1462 /* Roll back the default values */
1463 tipg_reg |= 0x08;
1464 emi_val = 1;
1465 }
1466
1467 ew32(TIPG, tipg_reg);
1468
1469 ret_val = hw->phy.ops.acquire(hw);
1470 if (ret_val)
1471 goto out;
1472
1473 if (hw->mac.type == e1000_pch2lan)
1474 emi_addr = I82579_RX_CONFIG;
1475 else
1476 emi_addr = I217_RX_CONFIG;
1477 ret_val = e1000_write_emi_reg_locked(hw, addr: emi_addr, data: emi_val);
1478
1479 if (hw->mac.type >= e1000_pch_lpt) {
1480 u16 phy_reg;
1481
1482 e1e_rphy_locked(hw, I217_PLL_CLOCK_GATE_REG, data: &phy_reg);
1483 phy_reg &= ~I217_PLL_CLOCK_GATE_MASK;
1484 if (speed == SPEED_100 || speed == SPEED_10)
1485 phy_reg |= 0x3E8;
1486 else
1487 phy_reg |= 0xFA;
1488 e1e_wphy_locked(hw, I217_PLL_CLOCK_GATE_REG, data: phy_reg);
1489
1490 if (speed == SPEED_1000) {
1491 hw->phy.ops.read_reg_locked(hw, HV_PM_CTRL,
1492 &phy_reg);
1493
1494 phy_reg |= HV_PM_CTRL_K1_CLK_REQ;
1495
1496 hw->phy.ops.write_reg_locked(hw, HV_PM_CTRL,
1497 phy_reg);
1498 }
1499 }
1500 hw->phy.ops.release(hw);
1501
1502 if (ret_val)
1503 goto out;
1504
1505 if (hw->mac.type >= e1000_pch_spt) {
1506 u16 data;
1507 u16 ptr_gap;
1508
1509 if (speed == SPEED_1000) {
1510 ret_val = hw->phy.ops.acquire(hw);
1511 if (ret_val)
1512 goto out;
1513
1514 ret_val = e1e_rphy_locked(hw,
1515 PHY_REG(776, 20),
1516 data: &data);
1517 if (ret_val) {
1518 hw->phy.ops.release(hw);
1519 goto out;
1520 }
1521
1522 ptr_gap = (data & (0x3FF << 2)) >> 2;
1523 if (ptr_gap < 0x18) {
1524 data &= ~(0x3FF << 2);
1525 data |= (0x18 << 2);
1526 ret_val =
1527 e1e_wphy_locked(hw,
1528 PHY_REG(776, 20),
1529 data);
1530 }
1531 hw->phy.ops.release(hw);
1532 if (ret_val)
1533 goto out;
1534 } else {
1535 ret_val = hw->phy.ops.acquire(hw);
1536 if (ret_val)
1537 goto out;
1538
1539 ret_val = e1e_wphy_locked(hw,
1540 PHY_REG(776, 20),
1541 data: 0xC023);
1542 hw->phy.ops.release(hw);
1543 if (ret_val)
1544 goto out;
1545
1546 }
1547 }
1548 }
1549
1550 /* I217 Packet Loss issue:
1551 * ensure that FEXTNVM4 Beacon Duration is set correctly
1552 * on power up.
1553 * Set the Beacon Duration for I217 to 8 usec
1554 */
1555 if (hw->mac.type >= e1000_pch_lpt) {
1556 u32 mac_reg;
1557
1558 mac_reg = er32(FEXTNVM4);
1559 mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
1560 mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_8USEC;
1561 ew32(FEXTNVM4, mac_reg);
1562 }
1563
1564 /* Work-around I218 hang issue */
1565 if ((hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
1566 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
1567 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM3) ||
1568 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V3)) {
1569 ret_val = e1000_k1_workaround_lpt_lp(hw, link);
1570 if (ret_val)
1571 goto out;
1572 }
1573 if (hw->mac.type >= e1000_pch_lpt) {
1574 /* Set platform power management values for
1575 * Latency Tolerance Reporting (LTR)
1576 */
1577 ret_val = e1000_platform_pm_pch_lpt(hw, link);
1578 if (ret_val)
1579 goto out;
1580 }
1581
1582 /* Clear link partner's EEE ability */
1583 hw->dev_spec.ich8lan.eee_lp_ability = 0;
1584
1585 if (hw->mac.type >= e1000_pch_lpt) {
1586 u32 fextnvm6 = er32(FEXTNVM6);
1587
1588 if (hw->mac.type == e1000_pch_spt) {
1589 /* FEXTNVM6 K1-off workaround - for SPT only */
1590 u32 pcieanacfg = er32(PCIEANACFG);
1591
1592 if (pcieanacfg & E1000_FEXTNVM6_K1_OFF_ENABLE)
1593 fextnvm6 |= E1000_FEXTNVM6_K1_OFF_ENABLE;
1594 else
1595 fextnvm6 &= ~E1000_FEXTNVM6_K1_OFF_ENABLE;
1596 }
1597
1598 ew32(FEXTNVM6, fextnvm6);
1599 }
1600
1601 if (!link)
1602 goto out;
1603
1604 switch (hw->mac.type) {
1605 case e1000_pch2lan:
1606 ret_val = e1000_k1_workaround_lv(hw);
1607 if (ret_val)
1608 return ret_val;
1609 fallthrough;
1610 case e1000_pchlan:
1611 if (hw->phy.type == e1000_phy_82578) {
1612 ret_val = e1000_link_stall_workaround_hv(hw);
1613 if (ret_val)
1614 return ret_val;
1615 }
1616
1617 /* Workaround for PCHx parts in half-duplex:
1618 * Set the number of preambles removed from the packet
1619 * when it is passed from the PHY to the MAC to prevent
1620 * the MAC from misinterpreting the packet type.
1621 */
1622 e1e_rphy(hw, HV_KMRN_FIFO_CTRLSTA, data: &phy_reg);
1623 phy_reg &= ~HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK;
1624
1625 if ((er32(STATUS) & E1000_STATUS_FD) != E1000_STATUS_FD)
1626 phy_reg |= BIT(HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT);
1627
1628 e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, data: phy_reg);
1629 break;
1630 default:
1631 break;
1632 }
1633
1634 /* Check if there was DownShift, must be checked
1635 * immediately after link-up
1636 */
1637 e1000e_check_downshift(hw);
1638
1639 /* Enable/Disable EEE after link up */
1640 if (hw->phy.type > e1000_phy_82579) {
1641 ret_val = e1000_set_eee_pchlan(hw);
1642 if (ret_val)
1643 return ret_val;
1644 }
1645
1646 /* If we are forcing speed/duplex, then we simply return since
1647 * we have already determined whether we have link or not.
1648 */
1649 if (!mac->autoneg)
1650 return -E1000_ERR_CONFIG;
1651
1652 /* Auto-Neg is enabled. Auto Speed Detection takes care
1653 * of MAC speed/duplex configuration. So we only need to
1654 * configure Collision Distance in the MAC.
1655 */
1656 mac->ops.config_collision_dist(hw);
1657
1658 /* Configure Flow Control now that Auto-Neg has completed.
1659 * First, we need to restore the desired flow control
1660 * settings because we may have had to re-autoneg with a
1661 * different link partner.
1662 */
1663 ret_val = e1000e_config_fc_after_link_up(hw);
1664 if (ret_val)
1665 e_dbg("Error configuring flow control\n");
1666
1667 return ret_val;
1668
1669out:
1670 mac->get_link_status = true;
1671 return ret_val;
1672}
1673
1674static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter)
1675{
1676 struct e1000_hw *hw = &adapter->hw;
1677 s32 rc;
1678
1679 rc = e1000_init_mac_params_ich8lan(hw);
1680 if (rc)
1681 return rc;
1682
1683 rc = e1000_init_nvm_params_ich8lan(hw);
1684 if (rc)
1685 return rc;
1686
1687 switch (hw->mac.type) {
1688 case e1000_ich8lan:
1689 case e1000_ich9lan:
1690 case e1000_ich10lan:
1691 rc = e1000_init_phy_params_ich8lan(hw);
1692 break;
1693 case e1000_pchlan:
1694 case e1000_pch2lan:
1695 case e1000_pch_lpt:
1696 case e1000_pch_spt:
1697 case e1000_pch_cnp:
1698 case e1000_pch_tgp:
1699 case e1000_pch_adp:
1700 case e1000_pch_mtp:
1701 case e1000_pch_lnp:
1702 case e1000_pch_ptp:
1703 case e1000_pch_nvp:
1704 rc = e1000_init_phy_params_pchlan(hw);
1705 break;
1706 default:
1707 break;
1708 }
1709 if (rc)
1710 return rc;
1711
1712 /* Disable Jumbo Frame support on parts with Intel 10/100 PHY or
1713 * on parts with MACsec enabled in NVM (reflected in CTRL_EXT).
1714 */
1715 if ((adapter->hw.phy.type == e1000_phy_ife) ||
1716 ((adapter->hw.mac.type >= e1000_pch2lan) &&
1717 (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LSECCK)))) {
1718 adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES;
1719 adapter->max_hw_frame_size = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
1720
1721 hw->mac.ops.blink_led = NULL;
1722 }
1723
1724 if ((adapter->hw.mac.type == e1000_ich8lan) &&
1725 (adapter->hw.phy.type != e1000_phy_ife))
1726 adapter->flags |= FLAG_LSC_GIG_SPEED_DROP;
1727
1728 /* Enable workaround for 82579 w/ ME enabled */
1729 if ((adapter->hw.mac.type == e1000_pch2lan) &&
1730 (er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
1731 adapter->flags2 |= FLAG2_PCIM2PCI_ARBITER_WA;
1732
1733 return 0;
1734}
1735
1736static DEFINE_MUTEX(nvm_mutex);
1737
1738/**
1739 * e1000_acquire_nvm_ich8lan - Acquire NVM mutex
1740 * @hw: pointer to the HW structure
1741 *
1742 * Acquires the mutex for performing NVM operations.
1743 **/
1744static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw __always_unused *hw)
1745{
1746 mutex_lock(&nvm_mutex);
1747
1748 return 0;
1749}
1750
1751/**
1752 * e1000_release_nvm_ich8lan - Release NVM mutex
1753 * @hw: pointer to the HW structure
1754 *
1755 * Releases the mutex used while performing NVM operations.
1756 **/
1757static void e1000_release_nvm_ich8lan(struct e1000_hw __always_unused *hw)
1758{
1759 mutex_unlock(lock: &nvm_mutex);
1760}
1761
1762/**
1763 * e1000_acquire_swflag_ich8lan - Acquire software control flag
1764 * @hw: pointer to the HW structure
1765 *
1766 * Acquires the software control flag for performing PHY and select
1767 * MAC CSR accesses.
1768 **/
1769static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
1770{
1771 u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
1772 s32 ret_val = 0;
1773
1774 if (test_and_set_bit(nr: __E1000_ACCESS_SHARED_RESOURCE,
1775 addr: &hw->adapter->state)) {
1776 e_dbg("contention for Phy access\n");
1777 return -E1000_ERR_PHY;
1778 }
1779
1780 while (timeout) {
1781 extcnf_ctrl = er32(EXTCNF_CTRL);
1782 if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
1783 break;
1784
1785 mdelay(1);
1786 timeout--;
1787 }
1788
1789 if (!timeout) {
1790 e_dbg("SW has already locked the resource.\n");
1791 ret_val = -E1000_ERR_CONFIG;
1792 goto out;
1793 }
1794
1795 timeout = SW_FLAG_TIMEOUT;
1796
1797 extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
1798 ew32(EXTCNF_CTRL, extcnf_ctrl);
1799
1800 while (timeout) {
1801 extcnf_ctrl = er32(EXTCNF_CTRL);
1802 if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
1803 break;
1804
1805 mdelay(1);
1806 timeout--;
1807 }
1808
1809 if (!timeout) {
1810 e_dbg("Failed to acquire the semaphore, FW or HW has it: FWSM=0x%8.8x EXTCNF_CTRL=0x%8.8x)\n",
1811 er32(FWSM), extcnf_ctrl);
1812 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1813 ew32(EXTCNF_CTRL, extcnf_ctrl);
1814 ret_val = -E1000_ERR_CONFIG;
1815 goto out;
1816 }
1817
1818out:
1819 if (ret_val)
1820 clear_bit(nr: __E1000_ACCESS_SHARED_RESOURCE, addr: &hw->adapter->state);
1821
1822 return ret_val;
1823}
1824
1825/**
1826 * e1000_release_swflag_ich8lan - Release software control flag
1827 * @hw: pointer to the HW structure
1828 *
1829 * Releases the software control flag for performing PHY and select
1830 * MAC CSR accesses.
1831 **/
1832static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
1833{
1834 u32 extcnf_ctrl;
1835
1836 extcnf_ctrl = er32(EXTCNF_CTRL);
1837
1838 if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) {
1839 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1840 ew32(EXTCNF_CTRL, extcnf_ctrl);
1841 } else {
1842 e_dbg("Semaphore unexpectedly released by sw/fw/hw\n");
1843 }
1844
1845 clear_bit(nr: __E1000_ACCESS_SHARED_RESOURCE, addr: &hw->adapter->state);
1846}
1847
1848/**
1849 * e1000_check_mng_mode_ich8lan - Checks management mode
1850 * @hw: pointer to the HW structure
1851 *
1852 * This checks if the adapter has any manageability enabled.
1853 * This is a function pointer entry point only called by read/write
1854 * routines for the PHY and NVM parts.
1855 **/
1856static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
1857{
1858 u32 fwsm;
1859
1860 fwsm = er32(FWSM);
1861 return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1862 ((fwsm & E1000_FWSM_MODE_MASK) ==
1863 (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1864}
1865
1866/**
1867 * e1000_check_mng_mode_pchlan - Checks management mode
1868 * @hw: pointer to the HW structure
1869 *
1870 * This checks if the adapter has iAMT enabled.
1871 * This is a function pointer entry point only called by read/write
1872 * routines for the PHY and NVM parts.
1873 **/
1874static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw)
1875{
1876 u32 fwsm;
1877
1878 fwsm = er32(FWSM);
1879 return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1880 (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1881}
1882
1883/**
1884 * e1000_rar_set_pch2lan - Set receive address register
1885 * @hw: pointer to the HW structure
1886 * @addr: pointer to the receive address
1887 * @index: receive address array register
1888 *
1889 * Sets the receive address array register at index to the address passed
1890 * in by addr. For 82579, RAR[0] is the base address register that is to
1891 * contain the MAC address but RAR[1-6] are reserved for manageability (ME).
1892 * Use SHRA[0-3] in place of those reserved for ME.
1893 **/
1894static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index)
1895{
1896 u32 rar_low, rar_high;
1897
1898 /* HW expects these in little endian so we reverse the byte order
1899 * from network order (big endian) to little endian
1900 */
1901 rar_low = ((u32)addr[0] |
1902 ((u32)addr[1] << 8) |
1903 ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1904
1905 rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1906
1907 /* If MAC address zero, no need to set the AV bit */
1908 if (rar_low || rar_high)
1909 rar_high |= E1000_RAH_AV;
1910
1911 if (index == 0) {
1912 ew32(RAL(index), rar_low);
1913 e1e_flush();
1914 ew32(RAH(index), rar_high);
1915 e1e_flush();
1916 return 0;
1917 }
1918
1919 /* RAR[1-6] are owned by manageability. Skip those and program the
1920 * next address into the SHRA register array.
1921 */
1922 if (index < (u32)(hw->mac.rar_entry_count)) {
1923 s32 ret_val;
1924
1925 ret_val = e1000_acquire_swflag_ich8lan(hw);
1926 if (ret_val)
1927 goto out;
1928
1929 ew32(SHRAL(index - 1), rar_low);
1930 e1e_flush();
1931 ew32(SHRAH(index - 1), rar_high);
1932 e1e_flush();
1933
1934 e1000_release_swflag_ich8lan(hw);
1935
1936 /* verify the register updates */
1937 if ((er32(SHRAL(index - 1)) == rar_low) &&
1938 (er32(SHRAH(index - 1)) == rar_high))
1939 return 0;
1940
1941 e_dbg("SHRA[%d] might be locked by ME - FWSM=0x%8.8x\n",
1942 (index - 1), er32(FWSM));
1943 }
1944
1945out:
1946 e_dbg("Failed to write receive address at index %d\n", index);
1947 return -E1000_ERR_CONFIG;
1948}
1949
1950/**
1951 * e1000_rar_get_count_pch_lpt - Get the number of available SHRA
1952 * @hw: pointer to the HW structure
1953 *
1954 * Get the number of available receive registers that the Host can
1955 * program. SHRA[0-10] are the shared receive address registers
1956 * that are shared between the Host and manageability engine (ME).
1957 * ME can reserve any number of addresses and the host needs to be
1958 * able to tell how many available registers it has access to.
1959 **/
1960static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw)
1961{
1962 u32 wlock_mac;
1963 u32 num_entries;
1964
1965 wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
1966 wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
1967
1968 switch (wlock_mac) {
1969 case 0:
1970 /* All SHRA[0..10] and RAR[0] available */
1971 num_entries = hw->mac.rar_entry_count;
1972 break;
1973 case 1:
1974 /* Only RAR[0] available */
1975 num_entries = 1;
1976 break;
1977 default:
1978 /* SHRA[0..(wlock_mac - 1)] available + RAR[0] */
1979 num_entries = wlock_mac + 1;
1980 break;
1981 }
1982
1983 return num_entries;
1984}
1985
1986/**
1987 * e1000_rar_set_pch_lpt - Set receive address registers
1988 * @hw: pointer to the HW structure
1989 * @addr: pointer to the receive address
1990 * @index: receive address array register
1991 *
1992 * Sets the receive address register array at index to the address passed
1993 * in by addr. For LPT, RAR[0] is the base address register that is to
1994 * contain the MAC address. SHRA[0-10] are the shared receive address
1995 * registers that are shared between the Host and manageability engine (ME).
1996 **/
1997static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index)
1998{
1999 u32 rar_low, rar_high;
2000 u32 wlock_mac;
2001
2002 /* HW expects these in little endian so we reverse the byte order
2003 * from network order (big endian) to little endian
2004 */
2005 rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) |
2006 ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
2007
2008 rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
2009
2010 /* If MAC address zero, no need to set the AV bit */
2011 if (rar_low || rar_high)
2012 rar_high |= E1000_RAH_AV;
2013
2014 if (index == 0) {
2015 ew32(RAL(index), rar_low);
2016 e1e_flush();
2017 ew32(RAH(index), rar_high);
2018 e1e_flush();
2019 return 0;
2020 }
2021
2022 /* The manageability engine (ME) can lock certain SHRAR registers that
2023 * it is using - those registers are unavailable for use.
2024 */
2025 if (index < hw->mac.rar_entry_count) {
2026 wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
2027 wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
2028
2029 /* Check if all SHRAR registers are locked */
2030 if (wlock_mac == 1)
2031 goto out;
2032
2033 if ((wlock_mac == 0) || (index <= wlock_mac)) {
2034 s32 ret_val;
2035
2036 ret_val = e1000_acquire_swflag_ich8lan(hw);
2037
2038 if (ret_val)
2039 goto out;
2040
2041 ew32(SHRAL_PCH_LPT(index - 1), rar_low);
2042 e1e_flush();
2043 ew32(SHRAH_PCH_LPT(index - 1), rar_high);
2044 e1e_flush();
2045
2046 e1000_release_swflag_ich8lan(hw);
2047
2048 /* verify the register updates */
2049 if ((er32(SHRAL_PCH_LPT(index - 1)) == rar_low) &&
2050 (er32(SHRAH_PCH_LPT(index - 1)) == rar_high))
2051 return 0;
2052 }
2053 }
2054
2055out:
2056 e_dbg("Failed to write receive address at index %d\n", index);
2057 return -E1000_ERR_CONFIG;
2058}
2059
2060/**
2061 * e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
2062 * @hw: pointer to the HW structure
2063 *
2064 * Checks if firmware is blocking the reset of the PHY.
2065 * This is a function pointer entry point only called by
2066 * reset routines.
