1// SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)
2/* Copyright (C) 2016-2018 Netronome Systems, Inc. */
3
4#define pr_fmt(fmt) "NFP net bpf: " fmt
5
6#include <linux/bug.h>
7#include <linux/bpf.h>
8#include <linux/filter.h>
9#include <linux/kernel.h>
10#include <linux/pkt_cls.h>
11#include <linux/reciprocal_div.h>
12#include <linux/unistd.h>
13
14#include "main.h"
15#include "../nfp_asm.h"
16#include "../nfp_net_ctrl.h"
17
18/* --- NFP prog --- */
19/* Foreach "multiple" entries macros provide pos and next<n> pointers.
20 * It's safe to modify the next pointers (but not pos).
21 */
22#define nfp_for_each_insn_walk2(nfp_prog, pos, next) \
23 for (pos = list_first_entry(&(nfp_prog)->insns, typeof(*pos), l), \
24 next = list_next_entry(pos, l); \
25 &(nfp_prog)->insns != &pos->l && \
26 &(nfp_prog)->insns != &next->l; \
27 pos = nfp_meta_next(pos), \
28 next = nfp_meta_next(pos))
29
30#define nfp_for_each_insn_walk3(nfp_prog, pos, next, next2) \
31 for (pos = list_first_entry(&(nfp_prog)->insns, typeof(*pos), l), \
32 next = list_next_entry(pos, l), \
33 next2 = list_next_entry(next, l); \
34 &(nfp_prog)->insns != &pos->l && \
35 &(nfp_prog)->insns != &next->l && \
36 &(nfp_prog)->insns != &next2->l; \
37 pos = nfp_meta_next(pos), \
38 next = nfp_meta_next(pos), \
39 next2 = nfp_meta_next(next))
40
41static bool
42nfp_meta_has_prev(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
43{
44 return meta->l.prev != &nfp_prog->insns;
45}
46
47static void nfp_prog_push(struct nfp_prog *nfp_prog, u64 insn)
48{
49 if (nfp_prog->__prog_alloc_len / sizeof(u64) == nfp_prog->prog_len) {
50 pr_warn("instruction limit reached (%u NFP instructions)\n",
51 nfp_prog->prog_len);
52 nfp_prog->error = -ENOSPC;
53 return;
54 }
55
56 nfp_prog->prog[nfp_prog->prog_len] = insn;
57 nfp_prog->prog_len++;
58}
59
60static unsigned int nfp_prog_current_offset(struct nfp_prog *nfp_prog)
61{
62 return nfp_prog->prog_len;
63}
64
65static bool
66nfp_prog_confirm_current_offset(struct nfp_prog *nfp_prog, unsigned int off)
67{
68 /* If there is a recorded error we may have dropped instructions;
69 * that doesn't have to be due to translator bug, and the translation
70 * will fail anyway, so just return OK.
71 */
72 if (nfp_prog->error)
73 return true;
74 return !WARN_ON_ONCE(nfp_prog_current_offset(nfp_prog) != off);
75}
76
77/* --- Emitters --- */
78static void
79__emit_cmd(struct nfp_prog *nfp_prog, enum cmd_tgt_map op,
80 u8 mode, u8 xfer, u8 areg, u8 breg, u8 size, enum cmd_ctx_swap ctx,
81 bool indir)
82{
83 u64 insn;
84
85 insn = FIELD_PREP(OP_CMD_A_SRC, areg) |
86 FIELD_PREP(OP_CMD_CTX, ctx) |
87 FIELD_PREP(OP_CMD_B_SRC, breg) |
88 FIELD_PREP(OP_CMD_TOKEN, cmd_tgt_act[op].token) |
89 FIELD_PREP(OP_CMD_XFER, xfer) |
90 FIELD_PREP(OP_CMD_CNT, size) |
91 FIELD_PREP(OP_CMD_SIG, ctx != CMD_CTX_NO_SWAP) |
92 FIELD_PREP(OP_CMD_TGT_CMD, cmd_tgt_act[op].tgt_cmd) |
93 FIELD_PREP(OP_CMD_INDIR, indir) |
94 FIELD_PREP(OP_CMD_MODE, mode);
95
96 nfp_prog_push(nfp_prog, insn);
97}
98
99static void
100emit_cmd_any(struct nfp_prog *nfp_prog, enum cmd_tgt_map op, u8 mode, u8 xfer,
101 swreg lreg, swreg rreg, u8 size, enum cmd_ctx_swap ctx, bool indir)
102{
103 struct nfp_insn_re_regs reg;
104 int err;
105
106 err = swreg_to_restricted(reg_none(), lreg, rreg, reg: &reg, has_imm8: false);
107 if (err) {
108 nfp_prog->error = err;
109 return;
110 }
111 if (reg.swap) {
112 pr_err("cmd can't swap arguments\n");
113 nfp_prog->error = -EFAULT;
114 return;
115 }
116 if (reg.dst_lmextn || reg.src_lmextn) {
117 pr_err("cmd can't use LMextn\n");
118 nfp_prog->error = -EFAULT;
119 return;
120 }
121
122 __emit_cmd(nfp_prog, op, mode, xfer, areg: reg.areg, breg: reg.breg, size, ctx,
123 indir);
124}
125
126static void
127emit_cmd(struct nfp_prog *nfp_prog, enum cmd_tgt_map op, u8 mode, u8 xfer,
128 swreg lreg, swreg rreg, u8 size, enum cmd_ctx_swap ctx)
129{
130 emit_cmd_any(nfp_prog, op, mode, xfer, lreg, rreg, size, ctx, indir: false);
131}
132
133static void
134emit_cmd_indir(struct nfp_prog *nfp_prog, enum cmd_tgt_map op, u8 mode, u8 xfer,
135 swreg lreg, swreg rreg, u8 size, enum cmd_ctx_swap ctx)
136{
137 emit_cmd_any(nfp_prog, op, mode, xfer, lreg, rreg, size, ctx, indir: true);
138}
139
140static void
141__emit_br(struct nfp_prog *nfp_prog, enum br_mask mask, enum br_ev_pip ev_pip,
142 enum br_ctx_signal_state css, u16 addr, u8 defer)
143{
144 u16 addr_lo, addr_hi;
145 u64 insn;
146
147 addr_lo = addr & (OP_BR_ADDR_LO >> __bf_shf(OP_BR_ADDR_LO));
148 addr_hi = addr != addr_lo;
149
150 insn = OP_BR_BASE |
151 FIELD_PREP(OP_BR_MASK, mask) |
152 FIELD_PREP(OP_BR_EV_PIP, ev_pip) |
153 FIELD_PREP(OP_BR_CSS, css) |
154 FIELD_PREP(OP_BR_DEFBR, defer) |
155 FIELD_PREP(OP_BR_ADDR_LO, addr_lo) |
156 FIELD_PREP(OP_BR_ADDR_HI, addr_hi);
157
158 nfp_prog_push(nfp_prog, insn);
159}
160
161static void
162emit_br_relo(struct nfp_prog *nfp_prog, enum br_mask mask, u16 addr, u8 defer,
163 enum nfp_relo_type relo)
164{
165 if (mask == BR_UNC && defer > 2) {
166 pr_err("BUG: branch defer out of bounds %d\n", defer);
167 nfp_prog->error = -EFAULT;
168 return;
169 }
170
171 __emit_br(nfp_prog, mask,
172 ev_pip: mask != BR_UNC ? BR_EV_PIP_COND : BR_EV_PIP_UNCOND,
173 css: BR_CSS_NONE, addr, defer);
174
175 nfp_prog->prog[nfp_prog->prog_len - 1] |=
176 FIELD_PREP(OP_RELO_TYPE, relo);
177}
178
179static void
180emit_br(struct nfp_prog *nfp_prog, enum br_mask mask, u16 addr, u8 defer)
181{
182 emit_br_relo(nfp_prog, mask, addr, defer, relo: RELO_BR_REL);
183}
184
185static void
186__emit_br_bit(struct nfp_prog *nfp_prog, u16 areg, u16 breg, u16 addr, u8 defer,
187 bool set, bool src_lmextn)
188{
189 u16 addr_lo, addr_hi;
190 u64 insn;
191
192 addr_lo = addr & (OP_BR_BIT_ADDR_LO >> __bf_shf(OP_BR_BIT_ADDR_LO));
193 addr_hi = addr != addr_lo;
194
195 insn = OP_BR_BIT_BASE |
196 FIELD_PREP(OP_BR_BIT_A_SRC, areg) |
197 FIELD_PREP(OP_BR_BIT_B_SRC, breg) |
198 FIELD_PREP(OP_BR_BIT_BV, set) |
199 FIELD_PREP(OP_BR_BIT_DEFBR, defer) |
200 FIELD_PREP(OP_BR_BIT_ADDR_LO, addr_lo) |
201 FIELD_PREP(OP_BR_BIT_ADDR_HI, addr_hi) |
202 FIELD_PREP(OP_BR_BIT_SRC_LMEXTN, src_lmextn);
203
204 nfp_prog_push(nfp_prog, insn);
205}
206
207static void
208emit_br_bit_relo(struct nfp_prog *nfp_prog, swreg src, u8 bit, u16 addr,
209 u8 defer, bool set, enum nfp_relo_type relo)
210{
211 struct nfp_insn_re_regs reg;
212 int err;
213
214 /* NOTE: The bit to test is specified as an rotation amount, such that
215 * the bit to test will be placed on the MSB of the result when
216 * doing a rotate right. For bit X, we need right rotate X + 1.
217 */
218 bit += 1;
219
220 err = swreg_to_restricted(reg_none(), lreg: src, reg_imm(bit), reg: &reg, has_imm8: false);
221 if (err) {
222 nfp_prog->error = err;
223 return;
224 }
225
226 __emit_br_bit(nfp_prog, areg: reg.areg, breg: reg.breg, addr, defer, set,
227 src_lmextn: reg.src_lmextn);
228
229 nfp_prog->prog[nfp_prog->prog_len - 1] |=
230 FIELD_PREP(OP_RELO_TYPE, relo);
231}
232
233static void
234emit_br_bset(struct nfp_prog *nfp_prog, swreg src, u8 bit, u16 addr, u8 defer)
235{
236 emit_br_bit_relo(nfp_prog, src, bit, addr, defer, set: true, relo: RELO_BR_REL);
237}
238
239static void
240__emit_br_alu(struct nfp_prog *nfp_prog, u16 areg, u16 breg, u16 imm_hi,
241 u8 defer, bool dst_lmextn, bool src_lmextn)
242{
243 u64 insn;
244
245 insn = OP_BR_ALU_BASE |
246 FIELD_PREP(OP_BR_ALU_A_SRC, areg) |
247 FIELD_PREP(OP_BR_ALU_B_SRC, breg) |
248 FIELD_PREP(OP_BR_ALU_DEFBR, defer) |
249 FIELD_PREP(OP_BR_ALU_IMM_HI, imm_hi) |
250 FIELD_PREP(OP_BR_ALU_SRC_LMEXTN, src_lmextn) |
251 FIELD_PREP(OP_BR_ALU_DST_LMEXTN, dst_lmextn);
252
253 nfp_prog_push(nfp_prog, insn);
254}
255
256static void emit_rtn(struct nfp_prog *nfp_prog, swreg base, u8 defer)
257{
258 struct nfp_insn_ur_regs reg;
259 int err;
260
261 err = swreg_to_unrestricted(reg_none(), lreg: base, reg_imm(0), reg: &reg);
262 if (err) {
263 nfp_prog->error = err;
264 return;
265 }
266
267 __emit_br_alu(nfp_prog, areg: reg.areg, breg: reg.breg, imm_hi: 0, defer, dst_lmextn: reg.dst_lmextn,
268 src_lmextn: reg.src_lmextn);
269}
270
271static void
272__emit_immed(struct nfp_prog *nfp_prog, u16 areg, u16 breg, u16 imm_hi,
273 enum immed_width width, bool invert,
274 enum immed_shift shift, bool wr_both,
275 bool dst_lmextn, bool src_lmextn)
276{
277 u64 insn;
278
279 insn = OP_IMMED_BASE |
280 FIELD_PREP(OP_IMMED_A_SRC, areg) |
281 FIELD_PREP(OP_IMMED_B_SRC, breg) |
282 FIELD_PREP(OP_IMMED_IMM, imm_hi) |
283 FIELD_PREP(OP_IMMED_WIDTH, width) |
284 FIELD_PREP(OP_IMMED_INV, invert) |
285 FIELD_PREP(OP_IMMED_SHIFT, shift) |
286 FIELD_PREP(OP_IMMED_WR_AB, wr_both) |
287 FIELD_PREP(OP_IMMED_SRC_LMEXTN, src_lmextn) |
288 FIELD_PREP(OP_IMMED_DST_LMEXTN, dst_lmextn);
289
290 nfp_prog_push(nfp_prog, insn);
291}
292
293static void
294emit_immed(struct nfp_prog *nfp_prog, swreg dst, u16 imm,
295 enum immed_width width, bool invert, enum immed_shift shift)
296{
297 struct nfp_insn_ur_regs reg;
298 int err;
299
300 if (swreg_type(reg: dst) == NN_REG_IMM) {
301 nfp_prog->error = -EFAULT;
302 return;
303 }
304
305 err = swreg_to_unrestricted(dst, lreg: dst, reg_imm(imm & 0xff), reg: &reg);
306 if (err) {
307 nfp_prog->error = err;
308 return;
309 }
310
311 /* Use reg.dst when destination is No-Dest. */
312 __emit_immed(nfp_prog,
313 areg: swreg_type(reg: dst) == NN_REG_NONE ? reg.dst : reg.areg,
314 breg: reg.breg, imm_hi: imm >> 8, width, invert, shift,
315 wr_both: reg.wr_both, dst_lmextn: reg.dst_lmextn, src_lmextn: reg.src_lmextn);
316}
317
318static void
319__emit_shf(struct nfp_prog *nfp_prog, u16 dst, enum alu_dst_ab dst_ab,
320 enum shf_sc sc, u8 shift,
321 u16 areg, enum shf_op op, u16 breg, bool i8, bool sw, bool wr_both,
322 bool dst_lmextn, bool src_lmextn)
323{
324 u64 insn;
325
326 if (!FIELD_FIT(OP_SHF_SHIFT, shift)) {
327 nfp_prog->error = -EFAULT;
328 return;
329 }
330
331 /* NFP shift instruction has something special. If shift direction is
332 * left then shift amount of 1 to 31 is specified as 32 minus the amount
333 * to shift.
334 *
335 * But no need to do this for indirect shift which has shift amount be
336 * 0. Even after we do this subtraction, shift amount 0 will be turned
337 * into 32 which will eventually be encoded the same as 0 because only
338 * low 5 bits are encoded, but shift amount be 32 will fail the
339 * FIELD_PREP check done later on shift mask (0x1f), due to 32 is out of
340 * mask range.
341 */
342 if (sc == SHF_SC_L_SHF && shift)
343 shift = 32 - shift;
344
345 insn = OP_SHF_BASE |
346 FIELD_PREP(OP_SHF_A_SRC, areg) |
347 FIELD_PREP(OP_SHF_SC, sc) |
348 FIELD_PREP(OP_SHF_B_SRC, breg) |
349 FIELD_PREP(OP_SHF_I8, i8) |
350 FIELD_PREP(OP_SHF_SW, sw) |
351 FIELD_PREP(OP_SHF_DST, dst) |
352 FIELD_PREP(OP_SHF_SHIFT, shift) |
353 FIELD_PREP(OP_SHF_OP, op) |
354 FIELD_PREP(OP_SHF_DST_AB, dst_ab) |
355 FIELD_PREP(OP_SHF_WR_AB, wr_both) |
356 FIELD_PREP(OP_SHF_SRC_LMEXTN, src_lmextn) |
357 FIELD_PREP(OP_SHF_DST_LMEXTN, dst_lmextn);
358
359 nfp_prog_push(nfp_prog, insn);
360}
361
362static void
363emit_shf(struct nfp_prog *nfp_prog, swreg dst,
364 swreg lreg, enum shf_op op, swreg rreg, enum shf_sc sc, u8 shift)
365{
366 struct nfp_insn_re_regs reg;
367 int err;
368
369 err = swreg_to_restricted(dst, lreg, rreg, reg: &reg, has_imm8: true);
370 if (err) {
371 nfp_prog->error = err;
372 return;
373 }
374
375 __emit_shf(nfp_prog, dst: reg.dst, dst_ab: reg.dst_ab, sc, shift,
376 areg: reg.areg, op, breg: reg.breg, i8: reg.i8, sw: reg.swap, wr_both: reg.wr_both,
377 dst_lmextn: reg.dst_lmextn, src_lmextn: reg.src_lmextn);
378}
379
380static void
381emit_shf_indir(struct nfp_prog *nfp_prog, swreg dst,
382 swreg lreg, enum shf_op op, swreg rreg, enum shf_sc sc)
383{
384 if (sc == SHF_SC_R_ROT) {
385 pr_err("indirect shift is not allowed on rotation\n");
386 nfp_prog->error = -EFAULT;
387 return;
388 }
389
390 emit_shf(nfp_prog, dst, lreg, op, rreg, sc, shift: 0);
391}
392
393static void
394__emit_alu(struct nfp_prog *nfp_prog, u16 dst, enum alu_dst_ab dst_ab,
395 u16 areg, enum alu_op op, u16 breg, bool swap, bool wr_both,
396 bool dst_lmextn, bool src_lmextn)
397{
398 u64 insn;
399
400 insn = OP_ALU_BASE |
401 FIELD_PREP(OP_ALU_A_SRC, areg) |
402 FIELD_PREP(OP_ALU_B_SRC, breg) |
403 FIELD_PREP(OP_ALU_DST, dst) |
404 FIELD_PREP(OP_ALU_SW, swap) |
405 FIELD_PREP(OP_ALU_OP, op) |
406 FIELD_PREP(OP_ALU_DST_AB, dst_ab) |
407 FIELD_PREP(OP_ALU_WR_AB, wr_both) |
408 FIELD_PREP(OP_ALU_SRC_LMEXTN, src_lmextn) |
409 FIELD_PREP(OP_ALU_DST_LMEXTN, dst_lmextn);
410
411 nfp_prog_push(nfp_prog, insn);
412}
413
414static void
415emit_alu(struct nfp_prog *nfp_prog, swreg dst,
416 swreg lreg, enum alu_op op, swreg rreg)
417{
418 struct nfp_insn_ur_regs reg;
419 int err;
420
421 err = swreg_to_unrestricted(dst, lreg, rreg, reg: &reg);
422 if (err) {
423 nfp_prog->error = err;
424 return;
425 }
426
427 __emit_alu(nfp_prog, dst: reg.dst, dst_ab: reg.dst_ab,
428 areg: reg.areg, op, breg: reg.breg, swap: reg.swap, wr_both: reg.wr_both,
429 dst_lmextn: reg.dst_lmextn, src_lmextn: reg.src_lmextn);
430}
431
432static void
433__emit_mul(struct nfp_prog *nfp_prog, enum alu_dst_ab dst_ab, u16 areg,
434 enum mul_type type, enum mul_step step, u16 breg, bool swap,
435 bool wr_both, bool dst_lmextn, bool src_lmextn)
436{
437 u64 insn;
438
439 insn = OP_MUL_BASE |
440 FIELD_PREP(OP_MUL_A_SRC, areg) |
441 FIELD_PREP(OP_MUL_B_SRC, breg) |
442 FIELD_PREP(OP_MUL_STEP, step) |
443 FIELD_PREP(OP_MUL_DST_AB, dst_ab) |
444 FIELD_PREP(OP_MUL_SW, swap) |
445 FIELD_PREP(OP_MUL_TYPE, type) |
446 FIELD_PREP(OP_MUL_WR_AB, wr_both) |
447 FIELD_PREP(OP_MUL_SRC_LMEXTN, src_lmextn) |
448 FIELD_PREP(OP_MUL_DST_LMEXTN, dst_lmextn);
449
450 nfp_prog_push(nfp_prog, insn);
451}
452
453static void
454emit_mul(struct nfp_prog *nfp_prog, swreg lreg, enum mul_type type,
455 enum mul_step step, swreg rreg)
456{
457 struct nfp_insn_ur_regs reg;
458 u16 areg;
459 int err;
460
461 if (type == MUL_TYPE_START && step != MUL_STEP_NONE) {
462 nfp_prog->error = -EINVAL;
463 return;
464 }
465
466 if (step == MUL_LAST || step == MUL_LAST_2) {
467 /* When type is step and step Number is LAST or LAST2, left
468 * source is used as destination.