2067 **/
2068static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
2069{
2070 bool blocked = false;
2071 int i = 0;
2072
2073 while ((blocked = !(er32(FWSM) & E1000_ICH_FWSM_RSPCIPHY)) &&
2074 (i++ < 30))
2075 usleep_range(min: 10000, max: 11000);
2076 return blocked ? E1000_BLK_PHY_RESET : 0;
2077}
2078
2079/**
2080 * e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states
2081 * @hw: pointer to the HW structure
2082 *
2083 * Assumes semaphore already acquired.
2084 *
2085 **/
2086static s32 e1000_write_smbus_addr(struct e1000_hw *hw)
2087{
2088 u16 phy_data;
2089 u32 strap = er32(STRAP);
2090 u32 freq = FIELD_GET(E1000_STRAP_SMT_FREQ_MASK, strap);
2091 s32 ret_val;
2092
2093 strap &= E1000_STRAP_SMBUS_ADDRESS_MASK;
2094
2095 ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, data: &phy_data);
2096 if (ret_val)
2097 return ret_val;
2098
2099 phy_data &= ~HV_SMB_ADDR_MASK;
2100 phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT);
2101 phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
2102
2103 if (hw->phy.type == e1000_phy_i217) {
2104 /* Restore SMBus frequency */
2105 if (freq--) {
2106 phy_data &= ~HV_SMB_ADDR_FREQ_MASK;
2107 phy_data |= (freq & BIT(0)) <<
2108 HV_SMB_ADDR_FREQ_LOW_SHIFT;
2109 phy_data |= (freq & BIT(1)) <<
2110 (HV_SMB_ADDR_FREQ_HIGH_SHIFT - 1);
2111 } else {
2112 e_dbg("Unsupported SMB frequency in PHY\n");
2113 }
2114 }
2115
2116 return e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, data: phy_data);
2117}
2118
2119/**
2120 * e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
2121 * @hw: pointer to the HW structure
2122 *
2123 * SW should configure the LCD from the NVM extended configuration region
2124 * as a workaround for certain parts.
2125 **/
2126static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
2127{
2128 struct e1000_phy_info *phy = &hw->phy;
2129 u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
2130 s32 ret_val = 0;
2131 u16 word_addr, reg_data, reg_addr, phy_page = 0;
2132
2133 /* Initialize the PHY from the NVM on ICH platforms. This
2134 * is needed due to an issue where the NVM configuration is
2135 * not properly autoloaded after power transitions.
2136 * Therefore, after each PHY reset, we will load the
2137 * configuration data out of the NVM manually.
2138 */
2139 switch (hw->mac.type) {
2140 case e1000_ich8lan:
2141 if (phy->type != e1000_phy_igp_3)
2142 return ret_val;
2143
2144 if ((hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_AMT) ||
2145 (hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_C)) {
2146 sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
2147 break;
2148 }
2149 fallthrough;
2150 case e1000_pchlan:
2151 case e1000_pch2lan:
2152 case e1000_pch_lpt:
2153 case e1000_pch_spt:
2154 case e1000_pch_cnp:
2155 case e1000_pch_tgp:
2156 case e1000_pch_adp:
2157 case e1000_pch_mtp:
2158 case e1000_pch_lnp:
2159 case e1000_pch_ptp:
2160 case e1000_pch_nvp:
2161 sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
2162 break;
2163 default:
2164 return ret_val;
2165 }
2166
2167 ret_val = hw->phy.ops.acquire(hw);
2168 if (ret_val)
2169 return ret_val;
2170
2171 data = er32(FEXTNVM);
2172 if (!(data & sw_cfg_mask))
2173 goto release;
2174
2175 /* Make sure HW does not configure LCD from PHY
2176 * extended configuration before SW configuration
2177 */
2178 data = er32(EXTCNF_CTRL);
2179 if ((hw->mac.type < e1000_pch2lan) &&
2180 (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE))
2181 goto release;
2182
2183 cnf_size = er32(EXTCNF_SIZE);
2184 cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
2185 cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
2186 if (!cnf_size)
2187 goto release;
2188
2189 cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
2190 cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
2191
2192 if (((hw->mac.type == e1000_pchlan) &&
2193 !(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)) ||
2194 (hw->mac.type > e1000_pchlan)) {
2195 /* HW configures the SMBus address and LEDs when the
2196 * OEM and LCD Write Enable bits are set in the NVM.
2197 * When both NVM bits are cleared, SW will configure
2198 * them instead.
2199 */
2200 ret_val = e1000_write_smbus_addr(hw);
2201 if (ret_val)
2202 goto release;
2203
2204 data = er32(LEDCTL);
2205 ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG,
2206 data: (u16)data);
2207 if (ret_val)
2208 goto release;
2209 }
2210
2211 /* Configure LCD from extended configuration region. */
2212
2213 /* cnf_base_addr is in DWORD */
2214 word_addr = (u16)(cnf_base_addr << 1);
2215
2216 for (i = 0; i < cnf_size; i++) {
2217 ret_val = e1000_read_nvm(hw, offset: (word_addr + i * 2), words: 1, data: &reg_data);
2218 if (ret_val)
2219 goto release;
2220
2221 ret_val = e1000_read_nvm(hw, offset: (word_addr + i * 2 + 1),
2222 words: 1, data: &reg_addr);
2223 if (ret_val)
2224 goto release;
2225
2226 /* Save off the PHY page for future writes. */
2227 if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
2228 phy_page = reg_data;
2229 continue;
2230 }
2231
2232 reg_addr &= PHY_REG_MASK;
2233 reg_addr |= phy_page;
2234
2235 ret_val = e1e_wphy_locked(hw, offset: (u32)reg_addr, data: reg_data);
2236 if (ret_val)
2237 goto release;
2238 }
2239
2240release:
2241 hw->phy.ops.release(hw);
2242 return ret_val;
2243}
2244
2245/**
2246 * e1000_k1_gig_workaround_hv - K1 Si workaround
2247 * @hw: pointer to the HW structure
2248 * @link: link up bool flag
2249 *
2250 * If K1 is enabled for 1Gbps, the MAC might stall when transitioning
2251 * from a lower speed. This workaround disables K1 whenever link is at 1Gig
2252 * If link is down, the function will restore the default K1 setting located
2253 * in the NVM.
2254 **/
2255static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
2256{
2257 s32 ret_val = 0;
2258 u16 status_reg = 0;
2259 bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;
2260
2261 if (hw->mac.type != e1000_pchlan)
2262 return 0;
2263
2264 /* Wrap the whole flow with the sw flag */
2265 ret_val = hw->phy.ops.acquire(hw);
2266 if (ret_val)
2267 return ret_val;
2268
2269 /* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
2270 if (link) {
2271 if (hw->phy.type == e1000_phy_82578) {
2272 ret_val = e1e_rphy_locked(hw, BM_CS_STATUS,
2273 data: &status_reg);
2274 if (ret_val)
2275 goto release;
2276
2277 status_reg &= (BM_CS_STATUS_LINK_UP |
2278 BM_CS_STATUS_RESOLVED |
2279 BM_CS_STATUS_SPEED_MASK);
2280
2281 if (status_reg == (BM_CS_STATUS_LINK_UP |
2282 BM_CS_STATUS_RESOLVED |
2283 BM_CS_STATUS_SPEED_1000))
2284 k1_enable = false;
2285 }
2286
2287 if (hw->phy.type == e1000_phy_82577) {
2288 ret_val = e1e_rphy_locked(hw, HV_M_STATUS, data: &status_reg);
2289 if (ret_val)
2290 goto release;
2291
2292 status_reg &= (HV_M_STATUS_LINK_UP |
2293 HV_M_STATUS_AUTONEG_COMPLETE |
2294 HV_M_STATUS_SPEED_MASK);
2295
2296 if (status_reg == (HV_M_STATUS_LINK_UP |
2297 HV_M_STATUS_AUTONEG_COMPLETE |
2298 HV_M_STATUS_SPEED_1000))
2299 k1_enable = false;
2300 }
2301
2302 /* Link stall fix for link up */
2303 ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), data: 0x0100);
2304 if (ret_val)
2305 goto release;
2306
2307 } else {
2308 /* Link stall fix for link down */
2309 ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), data: 0x4100);
2310 if (ret_val)
2311 goto release;
2312 }
2313
2314 ret_val = e1000_configure_k1_ich8lan(hw, k1_enable);
2315
2316release:
2317 hw->phy.ops.release(hw);
2318
2319 return ret_val;
2320}
2321
2322/**
2323 * e1000_configure_k1_ich8lan - Configure K1 power state
2324 * @hw: pointer to the HW structure
2325 * @k1_enable: K1 state to configure
2326 *
2327 * Configure the K1 power state based on the provided parameter.
2328 * Assumes semaphore already acquired.
2329 *
2330 * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
2331 **/
2332s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
2333{
2334 s32 ret_val;
2335 u32 ctrl_reg = 0;
2336 u32 ctrl_ext = 0;
2337 u32 reg = 0;
2338 u16 kmrn_reg = 0;
2339
2340 ret_val = e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2341 data: &kmrn_reg);
2342 if (ret_val)
2343 return ret_val;
2344
2345 if (k1_enable)
2346 kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
2347 else
2348 kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;
2349
2350 ret_val = e1000e_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2351 data: kmrn_reg);
2352 if (ret_val)
2353 return ret_val;
2354
2355 usleep_range(min: 20, max: 40);
2356 ctrl_ext = er32(CTRL_EXT);
2357 ctrl_reg = er32(CTRL);
2358
2359 reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
2360 reg |= E1000_CTRL_FRCSPD;
2361 ew32(CTRL, reg);
2362
2363 ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
2364 e1e_flush();
2365 usleep_range(min: 20, max: 40);
2366 ew32(CTRL, ctrl_reg);
2367 ew32(CTRL_EXT, ctrl_ext);
2368 e1e_flush();
2369 usleep_range(min: 20, max: 40);
2370
2371 return 0;
2372}
2373
2374/**
2375 * e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
2376 * @hw: pointer to the HW structure
2377 * @d0_state: boolean if entering d0 or d3 device state
2378 *
2379 * SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
2380 * collectively called OEM bits. The OEM Write Enable bit and SW Config bit
2381 * in NVM determines whether HW should configure LPLU and Gbe Disable.
2382 **/
2383static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
2384{
2385 s32 ret_val = 0;
2386 u32 mac_reg;
2387 u16 oem_reg;
2388
2389 if (hw->mac.type < e1000_pchlan)
2390 return ret_val;
2391
2392 ret_val = hw->phy.ops.acquire(hw);
2393 if (ret_val)
2394 return ret_val;
2395
2396 if (hw->mac.type == e1000_pchlan) {
2397 mac_reg = er32(EXTCNF_CTRL);
2398 if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
2399 goto release;
2400 }
2401
2402 mac_reg = er32(FEXTNVM);
2403 if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
2404 goto release;
2405
2406 mac_reg = er32(PHY_CTRL);
2407
2408 ret_val = e1e_rphy_locked(hw, HV_OEM_BITS, data: &oem_reg);
2409 if (ret_val)
2410 goto release;
2411
2412 oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);
2413
2414 if (d0_state) {
2415 if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
2416 oem_reg |= HV_OEM_BITS_GBE_DIS;
2417
2418 if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
2419 oem_reg |= HV_OEM_BITS_LPLU;
2420 } else {
2421 if (mac_reg & (E1000_PHY_CTRL_GBE_DISABLE |
2422 E1000_PHY_CTRL_NOND0A_GBE_DISABLE))
2423 oem_reg |= HV_OEM_BITS_GBE_DIS;
2424
2425 if (mac_reg & (E1000_PHY_CTRL_D0A_LPLU |
2426 E1000_PHY_CTRL_NOND0A_LPLU))
2427 oem_reg |= HV_OEM_BITS_LPLU;
2428 }
2429
2430 /* Set Restart auto-neg to activate the bits */
2431 if ((d0_state || (hw->mac.type != e1000_pchlan)) &&
2432 !hw->phy.ops.check_reset_block(hw))
2433 oem_reg |= HV_OEM_BITS_RESTART_AN;
2434
2435 ret_val = e1e_wphy_locked(hw, HV_OEM_BITS, data: oem_reg);
2436
2437release:
2438 hw->phy.ops.release(hw);
2439
2440 return ret_val;
2441}
2442
2443/**
2444 * e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
2445 * @hw: pointer to the HW structure
2446 **/
2447static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw)
2448{
2449 s32 ret_val;
2450 u16 data;
2451
2452 ret_val = e1e_rphy(hw, HV_KMRN_MODE_CTRL, data: &data);
2453 if (ret_val)
2454 return ret_val;
2455
2456 data |= HV_KMRN_MDIO_SLOW;
2457
2458 ret_val = e1e_wphy(hw, HV_KMRN_MODE_CTRL, data);
2459
2460 return ret_val;
2461}
2462
2463/**
2464 * e1000_hv_phy_workarounds_ich8lan - apply PHY workarounds
2465 * @hw: pointer to the HW structure
2466 *
2467 * A series of PHY workarounds to be done after every PHY reset.
2468 **/
2469static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2470{
2471 s32 ret_val = 0;
2472 u16 phy_data;
2473
2474 if (hw->mac.type != e1000_pchlan)
2475 return 0;
2476
2477 /* Set MDIO slow mode before any other MDIO access */
2478 if (hw->phy.type == e1000_phy_82577) {
2479 ret_val = e1000_set_mdio_slow_mode_hv(hw);
2480 if (ret_val)
2481 return ret_val;
2482 }
2483
2484 if (((hw->phy.type == e1000_phy_82577) &&
2485 ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
2486 ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
2487 /* Disable generation of early preamble */
2488 ret_val = e1e_wphy(hw, PHY_REG(769, 25), data: 0x4431);
2489 if (ret_val)
2490 return ret_val;
2491
2492 /* Preamble tuning for SSC */
2493 ret_val = e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, data: 0xA204);
2494 if (ret_val)
2495 return ret_val;
2496 }
2497
2498 if (hw->phy.type == e1000_phy_82578) {
2499 /* Return registers to default by doing a soft reset then
2500 * writing 0x3140 to the control register.
2501 */
2502 if (hw->phy.revision < 2) {
2503 e1000e_phy_sw_reset(hw);
2504 ret_val = e1e_wphy(hw, MII_BMCR, data: 0x3140);
2505 if (ret_val)
2506 return ret_val;
2507 }
2508 }
2509
2510 /* Select page 0 */
2511 ret_val = hw->phy.ops.acquire(hw);
2512 if (ret_val)
2513 return ret_val;
2514
2515 hw->phy.addr = 1;
2516 ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, data: 0);
2517 hw->phy.ops.release(hw);
2518 if (ret_val)
2519 return ret_val;
2520
2521 /* Configure the K1 Si workaround during phy reset assuming there is
2522 * link so that it disables K1 if link is in 1Gbps.
2523 */
2524 ret_val = e1000_k1_gig_workaround_hv(hw, link: true);
2525 if (ret_val)
2526 return ret_val;
2527
2528 /* Workaround for link disconnects on a busy hub in half duplex */
2529 ret_val = hw->phy.ops.acquire(hw);
2530 if (ret_val)
2531 return ret_val;
2532 ret_val = e1e_rphy_locked(hw, BM_PORT_GEN_CFG, data: &phy_data);
2533 if (ret_val)
2534 goto release;
2535 ret_val = e1e_wphy_locked(hw, BM_PORT_GEN_CFG, data: phy_data & 0x00FF);
2536 if (ret_val)
2537 goto release;
2538
2539 /* set MSE higher to enable link to stay up when noise is high */
2540 ret_val = e1000_write_emi_reg_locked(hw, I82577_MSE_THRESHOLD, data: 0x0034);
2541release:
2542 hw->phy.ops.release(hw);
2543
2544 return ret_val;
2545}
2546
2547/**
2548 * e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY
2549 * @hw: pointer to the HW structure
2550 **/
2551void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw)
2552{
2553 u32 mac_reg;
2554 u16 i, phy_reg = 0;
2555 s32 ret_val;
2556
2557 ret_val = hw->phy.ops.acquire(hw);
2558 if (ret_val)
2559 return;
2560 ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, phy_reg: &phy_reg);
2561 if (ret_val)
2562 goto release;
2563
2564 /* Copy both RAL/H (rar_entry_count) and SHRAL/H to PHY */
2565 for (i = 0; i < (hw->mac.rar_entry_count); i++) {
2566 mac_reg = er32(RAL(i));
2567 hw->phy.ops.write_reg_page(hw, BM_RAR_L(i),
2568 (u16)(mac_reg & 0xFFFF));
2569 hw->phy.ops.write_reg_page(hw, BM_RAR_M(i),
2570 (u16)((mac_reg >> 16) & 0xFFFF));
2571
2572 mac_reg = er32(RAH(i));
2573 hw->phy.ops.write_reg_page(hw, BM_RAR_H(i),
2574 (u16)(mac_reg & 0xFFFF));
2575 hw->phy.ops.write_reg_page(hw, BM_RAR_CTRL(i),
2576 (u16)((mac_reg & E1000_RAH_AV) >> 16));
2577 }
2578
2579 e1000_disable_phy_wakeup_reg_access_bm(hw, phy_reg: &phy_reg);
2580
2581release:
2582 hw->phy.ops.release(hw);
2583}
2584
2585/**
2586 * e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation
2587 * with 82579 PHY
2588 * @hw: pointer to the HW structure
2589 * @enable: flag to enable/disable workaround when enabling/disabling jumbos
2590 **/
2591s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable)
2592{
2593 s32 ret_val = 0;
2594 u16 phy_reg, data;
2595 u32 mac_reg;
2596 u16 i;
2597
2598 if (hw->mac.type < e1000_pch2lan)
2599 return 0;
2600
2601 /* disable Rx path while enabling/disabling workaround */
2602 e1e_rphy(hw, PHY_REG(769, 20), data: &phy_reg);
2603 ret_val = e1e_wphy(hw, PHY_REG(769, 20), data: phy_reg | BIT(14));
2604 if (ret_val)
2605 return ret_val;
2606
2607 if (enable) {
2608 /* Write Rx addresses (rar_entry_count for RAL/H, and
2609 * SHRAL/H) and initial CRC values to the MAC
2610 */
2611 for (i = 0; i < hw->mac.rar_entry_count; i++) {
2612 u8 mac_addr[ETH_ALEN] = { 0 };
2613 u32 addr_high, addr_low;
2614
2615 addr_high = er32(RAH(i));
2616 if (!(addr_high & E1000_RAH_AV))
2617 continue;
2618 addr_low = er32(RAL(i));
2619 mac_addr[0] = (addr_low & 0xFF);
2620 mac_addr[1] = ((addr_low >> 8) & 0xFF);
2621 mac_addr[2] = ((addr_low >> 16) & 0xFF);
2622 mac_addr[3] = ((addr_low >> 24) & 0xFF);
2623 mac_addr[4] = (addr_high & 0xFF);
2624 mac_addr[5] = ((addr_high >> 8) & 0xFF);
2625
2626 ew32(PCH_RAICC(i), ~ether_crc_le(ETH_ALEN, mac_addr));
2627 }
2628
2629 /* Write Rx addresses to the PHY */
2630 e1000_copy_rx_addrs_to_phy_ich8lan(hw);
2631
2632 /* Enable jumbo frame workaround in the MAC */
2633 mac_reg = er32(FFLT_DBG);
2634 mac_reg &= ~BIT(14);
2635 mac_reg |= (7 << 15);
2636 ew32(FFLT_DBG, mac_reg);
2637
2638 mac_reg = er32(RCTL);
2639 mac_reg |= E1000_RCTL_SECRC;
2640 ew32(RCTL, mac_reg);
2641
2642 ret_val = e1000e_read_kmrn_reg(hw,
2643 E1000_KMRNCTRLSTA_CTRL_OFFSET,
2644 data: &data);
2645 if (ret_val)
2646 return ret_val;
2647 ret_val = e1000e_write_kmrn_reg(hw,
2648 E1000_KMRNCTRLSTA_CTRL_OFFSET,
2649 data: data | BIT(0));
2650 if (ret_val)
2651 return ret_val;
2652 ret_val = e1000e_read_kmrn_reg(hw,
2653 E1000_KMRNCTRLSTA_HD_CTRL,
2654 data: &data);
2655 if (ret_val)
2656 return ret_val;
2657 data &= ~(0xF << 8);
2658 data |= (0xB << 8);
2659 ret_val = e1000e_write_kmrn_reg(hw,
2660 E1000_KMRNCTRLSTA_HD_CTRL,
2661 data);
2662 if (ret_val)
2663 return ret_val;
2664
2665 /* Enable jumbo frame workaround in the PHY */
2666 e1e_rphy(hw, PHY_REG(769, 23), data: &data);
2667 data &= ~(0x7F << 5);
2668 data |= (0x37 << 5);
2669 ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
2670 if (ret_val)
2671 return ret_val;
2672 e1e_rphy(hw, PHY_REG(769, 16), data: &data);
2673 data &= ~BIT(13);
2674 ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
2675 if (ret_val)
2676 return ret_val;
2677 e1e_rphy(hw, PHY_REG(776, 20), data: &data);
2678 data &= ~(0x3FF << 2);
2679 data |= (E1000_TX_PTR_GAP << 2);
2680 ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
2681 if (ret_val)
2682 return ret_val;
2683 ret_val = e1e_wphy(hw, PHY_REG(776, 23), data: 0xF100);
2684 if (ret_val)
2685 return ret_val;
2686 e1e_rphy(hw, HV_PM_CTRL, data: &data);
2687 ret_val = e1e_wphy(hw, HV_PM_CTRL, data: data | BIT(10));
2688 if (ret_val)
2689 return ret_val;
2690 } else {
2691 /* Write MAC register values back to h/w defaults */
2692 mac_reg = er32(FFLT_DBG);
2693 mac_reg &= ~(0xF << 14);
2694 ew32(FFLT_DBG, mac_reg);
2695
2696 mac_reg = er32(RCTL);
2697 mac_reg &= ~E1000_RCTL_SECRC;
2698 ew32(RCTL, mac_reg);
2699
2700 ret_val = e1000e_read_kmrn_reg(hw,
2701 E1000_KMRNCTRLSTA_CTRL_OFFSET,
2702 data: &data);
2703 if (ret_val)
2704 return ret_val;
2705 ret_val = e1000e_write_kmrn_reg(hw,
2706 E1000_KMRNCTRLSTA_CTRL_OFFSET,
2707 data: data & ~BIT(0));
2708 if (ret_val)
2709 return ret_val;
2710 ret_val = e1000e_read_kmrn_reg(hw,
2711 E1000_KMRNCTRLSTA_HD_CTRL,
2712 data: &data);
2713 if (ret_val)
2714 return ret_val;
2715 data &= ~(0xF << 8);
2716 data |= (0xB << 8);
2717 ret_val = e1000e_write_kmrn_reg(hw,
2718 E1000_KMRNCTRLSTA_HD_CTRL,
2719 data);
2720 if (ret_val)
2721 return ret_val;
2722
2723 /* Write PHY register values back to h/w defaults */
2724 e1e_rphy(hw, PHY_REG(769, 23), data: &data);
2725 data &= ~(0x7F << 5);
2726 ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
2727 if (ret_val)
2728 return ret_val;
2729 e1e_rphy(hw, PHY_REG(769, 16), data: &data);
2730 data |= BIT(13);
2731 ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
2732 if (ret_val)
2733 return ret_val;
2734 e1e_rphy(hw, PHY_REG(776, 20), data: &data);
2735 data &= ~(0x3FF << 2);
2736 data |= (0x8 << 2);
2737 ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
2738 if (ret_val)
2739 return ret_val;
2740 ret_val = e1e_wphy(hw, PHY_REG(776, 23), data: 0x7E00);
2741 if (ret_val)
2742 return ret_val;
2743 e1e_rphy(hw, HV_PM_CTRL, data: &data);
2744 ret_val = e1e_wphy(hw, HV_PM_CTRL, data: data & ~BIT(10));
2745 if (ret_val)
2746 return ret_val;
2747 }
2748
2749 /* re-enable Rx path after enabling/disabling workaround */
2750 return e1e_wphy(hw, PHY_REG(769, 20), data: phy_reg & ~BIT(14));
2751}
2752
2753/**
2754 * e1000_lv_phy_workarounds_ich8lan - apply ich8 specific workarounds
2755 * @hw: pointer to the HW structure
2756 *
2757 * A series of PHY workarounds to be done after every PHY reset.
2758 **/
2759static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2760{
2761 s32 ret_val = 0;
2762
2763 if (hw->mac.type != e1000_pch2lan)
2764 return 0;
2765
2766 /* Set MDIO slow mode before any other MDIO access */
2767 ret_val = e1000_set_mdio_slow_mode_hv(hw);
2768 if (ret_val)
2769 return ret_val;
2770
2771 ret_val = hw->phy.ops.acquire(hw);
2772 if (ret_val)
2773 return ret_val;
2774 /* set MSE higher to enable link to stay up when noise is high */
2775 ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_THRESHOLD, data: 0x0034);
2776 if (ret_val)
2777 goto release;
2778 /* drop link after 5 times MSE threshold was reached */
2779 ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_LINK_DOWN, data: 0x0005);
2780release:
2781 hw->phy.ops.release(hw);
2782
2783 return ret_val;
2784}
2785
2786/**
2787 * e1000_k1_workaround_lv - K1 Si workaround
2788 * @hw: pointer to the HW structure
2789 *
2790 * Workaround to set the K1 beacon duration for 82579 parts in 10Mbps
2791 * Disable K1 in 1000Mbps and 100Mbps
2792 **/
2793static s32 e1000_k1_workaround_lv(struct e1000_hw *hw)
2794{
2795 s32 ret_val = 0;
2796 u16 status_reg = 0;
2797
2798 if (hw->mac.type != e1000_pch2lan)
2799 return 0;
2800
2801 /* Set K1 beacon duration based on 10Mbs speed */
2802 ret_val = e1e_rphy(hw, HV_M_STATUS, data: &status_reg);
2803 if (ret_val)
2804 return ret_val;
2805
2806 if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE))
2807 == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) {
2808 if (status_reg &
2809 (HV_M_STATUS_SPEED_1000 | HV_M_STATUS_SPEED_100)) {
2810 u16 pm_phy_reg;
2811
2812 /* LV 1G/100 Packet drop issue wa */
2813 ret_val = e1e_rphy(hw, HV_PM_CTRL, data: &pm_phy_reg);
2814 if (ret_val)
2815 return ret_val;
2816 pm_phy_reg &= ~HV_PM_CTRL_K1_ENABLE;
2817 ret_val = e1e_wphy(hw, HV_PM_CTRL, data: pm_phy_reg);
2818 if (ret_val)
2819 return ret_val;
2820 } else {
2821 u32 mac_reg;
2822
2823 mac_reg = er32(FEXTNVM4);
2824 mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
2825 mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC;
2826 ew32(FEXTNVM4, mac_reg);
2827 }
2828 }
2829
2830 return ret_val;
2831}
2832
2833/**
2834 * e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware
2835 * @hw: pointer to the HW structure
2836 * @gate: boolean set to true to gate, false to ungate
2837 *
2838 * Gate/ungate the automatic PHY configuration via hardware; perform
2839 * the configuration via software instead.
2840 **/
2841static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate)
2842{
2843 u32 extcnf_ctrl;
2844
2845 if (hw->mac.type < e1000_pch2lan)
2846 return;
2847
2848 extcnf_ctrl = er32(EXTCNF_CTRL);
2849
2850 if (gate)
2851 extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2852 else
2853 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2854
2855 ew32(EXTCNF_CTRL, extcnf_ctrl);
2856}
2857
2858/**
2859 * e1000_lan_init_done_ich8lan - Check for PHY config completion
2860 * @hw: pointer to the HW structure
2861 *
2862 * Check the appropriate indication the MAC has finished configuring the
2863 * PHY after a software reset.
2864 **/
2865static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
2866{
2867 u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;
2868
2869 /* Wait for basic configuration completes before proceeding */
2870 do {
2871 data = er32(STATUS);
2872 data &= E1000_STATUS_LAN_INIT_DONE;
2873 usleep_range(min: 100, max: 200);
2874 } while ((!data) && --loop);
2875
2876 /* If basic configuration is incomplete before the above loop
2877 * count reaches 0, loading the configuration from NVM will
2878 * leave the PHY in a bad state possibly resulting in no link.
2879 */
2880 if (loop == 0)
2881 e_dbg("LAN_INIT_DONE not set, increase timeout\n");
2882
2883 /* Clear the Init Done bit for the next init event */
2884 data = er32(STATUS);
2885 data &= ~E1000_STATUS_LAN_INIT_DONE;
2886 ew32(STATUS, data);
2887}
2888
2889/**
2890 * e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset
2891 * @hw: pointer to the HW structure
2892 **/
2893static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw)
2894{
2895 s32 ret_val = 0;
2896 u16 reg;
2897
2898 if (hw->phy.ops.check_reset_block(hw))
2899 return 0;
2900
2901 /* Allow time for h/w to get to quiescent state after reset */
2902 usleep_range(min: 10000, max: 11000);
2903
2904 /* Perform any necessary post-reset workarounds */
2905 switch (hw->mac.type) {
2906 case e1000_pchlan:
2907 ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
2908 if (ret_val)
2909 return ret_val;
2910 break;
2911 case e1000_pch2lan:
2912 ret_val = e1000_lv_phy_workarounds_ich8lan(hw);
2913 if (ret_val)
2914 return ret_val;
2915 break;
2916 default:
2917 break;
2918 }
2919
2920 /* Clear the host wakeup bit after lcd reset */
2921 if (hw->mac.type >= e1000_pchlan) {
2922 e1e_rphy(hw, BM_PORT_GEN_CFG, data: &reg);
2923 reg &= ~BM_WUC_HOST_WU_BIT;
2924 e1e_wphy(hw, BM_PORT_GEN_CFG, data: reg);
2925 }
2926
2927 /* Configure the LCD with the extended configuration region in NVM */
2928 ret_val = e1000_sw_lcd_config_ich8lan(hw);
2929 if (ret_val)
2930 return ret_val;
2931
2932 /* Configure the LCD with the OEM bits in NVM */
2933 ret_val = e1000_oem_bits_config_ich8lan(hw, d0_state: true);
2934
2935 if (hw->mac.type == e1000_pch2lan) {
2936 /* Ungate automatic PHY configuration on non-managed 82579 */
2937 if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
2938 usleep_range(min: 10000, max: 11000);
2939 e1000_gate_hw_phy_config_ich8lan(hw, gate: false);
2940 }
2941
2942 /* Set EEE LPI Update Timer to 200usec */
2943 ret_val = hw->phy.ops.acquire(hw);
2944 if (ret_val)
2945 return ret_val;
2946 ret_val = e1000_write_emi_reg_locked(hw,
2947 I82579_LPI_UPDATE_TIMER,
2948 data: 0x1387);
2949 hw->phy.ops.release(hw);
2950 }
2951
2952 return ret_val;
2953}
2954
2955/**
2956 * e1000_phy_hw_reset_ich8lan - Performs a PHY reset
2957 * @hw: pointer to the HW structure
2958 *
2959 * Resets the PHY
2960 * This is a function pointer entry point called by drivers
2961 * or other shared routines.
2962 **/
2963static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
2964{
2965 s32 ret_val = 0;
2966
2967 /* Gate automatic PHY configuration by hardware on non-managed 82579 */
2968 if ((hw->mac.type == e1000_pch2lan) &&
2969 !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
2970 e1000_gate_hw_phy_config_ich8lan(hw, gate: true);
2971
2972 ret_val = e1000e_phy_hw_reset_generic(hw);
2973 if (ret_val)
2974 return ret_val;
2975
2976 return e1000_post_phy_reset_ich8lan(hw);
2977}
2978
2979/**
2980 * e1000_set_lplu_state_pchlan - Set Low Power Link Up state
2981 * @hw: pointer to the HW structure
2982 * @active: true to enable LPLU, false to disable
2983 *
2984 * Sets the LPLU state according to the active flag. For PCH, if OEM write
2985 * bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
2986 * the phy speed. This function will manually set the LPLU bit and restart
2987 * auto-neg as hw would do. D3 and D0 LPLU will call the same function
2988 * since it configures the same bit.
2989 **/
2990static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
2991{
2992 s32 ret_val;
2993 u16 oem_reg;
2994
2995 ret_val = e1e_rphy(hw, HV_OEM_BITS, data: &oem_reg);
2996 if (ret_val)
2997 return ret_val;
2998
2999 if (active)
3000 oem_reg |= HV_OEM_BITS_LPLU;
3001 else
3002 oem_reg &= ~HV_OEM_BITS_LPLU;
3003
3004 if (!hw->phy.ops.check_reset_block(hw))
3005 oem_reg |= HV_OEM_BITS_RESTART_AN;
3006
3007 return e1e_wphy(hw, HV_OEM_BITS, data: oem_reg);
3008}
3009
3010/**
3011 * e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
3012 * @hw: pointer to the HW structure
3013 * @active: true to enable LPLU, false to disable
3014 *
3015 * Sets the LPLU D0 state according to the active flag. When
3016 * activating LPLU this function also disables smart speed
3017 * and vice versa. LPLU will not be activated unless the
3018 * device autonegotiation advertisement meets standards of
3019 * either 10 or 10/100 or 10/100/1000 at all duplexes.
3020 * This is a function pointer entry point only called by
3021 * PHY setup routines.
3022 **/
3023static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
3024{
3025 struct e1000_phy_info *phy = &hw->phy;
3026 u32 phy_ctrl;
3027 s32 ret_val = 0;
3028 u16 data;
3029
3030 if (phy->type == e1000_phy_ife)
3031 return 0;
3032
3033 phy_ctrl = er32(PHY_CTRL);
3034
3035 if (active) {
3036 phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
3037 ew32(PHY_CTRL, phy_ctrl);
3038
3039 if (phy->type != e1000_phy_igp_3)
3040 return 0;
3041
3042 /* Call gig speed drop workaround on LPLU before accessing
3043 * any PHY registers
3044 */
3045 if (hw->mac.type == e1000_ich8lan)
3046 e1000e_gig_downshift_workaround_ich8lan(hw);
3047
3048 /* When LPLU is enabled, we should disable SmartSpeed */
3049 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, data: &data);
3050 if (ret_val)
3051 return ret_val;
3052 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3053 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
3054 if (ret_val)
3055 return ret_val;
3056 } else {
3057 phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
3058 ew32(PHY_CTRL, phy_ctrl);
3059
3060 if (phy->type != e1000_phy_igp_3)
3061 return 0;
3062
3063 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used
3064 * during Dx states where the power conservation is most
3065 * important. During driver activity we should enable
3066 * SmartSpeed, so performance is maintained.
3067 */
3068 if (phy->smart_speed == e1000_smart_speed_on) {
3069 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3070 data: &data);
3071 if (ret_val)
3072 return ret_val;
3073
3074 data |= IGP01E1000_PSCFR_SMART_SPEED;
3075 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3076 data);
3077 if (ret_val)
3078 return ret_val;
3079 } else if (phy->smart_speed == e1000_smart_speed_off) {
3080 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3081 data: &data);
3082 if (ret_val)
3083 return ret_val;
3084
3085 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3086 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3087 data);
3088 if (ret_val)
3089 return ret_val;
3090 }
3091 }
3092
3093 return 0;
3094}
3095
3096/**
3097 * e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
3098 * @hw: pointer to the HW structure
3099 * @active: true to enable LPLU, false to disable
3100 *
3101 * Sets the LPLU D3 state according to the active flag. When
3102 * activating LPLU this function also disables smart speed
3103 * and vice versa. LPLU will not be activated unless the
3104 * device autonegotiation advertisement meets standards of
3105 * either 10 or 10/100 or 10/100/1000 at all duplexes.
3106 * This is a function pointer entry point only called by
3107 * PHY setup routines.
3108 **/
3109static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
3110{
3111 struct e1000_phy_info *phy = &hw->phy;
3112 u32 phy_ctrl;
3113 s32 ret_val = 0;
3114 u16 data;
3115
3116 phy_ctrl = er32(PHY_CTRL);
3117
3118 if (!active) {
3119 phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
3120 ew32(PHY_CTRL, phy_ctrl);
3121
3122 if (phy->type != e1000_phy_igp_3)
3123 return 0;
3124
3125 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used
3126 * during Dx states where the power conservation is most
3127 * important. During driver activity we should enable
3128 * SmartSpeed, so performance is maintained.
3129 */
3130 if (phy->smart_speed == e1000_smart_speed_on) {
3131 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3132 data: &data);
3133 if (ret_val)
3134 return ret_val;
3135
3136 data |= IGP01E1000_PSCFR_SMART_SPEED;
3137 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3138 data);
3139 if (ret_val)
3140 return ret_val;
3141 } else if (phy->smart_speed == e1000_smart_speed_off) {
3142 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3143 data: &data);
3144 if (ret_val)
3145 return ret_val;
3146
3147 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3148 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3149 data);
3150 if (ret_val)
3151 return ret_val;
3152 }
3153 } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
3154 (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
3155 (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
3156 phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
3157 ew32(PHY_CTRL, phy_ctrl);
3158
3159 if (phy->type != e1000_phy_igp_3)
3160 return 0;
3161
3162 /* Call gig speed drop workaround on LPLU before accessing
3163 * any PHY registers
3164 */
3165 if (hw->mac.type == e1000_ich8lan)
3166 e1000e_gig_downshift_workaround_ich8lan(hw);
3167
3168 /* When LPLU is enabled, we should disable SmartSpeed */
3169 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, data: &data);
3170 if (ret_val)
3171 return ret_val;
3172
3173 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3174 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
3175 }
3176
3177 return ret_val;
3178}
3179
3180/**
3181 * e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
3182 * @hw: pointer to the HW structure
3183 * @bank: pointer to the variable that returns the active bank
3184 *
3185 * Reads signature byte from the NVM using the flash access registers.
3186 * Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
3187 **/
3188static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
3189{
3190 u32 eecd;
3191 struct e1000_nvm_info *nvm = &hw->nvm;
3192 u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
3193 u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
3194 u32 nvm_dword = 0;
3195 u8 sig_byte = 0;
3196 s32 ret_val;
3197
3198 switch (hw->mac.type) {
3199 case e1000_pch_spt:
3200 case e1000_pch_cnp:
3201 case e1000_pch_tgp:
3202 case e1000_pch_adp:
3203 case e1000_pch_mtp:
3204 case e1000_pch_lnp:
3205 case e1000_pch_ptp:
3206 case e1000_pch_nvp:
3207 bank1_offset = nvm->flash_bank_size;
3208 act_offset = E1000_ICH_NVM_SIG_WORD;
3209
3210 /* set bank to 0 in case flash read fails */
3211 *bank = 0;
3212
3213 /* Check bank 0 */
3214 ret_val = e1000_read_flash_dword_ich8lan(hw, offset: act_offset,
3215 data: &nvm_dword);
3216 if (ret_val)
3217 return ret_val;
3218 sig_byte = FIELD_GET(0xFF00, nvm_dword);
3219 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3220 E1000_ICH_NVM_SIG_VALUE) {
3221 *bank = 0;
3222 return 0;
3223 }
3224
3225 /* Check bank 1 */
3226 ret_val = e1000_read_flash_dword_ich8lan(hw, offset: act_offset +
3227 bank1_offset,
3228 data: &nvm_dword);
3229 if (ret_val)
3230 return ret_val;
3231 sig_byte = FIELD_GET(0xFF00, nvm_dword);
3232 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3233 E1000_ICH_NVM_SIG_VALUE) {
3234 *bank = 1;
3235 return 0;
3236 }
3237
3238 e_dbg("ERROR: No valid NVM bank present\n");
3239 return -E1000_ERR_NVM;
3240 case e1000_ich8lan:
3241 case e1000_ich9lan:
3242 eecd = er32(EECD);
3243 if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
3244 E1000_EECD_SEC1VAL_VALID_MASK) {
3245 if (eecd & E1000_EECD_SEC1VAL)
3246 *bank = 1;
3247 else
3248 *bank = 0;
3249
3250 return 0;
3251 }
3252 e_dbg("Unable to determine valid NVM bank via EEC - reading flash signature\n");
3253 fallthrough;
3254 default:
3255 /* set bank to 0 in case flash read fails */
3256 *bank = 0;
3257
3258 /* Check bank 0 */
3259 ret_val = e1000_read_flash_byte_ich8lan(hw, offset: act_offset,
3260 data: &sig_byte);
3261 if (ret_val)
3262 return ret_val;
3263 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3264 E1000_ICH_NVM_SIG_VALUE) {
3265 *bank = 0;
3266 return 0;
3267 }
3268
3269 /* Check bank 1 */
3270 ret_val = e1000_read_flash_byte_ich8lan(hw, offset: act_offset +
3271 bank1_offset,
3272 data: &sig_byte);
3273 if (ret_val)
3274 return ret_val;
3275 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3276 E1000_ICH_NVM_SIG_VALUE) {
3277 *bank = 1;
3278 return 0;
3279 }
3280
3281 e_dbg("ERROR: No valid NVM bank present\n");
3282 return -E1000_ERR_NVM;
3283 }
3284}
3285
3286/**
3287 * e1000_read_nvm_spt - NVM access for SPT
3288 * @hw: pointer to the HW structure
3289 * @offset: The offset (in bytes) of the word(s) to read.