469 */
470 err = swreg_to_unrestricted(dst: lreg, reg_none(), rreg, reg: &reg);
471 areg = reg.dst;
472 } else {
473 err = swreg_to_unrestricted(reg_none(), lreg, rreg, reg: &reg);
474 areg = reg.areg;
475 }
476
477 if (err) {
478 nfp_prog->error = err;
479 return;
480 }
481
482 __emit_mul(nfp_prog, dst_ab: reg.dst_ab, areg, type, step, breg: reg.breg, swap: reg.swap,
483 wr_both: reg.wr_both, dst_lmextn: reg.dst_lmextn, src_lmextn: reg.src_lmextn);
484}
485
486static void
487__emit_ld_field(struct nfp_prog *nfp_prog, enum shf_sc sc,
488 u8 areg, u8 bmask, u8 breg, u8 shift, bool imm8,
489 bool zero, bool swap, bool wr_both,
490 bool dst_lmextn, bool src_lmextn)
491{
492 u64 insn;
493
494 insn = OP_LDF_BASE |
495 FIELD_PREP(OP_LDF_A_SRC, areg) |
496 FIELD_PREP(OP_LDF_SC, sc) |
497 FIELD_PREP(OP_LDF_B_SRC, breg) |
498 FIELD_PREP(OP_LDF_I8, imm8) |
499 FIELD_PREP(OP_LDF_SW, swap) |
500 FIELD_PREP(OP_LDF_ZF, zero) |
501 FIELD_PREP(OP_LDF_BMASK, bmask) |
502 FIELD_PREP(OP_LDF_SHF, shift) |
503 FIELD_PREP(OP_LDF_WR_AB, wr_both) |
504 FIELD_PREP(OP_LDF_SRC_LMEXTN, src_lmextn) |
505 FIELD_PREP(OP_LDF_DST_LMEXTN, dst_lmextn);
506
507 nfp_prog_push(nfp_prog, insn);
508}
509
510static void
511emit_ld_field_any(struct nfp_prog *nfp_prog, swreg dst, u8 bmask, swreg src,
512 enum shf_sc sc, u8 shift, bool zero)
513{
514 struct nfp_insn_re_regs reg;
515 int err;
516
517 /* Note: ld_field is special as it uses one of the src regs as dst */
518 err = swreg_to_restricted(dst, lreg: dst, rreg: src, reg: &reg, has_imm8: true);
519 if (err) {
520 nfp_prog->error = err;
521 return;
522 }
523
524 __emit_ld_field(nfp_prog, sc, areg: reg.areg, bmask, breg: reg.breg, shift,
525 imm8: reg.i8, zero, swap: reg.swap, wr_both: reg.wr_both,
526 dst_lmextn: reg.dst_lmextn, src_lmextn: reg.src_lmextn);
527}
528
529static void
530emit_ld_field(struct nfp_prog *nfp_prog, swreg dst, u8 bmask, swreg src,
531 enum shf_sc sc, u8 shift)
532{
533 emit_ld_field_any(nfp_prog, dst, bmask, src, sc, shift, zero: false);
534}
535
536static void
537__emit_lcsr(struct nfp_prog *nfp_prog, u16 areg, u16 breg, bool wr, u16 addr,
538 bool dst_lmextn, bool src_lmextn)
539{
540 u64 insn;
541
542 insn = OP_LCSR_BASE |
543 FIELD_PREP(OP_LCSR_A_SRC, areg) |
544 FIELD_PREP(OP_LCSR_B_SRC, breg) |
545 FIELD_PREP(OP_LCSR_WRITE, wr) |
546 FIELD_PREP(OP_LCSR_ADDR, addr / 4) |
547 FIELD_PREP(OP_LCSR_SRC_LMEXTN, src_lmextn) |
548 FIELD_PREP(OP_LCSR_DST_LMEXTN, dst_lmextn);
549
550 nfp_prog_push(nfp_prog, insn);
551}
552
553static void emit_csr_wr(struct nfp_prog *nfp_prog, swreg src, u16 addr)
554{
555 struct nfp_insn_ur_regs reg;
556 int err;
557
558 /* This instruction takes immeds instead of reg_none() for the ignored
559 * operand, but we can't encode 2 immeds in one instr with our normal
560 * swreg infra so if param is an immed, we encode as reg_none() and
561 * copy the immed to both operands.
562 */
563 if (swreg_type(reg: src) == NN_REG_IMM) {
564 err = swreg_to_unrestricted(reg_none(), lreg: src, reg_none(), reg: &reg);
565 reg.breg = reg.areg;
566 } else {
567 err = swreg_to_unrestricted(reg_none(), lreg: src, reg_imm(0), reg: &reg);
568 }
569 if (err) {
570 nfp_prog->error = err;
571 return;
572 }
573
574 __emit_lcsr(nfp_prog, areg: reg.areg, breg: reg.breg, wr: true, addr,
575 dst_lmextn: false, src_lmextn: reg.src_lmextn);
576}
577
578/* CSR value is read in following immed[gpr, 0] */
579static void __emit_csr_rd(struct nfp_prog *nfp_prog, u16 addr)
580{
581 __emit_lcsr(nfp_prog, areg: 0, breg: 0, wr: false, addr, dst_lmextn: false, src_lmextn: false);
582}
583
584static void emit_nop(struct nfp_prog *nfp_prog)
585{
586 __emit_immed(nfp_prog, UR_REG_IMM, UR_REG_IMM, imm_hi: 0, width: 0, invert: 0, shift: 0, wr_both: 0, dst_lmextn: 0, src_lmextn: 0);
587}
588
589/* --- Wrappers --- */
590static bool pack_immed(u32 imm, u16 *val, enum immed_shift *shift)
591{
592 if (!(imm & 0xffff0000)) {
593 *val = imm;
594 *shift = IMMED_SHIFT_0B;
595 } else if (!(imm & 0xff0000ff)) {
596 *val = imm >> 8;
597 *shift = IMMED_SHIFT_1B;
598 } else if (!(imm & 0x0000ffff)) {
599 *val = imm >> 16;
600 *shift = IMMED_SHIFT_2B;
601 } else {
602 return false;
603 }
604
605 return true;
606}
607
608static void wrp_immed(struct nfp_prog *nfp_prog, swreg dst, u32 imm)
609{
610 enum immed_shift shift;
611 u16 val;
612
613 if (pack_immed(imm, val: &val, shift: &shift)) {
614 emit_immed(nfp_prog, dst, imm: val, width: IMMED_WIDTH_ALL, invert: false, shift);
615 } else if (pack_immed(imm: ~imm, val: &val, shift: &shift)) {
616 emit_immed(nfp_prog, dst, imm: val, width: IMMED_WIDTH_ALL, invert: true, shift);
617 } else {
618 emit_immed(nfp_prog, dst, imm: imm & 0xffff, width: IMMED_WIDTH_ALL,
619 invert: false, shift: IMMED_SHIFT_0B);
620 emit_immed(nfp_prog, dst, imm: imm >> 16, width: IMMED_WIDTH_WORD,
621 invert: false, shift: IMMED_SHIFT_2B);
622 }
623}
624
625static void
626wrp_zext(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta, u8 dst)
627{
628 if (meta->flags & FLAG_INSN_DO_ZEXT)
629 wrp_immed(nfp_prog, reg_both(dst + 1), imm: 0);
630}
631
632static void
633wrp_immed_relo(struct nfp_prog *nfp_prog, swreg dst, u32 imm,
634 enum nfp_relo_type relo)
635{
636 if (imm > 0xffff) {
637 pr_err("relocation of a large immediate!\n");
638 nfp_prog->error = -EFAULT;
639 return;
640 }
641 emit_immed(nfp_prog, dst, imm, width: IMMED_WIDTH_ALL, invert: false, shift: IMMED_SHIFT_0B);
642
643 nfp_prog->prog[nfp_prog->prog_len - 1] |=
644 FIELD_PREP(OP_RELO_TYPE, relo);
645}
646
647/* ur_load_imm_any() - encode immediate or use tmp register (unrestricted)
648 * If the @imm is small enough encode it directly in operand and return
649 * otherwise load @imm to a spare register and return its encoding.
650 */
651static swreg ur_load_imm_any(struct nfp_prog *nfp_prog, u32 imm, swreg tmp_reg)
652{
653 if (FIELD_FIT(UR_REG_IMM_MAX, imm))
654 return reg_imm(imm);
655
656 wrp_immed(nfp_prog, dst: tmp_reg, imm);
657 return tmp_reg;
658}
659
660/* re_load_imm_any() - encode immediate or use tmp register (restricted)
661 * If the @imm is small enough encode it directly in operand and return
662 * otherwise load @imm to a spare register and return its encoding.
663 */
664static swreg re_load_imm_any(struct nfp_prog *nfp_prog, u32 imm, swreg tmp_reg)
665{
666 if (FIELD_FIT(RE_REG_IMM_MAX, imm))
667 return reg_imm(imm);
668
669 wrp_immed(nfp_prog, dst: tmp_reg, imm);
670 return tmp_reg;
671}
672
673static void wrp_nops(struct nfp_prog *nfp_prog, unsigned int count)
674{
675 while (count--)
676 emit_nop(nfp_prog);
677}
678
679static void wrp_mov(struct nfp_prog *nfp_prog, swreg dst, swreg src)
680{
681 emit_alu(nfp_prog, dst, reg_none(), op: ALU_OP_NONE, rreg: src);
682}
683
684static void wrp_reg_mov(struct nfp_prog *nfp_prog, u16 dst, u16 src)
685{
686 wrp_mov(nfp_prog, reg_both(dst), reg_b(src));
687}
688
689/* wrp_reg_subpart() - load @field_len bytes from @offset of @src, write the
690 * result to @dst from low end.
691 */
692static void
693wrp_reg_subpart(struct nfp_prog *nfp_prog, swreg dst, swreg src, u8 field_len,
694 u8 offset)
695{
696 enum shf_sc sc = offset ? SHF_SC_R_SHF : SHF_SC_NONE;
697 u8 mask = (1 << field_len) - 1;
698
699 emit_ld_field_any(nfp_prog, dst, bmask: mask, src, sc, shift: offset * 8, zero: true);
700}
701
702/* wrp_reg_or_subpart() - load @field_len bytes from low end of @src, or the
703 * result to @dst from offset, there is no change on the other bits of @dst.