3290 * @words: Size of data to read in words.
3291 * @data: pointer to the word(s) to read at offset.
3292 *
3293 * Reads a word(s) from the NVM
3294 **/
3295static s32 e1000_read_nvm_spt(struct e1000_hw *hw, u16 offset, u16 words,
3296 u16 *data)
3297{
3298 struct e1000_nvm_info *nvm = &hw->nvm;
3299 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3300 u32 act_offset;
3301 s32 ret_val = 0;
3302 u32 bank = 0;
3303 u32 dword = 0;
3304 u16 offset_to_read;
3305 u16 i;
3306
3307 if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3308 (words == 0)) {
3309 e_dbg("nvm parameter(s) out of bounds\n");
3310 ret_val = -E1000_ERR_NVM;
3311 goto out;
3312 }
3313
3314 nvm->ops.acquire(hw);
3315
3316 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, bank: &bank);
3317 if (ret_val) {
3318 e_dbg("Could not detect valid bank, assuming bank 0\n");
3319 bank = 0;
3320 }
3321
3322 act_offset = (bank) ? nvm->flash_bank_size : 0;
3323 act_offset += offset;
3324
3325 ret_val = 0;
3326
3327 for (i = 0; i < words; i += 2) {
3328 if (words - i == 1) {
3329 if (dev_spec->shadow_ram[offset + i].modified) {
3330 data[i] =
3331 dev_spec->shadow_ram[offset + i].value;
3332 } else {
3333 offset_to_read = act_offset + i -
3334 ((act_offset + i) % 2);
3335 ret_val =
3336 e1000_read_flash_dword_ich8lan(hw,
3337 offset: offset_to_read,
3338 data: &dword);
3339 if (ret_val)
3340 break;
3341 if ((act_offset + i) % 2 == 0)
3342 data[i] = (u16)(dword & 0xFFFF);
3343 else
3344 data[i] = (u16)((dword >> 16) & 0xFFFF);
3345 }
3346 } else {
3347 offset_to_read = act_offset + i;
3348 if (!(dev_spec->shadow_ram[offset + i].modified) ||
3349 !(dev_spec->shadow_ram[offset + i + 1].modified)) {
3350 ret_val =
3351 e1000_read_flash_dword_ich8lan(hw,
3352 offset: offset_to_read,
3353 data: &dword);
3354 if (ret_val)
3355 break;
3356 }
3357 if (dev_spec->shadow_ram[offset + i].modified)
3358 data[i] =
3359 dev_spec->shadow_ram[offset + i].value;
3360 else
3361 data[i] = (u16)(dword & 0xFFFF);
3362 if (dev_spec->shadow_ram[offset + i].modified)
3363 data[i + 1] =
3364 dev_spec->shadow_ram[offset + i + 1].value;
3365 else
3366 data[i + 1] = (u16)(dword >> 16 & 0xFFFF);
3367 }
3368 }
3369
3370 nvm->ops.release(hw);
3371
3372out:
3373 if (ret_val)
3374 e_dbg("NVM read error: %d\n", ret_val);
3375
3376 return ret_val;
3377}
3378
3379/**
3380 * e1000_read_nvm_ich8lan - Read word(s) from the NVM
3381 * @hw: pointer to the HW structure
3382 * @offset: The offset (in bytes) of the word(s) to read.
3383 * @words: Size of data to read in words
3384 * @data: Pointer to the word(s) to read at offset.
3385 *
3386 * Reads a word(s) from the NVM using the flash access registers.
3387 **/
3388static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3389 u16 *data)
3390{
3391 struct e1000_nvm_info *nvm = &hw->nvm;
3392 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3393 u32 act_offset;
3394 s32 ret_val = 0;
3395 u32 bank = 0;
3396 u16 i, word;
3397
3398 if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3399 (words == 0)) {
3400 e_dbg("nvm parameter(s) out of bounds\n");
3401 ret_val = -E1000_ERR_NVM;
3402 goto out;
3403 }
3404
3405 nvm->ops.acquire(hw);
3406
3407 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, bank: &bank);
3408 if (ret_val) {
3409 e_dbg("Could not detect valid bank, assuming bank 0\n");
3410 bank = 0;
3411 }
3412
3413 act_offset = (bank) ? nvm->flash_bank_size : 0;
3414 act_offset += offset;
3415
3416 ret_val = 0;
3417 for (i = 0; i < words; i++) {
3418 if (dev_spec->shadow_ram[offset + i].modified) {
3419 data[i] = dev_spec->shadow_ram[offset + i].value;
3420 } else {
3421 ret_val = e1000_read_flash_word_ich8lan(hw,
3422 offset: act_offset + i,
3423 data: &word);
3424 if (ret_val)
3425 break;
3426 data[i] = word;
3427 }
3428 }
3429
3430 nvm->ops.release(hw);
3431
3432out:
3433 if (ret_val)
3434 e_dbg("NVM read error: %d\n", ret_val);
3435
3436 return ret_val;
3437}
3438
3439/**
3440 * e1000_flash_cycle_init_ich8lan - Initialize flash
3441 * @hw: pointer to the HW structure
3442 *
3443 * This function does initial flash setup so that a new read/write/erase cycle
3444 * can be started.
3445 **/
3446static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
3447{
3448 union ich8_hws_flash_status hsfsts;
3449 s32 ret_val = -E1000_ERR_NVM;
3450
3451 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3452
3453 /* Check if the flash descriptor is valid */
3454 if (!hsfsts.hsf_status.fldesvalid) {
3455 e_dbg("Flash descriptor invalid. SW Sequencing must be used.\n");
3456 return -E1000_ERR_NVM;
3457 }
3458
3459 /* Clear FCERR and DAEL in hw status by writing 1 */
3460 hsfsts.hsf_status.flcerr = 1;
3461 hsfsts.hsf_status.dael = 1;
3462 if (hw->mac.type >= e1000_pch_spt)
3463 ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval & 0xFFFF);
3464 else
3465 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3466
3467 /* Either we should have a hardware SPI cycle in progress
3468 * bit to check against, in order to start a new cycle or
3469 * FDONE bit should be changed in the hardware so that it
3470 * is 1 after hardware reset, which can then be used as an
3471 * indication whether a cycle is in progress or has been
3472 * completed.
3473 */
3474
3475 if (!hsfsts.hsf_status.flcinprog) {
3476 /* There is no cycle running at present,
3477 * so we can start a cycle.
3478 * Begin by setting Flash Cycle Done.
3479 */
3480 hsfsts.hsf_status.flcdone = 1;
3481 if (hw->mac.type >= e1000_pch_spt)
3482 ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval & 0xFFFF);
3483 else
3484 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3485 ret_val = 0;
3486 } else {
3487 s32 i;
3488
3489 /* Otherwise poll for sometime so the current
3490 * cycle has a chance to end before giving up.
3491 */
3492 for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
3493 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3494 if (!hsfsts.hsf_status.flcinprog) {
3495 ret_val = 0;
3496 break;
3497 }
3498 udelay(1);
3499 }
3500 if (!ret_val) {
3501 /* Successful in waiting for previous cycle to timeout,
3502 * now set the Flash Cycle Done.
3503 */
3504 hsfsts.hsf_status.flcdone = 1;
3505 if (hw->mac.type >= e1000_pch_spt)
3506 ew32flash(ICH_FLASH_HSFSTS,
3507 hsfsts.regval & 0xFFFF);
3508 else
3509 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3510 } else {
3511 e_dbg("Flash controller busy, cannot get access\n");
3512 }
3513 }
3514
3515 return ret_val;
3516}
3517
3518/**
3519 * e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
3520 * @hw: pointer to the HW structure
3521 * @timeout: maximum time to wait for completion
3522 *
3523 * This function starts a flash cycle and waits for its completion.
3524 **/
3525static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
3526{
3527 union ich8_hws_flash_ctrl hsflctl;
3528 union ich8_hws_flash_status hsfsts;
3529 u32 i = 0;
3530
3531 /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
3532 if (hw->mac.type >= e1000_pch_spt)
3533 hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
3534 else
3535 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3536 hsflctl.hsf_ctrl.flcgo = 1;
3537
3538 if (hw->mac.type >= e1000_pch_spt)
3539 ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
3540 else
3541 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3542
3543 /* wait till FDONE bit is set to 1 */
3544 do {
3545 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3546 if (hsfsts.hsf_status.flcdone)
3547 break;
3548 udelay(1);
3549 } while (i++ < timeout);
3550
3551 if (hsfsts.hsf_status.flcdone && !hsfsts.hsf_status.flcerr)
3552 return 0;
3553
3554 return -E1000_ERR_NVM;
3555}
3556
3557/**
3558 * e1000_read_flash_dword_ich8lan - Read dword from flash
3559 * @hw: pointer to the HW structure
3560 * @offset: offset to data location
3561 * @data: pointer to the location for storing the data
3562 *
3563 * Reads the flash dword at offset into data. Offset is converted
3564 * to bytes before read.
3565 **/
3566static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw, u32 offset,
3567 u32 *data)
3568{
3569 /* Must convert word offset into bytes. */
3570 offset <<= 1;
3571 return e1000_read_flash_data32_ich8lan(hw, offset, data);
3572}
3573
3574/**
3575 * e1000_read_flash_word_ich8lan - Read word from flash
3576 * @hw: pointer to the HW structure
3577 * @offset: offset to data location
3578 * @data: pointer to the location for storing the data
3579 *
3580 * Reads the flash word at offset into data. Offset is converted
3581 * to bytes before read.
3582 **/
3583static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
3584 u16 *data)
3585{
3586 /* Must convert offset into bytes. */
3587 offset <<= 1;
3588
3589 return e1000_read_flash_data_ich8lan(hw, offset, size: 2, data);
3590}
3591
3592/**
3593 * e1000_read_flash_byte_ich8lan - Read byte from flash
3594 * @hw: pointer to the HW structure
3595 * @offset: The offset of the byte to read.
3596 * @data: Pointer to a byte to store the value read.
3597 *
3598 * Reads a single byte from the NVM using the flash access registers.
3599 **/
3600static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
3601 u8 *data)
3602{
3603 s32 ret_val;
3604 u16 word = 0;
3605
3606 /* In SPT, only 32 bits access is supported,
3607 * so this function should not be called.
3608 */
3609 if (hw->mac.type >= e1000_pch_spt)
3610 return -E1000_ERR_NVM;
3611 else
3612 ret_val = e1000_read_flash_data_ich8lan(hw, offset, size: 1, data: &word);
3613
3614 if (ret_val)
3615 return ret_val;
3616
3617 *data = (u8)word;
3618
3619 return 0;
3620}
3621
3622/**
3623 * e1000_read_flash_data_ich8lan - Read byte or word from NVM
3624 * @hw: pointer to the HW structure
3625 * @offset: The offset (in bytes) of the byte or word to read.
3626 * @size: Size of data to read, 1=byte 2=word
3627 * @data: Pointer to the word to store the value read.
3628 *
3629 * Reads a byte or word from the NVM using the flash access registers.
3630 **/
3631static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
3632 u8 size, u16 *data)
3633{
3634 union ich8_hws_flash_status hsfsts;
3635 union ich8_hws_flash_ctrl hsflctl;
3636 u32 flash_linear_addr;
3637 u32 flash_data = 0;
3638 s32 ret_val = -E1000_ERR_NVM;
3639 u8 count = 0;
3640
3641 if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
3642 return -E1000_ERR_NVM;
3643
3644 flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3645 hw->nvm.flash_base_addr);
3646
3647 do {
3648 udelay(1);
3649 /* Steps */
3650 ret_val = e1000_flash_cycle_init_ich8lan(hw);
3651 if (ret_val)
3652 break;
3653
3654 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3655 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3656 hsflctl.hsf_ctrl.fldbcount = size - 1;
3657 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3658 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3659
3660 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3661
3662 ret_val =
3663 e1000_flash_cycle_ich8lan(hw,
3664 ICH_FLASH_READ_COMMAND_TIMEOUT);
3665
3666 /* Check if FCERR is set to 1, if set to 1, clear it
3667 * and try the whole sequence a few more times, else
3668 * read in (shift in) the Flash Data0, the order is
3669 * least significant byte first msb to lsb
3670 */
3671 if (!ret_val) {
3672 flash_data = er32flash(ICH_FLASH_FDATA0);
3673 if (size == 1)
3674 *data = (u8)(flash_data & 0x000000FF);
3675 else if (size == 2)
3676 *data = (u16)(flash_data & 0x0000FFFF);
3677 break;
3678 } else {
3679 /* If we've gotten here, then things are probably
3680 * completely hosed, but if the error condition is
3681 * detected, it won't hurt to give it another try...
3682 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3683 */
3684 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3685 if (hsfsts.hsf_status.flcerr) {
3686 /* Repeat for some time before giving up. */
3687 continue;
3688 } else if (!hsfsts.hsf_status.flcdone) {
3689 e_dbg("Timeout error - flash cycle did not complete.\n");
3690 break;
3691 }
3692 }
3693 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3694
3695 return ret_val;
3696}
3697
3698/**
3699 * e1000_read_flash_data32_ich8lan - Read dword from NVM
3700 * @hw: pointer to the HW structure
3701 * @offset: The offset (in bytes) of the dword to read.
3702 * @data: Pointer to the dword to store the value read.
3703 *
3704 * Reads a byte or word from the NVM using the flash access registers.
3705 **/
3706
3707static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
3708 u32 *data)
3709{
3710 union ich8_hws_flash_status hsfsts;
3711 union ich8_hws_flash_ctrl hsflctl;
3712 u32 flash_linear_addr;
3713 s32 ret_val = -E1000_ERR_NVM;
3714 u8 count = 0;
3715
3716 if (offset > ICH_FLASH_LINEAR_ADDR_MASK || hw->mac.type < e1000_pch_spt)
3717 return -E1000_ERR_NVM;
3718 flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3719 hw->nvm.flash_base_addr);
3720
3721 do {
3722 udelay(1);
3723 /* Steps */
3724 ret_val = e1000_flash_cycle_init_ich8lan(hw);
3725 if (ret_val)
3726 break;
3727 /* In SPT, This register is in Lan memory space, not flash.
3728 * Therefore, only 32 bit access is supported
3729 */
3730 hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
3731
3732 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3733 hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1;
3734 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3735 /* In SPT, This register is in Lan memory space, not flash.
3736 * Therefore, only 32 bit access is supported
3737 */
3738 ew32flash(ICH_FLASH_HSFSTS, (u32)hsflctl.regval << 16);
3739 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3740
3741 ret_val =
3742 e1000_flash_cycle_ich8lan(hw,
3743 ICH_FLASH_READ_COMMAND_TIMEOUT);
3744
3745 /* Check if FCERR is set to 1, if set to 1, clear it
3746 * and try the whole sequence a few more times, else
3747 * read in (shift in) the Flash Data0, the order is
3748 * least significant byte first msb to lsb
3749 */
3750 if (!ret_val) {
3751 *data = er32flash(ICH_FLASH_FDATA0);
3752 break;
3753 } else {
3754 /* If we've gotten here, then things are probably
3755 * completely hosed, but if the error condition is
3756 * detected, it won't hurt to give it another try...
3757 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3758 */
3759 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3760 if (hsfsts.hsf_status.flcerr) {
3761 /* Repeat for some time before giving up. */
3762 continue;
3763 } else if (!hsfsts.hsf_status.flcdone) {
3764 e_dbg("Timeout error - flash cycle did not complete.\n");
3765 break;
3766 }
3767 }
3768 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3769
3770 return ret_val;
3771}
3772
3773/**
3774 * e1000_write_nvm_ich8lan - Write word(s) to the NVM
3775 * @hw: pointer to the HW structure
3776 * @offset: The offset (in bytes) of the word(s) to write.
3777 * @words: Size of data to write in words
3778 * @data: Pointer to the word(s) to write at offset.
3779 *
3780 * Writes a byte or word to the NVM using the flash access registers.
3781 **/
3782static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3783 u16 *data)
3784{
3785 struct e1000_nvm_info *nvm = &hw->nvm;
3786 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3787 u16 i;
3788
3789 if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3790 (words == 0)) {
3791 e_dbg("nvm parameter(s) out of bounds\n");
3792 return -E1000_ERR_NVM;
3793 }
3794
3795 nvm->ops.acquire(hw);
3796
3797 for (i = 0; i < words; i++) {
3798 dev_spec->shadow_ram[offset + i].modified = true;
3799 dev_spec->shadow_ram[offset + i].value = data[i];
3800 }
3801
3802 nvm->ops.release(hw);
3803
3804 return 0;
3805}
3806
3807/**
3808 * e1000_update_nvm_checksum_spt - Update the checksum for NVM
3809 * @hw: pointer to the HW structure
3810 *
3811 * The NVM checksum is updated by calling the generic update_nvm_checksum,
3812 * which writes the checksum to the shadow ram. The changes in the shadow
3813 * ram are then committed to the EEPROM by processing each bank at a time
3814 * checking for the modified bit and writing only the pending changes.
3815 * After a successful commit, the shadow ram is cleared and is ready for
3816 * future writes.
3817 **/
3818static s32 e1000_update_nvm_checksum_spt(struct e1000_hw *hw)
3819{
3820 struct e1000_nvm_info *nvm = &hw->nvm;
3821 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3822 u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
3823 s32 ret_val;
3824 u32 dword = 0;
3825
3826 ret_val = e1000e_update_nvm_checksum_generic(hw);
3827 if (ret_val)
3828 goto out;
3829
3830 if (nvm->type != e1000_nvm_flash_sw)
3831 goto out;
3832
3833 nvm->ops.acquire(hw);
3834
3835 /* We're writing to the opposite bank so if we're on bank 1,
3836 * write to bank 0 etc. We also need to erase the segment that
3837 * is going to be written
3838 */
3839 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, bank: &bank);
3840 if (ret_val) {
3841 e_dbg("Could not detect valid bank, assuming bank 0\n");
3842 bank = 0;
3843 }
3844
3845 if (bank == 0) {
3846 new_bank_offset = nvm->flash_bank_size;
3847 old_bank_offset = 0;
3848 ret_val = e1000_erase_flash_bank_ich8lan(hw, bank: 1);
3849 if (ret_val)
3850 goto release;
3851 } else {
3852 old_bank_offset = nvm->flash_bank_size;
3853 new_bank_offset = 0;
3854 ret_val = e1000_erase_flash_bank_ich8lan(hw, bank: 0);
3855 if (ret_val)
3856 goto release;
3857 }
3858 for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i += 2) {
3859 /* Determine whether to write the value stored
3860 * in the other NVM bank or a modified value stored
3861 * in the shadow RAM
3862 */
3863 ret_val = e1000_read_flash_dword_ich8lan(hw,
3864 offset: i + old_bank_offset,
3865 data: &dword);
3866
3867 if (dev_spec->shadow_ram[i].modified) {
3868 dword &= 0xffff0000;
3869 dword |= (dev_spec->shadow_ram[i].value & 0xffff);
3870 }
3871 if (dev_spec->shadow_ram[i + 1].modified) {
3872 dword &= 0x0000ffff;
3873 dword |= ((dev_spec->shadow_ram[i + 1].value & 0xffff)
3874 << 16);
3875 }
3876 if (ret_val)
3877 break;
3878
3879 /* If the word is 0x13, then make sure the signature bits
3880 * (15:14) are 11b until the commit has completed.