704 */
705static void
706wrp_reg_or_subpart(struct nfp_prog *nfp_prog, swreg dst, swreg src,
707 u8 field_len, u8 offset)
708{
709 enum shf_sc sc = offset ? SHF_SC_L_SHF : SHF_SC_NONE;
710 u8 mask = ((1 << field_len) - 1) << offset;
711
712 emit_ld_field(nfp_prog, dst, bmask: mask, src, sc, shift: 32 - offset * 8);
713}
714
715static void
716addr40_offset(struct nfp_prog *nfp_prog, u8 src_gpr, swreg offset,
717 swreg *rega, swreg *regb)
718{
719 if (offset == reg_imm(0)) {
720 *rega = reg_a(src_gpr);
721 *regb = reg_b(src_gpr + 1);
722 return;
723 }
724
725 emit_alu(nfp_prog, imm_a(nfp_prog), reg_a(src_gpr), op: ALU_OP_ADD, rreg: offset);
726 emit_alu(nfp_prog, imm_b(nfp_prog), reg_b(src_gpr + 1), op: ALU_OP_ADD_C,
727 reg_imm(0));
728 *rega = imm_a(nfp_prog);
729 *regb = imm_b(nfp_prog);
730}
731
732/* NFP has Command Push Pull bus which supports bluk memory operations. */
733static int nfp_cpp_memcpy(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
734{
735 bool descending_seq = meta->ldst_gather_len < 0;
736 s16 len = abs(meta->ldst_gather_len);
737 swreg src_base, off;
738 bool src_40bit_addr;
739 unsigned int i;
740 u8 xfer_num;
741
742 off = re_load_imm_any(nfp_prog, imm: meta->insn.off, imm_b(nfp_prog));
743 src_40bit_addr = meta->ptr.type == PTR_TO_MAP_VALUE;
744 src_base = reg_a(meta->insn.src_reg * 2);
745 xfer_num = round_up(len, 4) / 4;
746
747 if (src_40bit_addr)
748 addr40_offset(nfp_prog, src_gpr: meta->insn.src_reg * 2, offset: off, rega: &src_base,
749 regb: &off);
750
751 /* Setup PREV_ALU fields to override memory read length. */
752 if (len > 32)
753 wrp_immed(nfp_prog, reg_none(),
754 CMD_OVE_LEN | FIELD_PREP(CMD_OV_LEN, xfer_num - 1));
755
756 /* Memory read from source addr into transfer-in registers. */
757 emit_cmd_any(nfp_prog, op: CMD_TGT_READ32_SWAP,
758 mode: src_40bit_addr ? CMD_MODE_40b_BA : CMD_MODE_32b, xfer: 0,
759 lreg: src_base, rreg: off, size: xfer_num - 1, ctx: CMD_CTX_SWAP, indir: len > 32);
760
761 /* Move from transfer-in to transfer-out. */
762 for (i = 0; i < xfer_num; i++)
763 wrp_mov(nfp_prog, reg_xfer(i), reg_xfer(i));
764
765 off = re_load_imm_any(nfp_prog, imm: meta->paired_st->off, imm_b(nfp_prog));
766
767 if (len <= 8) {
768 /* Use single direct_ref write8. */
769 emit_cmd(nfp_prog, op: CMD_TGT_WRITE8_SWAP, mode: CMD_MODE_32b, xfer: 0,
770 reg_a(meta->paired_st->dst_reg * 2), rreg: off, size: len - 1,
771 ctx: CMD_CTX_SWAP);
772 } else if (len <= 32 && IS_ALIGNED(len, 4)) {
773 /* Use single direct_ref write32. */
774 emit_cmd(nfp_prog, op: CMD_TGT_WRITE32_SWAP, mode: CMD_MODE_32b, xfer: 0,
775 reg_a(meta->paired_st->dst_reg * 2), rreg: off, size: xfer_num - 1,
776 ctx: CMD_CTX_SWAP);
777 } else if (len <= 32) {
778 /* Use single indirect_ref write8. */
779 wrp_immed(nfp_prog, reg_none(),
780 CMD_OVE_LEN | FIELD_PREP(CMD_OV_LEN, len - 1));
781 emit_cmd_indir(nfp_prog, op: CMD_TGT_WRITE8_SWAP, mode: CMD_MODE_32b, xfer: 0,
782 reg_a(meta->paired_st->dst_reg * 2), rreg: off,
783 size: len - 1, ctx: CMD_CTX_SWAP);
784 } else if (IS_ALIGNED(len, 4)) {
785 /* Use single indirect_ref write32. */
786 wrp_immed(nfp_prog, reg_none(),
787 CMD_OVE_LEN | FIELD_PREP(CMD_OV_LEN, xfer_num - 1));
788 emit_cmd_indir(nfp_prog, op: CMD_TGT_WRITE32_SWAP, mode: CMD_MODE_32b, xfer: 0,
789 reg_a(meta->paired_st->dst_reg * 2), rreg: off,
790 size: xfer_num - 1, ctx: CMD_CTX_SWAP);
791 } else if (len <= 40) {
792 /* Use one direct_ref write32 to write the first 32-bytes, then
793 * another direct_ref write8 to write the remaining bytes.
794 */
795 emit_cmd(nfp_prog, op: CMD_TGT_WRITE32_SWAP, mode: CMD_MODE_32b, xfer: 0,
796 reg_a(meta->paired_st->dst_reg * 2), rreg: off, size: 7,
797 ctx: CMD_CTX_SWAP);
798
799 off = re_load_imm_any(nfp_prog, imm: meta->paired_st->off + 32,
800 imm_b(nfp_prog));
801 emit_cmd(nfp_prog, op: CMD_TGT_WRITE8_SWAP, mode: CMD_MODE_32b, xfer: 8,
802 reg_a(meta->paired_st->dst_reg * 2), rreg: off, size: len - 33,
803 ctx: CMD_CTX_SWAP);
804 } else {
805 /* Use one indirect_ref write32 to write 4-bytes aligned length,
806 * then another direct_ref write8 to write the remaining bytes.
807 */
808 u8 new_off;
809
810 wrp_immed(nfp_prog, reg_none(),
811 CMD_OVE_LEN | FIELD_PREP(CMD_OV_LEN, xfer_num - 2));
812 emit_cmd_indir(nfp_prog, op: CMD_TGT_WRITE32_SWAP, mode: CMD_MODE_32b, xfer: 0,
813 reg_a(meta->paired_st->dst_reg * 2), rreg: off,
814 size: xfer_num - 2, ctx: CMD_CTX_SWAP);
815 new_off = meta->paired_st->off + (xfer_num - 1) * 4;
816 off = re_load_imm_any(nfp_prog, imm: new_off, imm_b(nfp_prog));
817 emit_cmd(nfp_prog, op: CMD_TGT_WRITE8_SWAP, mode: CMD_MODE_32b,
818 xfer: xfer_num - 1, reg_a(meta->paired_st->dst_reg * 2), rreg: off,
819 size: (len & 0x3) - 1, ctx: CMD_CTX_SWAP);
820 }
821
822 /* TODO: The following extra load is to make sure data flow be identical
823 * before and after we do memory copy optimization.
824 *
825 * The load destination register is not guaranteed to be dead, so we
826 * need to make sure it is loaded with the value the same as before
827 * this transformation.
828 *
829 * These extra loads could be removed once we have accurate register
830 * usage information.
831 */
832 if (descending_seq)
833 xfer_num = 0;
834 else if (BPF_SIZE(meta->insn.code) != BPF_DW)
835 xfer_num = xfer_num - 1;
836 else
837 xfer_num = xfer_num - 2;
838
839 switch (BPF_SIZE(meta->insn.code)) {
840 case BPF_B:
841 wrp_reg_subpart(nfp_prog, reg_both(meta->insn.dst_reg * 2),
842 reg_xfer(xfer_num), field_len: 1,
843 IS_ALIGNED(len, 4) ? 3 : (len & 3) - 1);
844 break;
845 case BPF_H:
846 wrp_reg_subpart(nfp_prog, reg_both(meta->insn.dst_reg * 2),
847 reg_xfer(xfer_num), field_len: 2, offset: (len & 3) ^ 2);
848 break;
849 case BPF_W:
850 wrp_mov(nfp_prog, reg_both(meta->insn.dst_reg * 2),
851 reg_xfer(0));
852 break;
853 case BPF_DW:
854 wrp_mov(nfp_prog, reg_both(meta->insn.dst_reg * 2),
855 reg_xfer(xfer_num));
856 wrp_mov(nfp_prog, reg_both(meta->insn.dst_reg * 2 + 1),
857 reg_xfer(xfer_num + 1));
858 break;
859 }
860
861 if (BPF_SIZE(meta->insn.code) != BPF_DW)
862 wrp_immed(nfp_prog, reg_both(meta->insn.dst_reg * 2 + 1), imm: 0);
863
864 return 0;
865}
866
867static int
868data_ld(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta, swreg offset,
869 u8 dst_gpr, int size)
870{
871 unsigned int i;
872 u16 shift, sz;
873
874 /* We load the value from the address indicated in @offset and then
875 * shift out the data we don't need. Note: this is big endian!
876 */
877 sz = max(size, 4);
878 shift = size < 4 ? 4 - size : 0;
879
880 emit_cmd(nfp_prog, op: CMD_TGT_READ8, mode: CMD_MODE_32b, xfer: 0,
881 pptr_reg(nfp_prog), rreg: offset, size: sz - 1, ctx: CMD_CTX_SWAP);
882
883 i = 0;
884 if (shift)
885 emit_shf(nfp_prog, reg_both(dst_gpr), reg_none(), op: SHF_OP_NONE,
886 reg_xfer(0), sc: SHF_SC_R_SHF, shift: shift * 8);
887 else
888 for (; i * 4 < size; i++)
889 wrp_mov(nfp_prog, reg_both(dst_gpr + i), reg_xfer(i));
890
891 if (i < 2)
892 wrp_zext(nfp_prog, meta, dst: dst_gpr);
893
894 return 0;
895}
896
897static int
898data_ld_host_order(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
899 u8 dst_gpr, swreg lreg, swreg rreg, int size,
900 enum cmd_mode mode)
901{
902 unsigned int i;
903 u8 mask, sz;
904
905 /* We load the value from the address indicated in rreg + lreg and then
906 * mask out the data we don't need. Note: this is little endian!