3881 * This will allow us to write 10b which indicates the
3882 * signature is valid. We want to do this after the write
3883 * has completed so that we don't mark the segment valid
3884 * while the write is still in progress
3885 */
3886 if (i == E1000_ICH_NVM_SIG_WORD - 1)
3887 dword |= E1000_ICH_NVM_SIG_MASK << 16;
3888
3889 /* Convert offset to bytes. */
3890 act_offset = (i + new_bank_offset) << 1;
3891
3892 usleep_range(min: 100, max: 200);
3893
3894 /* Write the data to the new bank. Offset in words */
3895 act_offset = i + new_bank_offset;
3896 ret_val = e1000_retry_write_flash_dword_ich8lan(hw, offset: act_offset,
3897 dword);
3898 if (ret_val)
3899 break;
3900 }
3901
3902 /* Don't bother writing the segment valid bits if sector
3903 * programming failed.
3904 */
3905 if (ret_val) {
3906 /* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
3907 e_dbg("Flash commit failed.\n");
3908 goto release;
3909 }
3910
3911 /* Finally validate the new segment by setting bit 15:14
3912 * to 10b in word 0x13 , this can be done without an
3913 * erase as well since these bits are 11 to start with
3914 * and we need to change bit 14 to 0b
3915 */
3916 act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
3917
3918 /*offset in words but we read dword */
3919 --act_offset;
3920 ret_val = e1000_read_flash_dword_ich8lan(hw, offset: act_offset, data: &dword);
3921
3922 if (ret_val)
3923 goto release;
3924
3925 dword &= 0xBFFFFFFF;
3926 ret_val = e1000_retry_write_flash_dword_ich8lan(hw, offset: act_offset, dword);
3927
3928 if (ret_val)
3929 goto release;
3930
3931 /* offset in words but we read dword */
3932 act_offset = old_bank_offset + E1000_ICH_NVM_SIG_WORD - 1;
3933 ret_val = e1000_read_flash_dword_ich8lan(hw, offset: act_offset, data: &dword);
3934
3935 if (ret_val)
3936 goto release;
3937
3938 dword &= 0x00FFFFFF;
3939 ret_val = e1000_retry_write_flash_dword_ich8lan(hw, offset: act_offset, dword);
3940
3941 if (ret_val)
3942 goto release;
3943
3944 /* Great! Everything worked, we can now clear the cached entries. */
3945 for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
3946 dev_spec->shadow_ram[i].modified = false;
3947 dev_spec->shadow_ram[i].value = 0xFFFF;
3948 }
3949
3950release:
3951 nvm->ops.release(hw);
3952
3953 /* Reload the EEPROM, or else modifications will not appear
3954 * until after the next adapter reset.
3955 */
3956 if (!ret_val) {
3957 nvm->ops.reload(hw);
3958 usleep_range(min: 10000, max: 11000);
3959 }
3960
3961out:
3962 if (ret_val)
3963 e_dbg("NVM update error: %d\n", ret_val);
3964
3965 return ret_val;
3966}
3967
3968/**
3969 * e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
3970 * @hw: pointer to the HW structure
3971 *
3972 * The NVM checksum is updated by calling the generic update_nvm_checksum,
3973 * which writes the checksum to the shadow ram. The changes in the shadow
3974 * ram are then committed to the EEPROM by processing each bank at a time
3975 * checking for the modified bit and writing only the pending changes.
3976 * After a successful commit, the shadow ram is cleared and is ready for
3977 * future writes.
3978 **/
3979static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
3980{
3981 struct e1000_nvm_info *nvm = &hw->nvm;
3982 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3983 u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
3984 s32 ret_val;
3985 u16 data = 0;
3986
3987 ret_val = e1000e_update_nvm_checksum_generic(hw);
3988 if (ret_val)
3989 goto out;
3990
3991 if (nvm->type != e1000_nvm_flash_sw)
3992 goto out;
3993
3994 nvm->ops.acquire(hw);
3995
3996 /* We're writing to the opposite bank so if we're on bank 1,
3997 * write to bank 0 etc. We also need to erase the segment that
3998 * is going to be written
3999 */
4000 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, bank: &bank);
4001 if (ret_val) {
4002 e_dbg("Could not detect valid bank, assuming bank 0\n");
4003 bank = 0;
4004 }
4005
4006 if (bank == 0) {
4007 new_bank_offset = nvm->flash_bank_size;
4008 old_bank_offset = 0;
4009 ret_val = e1000_erase_flash_bank_ich8lan(hw, bank: 1);
4010 if (ret_val)
4011 goto release;
4012 } else {
4013 old_bank_offset = nvm->flash_bank_size;
4014 new_bank_offset = 0;
4015 ret_val = e1000_erase_flash_bank_ich8lan(hw, bank: 0);
4016 if (ret_val)
4017 goto release;
4018 }
4019 for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
4020 if (dev_spec->shadow_ram[i].modified) {
4021 data = dev_spec->shadow_ram[i].value;
4022 } else {
4023 ret_val = e1000_read_flash_word_ich8lan(hw, offset: i +
4024 old_bank_offset,
4025 data: &data);
4026 if (ret_val)
4027 break;
4028 }
4029
4030 /* If the word is 0x13, then make sure the signature bits
4031 * (15:14) are 11b until the commit has completed.
4032 * This will allow us to write 10b which indicates the
4033 * signature is valid. We want to do this after the write
4034 * has completed so that we don't mark the segment valid
4035 * while the write is still in progress
4036 */
4037 if (i == E1000_ICH_NVM_SIG_WORD)
4038 data |= E1000_ICH_NVM_SIG_MASK;
4039
4040 /* Convert offset to bytes. */
4041 act_offset = (i + new_bank_offset) << 1;
4042
4043 usleep_range(min: 100, max: 200);
4044 /* Write the bytes to the new bank. */
4045 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
4046 offset: act_offset,
4047 byte: (u8)data);
4048 if (ret_val)
4049 break;
4050
4051 usleep_range(min: 100, max: 200);
4052 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
4053 offset: act_offset + 1,
4054 byte: (u8)(data >> 8));
4055 if (ret_val)
4056 break;
4057 }
4058
4059 /* Don't bother writing the segment valid bits if sector
4060 * programming failed.
4061 */
4062 if (ret_val) {
4063 /* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
4064 e_dbg("Flash commit failed.\n");
4065 goto release;
4066 }
4067
4068 /* Finally validate the new segment by setting bit 15:14
4069 * to 10b in word 0x13 , this can be done without an
4070 * erase as well since these bits are 11 to start with
4071 * and we need to change bit 14 to 0b
4072 */
4073 act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
4074 ret_val = e1000_read_flash_word_ich8lan(hw, offset: act_offset, data: &data);
4075 if (ret_val)
4076 goto release;
4077
4078 data &= 0xBFFF;
4079 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
4080 offset: act_offset * 2 + 1,
4081 byte: (u8)(data >> 8));
4082 if (ret_val)
4083 goto release;
4084
4085 /* And invalidate the previously valid segment by setting
4086 * its signature word (0x13) high_byte to 0b. This can be
4087 * done without an erase because flash erase sets all bits
4088 * to 1's. We can write 1's to 0's without an erase
4089 */
4090 act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
4091 ret_val = e1000_retry_write_flash_byte_ich8lan(hw, offset: act_offset, byte: 0);
4092 if (ret_val)
4093 goto release;
4094
4095 /* Great! Everything worked, we can now clear the cached entries. */
4096 for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
4097 dev_spec->shadow_ram[i].modified = false;
4098 dev_spec->shadow_ram[i].value = 0xFFFF;
4099 }
4100
4101release:
4102 nvm->ops.release(hw);
4103
4104 /* Reload the EEPROM, or else modifications will not appear
4105 * until after the next adapter reset.
4106 */
4107 if (!ret_val) {
4108 nvm->ops.reload(hw);
4109 usleep_range(min: 10000, max: 11000);
4110 }
4111
4112out:
4113 if (ret_val)
4114 e_dbg("NVM update error: %d\n", ret_val);
4115
4116 return ret_val;
4117}
4118
4119/**
4120 * e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
4121 * @hw: pointer to the HW structure
4122 *
4123 * Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
4124 * If the bit is 0, that the EEPROM had been modified, but the checksum was not
4125 * calculated, in which case we need to calculate the checksum and set bit 6.
4126 **/
4127static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
4128{
4129 s32 ret_val;
4130 u16 data;
4131 u16 word;
4132 u16 valid_csum_mask;
4133
4134 /* Read NVM and check Invalid Image CSUM bit. If this bit is 0,
4135 * the checksum needs to be fixed. This bit is an indication that
4136 * the NVM was prepared by OEM software and did not calculate
4137 * the checksum...a likely scenario.
4138 */
4139 switch (hw->mac.type) {
4140 case e1000_pch_lpt:
4141 case e1000_pch_spt:
4142 case e1000_pch_cnp:
4143 case e1000_pch_tgp:
4144 case e1000_pch_adp:
4145 case e1000_pch_mtp:
4146 case e1000_pch_lnp:
4147 case e1000_pch_ptp:
4148 case e1000_pch_nvp:
4149 word = NVM_COMPAT;
4150 valid_csum_mask = NVM_COMPAT_VALID_CSUM;
4151 break;
4152 default:
4153 word = NVM_FUTURE_INIT_WORD1;
4154 valid_csum_mask = NVM_FUTURE_INIT_WORD1_VALID_CSUM;
4155 break;
4156 }
4157
4158 ret_val = e1000_read_nvm(hw, offset: word, words: 1, data: &data);
4159 if (ret_val)
4160 return ret_val;
4161
4162 if (!(data & valid_csum_mask)) {
4163 e_dbg("NVM Checksum valid bit not set\n");
4164
4165 if (hw->mac.type < e1000_pch_tgp) {
4166 data |= valid_csum_mask;
4167 ret_val = e1000_write_nvm(hw, offset: word, words: 1, data: &data);
4168 if (ret_val)
4169 return ret_val;
4170 ret_val = e1000e_update_nvm_checksum(hw);
4171 if (ret_val)
4172 return ret_val;
4173 }
4174 }
4175
4176 return e1000e_validate_nvm_checksum_generic(hw);
4177}
4178
4179/**
4180 * e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
4181 * @hw: pointer to the HW structure
4182 *
4183 * To prevent malicious write/erase of the NVM, set it to be read-only
4184 * so that the hardware ignores all write/erase cycles of the NVM via
4185 * the flash control registers. The shadow-ram copy of the NVM will
4186 * still be updated, however any updates to this copy will not stick
4187 * across driver reloads.
4188 **/
4189void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw)
4190{
4191 struct e1000_nvm_info *nvm = &hw->nvm;
4192 union ich8_flash_protected_range pr0;
4193 union ich8_hws_flash_status hsfsts;
4194 u32 gfpreg;
4195
4196 nvm->ops.acquire(hw);
4197
4198 gfpreg = er32flash(ICH_FLASH_GFPREG);
4199
4200 /* Write-protect GbE Sector of NVM */
4201 pr0.regval = er32flash(ICH_FLASH_PR0);
4202 pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK;
4203 pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK);
4204 pr0.range.wpe = true;
4205 ew32flash(ICH_FLASH_PR0, pr0.regval);
4206
4207 /* Lock down a subset of GbE Flash Control Registers, e.g.
4208 * PR0 to prevent the write-protection from being lifted.
4209 * Once FLOCKDN is set, the registers protected by it cannot
4210 * be written until FLOCKDN is cleared by a hardware reset.
4211 */
4212 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4213 hsfsts.hsf_status.flockdn = true;
4214 ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval);
4215
4216 nvm->ops.release(hw);
4217}
4218
4219/**
4220 * e1000_write_flash_data_ich8lan - Writes bytes to the NVM
4221 * @hw: pointer to the HW structure
4222 * @offset: The offset (in bytes) of the byte/word to read.
4223 * @size: Size of data to read, 1=byte 2=word
4224 * @data: The byte(s) to write to the NVM.
4225 *
4226 * Writes one/two bytes to the NVM using the flash access registers.
4227 **/
4228static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
4229 u8 size, u16 data)
4230{
4231 union ich8_hws_flash_status hsfsts;
4232 union ich8_hws_flash_ctrl hsflctl;
4233 u32 flash_linear_addr;
4234 u32 flash_data = 0;
4235 s32 ret_val;
4236 u8 count = 0;
4237
4238 if (hw->mac.type >= e1000_pch_spt) {
4239 if (size != 4 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
4240 return -E1000_ERR_NVM;
4241 } else {
4242 if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
4243 return -E1000_ERR_NVM;
4244 }
4245
4246 flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
4247 hw->nvm.flash_base_addr);
4248
4249 do {
4250 udelay(1);
4251 /* Steps */
4252 ret_val = e1000_flash_cycle_init_ich8lan(hw);
4253 if (ret_val)
4254 break;
4255 /* In SPT, This register is in Lan memory space, not
4256 * flash. Therefore, only 32 bit access is supported
4257 */
4258 if (hw->mac.type >= e1000_pch_spt)
4259 hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
4260 else
4261 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4262
4263 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
4264 hsflctl.hsf_ctrl.fldbcount = size - 1;
4265 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
4266 /* In SPT, This register is in Lan memory space,
4267 * not flash. Therefore, only 32 bit access is
4268 * supported
4269 */
4270 if (hw->mac.type >= e1000_pch_spt)
4271 ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
4272 else
4273 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4274
4275 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4276
4277 if (size == 1)
4278 flash_data = (u32)data & 0x00FF;
4279 else
4280 flash_data = (u32)data;
4281
4282 ew32flash(ICH_FLASH_FDATA0, flash_data);
4283
4284 /* check if FCERR is set to 1 , if set to 1, clear it
4285 * and try the whole sequence a few more times else done
4286 */
4287 ret_val =
4288 e1000_flash_cycle_ich8lan(hw,
4289 ICH_FLASH_WRITE_COMMAND_TIMEOUT);
4290 if (!ret_val)
4291 break;
4292
4293 /* If we're here, then things are most likely
4294 * completely hosed, but if the error condition
4295 * is detected, it won't hurt to give it another
4296 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
4297 */
4298 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4299 if (hsfsts.hsf_status.flcerr)
4300 /* Repeat for some time before giving up. */
4301 continue;
4302 if (!hsfsts.hsf_status.flcdone) {
4303 e_dbg("Timeout error - flash cycle did not complete.\n");
4304 break;
4305 }
4306 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4307
4308 return ret_val;
4309}
4310
4311/**
4312* e1000_write_flash_data32_ich8lan - Writes 4 bytes to the NVM
4313* @hw: pointer to the HW structure
4314* @offset: The offset (in bytes) of the dwords to read.
4315* @data: The 4 bytes to write to the NVM.
4316*
4317* Writes one/two/four bytes to the NVM using the flash access registers.
4318**/
4319static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
4320 u32 data)
4321{
4322 union ich8_hws_flash_status hsfsts;
4323 union ich8_hws_flash_ctrl hsflctl;
4324 u32 flash_linear_addr;
4325 s32 ret_val;
4326 u8 count = 0;
4327
4328 if (hw->mac.type >= e1000_pch_spt) {
4329 if (offset > ICH_FLASH_LINEAR_ADDR_MASK)
4330 return -E1000_ERR_NVM;
4331 }
4332 flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
4333 hw->nvm.flash_base_addr);
4334 do {
4335 udelay(1);
4336 /* Steps */
4337 ret_val = e1000_flash_cycle_init_ich8lan(hw);
4338 if (ret_val)
4339 break;
4340
4341 /* In SPT, This register is in Lan memory space, not
4342 * flash. Therefore, only 32 bit access is supported
4343 */
4344 if (hw->mac.type >= e1000_pch_spt)
4345 hsflctl.regval = er32flash(ICH_FLASH_HSFSTS)
4346 >> 16;
4347 else
4348 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4349
4350 hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1;
4351 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
4352
4353 /* In SPT, This register is in Lan memory space,
4354 * not flash. Therefore, only 32 bit access is
4355 * supported
4356 */
4357 if (hw->mac.type >= e1000_pch_spt)
4358 ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
4359 else
4360 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4361
4362 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4363
4364 ew32flash(ICH_FLASH_FDATA0, data);
4365
4366 /* check if FCERR is set to 1 , if set to 1, clear it
4367 * and try the whole sequence a few more times else done
4368 */
4369 ret_val =
4370 e1000_flash_cycle_ich8lan(hw,
4371 ICH_FLASH_WRITE_COMMAND_TIMEOUT);
4372
4373 if (!ret_val)
4374 break;
4375
4376 /* If we're here, then things are most likely
4377 * completely hosed, but if the error condition
4378 * is detected, it won't hurt to give it another
4379 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
4380 */
4381 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4382
4383 if (hsfsts.hsf_status.flcerr)
4384 /* Repeat for some time before giving up. */
4385 continue;
4386 if (!hsfsts.hsf_status.flcdone) {
4387 e_dbg("Timeout error - flash cycle did not complete.\n");
4388 break;
4389 }
4390 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4391
4392 return ret_val;
4393}
4394
4395/**
4396 * e1000_write_flash_byte_ich8lan - Write a single byte to NVM
4397 * @hw: pointer to the HW structure
4398 * @offset: The index of the byte to read.
4399 * @data: The byte to write to the NVM.
4400 *
4401 * Writes a single byte to the NVM using the flash access registers.
4402 **/
4403static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
4404 u8 data)
4405{
4406 u16 word = (u16)data;
4407
4408 return e1000_write_flash_data_ich8lan(hw, offset, size: 1, data: word);
4409}
4410
4411/**
4412* e1000_retry_write_flash_dword_ich8lan - Writes a dword to NVM
4413* @hw: pointer to the HW structure
4414* @offset: The offset of the word to write.
4415* @dword: The dword to write to the NVM.
4416*
4417* Writes a single dword to the NVM using the flash access registers.
4418* Goes through a retry algorithm before giving up.
4419**/
4420static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw,
4421 u32 offset, u32 dword)
4422{
4423 s32 ret_val;
4424 u16 program_retries;
4425
4426 /* Must convert word offset into bytes. */
4427 offset <<= 1;
4428 ret_val = e1000_write_flash_data32_ich8lan(hw, offset, data: dword);
4429
4430 if (!ret_val)
4431 return ret_val;
4432 for (program_retries = 0; program_retries < 100; program_retries++) {
4433 e_dbg("Retrying Byte %8.8X at offset %u\n", dword, offset);
4434 usleep_range(min: 100, max: 200);
4435 ret_val = e1000_write_flash_data32_ich8lan(hw, offset, data: dword);
4436 if (!ret_val)
4437 break;
4438 }
4439 if (program_retries == 100)
4440 return -E1000_ERR_NVM;
4441
4442 return 0;
4443}
4444
4445/**
4446 * e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
4447 * @hw: pointer to the HW structure
4448 * @offset: The offset of the byte to write.
4449 * @byte: The byte to write to the NVM.
4450 *
4451 * Writes a single byte to the NVM using the flash access registers.
4452 * Goes through a retry algorithm before giving up.
4453 **/
4454static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
4455 u32 offset, u8 byte)
4456{
4457 s32 ret_val;
4458 u16 program_retries;
4459
4460 ret_val = e1000_write_flash_byte_ich8lan(hw, offset, data: byte);
4461 if (!ret_val)
4462 return ret_val;
4463
4464 for (program_retries = 0; program_retries < 100; program_retries++) {
4465 e_dbg("Retrying Byte %2.2X at offset %u\n", byte, offset);
4466 usleep_range(min: 100, max: 200);
4467 ret_val = e1000_write_flash_byte_ich8lan(hw, offset, data: byte);
4468 if (!ret_val)
4469 break;
4470 }
4471 if (program_retries == 100)
4472 return -E1000_ERR_NVM;
4473
4474 return 0;
4475}
4476
4477/**
4478 * e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
4479 * @hw: pointer to the HW structure
4480 * @bank: 0 for first bank, 1 for second bank, etc.