907 */
908 sz = max(size, 4);
909 mask = size < 4 ? GENMASK(size - 1, 0) : 0;
910
911 emit_cmd(nfp_prog, op: CMD_TGT_READ32_SWAP, mode, xfer: 0,
912 lreg, rreg, size: sz / 4 - 1, ctx: CMD_CTX_SWAP);
913
914 i = 0;
915 if (mask)
916 emit_ld_field_any(nfp_prog, reg_both(dst_gpr), bmask: mask,
917 reg_xfer(0), sc: SHF_SC_NONE, shift: 0, zero: true);
918 else
919 for (; i * 4 < size; i++)
920 wrp_mov(nfp_prog, reg_both(dst_gpr + i), reg_xfer(i));
921
922 if (i < 2)
923 wrp_zext(nfp_prog, meta, dst: dst_gpr);
924
925 return 0;
926}
927
928static int
929data_ld_host_order_addr32(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
930 u8 src_gpr, swreg offset, u8 dst_gpr, u8 size)
931{
932 return data_ld_host_order(nfp_prog, meta, dst_gpr, reg_a(src_gpr),
933 rreg: offset, size, mode: CMD_MODE_32b);
934}
935
936static int
937data_ld_host_order_addr40(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
938 u8 src_gpr, swreg offset, u8 dst_gpr, u8 size)
939{
940 swreg rega, regb;
941
942 addr40_offset(nfp_prog, src_gpr, offset, rega: &rega, regb: &regb);
943
944 return data_ld_host_order(nfp_prog, meta, dst_gpr, lreg: rega, rreg: regb,
945 size, mode: CMD_MODE_40b_BA);
946}
947
948static int
949construct_data_ind_ld(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
950 u16 offset, u16 src, u8 size)
951{
952 swreg tmp_reg;
953
954 /* Calculate the true offset (src_reg + imm) */
955 tmp_reg = ur_load_imm_any(nfp_prog, imm: offset, imm_b(nfp_prog));
956 emit_alu(nfp_prog, imm_both(nfp_prog), reg_a(src), op: ALU_OP_ADD, rreg: tmp_reg);
957
958 /* Check packet length (size guaranteed to fit b/c it's u8) */
959 emit_alu(nfp_prog, imm_a(nfp_prog),
960 imm_a(nfp_prog), op: ALU_OP_ADD, reg_imm(size));
961 emit_alu(nfp_prog, reg_none(),
962 plen_reg(nfp_prog), op: ALU_OP_SUB, imm_a(nfp_prog));
963 emit_br_relo(nfp_prog, mask: BR_BLO, BR_OFF_RELO, defer: 0, relo: RELO_BR_GO_ABORT);
964
965 /* Load data */
966 return data_ld(nfp_prog, meta, imm_b(nfp_prog), dst_gpr: 0, size);
967}
968
969static int
970construct_data_ld(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
971 u16 offset, u8 size)
972{
973 swreg tmp_reg;
974
975 /* Check packet length */
976 tmp_reg = ur_load_imm_any(nfp_prog, imm: offset + size, imm_a(nfp_prog));
977 emit_alu(nfp_prog, reg_none(), plen_reg(nfp_prog), op: ALU_OP_SUB, rreg: tmp_reg);
978 emit_br_relo(nfp_prog, mask: BR_BLO, BR_OFF_RELO, defer: 0, relo: RELO_BR_GO_ABORT);
979
980 /* Load data */
981 tmp_reg = re_load_imm_any(nfp_prog, imm: offset, imm_b(nfp_prog));
982 return data_ld(nfp_prog, meta, offset: tmp_reg, dst_gpr: 0, size);
983}
984
985static int
986data_stx_host_order(struct nfp_prog *nfp_prog, u8 dst_gpr, swreg offset,
987 u8 src_gpr, u8 size)
988{
989 unsigned int i;
990
991 for (i = 0; i * 4 < size; i++)
992 wrp_mov(nfp_prog, reg_xfer(i), reg_a(src_gpr + i));
993
994 emit_cmd(nfp_prog, op: CMD_TGT_WRITE8_SWAP, mode: CMD_MODE_32b, xfer: 0,
995 reg_a(dst_gpr), rreg: offset, size: size - 1, ctx: CMD_CTX_SWAP);
996
997 return 0;
998}
999
1000static int
1001data_st_host_order(struct nfp_prog *nfp_prog, u8 dst_gpr, swreg offset,
1002 u64 imm, u8 size)
1003{
1004 wrp_immed(nfp_prog, reg_xfer(0), imm);
1005 if (size == 8)
1006 wrp_immed(nfp_prog, reg_xfer(1), imm: imm >> 32);
1007
1008 emit_cmd(nfp_prog, op: CMD_TGT_WRITE8_SWAP, mode: CMD_MODE_32b, xfer: 0,
1009 reg_a(dst_gpr), rreg: offset, size: size - 1, ctx: CMD_CTX_SWAP);
1010
1011 return 0;
1012}
1013
1014typedef int
1015(*lmem_step)(struct nfp_prog *nfp_prog, u8 gpr, u8 gpr_byte, s32 off,
1016 unsigned int size, bool first, bool new_gpr, bool last, bool lm3,
1017 bool needs_inc);
1018
1019static int
1020wrp_lmem_load(struct nfp_prog *nfp_prog, u8 dst, u8 dst_byte, s32 off,
1021 unsigned int size, bool first, bool new_gpr, bool last, bool lm3,
1022 bool needs_inc)
1023{
1024 bool should_inc = needs_inc && new_gpr && !last;
1025 u32 idx, src_byte;
1026 enum shf_sc sc;
1027 swreg reg;
1028 int shf;
1029 u8 mask;
1030
1031 if (WARN_ON_ONCE(dst_byte + size > 4 || off % 4 + size > 4))
1032 return -EOPNOTSUPP;
1033
1034 idx = off / 4;
1035
1036 /* Move the entire word */
1037 if (size == 4) {
1038 wrp_mov(nfp_prog, reg_both(dst),
1039 src: should_inc ? reg_lm_inc(3) : reg_lm(lm3 ? 3 : 0, idx));
1040 return 0;
1041 }
1042
1043 if (WARN_ON_ONCE(lm3 && idx > RE_REG_LM_IDX_MAX))
1044 return -EOPNOTSUPP;
1045
1046 src_byte = off % 4;
1047
1048 mask = (1 << size) - 1;
1049 mask <<= dst_byte;
1050
1051 if (WARN_ON_ONCE(mask > 0xf))
1052 return -EOPNOTSUPP;
1053
1054 shf = abs(src_byte - dst_byte) * 8;
1055 if (src_byte == dst_byte) {
1056 sc = SHF_SC_NONE;
1057 } else if (src_byte < dst_byte) {
1058 shf = 32 - shf;
1059 sc = SHF_SC_L_SHF;
1060 } else {
1061 sc = SHF_SC_R_SHF;
1062 }
1063
1064 /* ld_field can address fewer indexes, if offset too large do RMW.
1065 * Because we RMV twice we waste 2 cycles on unaligned 8 byte writes.
1066 */
1067 if (idx <= RE_REG_LM_IDX_MAX) {
1068 reg = reg_lm(lm3 ? 3 : 0, idx);
1069 } else {
1070 reg = imm_a(nfp_prog);
1071 /* If it's not the first part of the load and we start a new GPR
1072 * that means we are loading a second part of the LMEM word into
1073 * a new GPR. IOW we've already looked that LMEM word and
1074 * therefore it has been loaded into imm_a().
1075 */
1076 if (first || !new_gpr)
1077 wrp_mov(nfp_prog, dst: reg, reg_lm(0, idx));
1078 }
1079
1080 emit_ld_field_any(nfp_prog, reg_both(dst), bmask: mask, src: reg, sc, shift: shf, zero: new_gpr);
1081
1082 if (should_inc)
1083 wrp_mov(nfp_prog, reg_none(), reg_lm_inc(3));
1084
1085 return 0;
1086}
1087
1088static int
1089wrp_lmem_store(struct nfp_prog *nfp_prog, u8 src, u8 src_byte, s32 off,
1090 unsigned int size, bool first, bool new_gpr, bool last, bool lm3,
1091 bool needs_inc)
1092{
1093 bool should_inc = needs_inc && new_gpr && !last;
1094 u32 idx, dst_byte;
1095 enum shf_sc sc;
1096 swreg reg;
1097 int shf;
1098 u8 mask;
1099
1100 if (WARN_ON_ONCE(src_byte + size > 4 || off % 4 + size > 4))
1101 return -EOPNOTSUPP;
1102
1103 idx = off / 4;
1104
1105 /* Move the entire word */
1106 if (size == 4) {
1107 wrp_mov(nfp_prog,
1108 dst: should_inc ? reg_lm_inc(3) : reg_lm(lm3 ? 3 : 0, idx),
1109 reg_b(src));
1110 return 0;
1111 }
1112
1113 if (WARN_ON_ONCE(lm3 && idx > RE_REG_LM_IDX_MAX))
1114 return -EOPNOTSUPP;
1115
1116 dst_byte = off % 4;
1117
1118 mask = (1 << size) - 1;
1119 mask <<= dst_byte;
1120
1121 if (WARN_ON_ONCE(mask > 0xf))
1122 return -EOPNOTSUPP;
1123
1124 shf = abs(src_byte - dst_byte) * 8;
1125 if (src_byte == dst_byte) {
1126 sc = SHF_SC_NONE;
1127 } else if (src_byte < dst_byte) {
1128 shf = 32 - shf;
1129 sc = SHF_SC_L_SHF;
1130 } else {
1131 sc = SHF_SC_R_SHF;
1132 }
1133
1134 /* ld_field can address fewer indexes, if offset too large do RMW.
1135 * Because we RMV twice we waste 2 cycles on unaligned 8 byte writes.
1136 */
1137 if (idx <= RE_REG_LM_IDX_MAX) {
1138 reg = reg_lm(lm3 ? 3 : 0, idx);
1139 } else {
1140 reg = imm_a(nfp_prog);
1141 /* Only first and last LMEM locations are going to need RMW,
1142 * the middle location will be overwritten fully.
1143 */
1144 if (first || last)
1145 wrp_mov(nfp_prog, dst: reg, reg_lm(0, idx));
1146 }
1147
1148 emit_ld_field(nfp_prog, dst: reg, bmask: mask, reg_b(src), sc, shift: shf);
1149
1150 if (new_gpr || last) {
1151 if (idx > RE_REG_LM_IDX_MAX)
1152 wrp_mov(nfp_prog, reg_lm(0, idx), src: reg);
1153 if (should_inc)
1154 wrp_mov(nfp_prog, reg_none(), reg_lm_inc(3));
1155 }
1156
1157 return 0;
1158}
1159
1160static int
1161mem_op_stack(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1162 unsigned int size, unsigned int ptr_off, u8 gpr, u8 ptr_gpr,
1163 bool clr_gpr, lmem_step step)
1164{
1165 s32 off = nfp_prog->stack_frame_depth + meta->insn.off + ptr_off;
1166 bool first = true, narrow_ld, last;
1167 bool needs_inc = false;
1168 swreg stack_off_reg;
1169 u8 prev_gpr = 255;
1170 u32 gpr_byte = 0;
1171 bool lm3 = true;
1172 int ret;
1173
1174 if (meta->ptr_not_const ||
1175 meta->flags & FLAG_INSN_PTR_CALLER_STACK_FRAME) {
1176 /* Use of the last encountered ptr_off is OK, they all have
1177 * the same alignment. Depend on low bits of value being
1178 * discarded when written to LMaddr register.
1179 */
1180 stack_off_reg = ur_load_imm_any(nfp_prog, imm: meta->insn.off,
1181 stack_imm(nfp_prog));
1182
1183 emit_alu(nfp_prog, imm_b(nfp_prog),
1184 reg_a(ptr_gpr), op: ALU_OP_ADD, rreg: stack_off_reg);
1185
1186 needs_inc = true;
1187 } else if (off + size <= 64) {
1188 /* We can reach bottom 64B with LMaddr0 */
1189 lm3 = false;
1190 } else if (round_down(off, 32) == round_down(off + size - 1, 32)) {
1191 /* We have to set up a new pointer. If we know the offset
1192 * and the entire access falls into a single 32 byte aligned
1193 * window we won't have to increment the LM pointer.
1194 * The 32 byte alignment is imporant because offset is ORed in
1195 * not added when doing *l$indexN[off].
1196 */
1197 stack_off_reg = ur_load_imm_any(nfp_prog, round_down(off, 32),
1198 stack_imm(nfp_prog));
1199 emit_alu(nfp_prog, imm_b(nfp_prog),
1200 stack_reg(nfp_prog), op: ALU_OP_ADD, rreg: stack_off_reg);
1201
1202 off %= 32;
1203 } else {
1204 stack_off_reg = ur_load_imm_any(nfp_prog, round_down(off, 4),
1205 stack_imm(nfp_prog));
1206
1207 emit_alu(nfp_prog, imm_b(nfp_prog),
1208 stack_reg(nfp_prog), op: ALU_OP_ADD, rreg: stack_off_reg);
1209
1210 needs_inc = true;
1211 }
1212
1213 narrow_ld = clr_gpr && size < 8;
1214
1215 if (lm3) {
1216 unsigned int nop_cnt;
1217
1218 emit_csr_wr(nfp_prog, imm_b(nfp_prog), NFP_CSR_ACT_LM_ADDR3);
1219 /* For size < 4 one slot will be filled by zeroing of upper,
1220 * but be careful, that zeroing could be eliminated by zext
1221 * optimization.
1222 */
1223 nop_cnt = narrow_ld && meta->flags & FLAG_INSN_DO_ZEXT ? 2 : 3;
1224 wrp_nops(nfp_prog, count: nop_cnt);
1225 }
1226
1227 if (narrow_ld)
1228 wrp_zext(nfp_prog, meta, dst: gpr);
1229
1230 while (size) {
1231 u32 slice_end;
1232 u8 slice_size;
1233
1234 slice_size = min(size, 4 - gpr_byte);
1235 slice_end = min(off + slice_size, round_up(off + 1, 4));
1236 slice_size = slice_end - off;
1237
1238 last = slice_size == size;
1239
1240 if (needs_inc)
1241 off %= 4;
1242
1243 ret = step(nfp_prog, gpr, gpr_byte, off, slice_size,
1244 first, gpr != prev_gpr, last, lm3, needs_inc);
1245 if (ret)
1246 return ret;
1247
1248 prev_gpr = gpr;
1249 first = false;
1250
1251 gpr_byte += slice_size;
1252 if (gpr_byte >= 4) {
1253 gpr_byte -= 4;
1254 gpr++;
1255 }
1256
1257 size -= slice_size;
1258 off += slice_size;
1259 }
1260
1261 return 0;
1262}
1263
1264static void
1265wrp_alu_imm(struct nfp_prog *nfp_prog, u8 dst, enum alu_op alu_op, u32 imm)
1266{
1267 swreg tmp_reg;
1268
1269 if (alu_op == ALU_OP_AND) {
1270 if (!imm)
1271 wrp_immed(nfp_prog, reg_both(dst), imm: 0);
1272 if (!imm || !~imm)
1273 return;
1274 }
1275 if (alu_op == ALU_OP_OR) {
1276 if (!~imm)
1277 wrp_immed(nfp_prog, reg_both(dst), imm: ~0U);
1278 if (!imm || !~imm)
1279 return;
1280 }
1281 if (alu_op == ALU_OP_XOR) {
1282 if (!~imm)
1283 emit_alu(nfp_prog, reg_both(dst), reg_none(),
1284 op: ALU_OP_NOT, reg_b(dst));
1285 if (!imm || !~imm)
1286 return;
1287 }
1288
1289 tmp_reg = ur_load_imm_any(nfp_prog, imm, imm_b(nfp_prog));
1290 emit_alu(nfp_prog, reg_both(dst), reg_a(dst), op: alu_op, rreg: tmp_reg);
1291}
1292
1293static int
1294wrp_alu64_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1295 enum alu_op alu_op, bool skip)
1296{
1297 const struct bpf_insn *insn = &meta->insn;
1298 u64 imm = insn->imm; /* sign extend */
1299
1300 if (skip) {
1301 meta->flags |= FLAG_INSN_SKIP_NOOP;
1302 return 0;
1303 }
1304
1305 wrp_alu_imm(nfp_prog, dst: insn->dst_reg * 2, alu_op, imm: imm & ~0U);
1306 wrp_alu_imm(nfp_prog, dst: insn->dst_reg * 2 + 1, alu_op, imm: imm >> 32);
1307
1308 return 0;
1309}
1310
1311static int
1312wrp_alu64_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1313 enum alu_op alu_op)
1314{
1315 u8 dst = meta->insn.dst_reg * 2, src = meta->insn.src_reg * 2;
1316
1317 emit_alu(nfp_prog, reg_both(dst), reg_a(dst), op: alu_op, reg_b(src));
1318 emit_alu(nfp_prog, reg_both(dst + 1),
1319 reg_a(dst + 1), op: alu_op, reg_b(src + 1));
1320
1321 return 0;
1322}
1323
1324static int
1325wrp_alu32_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1326 enum alu_op alu_op)
1327{
1328 const struct bpf_insn *insn = &meta->insn;
1329 u8 dst = insn->dst_reg * 2;
1330
1331 wrp_alu_imm(nfp_prog, dst, alu_op, imm: insn->imm);
1332 wrp_zext(nfp_prog, meta, dst);
1333
1334 return 0;
1335}
1336
1337static int
1338wrp_alu32_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1339 enum alu_op alu_op)
1340{
1341 u8 dst = meta->insn.dst_reg * 2, src = meta->insn.src_reg * 2;
1342
1343 emit_alu(nfp_prog, reg_both(dst), reg_a(dst), op: alu_op, reg_b(src));
1344 wrp_zext(nfp_prog, meta, dst);
1345
1346 return 0;
1347}
1348
1349static void
1350wrp_test_reg_one(struct nfp_prog *nfp_prog, u8 dst, enum alu_op alu_op, u8 src,
1351 enum br_mask br_mask, u16 off)
1352{
1353 emit_alu(nfp_prog, reg_none(), reg_a(dst), op: alu_op, reg_b(src));
1354 emit_br(nfp_prog, mask: br_mask, addr: off, defer: 0);
1355}
1356
1357static int
1358wrp_test_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1359 enum alu_op alu_op, enum br_mask br_mask)
1360{
1361 const struct bpf_insn *insn = &meta->insn;
1362
1363 wrp_test_reg_one(nfp_prog, dst: insn->dst_reg * 2, alu_op,
1364 src: insn->src_reg * 2, br_mask, off: insn->off);
1365 if (is_mbpf_jmp64(meta))
1366 wrp_test_reg_one(nfp_prog, dst: insn->dst_reg * 2 + 1, alu_op,
1367 src: insn->src_reg * 2 + 1, br_mask, off: insn->off);
1368
1369 return 0;
1370}
1371
1372static const struct jmp_code_map {
1373 enum br_mask br_mask;
1374 bool swap;
1375} jmp_code_map[] = {
1376 [BPF_JGT >> 4] = { BR_BLO, true },
1377 [BPF_JGE >> 4] = { BR_BHS, false },
1378 [BPF_JLT >> 4] = { BR_BLO, false },
1379 [BPF_JLE >> 4] = { BR_BHS, true },
1380 [BPF_JSGT >> 4] = { BR_BLT, true },
1381 [BPF_JSGE >> 4] = { BR_BGE, false },
1382 [BPF_JSLT >> 4] = { BR_BLT, false },
1383 [BPF_JSLE >> 4] = { BR_BGE, true },
1384};
1385
1386static const struct jmp_code_map *nfp_jmp_code_get(struct nfp_insn_meta *meta)
1387{
1388 unsigned int op;
1389
1390 op = BPF_OP(meta->insn.code) >> 4;
1391 /* br_mask of 0 is BR_BEQ which we don't use in jump code table */
1392 if (WARN_ONCE(op >= ARRAY_SIZE(jmp_code_map) ||
1393 !jmp_code_map[op].br_mask,
1394 "no code found for jump instruction"))
1395 return NULL;
1396
1397 return &jmp_code_map[op];
1398}
1399
1400static int cmp_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1401{
1402 const struct bpf_insn *insn = &meta->insn;
1403 u64 imm = insn->imm; /* sign extend */
1404 const struct jmp_code_map *code;
1405 enum alu_op alu_op, carry_op;
1406 u8 reg = insn->dst_reg * 2;
1407 swreg tmp_reg;
1408
1409 code = nfp_jmp_code_get(meta);
1410 if (!code)
1411 return -EINVAL;
1412
1413 alu_op = meta->jump_neg_op ? ALU_OP_ADD : ALU_OP_SUB;
1414 carry_op = meta->jump_neg_op ? ALU_OP_ADD_C : ALU_OP_SUB_C;
1415
1416 tmp_reg = ur_load_imm_any(nfp_prog, imm: imm & ~0U, imm_b(nfp_prog));
1417 if (!code->swap)
1418 emit_alu(nfp_prog, reg_none(), reg_a(reg), op: alu_op, rreg: tmp_reg);
1419 else
1420 emit_alu(nfp_prog, reg_none(), lreg: tmp_reg, op: alu_op, reg_a(reg));
1421
1422 if (is_mbpf_jmp64(meta)) {
1423 tmp_reg = ur_load_imm_any(nfp_prog, imm: imm >> 32, imm_b(nfp_prog));
1424 if (!code->swap)
1425 emit_alu(nfp_prog, reg_none(),
1426 reg_a(reg + 1), op: carry_op, rreg: tmp_reg);
1427 else
1428 emit_alu(nfp_prog, reg_none(),
1429 lreg: tmp_reg, op: carry_op, reg_a(reg + 1));
1430 }
1431
1432 emit_br(nfp_prog, mask: code->br_mask, addr: insn->off, defer: 0);
1433
1434 return 0;
1435}
1436
1437static int cmp_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1438{
1439 const struct bpf_insn *insn = &meta->insn;
1440 const struct jmp_code_map *code;
1441 u8 areg, breg;
1442
1443 code = nfp_jmp_code_get(meta);
1444 if (!code)
1445 return -EINVAL;
1446
1447 areg = insn->dst_reg * 2;
1448 breg = insn->src_reg * 2;
1449
1450 if (code->swap) {
1451 areg ^= breg;
1452 breg ^= areg;
1453 areg ^= breg;
1454 }
1455
1456 emit_alu(nfp_prog, reg_none(), reg_a(areg), op: ALU_OP_SUB, reg_b(breg));
1457 if (is_mbpf_jmp64(meta))
1458 emit_alu(nfp_prog, reg_none(),
1459 reg_a(areg + 1), op: ALU_OP_SUB_C, reg_b(breg + 1));
1460 emit_br(nfp_prog, mask: code->br_mask, addr: insn->off, defer: 0);
1461
1462 return 0;
1463}
1464
1465static void wrp_end32(struct nfp_prog *nfp_prog, swreg reg_in, u8 gpr_out)
1466{
1467 emit_ld_field(nfp_prog, reg_both(gpr_out), bmask: 0xf, src: reg_in,
1468 sc: SHF_SC_R_ROT, shift: 8);
1469 emit_ld_field(nfp_prog, reg_both(gpr_out), bmask: 0x5, reg_a(gpr_out),
1470 sc: SHF_SC_R_ROT, shift: 16);
1471}
1472
1473static void
1474wrp_mul_u32(struct nfp_prog *nfp_prog, swreg dst_hi, swreg dst_lo, swreg lreg,
1475 swreg rreg, bool gen_high_half)
1476{
1477 emit_mul(nfp_prog, lreg, type: MUL_TYPE_START, step: MUL_STEP_NONE, rreg);
1478 emit_mul(nfp_prog, lreg, type: MUL_TYPE_STEP_32x32, step: MUL_STEP_1, rreg);
1479 emit_mul(nfp_prog, lreg, type: MUL_TYPE_STEP_32x32, step: MUL_STEP_2, rreg);
1480 emit_mul(nfp_prog, lreg, type: MUL_TYPE_STEP_32x32, step: MUL_STEP_3, rreg);
1481 emit_mul(nfp_prog, lreg, type: MUL_TYPE_STEP_32x32, step: MUL_STEP_4, rreg);
1482 emit_mul(nfp_prog, lreg: dst_lo, type: MUL_TYPE_STEP_32x32, step: MUL_LAST, reg_none());
1483 if (gen_high_half)
1484 emit_mul(nfp_prog, lreg: dst_hi, type: MUL_TYPE_STEP_32x32, step: MUL_LAST_2,