4481 *
4482 * Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
4483 * bank N is 4096 * N + flash_reg_addr.
4484 **/
4485static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
4486{
4487 struct e1000_nvm_info *nvm = &hw->nvm;
4488 union ich8_hws_flash_status hsfsts;
4489 union ich8_hws_flash_ctrl hsflctl;
4490 u32 flash_linear_addr;
4491 /* bank size is in 16bit words - adjust to bytes */
4492 u32 flash_bank_size = nvm->flash_bank_size * 2;
4493 s32 ret_val;
4494 s32 count = 0;
4495 s32 j, iteration, sector_size;
4496
4497 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4498
4499 /* Determine HW Sector size: Read BERASE bits of hw flash status
4500 * register
4501 * 00: The Hw sector is 256 bytes, hence we need to erase 16
4502 * consecutive sectors. The start index for the nth Hw sector
4503 * can be calculated as = bank * 4096 + n * 256
4504 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
4505 * The start index for the nth Hw sector can be calculated
4506 * as = bank * 4096
4507 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
4508 * (ich9 only, otherwise error condition)
4509 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
4510 */
4511 switch (hsfsts.hsf_status.berasesz) {
4512 case 0:
4513 /* Hw sector size 256 */
4514 sector_size = ICH_FLASH_SEG_SIZE_256;
4515 iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
4516 break;
4517 case 1:
4518 sector_size = ICH_FLASH_SEG_SIZE_4K;
4519 iteration = 1;
4520 break;
4521 case 2:
4522 sector_size = ICH_FLASH_SEG_SIZE_8K;
4523 iteration = 1;
4524 break;
4525 case 3:
4526 sector_size = ICH_FLASH_SEG_SIZE_64K;
4527 iteration = 1;
4528 break;
4529 default:
4530 return -E1000_ERR_NVM;
4531 }
4532
4533 /* Start with the base address, then add the sector offset. */
4534 flash_linear_addr = hw->nvm.flash_base_addr;
4535 flash_linear_addr += (bank) ? flash_bank_size : 0;
4536
4537 for (j = 0; j < iteration; j++) {
4538 do {
4539 u32 timeout = ICH_FLASH_ERASE_COMMAND_TIMEOUT;
4540
4541 /* Steps */
4542 ret_val = e1000_flash_cycle_init_ich8lan(hw);
4543 if (ret_val)
4544 return ret_val;
4545
4546 /* Write a value 11 (block Erase) in Flash
4547 * Cycle field in hw flash control
4548 */
4549 if (hw->mac.type >= e1000_pch_spt)
4550 hsflctl.regval =
4551 er32flash(ICH_FLASH_HSFSTS) >> 16;
4552 else
4553 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4554
4555 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
4556 if (hw->mac.type >= e1000_pch_spt)
4557 ew32flash(ICH_FLASH_HSFSTS,
4558 hsflctl.regval << 16);
4559 else
4560 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4561
4562 /* Write the last 24 bits of an index within the
4563 * block into Flash Linear address field in Flash
4564 * Address.
4565 */
4566 flash_linear_addr += (j * sector_size);
4567 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4568
4569 ret_val = e1000_flash_cycle_ich8lan(hw, timeout);
4570 if (!ret_val)
4571 break;
4572
4573 /* Check if FCERR is set to 1. If 1,
4574 * clear it and try the whole sequence
4575 * a few more times else Done
4576 */
4577 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4578 if (hsfsts.hsf_status.flcerr)
4579 /* repeat for some time before giving up */
4580 continue;
4581 else if (!hsfsts.hsf_status.flcdone)
4582 return ret_val;
4583 } while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
4584 }
4585
4586 return 0;
4587}
4588
4589/**
4590 * e1000_valid_led_default_ich8lan - Set the default LED settings
4591 * @hw: pointer to the HW structure
4592 * @data: Pointer to the LED settings
4593 *
4594 * Reads the LED default settings from the NVM to data. If the NVM LED
4595 * settings is all 0's or F's, set the LED default to a valid LED default
4596 * setting.
4597 **/
4598static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
4599{
4600 s32 ret_val;
4601
4602 ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, words: 1, data);
4603 if (ret_val) {
4604 e_dbg("NVM Read Error\n");
4605 return ret_val;
4606 }
4607
4608 if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
4609 *data = ID_LED_DEFAULT_ICH8LAN;
4610
4611 return 0;
4612}
4613
4614/**
4615 * e1000_id_led_init_pchlan - store LED configurations
4616 * @hw: pointer to the HW structure
4617 *
4618 * PCH does not control LEDs via the LEDCTL register, rather it uses
4619 * the PHY LED configuration register.
4620 *
4621 * PCH also does not have an "always on" or "always off" mode which
4622 * complicates the ID feature. Instead of using the "on" mode to indicate
4623 * in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init_generic()),
4624 * use "link_up" mode. The LEDs will still ID on request if there is no
4625 * link based on logic in e1000_led_[on|off]_pchlan().
4626 **/
4627static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
4628{
4629 struct e1000_mac_info *mac = &hw->mac;
4630 s32 ret_val;
4631 const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
4632 const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
4633 u16 data, i, temp, shift;
4634
4635 /* Get default ID LED modes */
4636 ret_val = hw->nvm.ops.valid_led_default(hw, &data);
4637 if (ret_val)
4638 return ret_val;
4639
4640 mac->ledctl_default = er32(LEDCTL);
4641 mac->ledctl_mode1 = mac->ledctl_default;
4642 mac->ledctl_mode2 = mac->ledctl_default;
4643
4644 for (i = 0; i < 4; i++) {
4645 temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
4646 shift = (i * 5);
4647 switch (temp) {
4648 case ID_LED_ON1_DEF2:
4649 case ID_LED_ON1_ON2:
4650 case ID_LED_ON1_OFF2:
4651 mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4652 mac->ledctl_mode1 |= (ledctl_on << shift);
4653 break;
4654 case ID_LED_OFF1_DEF2:
4655 case ID_LED_OFF1_ON2:
4656 case ID_LED_OFF1_OFF2:
4657 mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4658 mac->ledctl_mode1 |= (ledctl_off << shift);
4659 break;
4660 default:
4661 /* Do nothing */
4662 break;
4663 }
4664 switch (temp) {
4665 case ID_LED_DEF1_ON2:
4666 case ID_LED_ON1_ON2:
4667 case ID_LED_OFF1_ON2:
4668 mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4669 mac->ledctl_mode2 |= (ledctl_on << shift);
4670 break;
4671 case ID_LED_DEF1_OFF2:
4672 case ID_LED_ON1_OFF2:
4673 case ID_LED_OFF1_OFF2:
4674 mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4675 mac->ledctl_mode2 |= (ledctl_off << shift);
4676 break;
4677 default:
4678 /* Do nothing */
4679 break;
4680 }
4681 }
4682
4683 return 0;
4684}
4685
4686/**
4687 * e1000_get_bus_info_ich8lan - Get/Set the bus type and width
4688 * @hw: pointer to the HW structure
4689 *
4690 * ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
4691 * register, so the bus width is hard coded.
4692 **/
4693static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
4694{
4695 struct e1000_bus_info *bus = &hw->bus;
4696 s32 ret_val;
4697
4698 ret_val = e1000e_get_bus_info_pcie(hw);
4699
4700 /* ICH devices are "PCI Express"-ish. They have
4701 * a configuration space, but do not contain
4702 * PCI Express Capability registers, so bus width
4703 * must be hardcoded.
4704 */
4705 if (bus->width == e1000_bus_width_unknown)
4706 bus->width = e1000_bus_width_pcie_x1;
4707
4708 return ret_val;
4709}
4710
4711/**
4712 * e1000_reset_hw_ich8lan - Reset the hardware
4713 * @hw: pointer to the HW structure
4714 *
4715 * Does a full reset of the hardware which includes a reset of the PHY and
4716 * MAC.
4717 **/
4718static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
4719{
4720 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4721 u16 kum_cfg;
4722 u32 ctrl, reg;
4723 s32 ret_val;
4724
4725 /* Prevent the PCI-E bus from sticking if there is no TLP connection
4726 * on the last TLP read/write transaction when MAC is reset.
4727 */
4728 ret_val = e1000e_disable_pcie_master(hw);
4729 if (ret_val)
4730 e_dbg("PCI-E Master disable polling has failed.\n");
4731
4732 e_dbg("Masking off all interrupts\n");
4733 ew32(IMC, 0xffffffff);
4734
4735 /* Disable the Transmit and Receive units. Then delay to allow
4736 * any pending transactions to complete before we hit the MAC
4737 * with the global reset.
4738 */
4739 ew32(RCTL, 0);
4740 ew32(TCTL, E1000_TCTL_PSP);
4741 e1e_flush();
4742
4743 usleep_range(min: 10000, max: 11000);
4744
4745 /* Workaround for ICH8 bit corruption issue in FIFO memory */
4746 if (hw->mac.type == e1000_ich8lan) {
4747 /* Set Tx and Rx buffer allocation to 8k apiece. */
4748 ew32(PBA, E1000_PBA_8K);
4749 /* Set Packet Buffer Size to 16k. */
4750 ew32(PBS, E1000_PBS_16K);
4751 }
4752
4753 if (hw->mac.type == e1000_pchlan) {
4754 /* Save the NVM K1 bit setting */
4755 ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, words: 1, data: &kum_cfg);
4756 if (ret_val)
4757 return ret_val;
4758
4759 if (kum_cfg & E1000_NVM_K1_ENABLE)
4760 dev_spec->nvm_k1_enabled = true;
4761 else
4762 dev_spec->nvm_k1_enabled = false;
4763 }
4764
4765 ctrl = er32(CTRL);
4766
4767 if (!hw->phy.ops.check_reset_block(hw)) {
4768 /* Full-chip reset requires MAC and PHY reset at the same
4769 * time to make sure the interface between MAC and the
4770 * external PHY is reset.
4771 */
4772 ctrl |= E1000_CTRL_PHY_RST;
4773
4774 /* Gate automatic PHY configuration by hardware on
4775 * non-managed 82579
4776 */
4777 if ((hw->mac.type == e1000_pch2lan) &&
4778 !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
4779 e1000_gate_hw_phy_config_ich8lan(hw, gate: true);
4780 }
4781 ret_val = e1000_acquire_swflag_ich8lan(hw);
4782 e_dbg("Issuing a global reset to ich8lan\n");
4783 ew32(CTRL, (ctrl | E1000_CTRL_RST));
4784 /* cannot issue a flush here because it hangs the hardware */
4785 msleep(msecs: 20);
4786
4787 /* Set Phy Config Counter to 50msec */
4788 if (hw->mac.type == e1000_pch2lan) {
4789 reg = er32(FEXTNVM3);
4790 reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
4791 reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
4792 ew32(FEXTNVM3, reg);
4793 }
4794
4795 if (!ret_val)
4796 clear_bit(nr: __E1000_ACCESS_SHARED_RESOURCE, addr: &hw->adapter->state);
4797
4798 if (ctrl & E1000_CTRL_PHY_RST) {
4799 ret_val = hw->phy.ops.get_cfg_done(hw);
4800 if (ret_val)
4801 return ret_val;
4802
4803 ret_val = e1000_post_phy_reset_ich8lan(hw);
4804 if (ret_val)
4805 return ret_val;
4806 }
4807
4808 /* For PCH, this write will make sure that any noise
4809 * will be detected as a CRC error and be dropped rather than show up
4810 * as a bad packet to the DMA engine.
4811 */
4812 if (hw->mac.type == e1000_pchlan)
4813 ew32(CRC_OFFSET, 0x65656565);
4814
4815 ew32(IMC, 0xffffffff);
4816 er32(ICR);
4817
4818 reg = er32(KABGTXD);
4819 reg |= E1000_KABGTXD_BGSQLBIAS;
4820 ew32(KABGTXD, reg);
4821
4822 return 0;
4823}
4824
4825/**
4826 * e1000_init_hw_ich8lan - Initialize the hardware
4827 * @hw: pointer to the HW structure
4828 *
4829 * Prepares the hardware for transmit and receive by doing the following:
4830 * - initialize hardware bits
4831 * - initialize LED identification
4832 * - setup receive address registers
4833 * - setup flow control
4834 * - setup transmit descriptors
4835 * - clear statistics
4836 **/
4837static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
4838{
4839 struct e1000_mac_info *mac = &hw->mac;
4840 u32 ctrl_ext, txdctl, snoop, fflt_dbg;
4841 s32 ret_val;
4842 u16 i;
4843
4844 e1000_initialize_hw_bits_ich8lan(hw);
4845
4846 /* Initialize identification LED */
4847 ret_val = mac->ops.id_led_init(hw);
4848 /* An error is not fatal and we should not stop init due to this */
4849 if (ret_val)
4850 e_dbg("Error initializing identification LED\n");
4851
4852 /* Setup the receive address. */
4853 e1000e_init_rx_addrs(hw, rar_count: mac->rar_entry_count);
4854
4855 /* Zero out the Multicast HASH table */
4856 e_dbg("Zeroing the MTA\n");
4857 for (i = 0; i < mac->mta_reg_count; i++)
4858 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
4859
4860 /* The 82578 Rx buffer will stall if wakeup is enabled in host and
4861 * the ME. Disable wakeup by clearing the host wakeup bit.
4862 * Reset the phy after disabling host wakeup to reset the Rx buffer.
4863 */
4864 if (hw->phy.type == e1000_phy_82578) {
4865 e1e_rphy(hw, BM_PORT_GEN_CFG, data: &i);
4866 i &= ~BM_WUC_HOST_WU_BIT;
4867 e1e_wphy(hw, BM_PORT_GEN_CFG, data: i);
4868 ret_val = e1000_phy_hw_reset_ich8lan(hw);
4869 if (ret_val)
4870 return ret_val;
4871 }
4872
4873 /* Setup link and flow control */
4874 ret_val = mac->ops.setup_link(hw);
4875
4876 /* Set the transmit descriptor write-back policy for both queues */
4877 txdctl = er32(TXDCTL(0));
4878 txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
4879 E1000_TXDCTL_FULL_TX_DESC_WB);
4880 txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
4881 E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
4882 ew32(TXDCTL(0), txdctl);
4883 txdctl = er32(TXDCTL(1));
4884 txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
4885 E1000_TXDCTL_FULL_TX_DESC_WB);
4886 txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
4887 E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
4888 ew32(TXDCTL(1), txdctl);
4889
4890 /* ICH8 has opposite polarity of no_snoop bits.
4891 * By default, we should use snoop behavior.
4892 */
4893 if (mac->type == e1000_ich8lan)
4894 snoop = PCIE_ICH8_SNOOP_ALL;
4895 else
4896 snoop = (u32)~(PCIE_NO_SNOOP_ALL);
4897 e1000e_set_pcie_no_snoop(hw, no_snoop: snoop);
4898
4899 /* Enable workaround for packet loss issue on TGP PCH
4900 * Do not gate DMA clock from the modPHY block
4901 */
4902 if (mac->type >= e1000_pch_tgp) {
4903 fflt_dbg = er32(FFLT_DBG);
4904 fflt_dbg |= E1000_FFLT_DBG_DONT_GATE_WAKE_DMA_CLK;
4905 ew32(FFLT_DBG, fflt_dbg);
4906 }
4907
4908 ctrl_ext = er32(CTRL_EXT);
4909 ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
4910 ew32(CTRL_EXT, ctrl_ext);
4911
4912 /* Clear all of the statistics registers (clear on read). It is
4913 * important that we do this after we have tried to establish link
4914 * because the symbol error count will increment wildly if there
4915 * is no link.
4916 */
4917 e1000_clear_hw_cntrs_ich8lan(hw);
4918
4919 return ret_val;
4920}
4921
4922/**
4923 * e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
4924 * @hw: pointer to the HW structure
4925 *
4926 * Sets/Clears required hardware bits necessary for correctly setting up the
4927 * hardware for transmit and receive.
4928 **/
4929static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
4930{
4931 u32 reg;
4932
4933 /* Extended Device Control */
4934 reg = er32(CTRL_EXT);
4935 reg |= BIT(22);
4936 /* Enable PHY low-power state when MAC is at D3 w/o WoL */
4937 if (hw->mac.type >= e1000_pchlan)
4938 reg |= E1000_CTRL_EXT_PHYPDEN;
4939 ew32(CTRL_EXT, reg);
4940
4941 /* Transmit Descriptor Control 0 */
4942 reg = er32(TXDCTL(0));
4943 reg |= BIT(22);
4944 ew32(TXDCTL(0), reg);
4945
4946 /* Transmit Descriptor Control 1 */
4947 reg = er32(TXDCTL(1));
4948 reg |= BIT(22);
4949 ew32(TXDCTL(1), reg);
4950
4951 /* Transmit Arbitration Control 0 */
4952 reg = er32(TARC(0));
4953 if (hw->mac.type == e1000_ich8lan)
4954 reg |= BIT(28) | BIT(29);
4955 reg |= BIT(23) | BIT(24) | BIT(26) | BIT(27);
4956 ew32(TARC(0), reg);
4957
4958 /* Transmit Arbitration Control 1 */
4959 reg = er32(TARC(1));
4960 if (er32(TCTL) & E1000_TCTL_MULR)
4961 reg &= ~BIT(28);
4962 else
4963 reg |= BIT(28);
4964 reg |= BIT(24) | BIT(26) | BIT(30);
4965 ew32(TARC(1), reg);
4966
4967 /* Device Status */
4968 if (hw->mac.type == e1000_ich8lan) {
4969 reg = er32(STATUS);
4970 reg &= ~BIT(31);
4971 ew32(STATUS, reg);
4972 }
4973
4974 /* work-around descriptor data corruption issue during nfs v2 udp
4975 * traffic, just disable the nfs filtering capability
4976 */
4977 reg = er32(RFCTL);
4978 reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS);
4979
4980 /* Disable IPv6 extension header parsing because some malformed
4981 * IPv6 headers can hang the Rx.
4982 */
4983 if (hw->mac.type == e1000_ich8lan)
4984 reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
4985 ew32(RFCTL, reg);
4986
4987 /* Enable ECC on Lynxpoint */
4988 if (hw->mac.type >= e1000_pch_lpt) {
4989 reg = er32(PBECCSTS);
4990 reg |= E1000_PBECCSTS_ECC_ENABLE;
4991 ew32(PBECCSTS, reg);
4992
4993 reg = er32(CTRL);
4994 reg |= E1000_CTRL_MEHE;
4995 ew32(CTRL, reg);
4996 }
4997}
4998
4999/**
5000 * e1000_setup_link_ich8lan - Setup flow control and link settings
5001 * @hw: pointer to the HW structure
5002 *
5003 * Determines which flow control settings to use, then configures flow
5004 * control. Calls the appropriate media-specific link configuration
5005 * function. Assuming the adapter has a valid link partner, a valid link
5006 * should be established. Assumes the hardware has previously been reset
5007 * and the transmitter and receiver are not enabled.
5008 **/
5009static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
5010{
5011 s32 ret_val;
5012
5013 if (hw->phy.ops.check_reset_block(hw))
5014 return 0;
5015
5016 /* ICH parts do not have a word in the NVM to determine
5017 * the default flow control setting, so we explicitly
5018 * set it to full.
5019 */
5020 if (hw->fc.requested_mode == e1000_fc_default) {
5021 /* Workaround h/w hang when Tx flow control enabled */
5022 if (hw->mac.type == e1000_pchlan)
5023 hw->fc.requested_mode = e1000_fc_rx_pause;
5024 else
5025 hw->fc.requested_mode = e1000_fc_full;
5026 }
5027
5028 /* Save off the requested flow control mode for use later. Depending
5029 * on the link partner's capabilities, we may or may not use this mode.