1485 reg_none());
1486 else
1487 wrp_immed(nfp_prog, dst: dst_hi, imm: 0);
1488}
1489
1490static void
1491wrp_mul_u16(struct nfp_prog *nfp_prog, swreg dst_hi, swreg dst_lo, swreg lreg,
1492 swreg rreg)
1493{
1494 emit_mul(nfp_prog, lreg, type: MUL_TYPE_START, step: MUL_STEP_NONE, rreg);
1495 emit_mul(nfp_prog, lreg, type: MUL_TYPE_STEP_16x16, step: MUL_STEP_1, rreg);
1496 emit_mul(nfp_prog, lreg, type: MUL_TYPE_STEP_16x16, step: MUL_STEP_2, rreg);
1497 emit_mul(nfp_prog, lreg: dst_lo, type: MUL_TYPE_STEP_16x16, step: MUL_LAST, reg_none());
1498}
1499
1500static int
1501wrp_mul(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1502 bool gen_high_half, bool ropnd_from_reg)
1503{
1504 swreg multiplier, multiplicand, dst_hi, dst_lo;
1505 const struct bpf_insn *insn = &meta->insn;
1506 u32 lopnd_max, ropnd_max;
1507 u8 dst_reg;
1508
1509 dst_reg = insn->dst_reg;
1510 multiplicand = reg_a(dst_reg * 2);
1511 dst_hi = reg_both(dst_reg * 2 + 1);
1512 dst_lo = reg_both(dst_reg * 2);
1513 lopnd_max = meta->umax_dst;
1514 if (ropnd_from_reg) {
1515 multiplier = reg_b(insn->src_reg * 2);
1516 ropnd_max = meta->umax_src;
1517 } else {
1518 u32 imm = insn->imm;
1519
1520 multiplier = ur_load_imm_any(nfp_prog, imm, imm_b(nfp_prog));
1521 ropnd_max = imm;
1522 }
1523 if (lopnd_max > U16_MAX || ropnd_max > U16_MAX)
1524 wrp_mul_u32(nfp_prog, dst_hi, dst_lo, lreg: multiplicand, rreg: multiplier,
1525 gen_high_half);
1526 else
1527 wrp_mul_u16(nfp_prog, dst_hi, dst_lo, lreg: multiplicand, rreg: multiplier);
1528
1529 return 0;
1530}
1531
1532static int wrp_div_imm(struct nfp_prog *nfp_prog, u8 dst, u64 imm)
1533{
1534 swreg dst_both = reg_both(dst), dst_a = reg_a(dst), dst_b = reg_a(dst);
1535 struct reciprocal_value_adv rvalue;
1536 u8 pre_shift, exp;
1537 swreg magic;
1538
1539 if (imm > U32_MAX) {
1540 wrp_immed(nfp_prog, dst: dst_both, imm: 0);
1541 return 0;
1542 }
1543
1544 /* NOTE: because we are using "reciprocal_value_adv" which doesn't
1545 * support "divisor > (1u << 31)", we need to JIT separate NFP sequence
1546 * to handle such case which actually equals to the result of unsigned
1547 * comparison "dst >= imm" which could be calculated using the following
1548 * NFP sequence:
1549 *
1550 * alu[--, dst, -, imm]
1551 * immed[imm, 0]
1552 * alu[dst, imm, +carry, 0]
1553 *
1554 */
1555 if (imm > 1U << 31) {
1556 swreg tmp_b = ur_load_imm_any(nfp_prog, imm, imm_b(nfp_prog));
1557
1558 emit_alu(nfp_prog, reg_none(), lreg: dst_a, op: ALU_OP_SUB, rreg: tmp_b);
1559 wrp_immed(nfp_prog, imm_a(nfp_prog), imm: 0);
1560 emit_alu(nfp_prog, dst: dst_both, imm_a(nfp_prog), op: ALU_OP_ADD_C,
1561 reg_imm(0));
1562 return 0;
1563 }
1564
1565 rvalue = reciprocal_value_adv(d: imm, prec: 32);
1566 exp = rvalue.exp;
1567 if (rvalue.is_wide_m && !(imm & 1)) {
1568 pre_shift = fls(x: imm & -imm) - 1;
1569 rvalue = reciprocal_value_adv(d: imm >> pre_shift, prec: 32 - pre_shift);
1570 } else {
1571 pre_shift = 0;
1572 }
1573 magic = ur_load_imm_any(nfp_prog, imm: rvalue.m, imm_b(nfp_prog));
1574 if (imm == 1U << exp) {
1575 emit_shf(nfp_prog, dst: dst_both, reg_none(), op: SHF_OP_NONE, rreg: dst_b,
1576 sc: SHF_SC_R_SHF, shift: exp);
1577 } else if (rvalue.is_wide_m) {
1578 wrp_mul_u32(nfp_prog, imm_both(nfp_prog), reg_none(), lreg: dst_a,
1579 rreg: magic, gen_high_half: true);
1580 emit_alu(nfp_prog, dst: dst_both, lreg: dst_a, op: ALU_OP_SUB,
1581 imm_b(nfp_prog));
1582 emit_shf(nfp_prog, dst: dst_both, reg_none(), op: SHF_OP_NONE, rreg: dst_b,
1583 sc: SHF_SC_R_SHF, shift: 1);
1584 emit_alu(nfp_prog, dst: dst_both, lreg: dst_a, op: ALU_OP_ADD,
1585 imm_b(nfp_prog));
1586 emit_shf(nfp_prog, dst: dst_both, reg_none(), op: SHF_OP_NONE, rreg: dst_b,
1587 sc: SHF_SC_R_SHF, shift: rvalue.sh - 1);
1588 } else {
1589 if (pre_shift)
1590 emit_shf(nfp_prog, dst: dst_both, reg_none(), op: SHF_OP_NONE,
1591 rreg: dst_b, sc: SHF_SC_R_SHF, shift: pre_shift);
1592 wrp_mul_u32(nfp_prog, dst_hi: dst_both, reg_none(), lreg: dst_a, rreg: magic, gen_high_half: true);
1593 emit_shf(nfp_prog, dst: dst_both, reg_none(), op: SHF_OP_NONE,
1594 rreg: dst_b, sc: SHF_SC_R_SHF, shift: rvalue.sh);
1595 }
1596
1597 return 0;
1598}
1599
1600static int adjust_head(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1601{
1602 swreg tmp = imm_a(nfp_prog), tmp_len = imm_b(nfp_prog);
1603 struct nfp_bpf_cap_adjust_head *adjust_head;
1604 u32 ret_einval, end;
1605
1606 adjust_head = &nfp_prog->bpf->adjust_head;
1607
1608 /* Optimized version - 5 vs 14 cycles */
1609 if (nfp_prog->adjust_head_location != UINT_MAX) {
1610 if (WARN_ON_ONCE(nfp_prog->adjust_head_location != meta->n))
1611 return -EINVAL;
1612
1613 emit_alu(nfp_prog, pptr_reg(nfp_prog),
1614 reg_a(2 * 2), op: ALU_OP_ADD, pptr_reg(nfp_prog));
1615 emit_alu(nfp_prog, plen_reg(nfp_prog),
1616 plen_reg(nfp_prog), op: ALU_OP_SUB, reg_a(2 * 2));
1617 emit_alu(nfp_prog, pv_len(nfp_prog),
1618 pv_len(nfp_prog), op: ALU_OP_SUB, reg_a(2 * 2));
1619
1620 wrp_immed(nfp_prog, reg_both(0), imm: 0);
1621 wrp_immed(nfp_prog, reg_both(1), imm: 0);
1622
1623 /* TODO: when adjust head is guaranteed to succeed we can
1624 * also eliminate the following if (r0 == 0) branch.
1625 */
1626
1627 return 0;
1628 }
1629
1630 ret_einval = nfp_prog_current_offset(nfp_prog) + 14;
1631 end = ret_einval + 2;
1632
1633 /* We need to use a temp because offset is just a part of the pkt ptr */
1634 emit_alu(nfp_prog, dst: tmp,
1635 reg_a(2 * 2), op: ALU_OP_ADD_2B, pptr_reg(nfp_prog));
1636
1637 /* Validate result will fit within FW datapath constraints */
1638 emit_alu(nfp_prog, reg_none(),
1639 lreg: tmp, op: ALU_OP_SUB, reg_imm(adjust_head->off_min));
1640 emit_br(nfp_prog, mask: BR_BLO, addr: ret_einval, defer: 0);
1641 emit_alu(nfp_prog, reg_none(),
1642 reg_imm(adjust_head->off_max), op: ALU_OP_SUB, rreg: tmp);
1643 emit_br(nfp_prog, mask: BR_BLO, addr: ret_einval, defer: 0);
1644
1645 /* Validate the length is at least ETH_HLEN */
1646 emit_alu(nfp_prog, dst: tmp_len,
1647 plen_reg(nfp_prog), op: ALU_OP_SUB, reg_a(2 * 2));
1648 emit_alu(nfp_prog, reg_none(),
1649 lreg: tmp_len, op: ALU_OP_SUB, reg_imm(ETH_HLEN));
1650 emit_br(nfp_prog, mask: BR_BMI, addr: ret_einval, defer: 0);
1651
1652 /* Load the ret code */
1653 wrp_immed(nfp_prog, reg_both(0), imm: 0);
1654 wrp_immed(nfp_prog, reg_both(1), imm: 0);
1655
1656 /* Modify the packet metadata */
1657 emit_ld_field(nfp_prog, pptr_reg(nfp_prog), bmask: 0x3, src: tmp, sc: SHF_SC_NONE, shift: 0);
1658
1659 /* Skip over the -EINVAL ret code (defer 2) */
1660 emit_br(nfp_prog, mask: BR_UNC, addr: end, defer: 2);
1661
1662 emit_alu(nfp_prog, plen_reg(nfp_prog),
1663 plen_reg(nfp_prog), op: ALU_OP_SUB, reg_a(2 * 2));
1664 emit_alu(nfp_prog, pv_len(nfp_prog),
1665 pv_len(nfp_prog), op: ALU_OP_SUB, reg_a(2 * 2));
1666
1667 /* return -EINVAL target */
1668 if (!nfp_prog_confirm_current_offset(nfp_prog, off: ret_einval))
1669 return -EINVAL;
1670
1671 wrp_immed(nfp_prog, reg_both(0), imm: -22);
1672 wrp_immed(nfp_prog, reg_both(1), imm: ~0);
1673
1674 if (!nfp_prog_confirm_current_offset(nfp_prog, off: end))
1675 return -EINVAL;
1676
1677 return 0;
1678}
1679
1680static int adjust_tail(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1681{
1682 u32 ret_einval, end;
1683 swreg plen, delta;
1684
1685 BUILD_BUG_ON(plen_reg(nfp_prog) != reg_b(STATIC_REG_PKT_LEN));
1686
1687 plen = imm_a(nfp_prog);
1688 delta = reg_a(2 * 2);
1689
1690 ret_einval = nfp_prog_current_offset(nfp_prog) + 9;
1691 end = nfp_prog_current_offset(nfp_prog) + 11;
1692
1693 /* Calculate resulting length */
1694 emit_alu(nfp_prog, dst: plen, plen_reg(nfp_prog), op: ALU_OP_ADD, rreg: delta);
1695 /* delta == 0 is not allowed by the kernel, add must overflow to make
1696 * length smaller.