5030 */
5031 hw->fc.current_mode = hw->fc.requested_mode;
5032
5033 e_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode);
5034
5035 /* Continue to configure the copper link. */
5036 ret_val = hw->mac.ops.setup_physical_interface(hw);
5037 if (ret_val)
5038 return ret_val;
5039
5040 ew32(FCTTV, hw->fc.pause_time);
5041 if ((hw->phy.type == e1000_phy_82578) ||
5042 (hw->phy.type == e1000_phy_82579) ||
5043 (hw->phy.type == e1000_phy_i217) ||
5044 (hw->phy.type == e1000_phy_82577)) {
5045 ew32(FCRTV_PCH, hw->fc.refresh_time);
5046
5047 ret_val = e1e_wphy(hw, PHY_REG(BM_PORT_CTRL_PAGE, 27),
5048 data: hw->fc.pause_time);
5049 if (ret_val)
5050 return ret_val;
5051 }
5052
5053 return e1000e_set_fc_watermarks(hw);
5054}
5055
5056/**
5057 * e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
5058 * @hw: pointer to the HW structure
5059 *
5060 * Configures the kumeran interface to the PHY to wait the appropriate time
5061 * when polling the PHY, then call the generic setup_copper_link to finish
5062 * configuring the copper link.
5063 **/
5064static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
5065{
5066 u32 ctrl;
5067 s32 ret_val;
5068 u16 reg_data;
5069
5070 ctrl = er32(CTRL);
5071 ctrl |= E1000_CTRL_SLU;
5072 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
5073 ew32(CTRL, ctrl);
5074
5075 /* Set the mac to wait the maximum time between each iteration
5076 * and increase the max iterations when polling the phy;
5077 * this fixes erroneous timeouts at 10Mbps.
5078 */
5079 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_TIMEOUTS, data: 0xFFFF);
5080 if (ret_val)
5081 return ret_val;
5082 ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
5083 data: &reg_data);
5084 if (ret_val)
5085 return ret_val;
5086 reg_data |= 0x3F;
5087 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
5088 data: reg_data);
5089 if (ret_val)
5090 return ret_val;
5091
5092 switch (hw->phy.type) {
5093 case e1000_phy_igp_3:
5094 ret_val = e1000e_copper_link_setup_igp(hw);
5095 if (ret_val)
5096 return ret_val;
5097 break;
5098 case e1000_phy_bm:
5099 case e1000_phy_82578:
5100 ret_val = e1000e_copper_link_setup_m88(hw);
5101 if (ret_val)
5102 return ret_val;
5103 break;
5104 case e1000_phy_82577:
5105 case e1000_phy_82579:
5106 ret_val = e1000_copper_link_setup_82577(hw);
5107 if (ret_val)
5108 return ret_val;
5109 break;
5110 case e1000_phy_ife:
5111 ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, data: &reg_data);
5112 if (ret_val)
5113 return ret_val;
5114
5115 reg_data &= ~IFE_PMC_AUTO_MDIX;
5116
5117 switch (hw->phy.mdix) {
5118 case 1:
5119 reg_data &= ~IFE_PMC_FORCE_MDIX;
5120 break;
5121 case 2:
5122 reg_data |= IFE_PMC_FORCE_MDIX;
5123 break;
5124 case 0:
5125 default:
5126 reg_data |= IFE_PMC_AUTO_MDIX;
5127 break;
5128 }
5129 ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, data: reg_data);
5130 if (ret_val)
5131 return ret_val;
5132 break;
5133 default:
5134 break;
5135 }
5136
5137 return e1000e_setup_copper_link(hw);
5138}
5139
5140/**
5141 * e1000_setup_copper_link_pch_lpt - Configure MAC/PHY interface
5142 * @hw: pointer to the HW structure
5143 *
5144 * Calls the PHY specific link setup function and then calls the
5145 * generic setup_copper_link to finish configuring the link for
5146 * Lynxpoint PCH devices
5147 **/
5148static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw)
5149{
5150 u32 ctrl;
5151 s32 ret_val;
5152
5153 ctrl = er32(CTRL);
5154 ctrl |= E1000_CTRL_SLU;
5155 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
5156 ew32(CTRL, ctrl);
5157
5158 ret_val = e1000_copper_link_setup_82577(hw);
5159 if (ret_val)
5160 return ret_val;
5161
5162 return e1000e_setup_copper_link(hw);
5163}
5164
5165/**
5166 * e1000_get_link_up_info_ich8lan - Get current link speed and duplex
5167 * @hw: pointer to the HW structure
5168 * @speed: pointer to store current link speed
5169 * @duplex: pointer to store the current link duplex
5170 *
5171 * Calls the generic get_speed_and_duplex to retrieve the current link
5172 * information and then calls the Kumeran lock loss workaround for links at
5173 * gigabit speeds.
5174 **/
5175static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
5176 u16 *duplex)
5177{
5178 s32 ret_val;
5179
5180 ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
5181 if (ret_val)
5182 return ret_val;
5183
5184 if ((hw->mac.type == e1000_ich8lan) &&
5185 (hw->phy.type == e1000_phy_igp_3) && (*speed == SPEED_1000)) {
5186 ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
5187 }
5188
5189 return ret_val;
5190}
5191
5192/**
5193 * e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
5194 * @hw: pointer to the HW structure
5195 *
5196 * Work-around for 82566 Kumeran PCS lock loss:
5197 * On link status change (i.e. PCI reset, speed change) and link is up and
5198 * speed is gigabit-
5199 * 0) if workaround is optionally disabled do nothing
5200 * 1) wait 1ms for Kumeran link to come up
5201 * 2) check Kumeran Diagnostic register PCS lock loss bit
5202 * 3) if not set the link is locked (all is good), otherwise...
5203 * 4) reset the PHY
5204 * 5) repeat up to 10 times
5205 * Note: this is only called for IGP3 copper when speed is 1gb.
5206 **/
5207static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
5208{
5209 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5210 u32 phy_ctrl;
5211 s32 ret_val;
5212 u16 i, data;
5213 bool link;
5214
5215 if (!dev_spec->kmrn_lock_loss_workaround_enabled)
5216 return 0;
5217
5218 /* Make sure link is up before proceeding. If not just return.
5219 * Attempting this while link is negotiating fouled up link
5220 * stability
5221 */
5222 ret_val = e1000e_phy_has_link_generic(hw, iterations: 1, usec_interval: 0, success: &link);
5223 if (!link)
5224 return 0;
5225
5226 for (i = 0; i < 10; i++) {
5227 /* read once to clear */
5228 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, data: &data);
5229 if (ret_val)
5230 return ret_val;
5231 /* and again to get new status */
5232 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, data: &data);
5233 if (ret_val)
5234 return ret_val;
5235
5236 /* check for PCS lock */
5237 if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
5238 return 0;
5239
5240 /* Issue PHY reset */
5241 e1000_phy_hw_reset(hw);
5242 mdelay(5);
5243 }
5244 /* Disable GigE link negotiation */
5245 phy_ctrl = er32(PHY_CTRL);
5246 phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
5247 E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
5248 ew32(PHY_CTRL, phy_ctrl);
5249
5250 /* Call gig speed drop workaround on Gig disable before accessing
5251 * any PHY registers
5252 */
5253 e1000e_gig_downshift_workaround_ich8lan(hw);
5254
5255 /* unable to acquire PCS lock */
5256 return -E1000_ERR_PHY;
5257}
5258
5259/**
5260 * e1000e_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
5261 * @hw: pointer to the HW structure
5262 * @state: boolean value used to set the current Kumeran workaround state
5263 *
5264 * If ICH8, set the current Kumeran workaround state (enabled - true
5265 * /disabled - false).
5266 **/
5267void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
5268 bool state)
5269{
5270 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5271
5272 if (hw->mac.type != e1000_ich8lan) {
5273 e_dbg("Workaround applies to ICH8 only.\n");
5274 return;
5275 }
5276
5277 dev_spec->kmrn_lock_loss_workaround_enabled = state;
5278}
5279
5280/**
5281 * e1000e_igp3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
5282 * @hw: pointer to the HW structure
5283 *
5284 * Workaround for 82566 power-down on D3 entry:
5285 * 1) disable gigabit link
5286 * 2) write VR power-down enable
5287 * 3) read it back
5288 * Continue if successful, else issue LCD reset and repeat
5289 **/
5290void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
5291{
5292 u32 reg;
5293 u16 data;
5294 u8 retry = 0;
5295
5296 if (hw->phy.type != e1000_phy_igp_3)
5297 return;
5298
5299 /* Try the workaround twice (if needed) */
5300 do {
5301 /* Disable link */
5302 reg = er32(PHY_CTRL);
5303 reg |= (E1000_PHY_CTRL_GBE_DISABLE |
5304 E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
5305 ew32(PHY_CTRL, reg);
5306
5307 /* Call gig speed drop workaround on Gig disable before
5308 * accessing any PHY registers
5309 */
5310 if (hw->mac.type == e1000_ich8lan)
5311 e1000e_gig_downshift_workaround_ich8lan(hw);
5312
5313 /* Write VR power-down enable */
5314 e1e_rphy(hw, IGP3_VR_CTRL, data: &data);
5315 data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
5316 e1e_wphy(hw, IGP3_VR_CTRL, data: data | IGP3_VR_CTRL_MODE_SHUTDOWN);
5317
5318 /* Read it back and test */
5319 e1e_rphy(hw, IGP3_VR_CTRL, data: &data);
5320 data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
5321 if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
5322 break;
5323
5324 /* Issue PHY reset and repeat at most one more time */
5325 reg = er32(CTRL);
5326 ew32(CTRL, reg | E1000_CTRL_PHY_RST);
5327 retry++;
5328 } while (retry);
5329}
5330
5331/**
5332 * e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
5333 * @hw: pointer to the HW structure
5334 *
5335 * Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
5336 * LPLU, Gig disable, MDIC PHY reset):
5337 * 1) Set Kumeran Near-end loopback
5338 * 2) Clear Kumeran Near-end loopback
5339 * Should only be called for ICH8[m] devices with any 1G Phy.
5340 **/
5341void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
5342{
5343 s32 ret_val;
5344 u16 reg_data;
5345
5346 if ((hw->mac.type != e1000_ich8lan) || (hw->phy.type == e1000_phy_ife))
5347 return;
5348
5349 ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
5350 data: &reg_data);
5351 if (ret_val)
5352 return;
5353 reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
5354 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
5355 data: reg_data);
5356 if (ret_val)
5357 return;
5358 reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
5359 e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET, data: reg_data);
5360}
5361
5362/**
5363 * e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx
5364 * @hw: pointer to the HW structure
5365 *
5366 * During S0 to Sx transition, it is possible the link remains at gig
5367 * instead of negotiating to a lower speed. Before going to Sx, set
5368 * 'Gig Disable' to force link speed negotiation to a lower speed based on
5369 * the LPLU setting in the NVM or custom setting. For PCH and newer parts,
5370 * the OEM bits PHY register (LED, GbE disable and LPLU configurations) also
5371 * needs to be written.
5372 * Parts that support (and are linked to a partner which support) EEE in
5373 * 100Mbps should disable LPLU since 100Mbps w/ EEE requires less power
5374 * than 10Mbps w/o EEE.
5375 **/
5376void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw)
5377{
5378 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5379 u32 phy_ctrl;
5380 s32 ret_val;
5381
5382 phy_ctrl = er32(PHY_CTRL);
5383 phy_ctrl |= E1000_PHY_CTRL_GBE_DISABLE;
5384
5385 if (hw->phy.type == e1000_phy_i217) {
5386 u16 phy_reg, device_id = hw->adapter->pdev->device;
5387
5388 if ((device_id == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
5389 (device_id == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
5390 (device_id == E1000_DEV_ID_PCH_I218_LM3) ||
5391 (device_id == E1000_DEV_ID_PCH_I218_V3) ||
5392 (hw->mac.type >= e1000_pch_spt)) {
5393 u32 fextnvm6 = er32(FEXTNVM6);
5394
5395 ew32(FEXTNVM6, fextnvm6 & ~E1000_FEXTNVM6_REQ_PLL_CLK);
5396 }
5397
5398 ret_val = hw->phy.ops.acquire(hw);
5399 if (ret_val)
5400 goto out;
5401
5402 if (!dev_spec->eee_disable) {
5403 u16 eee_advert;
5404
5405 ret_val =
5406 e1000_read_emi_reg_locked(hw,
5407 I217_EEE_ADVERTISEMENT,
5408 data: &eee_advert);
5409 if (ret_val)
5410 goto release;
5411
5412 /* Disable LPLU if both link partners support 100BaseT
5413 * EEE and 100Full is advertised on both ends of the
5414 * link, and enable Auto Enable LPI since there will
5415 * be no driver to enable LPI while in Sx.
5416 */
5417 if ((eee_advert & I82579_EEE_100_SUPPORTED) &&
5418 (dev_spec->eee_lp_ability &
5419 I82579_EEE_100_SUPPORTED) &&
5420 (hw->phy.autoneg_advertised & ADVERTISE_100_FULL)) {
5421 phy_ctrl &= ~(E1000_PHY_CTRL_D0A_LPLU |
5422 E1000_PHY_CTRL_NOND0A_LPLU);
5423
5424 /* Set Auto Enable LPI after link up */
5425 e1e_rphy_locked(hw,
5426 I217_LPI_GPIO_CTRL, data: &phy_reg);
5427 phy_reg |= I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5428 e1e_wphy_locked(hw,
5429 I217_LPI_GPIO_CTRL, data: phy_reg);
5430 }
5431 }
5432
5433 /* For i217 Intel Rapid Start Technology support,
5434 * when the system is going into Sx and no manageability engine
5435 * is present, the driver must configure proxy to reset only on
5436 * power good. LPI (Low Power Idle) state must also reset only
5437 * on power good, as well as the MTA (Multicast table array).
5438 * The SMBus release must also be disabled on LCD reset.
5439 */
5440 if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
5441 /* Enable proxy to reset only on power good. */
5442 e1e_rphy_locked(hw, I217_PROXY_CTRL, data: &phy_reg);
5443 phy_reg |= I217_PROXY_CTRL_AUTO_DISABLE;
5444 e1e_wphy_locked(hw, I217_PROXY_CTRL, data: phy_reg);
5445
5446 /* Set bit enable LPI (EEE) to reset only on
5447 * power good.
5448 */
5449 e1e_rphy_locked(hw, I217_SxCTRL, data: &phy_reg);
5450 phy_reg |= I217_SxCTRL_ENABLE_LPI_RESET;
5451 e1e_wphy_locked(hw, I217_SxCTRL, data: phy_reg);
5452
5453 /* Disable the SMB release on LCD reset. */
5454 e1e_rphy_locked(hw, I217_MEMPWR, data: &phy_reg);
5455 phy_reg &= ~I217_MEMPWR_DISABLE_SMB_RELEASE;
5456 e1e_wphy_locked(hw, I217_MEMPWR, data: phy_reg);
5457 }
5458
5459 /* Enable MTA to reset for Intel Rapid Start Technology
5460 * Support
5461 */
5462 e1e_rphy_locked(hw, I217_CGFREG, data: &phy_reg);
5463 phy_reg |= I217_CGFREG_ENABLE_MTA_RESET;
5464 e1e_wphy_locked(hw, I217_CGFREG, data: phy_reg);
5465
5466release:
5467 hw->phy.ops.release(hw);
5468 }
5469out:
5470 ew32(PHY_CTRL, phy_ctrl);
5471
5472 if (hw->mac.type == e1000_ich8lan)
5473 e1000e_gig_downshift_workaround_ich8lan(hw);
5474
5475 if (hw->mac.type >= e1000_pchlan) {
5476 e1000_oem_bits_config_ich8lan(hw, d0_state: false);
5477
5478 /* Reset PHY to activate OEM bits on 82577/8 */
5479 if (hw->mac.type == e1000_pchlan)
5480 e1000e_phy_hw_reset_generic(hw);
5481
5482 ret_val = hw->phy.ops.acquire(hw);
5483 if (ret_val)
5484 return;
5485 e1000_write_smbus_addr(hw);
5486 hw->phy.ops.release(hw);
5487 }
5488}
5489
5490/**
5491 * e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0
5492 * @hw: pointer to the HW structure
5493 *
5494 * During Sx to S0 transitions on non-managed devices or managed devices
5495 * on which PHY resets are not blocked, if the PHY registers cannot be
5496 * accessed properly by the s/w toggle the LANPHYPC value to power cycle
5497 * the PHY.
5498 * On i217, setup Intel Rapid Start Technology.
5499 **/
5500void e1000_resume_workarounds_pchlan(struct e1000_hw *hw)
5501{
5502 s32 ret_val;
5503
5504 if (hw->mac.type < e1000_pch2lan)
5505 return;
5506
5507 ret_val = e1000_init_phy_workarounds_pchlan(hw);
5508 if (ret_val) {
5509 e_dbg("Failed to init PHY flow ret_val=%d\n", ret_val);
5510 return;
5511 }
5512
5513 /* For i217 Intel Rapid Start Technology support when the system
5514 * is transitioning from Sx and no manageability engine is present
5515 * configure SMBus to restore on reset, disable proxy, and enable
5516 * the reset on MTA (Multicast table array).
5517 */
5518 if (hw->phy.type == e1000_phy_i217) {
5519 u16 phy_reg;
5520
5521 ret_val = hw->phy.ops.acquire(hw);
5522 if (ret_val) {
5523 e_dbg("Failed to setup iRST\n");
5524 return;
5525 }
5526
5527 /* Clear Auto Enable LPI after link up */
5528 e1e_rphy_locked(hw, I217_LPI_GPIO_CTRL, data: &phy_reg);
5529 phy_reg &= ~I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5530 e1e_wphy_locked(hw, I217_LPI_GPIO_CTRL, data: phy_reg);
5531
5532 if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
5533 /* Restore clear on SMB if no manageability engine
5534 * is present
5535 */
5536 ret_val = e1e_rphy_locked(hw, I217_MEMPWR, data: &phy_reg);
5537 if (ret_val)
5538 goto release;
5539 phy_reg |= I217_MEMPWR_DISABLE_SMB_RELEASE;
5540 e1e_wphy_locked(hw, I217_MEMPWR, data: phy_reg);
5541
5542 /* Disable Proxy */
5543 e1e_wphy_locked(hw, I217_PROXY_CTRL, data: 0);
5544 }
5545 /* Enable reset on MTA */
5546 ret_val = e1e_rphy_locked(hw, I217_CGFREG, data: &phy_reg);
5547 if (ret_val)
5548 goto release;
5549 phy_reg &= ~I217_CGFREG_ENABLE_MTA_RESET;
5550 e1e_wphy_locked(hw, I217_CGFREG, data: phy_reg);
5551release:
5552 if (ret_val)
5553 e_dbg("Error %d in resume workarounds\n", ret_val);
5554 hw->phy.ops.release(hw);
5555 }
5556}
5557
5558/**
5559 * e1000_cleanup_led_ich8lan - Restore the default LED operation
5560 * @hw: pointer to the HW structure
5561 *
5562 * Return the LED back to the default configuration.
5563 **/
5564static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
5565{
5566 if (hw->phy.type == e1000_phy_ife)
5567 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, data: 0);
5568
5569 ew32(LEDCTL, hw->mac.ledctl_default);
5570 return 0;
5571}
5572
5573/**
5574 * e1000_led_on_ich8lan - Turn LEDs on
5575 * @hw: pointer to the HW structure
5576 *
5577 * Turn on the LEDs.
5578 **/
5579static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
5580{
5581 if (hw->phy.type == e1000_phy_ife)
5582 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5583 data: (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
5584
5585 ew32(LEDCTL, hw->mac.ledctl_mode2);
5586 return 0;
5587}
5588
5589/**
5590 * e1000_led_off_ich8lan - Turn LEDs off
5591 * @hw: pointer to the HW structure
5592 *
5593 * Turn off the LEDs.
5594 **/
5595static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
5596{
5597 if (hw->phy.type == e1000_phy_ife)
5598 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5599 data: (IFE_PSCL_PROBE_MODE |
5600 IFE_PSCL_PROBE_LEDS_OFF));
5601
5602 ew32(LEDCTL, hw->mac.ledctl_mode1);
5603 return 0;
5604}
5605
5606/**
5607 * e1000_setup_led_pchlan - Configures SW controllable LED
5608 * @hw: pointer to the HW structure
5609 *
5610 * This prepares the SW controllable LED for use.
5611 **/
5612static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
5613{
5614 return e1e_wphy(hw, HV_LED_CONFIG, data: (u16)hw->mac.ledctl_mode1);
5615}
5616
5617/**
5618 * e1000_cleanup_led_pchlan - Restore the default LED operation
5619 * @hw: pointer to the HW structure
5620 *
5621 * Return the LED back to the default configuration.
5622 **/
5623static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
5624{
5625 return e1e_wphy(hw, HV_LED_CONFIG, data: (u16)hw->mac.ledctl_default);
5626}
5627
5628/**
5629 * e1000_led_on_pchlan - Turn LEDs on
5630 * @hw: pointer to the HW structure
5631 *
5632 * Turn on the LEDs.
5633 **/
5634static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
5635{
5636 u16 data = (u16)hw->mac.ledctl_mode2;
5637 u32 i, led;
5638
5639 /* If no link, then turn LED on by setting the invert bit
5640 * for each LED that's mode is "link_up" in ledctl_mode2.
5641 */
5642 if (!(er32(STATUS) & E1000_STATUS_LU)) {
5643 for (i = 0; i < 3; i++) {
5644 led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5645 if ((led & E1000_PHY_LED0_MODE_MASK) !=
5646 E1000_LEDCTL_MODE_LINK_UP)
5647 continue;
5648 if (led & E1000_PHY_LED0_IVRT)
5649 data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5650 else
5651 data |= (E1000_PHY_LED0_IVRT << (i * 5));
5652 }
5653 }
5654
5655 return e1e_wphy(hw, HV_LED_CONFIG, data);
5656}
5657
5658/**
5659 * e1000_led_off_pchlan - Turn LEDs off
5660 * @hw: pointer to the HW structure
5661 *
5662 * Turn off the LEDs.
5663 **/
5664static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
5665{
5666 u16 data = (u16)hw->mac.ledctl_mode1;
5667 u32 i, led;
5668
5669 /* If no link, then turn LED off by clearing the invert bit
5670 * for each LED that's mode is "link_up" in ledctl_mode1.
5671 */
5672 if (!(er32(STATUS) & E1000_STATUS_LU)) {
5673 for (i = 0; i < 3; i++) {
5674 led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5675 if ((led & E1000_PHY_LED0_MODE_MASK) !=
5676 E1000_LEDCTL_MODE_LINK_UP)
5677 continue;
5678 if (led & E1000_PHY_LED0_IVRT)
5679 data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5680 else
5681 data |= (E1000_PHY_LED0_IVRT << (i * 5));
5682 }
5683 }
5684
5685 return e1e_wphy(hw, HV_LED_CONFIG, data);
5686}
5687
5688/**
5689 * e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset
5690 * @hw: pointer to the HW structure
5691 *
5692 * Read appropriate register for the config done bit for completion status
5693 * and configure the PHY through s/w for EEPROM-less parts.
5694 *
5695 * NOTE: some silicon which is EEPROM-less will fail trying to read the
5696 * config done bit, so only an error is logged and continues. If we were
5697 * to return with error, EEPROM-less silicon would not be able to be reset
5698 * or change link.
5699 **/
5700static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
5701{
5702 s32 ret_val = 0;
5703 u32 bank = 0;
5704 u32 status;
5705
5706 e1000e_get_cfg_done_generic(hw);
5707
5708 /* Wait for indication from h/w that it has completed basic config */
5709 if (hw->mac.type >= e1000_ich10lan) {
5710 e1000_lan_init_done_ich8lan(hw);
5711 } else {
5712 ret_val = e1000e_get_auto_rd_done(hw);
5713 if (ret_val) {
5714 /* When auto config read does not complete, do not
5715 * return with an error. This can happen in situations
5716 * where there is no eeprom and prevents getting link.
5717 */
5718 e_dbg("Auto Read Done did not complete\n");
5719 ret_val = 0;
5720 }
5721 }
5722
5723 /* Clear PHY Reset Asserted bit */
5724 status = er32(STATUS);
5725 if (status & E1000_STATUS_PHYRA)
5726 ew32(STATUS, status & ~E1000_STATUS_PHYRA);
5727 else
5728 e_dbg("PHY Reset Asserted not set - needs delay\n");
5729
5730 /* If EEPROM is not marked present, init the IGP 3 PHY manually */
5731 if (hw->mac.type <= e1000_ich9lan) {
5732 if (!(er32(EECD) & E1000_EECD_PRES) &&
5733 (hw->phy.type == e1000_phy_igp_3)) {
5734 e1000e_phy_init_script_igp3(hw);
5735 }
5736 } else {
5737 if (e1000_valid_nvm_bank_detect_ich8lan(hw, bank: &bank)) {
5738 /* Maybe we should do a basic PHY config */
5739 e_dbg("EEPROM not present\n");
5740 ret_val = -E1000_ERR_CONFIG;
5741 }
5742 }
5743
5744 return ret_val;
5745}
5746
5747/**
5748 * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
5749 * @hw: pointer to the HW structure
5750 *
5751 * In the case of a PHY power down to save power, or to turn off link during a
5752 * driver unload, or wake on lan is not enabled, remove the link.
5753 **/
5754static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw)
5755{
5756 /* If the management interface is not enabled, then power down */
5757 if (!(hw->mac.ops.check_mng_mode(hw) ||
5758 hw->phy.ops.check_reset_block(hw)))
5759 e1000_power_down_phy_copper(hw);
5760}
5761
5762/**
5763 * e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
5764 * @hw: pointer to the HW structure
5765 *
5766 * Clears hardware counters specific to the silicon family and calls
5767 * clear_hw_cntrs_generic to clear all general purpose counters.
5768 **/
5769static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
5770{
5771 u16 phy_data;
5772 s32 ret_val;
5773
5774 e1000e_clear_hw_cntrs_base(hw);
5775
5776 er32(ALGNERRC);
5777 er32(RXERRC);
5778 er32(TNCRS);
5779 er32(CEXTERR);
5780 er32(TSCTC);
5781 er32(TSCTFC);
5782
5783 er32(MGTPRC);
5784 er32(MGTPDC);
5785 er32(MGTPTC);
5786
5787 er32(IAC);
5788 er32(ICRXOC);
5789
5790 /* Clear PHY statistics registers */
5791 if ((hw->phy.type == e1000_phy_82578) ||
5792 (hw->phy.type == e1000_phy_82579) ||
5793 (hw->phy.type == e1000_phy_i217) ||
5794 (hw->phy.type == e1000_phy_82577)) {
5795 ret_val = hw->phy.ops.acquire(hw);
5796 if (ret_val)
5797 return;
5798 ret_val = hw->phy.ops.set_page(hw,
5799 HV_STATS_PAGE << IGP_PAGE_SHIFT);
5800 if (ret_val)
5801 goto release;
5802 hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
5803 hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
5804 hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
5805 hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
5806 hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
5807 hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
5808 hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
5809 hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
5810 hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
5811 hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
5812 hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
5813 hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
5814 hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
5815 hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
5816release:
5817 hw->phy.ops.release(hw);
5818 }
5819}
5820
5821static const struct e1000_mac_operations ich8_mac_ops = {
5822 /* check_mng_mode dependent on mac type */
5823 .check_for_link = e1000_check_for_copper_link_ich8lan,
5824 /* cleanup_led dependent on mac type */
5825 .clear_hw_cntrs = e1000_clear_hw_cntrs_ich8lan,
5826 .get_bus_info = e1000_get_bus_info_ich8lan,
5827 .set_lan_id = e1000_set_lan_id_single_port,
5828 .get_link_up_info = e1000_get_link_up_info_ich8lan,
5829 /* led_on dependent on mac type */
5830 /* led_off dependent on mac type */
5831 .update_mc_addr_list = e1000e_update_mc_addr_list_generic,
5832 .reset_hw = e1000_reset_hw_ich8lan,
5833 .init_hw = e1000_init_hw_ich8lan,
5834 .setup_link = e1000_setup_link_ich8lan,
5835 .setup_physical_interface = e1000_setup_copper_link_ich8lan,
5836 /* id_led_init dependent on mac type */
5837 .config_collision_dist = e1000e_config_collision_dist_generic,
5838 .rar_set = e1000e_rar_set_generic,
5839 .rar_get_count = e1000e_rar_get_count_generic,
5840};
5841
5842static const struct e1000_phy_operations ich8_phy_ops = {
5843 .acquire = e1000_acquire_swflag_ich8lan,
5844 .check_reset_block = e1000_check_reset_block_ich8lan,
5845 .commit = NULL,
5846 .get_cfg_done = e1000_get_cfg_done_ich8lan,
5847 .get_cable_length = e1000e_get_cable_length_igp_2,
5848 .read_reg = e1000e_read_phy_reg_igp,
5849 .release = e1000_release_swflag_ich8lan,
5850 .reset = e1000_phy_hw_reset_ich8lan,
5851 .set_d0_lplu_state = e1000_set_d0_lplu_state_ich8lan,
5852 .set_d3_lplu_state = e1000_set_d3_lplu_state_ich8lan,
5853 .write_reg = e1000e_write_phy_reg_igp,
5854};
5855
5856static const struct e1000_nvm_operations ich8_nvm_ops = {
5857 .acquire = e1000_acquire_nvm_ich8lan,
5858 .read = e1000_read_nvm_ich8lan,
5859 .release = e1000_release_nvm_ich8lan,
5860 .reload = e1000e_reload_nvm_generic,
5861 .update = e1000_update_nvm_checksum_ich8lan,
5862 .valid_led_default = e1000_valid_led_default_ich8lan,
5863 .validate = e1000_validate_nvm_checksum_ich8lan,
5864 .write = e1000_write_nvm_ich8lan,
5865};
5866
5867static const struct e1000_nvm_operations spt_nvm_ops = {
5868 .acquire = e1000_acquire_nvm_ich8lan,
5869 .release = e1000_release_nvm_ich8lan,
5870 .read = e1000_read_nvm_spt,
5871 .update = e1000_update_nvm_checksum_spt,
5872 .reload = e1000e_reload_nvm_generic,
5873 .valid_led_default = e1000_valid_led_default_ich8lan,
5874 .validate = e1000_validate_nvm_checksum_ich8lan,
5875 .write = e1000_write_nvm_ich8lan,
5876};
5877
5878const struct e1000_info e1000_ich8_info = {
5879 .mac = e1000_ich8lan,
5880 .flags = FLAG_HAS_WOL
5881 | FLAG_IS_ICH
5882 | FLAG_HAS_CTRLEXT_ON_LOAD
5883 | FLAG_HAS_AMT
5884 | FLAG_HAS_FLASH
5885 | FLAG_APME_IN_WUC,
5886 .pba = 8,
5887 .max_hw_frame_size = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN,
5888 .get_variants = e1000_get_variants_ich8lan,
5889 .mac_ops = &ich8_mac_ops,
5890 .phy_ops = &ich8_phy_ops,
5891 .nvm_ops = &ich8_nvm_ops,
5892};
5893
5894const struct e1000_info e1000_ich9_info = {
5895 .mac = e1000_ich9lan,
5896 .flags = FLAG_HAS_JUMBO_FRAMES
5897 | FLAG_IS_ICH
5898 | FLAG_HAS_WOL
5899 | FLAG_HAS_CTRLEXT_ON_LOAD
5900 | FLAG_HAS_AMT
5901 | FLAG_HAS_FLASH
5902 | FLAG_APME_IN_WUC,
5903 .pba = 18,
5904 .max_hw_frame_size = DEFAULT_JUMBO,
5905 .get_variants = e1000_get_variants_ich8lan,
5906 .mac_ops = &ich8_mac_ops,
5907 .phy_ops = &ich8_phy_ops,
5908 .nvm_ops = &ich8_nvm_ops,
5909};
5910
5911const struct e1000_info e1000_ich10_info = {
5912 .mac = e1000_ich10lan,
5913 .flags = FLAG_HAS_JUMBO_FRAMES
5914 | FLAG_IS_ICH
5915 | FLAG_HAS_WOL
5916 | FLAG_HAS_CTRLEXT_ON_LOAD
5917 | FLAG_HAS_AMT
5918 | FLAG_HAS_FLASH
5919 | FLAG_APME_IN_WUC,
5920 .pba = 18,
5921 .max_hw_frame_size = DEFAULT_JUMBO,
5922 .get_variants = e1000_get_variants_ich8lan,
5923 .mac_ops = &ich8_mac_ops,
5924 .phy_ops = &ich8_phy_ops,
5925 .nvm_ops = &ich8_nvm_ops,
5926};
5927
5928const struct e1000_info e1000_pch_info = {
5929 .mac = e1000_pchlan,
5930 .flags = FLAG_IS_ICH
5931 | FLAG_HAS_WOL
5932 | FLAG_HAS_CTRLEXT_ON_LOAD
5933 | FLAG_HAS_AMT
5934 | FLAG_HAS_FLASH
5935 | FLAG_HAS_JUMBO_FRAMES
5936 | FLAG_DISABLE_FC_PAUSE_TIME /* errata */
5937 | FLAG_APME_IN_WUC,
5938 .flags2 = FLAG2_HAS_PHY_STATS,
5939 .pba = 26,
5940 .max_hw_frame_size = 4096,
5941 .get_variants = e1000_get_variants_ich8lan,
5942 .mac_ops = &ich8_mac_ops,
5943 .phy_ops = &ich8_phy_ops,
5944 .nvm_ops = &ich8_nvm_ops,
5945};
5946
5947const struct e1000_info e1000_pch2_info = {
5948 .mac = e1000_pch2lan,
5949 .flags = FLAG_IS_ICH
5950 | FLAG_HAS_WOL
5951 | FLAG_HAS_HW_TIMESTAMP
5952 | FLAG_HAS_CTRLEXT_ON_LOAD
5953 | FLAG_HAS_AMT
5954 | FLAG_HAS_FLASH
5955 | FLAG_HAS_JUMBO_FRAMES
5956 | FLAG_APME_IN_WUC,
5957 .flags2 = FLAG2_HAS_PHY_STATS
5958 | FLAG2_HAS_EEE
5959 | FLAG2_CHECK_SYSTIM_OVERFLOW,
5960 .pba = 26,
5961 .max_hw_frame_size = 9022,
5962 .get_variants = e1000_get_variants_ich8lan,
5963 .mac_ops = &ich8_mac_ops,
5964 .phy_ops = &ich8_phy_ops,
5965 .nvm_ops = &ich8_nvm_ops,
5966};
5967
5968const struct e1000_info e1000_pch_lpt_info = {
5969 .mac = e1000_pch_lpt,
5970 .flags = FLAG_IS_ICH
5971 | FLAG_HAS_WOL
5972 | FLAG_HAS_HW_TIMESTAMP
5973 | FLAG_HAS_CTRLEXT_ON_LOAD
5974 | FLAG_HAS_AMT
5975 | FLAG_HAS_FLASH
5976 | FLAG_HAS_JUMBO_FRAMES
5977 | FLAG_APME_IN_WUC,
5978 .flags2 = FLAG2_HAS_PHY_STATS
5979 | FLAG2_HAS_EEE
5980 | FLAG2_CHECK_SYSTIM_OVERFLOW,
5981 .pba = 26,
5982 .max_hw_frame_size = 9022,
5983 .get_variants = e1000_get_variants_ich8lan,
5984 .mac_ops = &ich8_mac_ops,
5985 .phy_ops = &ich8_phy_ops,
5986 .nvm_ops = &ich8_nvm_ops,
5987};
5988
5989const struct e1000_info e1000_pch_spt_info = {
5990 .mac = e1000_pch_spt,
5991 .flags = FLAG_IS_ICH
5992 | FLAG_HAS_WOL
5993 | FLAG_HAS_HW_TIMESTAMP
5994 | FLAG_HAS_CTRLEXT_ON_LOAD
5995 | FLAG_HAS_AMT
5996 | FLAG_HAS_FLASH
5997 | FLAG_HAS_JUMBO_FRAMES
5998 | FLAG_APME_IN_WUC,
5999 .flags2 = FLAG2_HAS_PHY_STATS
6000 | FLAG2_HAS_EEE,
6001 .pba = 26,
6002 .max_hw_frame_size = 9022,
6003 .get_variants = e1000_get_variants_ich8lan,
6004 .mac_ops = &ich8_mac_ops,
6005 .phy_ops = &ich8_phy_ops,
6006 .nvm_ops = &spt_nvm_ops,
6007};
6008
6009const struct e1000_info e1000_pch_cnp_info = {
6010 .mac = e1000_pch_cnp,
6011 .flags = FLAG_IS_ICH
6012 | FLAG_HAS_WOL
6013 | FLAG_HAS_HW_TIMESTAMP
6014 | FLAG_HAS_CTRLEXT_ON_LOAD
6015 | FLAG_HAS_AMT
6016 | FLAG_HAS_FLASH
6017 | FLAG_HAS_JUMBO_FRAMES
6018 | FLAG_APME_IN_WUC,
6019 .flags2 = FLAG2_HAS_PHY_STATS
6020 | FLAG2_HAS_EEE,
6021 .pba = 26,
6022 .max_hw_frame_size = 9022,
6023 .get_variants = e1000_get_variants_ich8lan,
6024 .mac_ops = &ich8_mac_ops,
6025 .phy_ops = &ich8_phy_ops,
6026 .nvm_ops = &spt_nvm_ops,
6027};
6028
6029const struct e1000_info e1000_pch_tgp_info = {
6030 .mac = e1000_pch_tgp,
6031 .flags = FLAG_IS_ICH
6032 | FLAG_HAS_WOL
6033 | FLAG_HAS_HW_TIMESTAMP
6034 | FLAG_HAS_CTRLEXT_ON_LOAD
6035 | FLAG_HAS_AMT
6036 | FLAG_HAS_FLASH
6037 | FLAG_HAS_JUMBO_FRAMES
6038 | FLAG_APME_IN_WUC,
6039 .flags2 = FLAG2_HAS_PHY_STATS
6040 | FLAG2_HAS_EEE,
6041 .pba = 26,
6042 .max_hw_frame_size = 9022,
6043 .get_variants = e1000_get_variants_ich8lan,
6044 .mac_ops = &ich8_mac_ops,
6045 .phy_ops = &ich8_phy_ops,
6046 .nvm_ops = &spt_nvm_ops,
6047};
6048
6049const struct e1000_info e1000_pch_adp_info = {
6050 .mac = e1000_pch_adp,
6051 .flags = FLAG_IS_ICH
6052 | FLAG_HAS_WOL
6053 | FLAG_HAS_HW_TIMESTAMP
6054 | FLAG_HAS_CTRLEXT_ON_LOAD
6055 | FLAG_HAS_AMT
6056 | FLAG_HAS_FLASH
6057 | FLAG_HAS_JUMBO_FRAMES
6058 | FLAG_APME_IN_WUC,
6059 .flags2 = FLAG2_HAS_PHY_STATS
6060 | FLAG2_HAS_EEE,
6061 .pba = 26,
6062 .max_hw_frame_size = 9022,
6063 .get_variants = e1000_get_variants_ich8lan,
6064 .mac_ops = &ich8_mac_ops,
6065 .phy_ops = &ich8_phy_ops,
6066 .nvm_ops = &spt_nvm_ops,
6067};
6068
6069const struct e1000_info e1000_pch_mtp_info = {
6070 .mac = e1000_pch_mtp,
6071 .flags = FLAG_IS_ICH
6072 | FLAG_HAS_WOL
6073 | FLAG_HAS_HW_TIMESTAMP
6074 | FLAG_HAS_CTRLEXT_ON_LOAD
6075 | FLAG_HAS_AMT
6076 | FLAG_HAS_FLASH
6077 | FLAG_HAS_JUMBO_FRAMES
6078 | FLAG_APME_IN_WUC,
6079 .flags2 = FLAG2_HAS_PHY_STATS
6080 | FLAG2_HAS_EEE,
6081 .pba = 26,
6082 .max_hw_frame_size = 9022,
6083 .get_variants = e1000_get_variants_ich8lan,
6084 .mac_ops = &ich8_mac_ops,
6085 .phy_ops = &ich8_phy_ops,
6086 .nvm_ops = &spt_nvm_ops,
6087};
6088

source code of linux/drivers/net/ethernet/intel/e1000e/ich8lan.c