1697 */
1698 emit_br(nfp_prog, mask: BR_BCC, addr: ret_einval, defer: 0);
1699
1700 /* if (new_len < 14) then -EINVAL */
1701 emit_alu(nfp_prog, reg_none(), lreg: plen, op: ALU_OP_SUB, reg_imm(ETH_HLEN));
1702 emit_br(nfp_prog, mask: BR_BMI, addr: ret_einval, defer: 0);
1703
1704 emit_alu(nfp_prog, plen_reg(nfp_prog),
1705 plen_reg(nfp_prog), op: ALU_OP_ADD, rreg: delta);
1706 emit_alu(nfp_prog, pv_len(nfp_prog),
1707 pv_len(nfp_prog), op: ALU_OP_ADD, rreg: delta);
1708
1709 emit_br(nfp_prog, mask: BR_UNC, addr: end, defer: 2);
1710 wrp_immed(nfp_prog, reg_both(0), imm: 0);
1711 wrp_immed(nfp_prog, reg_both(1), imm: 0);
1712
1713 if (!nfp_prog_confirm_current_offset(nfp_prog, off: ret_einval))
1714 return -EINVAL;
1715
1716 wrp_immed(nfp_prog, reg_both(0), imm: -22);
1717 wrp_immed(nfp_prog, reg_both(1), imm: ~0);
1718
1719 if (!nfp_prog_confirm_current_offset(nfp_prog, off: end))
1720 return -EINVAL;
1721
1722 return 0;
1723}
1724
1725static int
1726map_call_stack_common(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1727{
1728 bool load_lm_ptr;
1729 u32 ret_tgt;
1730 s64 lm_off;
1731
1732 /* We only have to reload LM0 if the key is not at start of stack */
1733 lm_off = nfp_prog->stack_frame_depth;
1734 lm_off += meta->arg2.reg.var_off.value + meta->arg2.reg.off;
1735 load_lm_ptr = meta->arg2.var_off || lm_off;
1736
1737 /* Set LM0 to start of key */
1738 if (load_lm_ptr)
1739 emit_csr_wr(nfp_prog, reg_b(2 * 2), NFP_CSR_ACT_LM_ADDR0);
1740 if (meta->func_id == BPF_FUNC_map_update_elem)
1741 emit_csr_wr(nfp_prog, reg_b(3 * 2), NFP_CSR_ACT_LM_ADDR2);
1742
1743 emit_br_relo(nfp_prog, mask: BR_UNC, BR_OFF_RELO + meta->func_id,
1744 defer: 2, relo: RELO_BR_HELPER);
1745 ret_tgt = nfp_prog_current_offset(nfp_prog) + 2;
1746
1747 /* Load map ID into A0 */
1748 wrp_mov(nfp_prog, reg_a(0), reg_a(2));
1749
1750 /* Load the return address into B0 */
1751 wrp_immed_relo(nfp_prog, reg_b(0), imm: ret_tgt, relo: RELO_IMMED_REL);
1752
1753 if (!nfp_prog_confirm_current_offset(nfp_prog, off: ret_tgt))
1754 return -EINVAL;
1755
1756 /* Reset the LM0 pointer */
1757 if (!load_lm_ptr)
1758 return 0;
1759
1760 emit_csr_wr(nfp_prog, stack_reg(nfp_prog), NFP_CSR_ACT_LM_ADDR0);
1761 wrp_nops(nfp_prog, count: 3);
1762
1763 return 0;
1764}
1765
1766static int
1767nfp_get_prandom_u32(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1768{
1769 __emit_csr_rd(nfp_prog, NFP_CSR_PSEUDO_RND_NUM);
1770 /* CSR value is read in following immed[gpr, 0] */
1771 emit_immed(nfp_prog, reg_both(0), imm: 0,
1772 width: IMMED_WIDTH_ALL, invert: false, shift: IMMED_SHIFT_0B);
1773 emit_immed(nfp_prog, reg_both(1), imm: 0,
1774 width: IMMED_WIDTH_ALL, invert: false, shift: IMMED_SHIFT_0B);
1775 return 0;
1776}
1777
1778static int
1779nfp_perf_event_output(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1780{
1781 swreg ptr_type;
1782 u32 ret_tgt;
1783
1784 ptr_type = ur_load_imm_any(nfp_prog, imm: meta->arg1.type, imm_a(nfp_prog));
1785
1786 ret_tgt = nfp_prog_current_offset(nfp_prog) + 3;
1787
1788 emit_br_relo(nfp_prog, mask: BR_UNC, BR_OFF_RELO + meta->func_id,
1789 defer: 2, relo: RELO_BR_HELPER);
1790
1791 /* Load ptr type into A1 */
1792 wrp_mov(nfp_prog, reg_a(1), src: ptr_type);
1793
1794 /* Load the return address into B0 */
1795 wrp_immed_relo(nfp_prog, reg_b(0), imm: ret_tgt, relo: RELO_IMMED_REL);
1796
1797 if (!nfp_prog_confirm_current_offset(nfp_prog, off: ret_tgt))
1798 return -EINVAL;
1799
1800 return 0;
1801}
1802
1803static int
1804nfp_queue_select(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1805{
1806 u32 jmp_tgt;
1807
1808 jmp_tgt = nfp_prog_current_offset(nfp_prog) + 5;
1809
1810 /* Make sure the queue id fits into FW field */
1811 emit_alu(nfp_prog, reg_none(), reg_a(meta->insn.src_reg * 2),
1812 op: ALU_OP_AND_NOT_B, reg_imm(0xff));
1813 emit_br(nfp_prog, mask: BR_BEQ, addr: jmp_tgt, defer: 2);
1814
1815 /* Set the 'queue selected' bit and the queue value */
1816 emit_shf(nfp_prog, pv_qsel_set(nfp_prog),
1817 pv_qsel_set(nfp_prog), op: SHF_OP_OR, reg_imm(1),
1818 sc: SHF_SC_L_SHF, PKT_VEL_QSEL_SET_BIT);
1819 emit_ld_field(nfp_prog,
1820 pv_qsel_val(nfp_prog), bmask: 0x1, reg_b(meta->insn.src_reg * 2),
1821 sc: SHF_SC_NONE, shift: 0);
1822 /* Delay slots end here, we will jump over next instruction if queue
1823 * value fits into the field.
1824 */
1825 emit_ld_field(nfp_prog,
1826 pv_qsel_val(nfp_prog), bmask: 0x1, reg_imm(NFP_NET_RXR_MAX),
1827 sc: SHF_SC_NONE, shift: 0);
1828
1829 if (!nfp_prog_confirm_current_offset(nfp_prog, off: jmp_tgt))
1830 return -EINVAL;
1831
1832 return 0;
1833}
1834
1835/* --- Callbacks --- */
1836static int mov_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1837{
1838 const struct bpf_insn *insn = &meta->insn;
1839 u8 dst = insn->dst_reg * 2;
1840 u8 src = insn->src_reg * 2;
1841
1842 if (insn->src_reg == BPF_REG_10) {
1843 swreg stack_depth_reg;
1844
1845 stack_depth_reg = ur_load_imm_any(nfp_prog,
1846 imm: nfp_prog->stack_frame_depth,
1847 stack_imm(nfp_prog));
1848 emit_alu(nfp_prog, reg_both(dst), stack_reg(nfp_prog),
1849 op: ALU_OP_ADD, rreg: stack_depth_reg);
1850 wrp_immed(nfp_prog, reg_both(dst + 1), imm: 0);
1851 } else {
1852 wrp_reg_mov(nfp_prog, dst, src);
1853 wrp_reg_mov(nfp_prog, dst: dst + 1, src: src + 1);
1854 }
1855
1856 return 0;
1857}
1858
1859static int mov_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1860{
1861 u64 imm = meta->insn.imm; /* sign extend */
1862
1863 wrp_immed(nfp_prog, reg_both(meta->insn.dst_reg * 2), imm: imm & ~0U);
1864 wrp_immed(nfp_prog, reg_both(meta->insn.dst_reg * 2 + 1), imm: imm >> 32);
1865
1866 return 0;
1867}
1868
1869static int xor_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1870{
1871 return wrp_alu64_reg(nfp_prog, meta, alu_op: ALU_OP_XOR);
1872}
1873
1874static int xor_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1875{
1876 return wrp_alu64_imm(nfp_prog, meta, alu_op: ALU_OP_XOR, skip: !meta->insn.imm);
1877}
1878
1879static int and_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1880{
1881 return wrp_alu64_reg(nfp_prog, meta, alu_op: ALU_OP_AND);
1882}
1883
1884static int and_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1885{
1886 return wrp_alu64_imm(nfp_prog, meta, alu_op: ALU_OP_AND, skip: !~meta->insn.imm);
1887}
1888
1889static int or_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1890{
1891 return wrp_alu64_reg(nfp_prog, meta, alu_op: ALU_OP_OR);
1892}
1893
1894static int or_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1895{
1896 return wrp_alu64_imm(nfp_prog, meta, alu_op: ALU_OP_OR, skip: !meta->insn.imm);
1897}
1898
1899static int add_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1900{
1901 const struct bpf_insn *insn = &meta->insn;
1902
1903 emit_alu(nfp_prog, reg_both(insn->dst_reg * 2),
1904 reg_a(insn->dst_reg * 2), op: ALU_OP_ADD,
1905 reg_b(insn->src_reg * 2));
1906 emit_alu(nfp_prog, reg_both(insn->dst_reg * 2 + 1),
1907 reg_a(insn->dst_reg * 2 + 1), op: ALU_OP_ADD_C,
1908 reg_b(insn->src_reg * 2 + 1));
1909
1910 return 0;
1911}
1912
1913static int add_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1914{
1915 const struct bpf_insn *insn = &meta->insn;
1916 u64 imm = insn->imm; /* sign extend */
1917
1918 wrp_alu_imm(nfp_prog, dst: insn->dst_reg * 2, alu_op: ALU_OP_ADD, imm: imm & ~0U);
1919 wrp_alu_imm(nfp_prog, dst: insn->dst_reg * 2 + 1, alu_op: ALU_OP_ADD_C, imm: imm >> 32);
1920
1921 return 0;
1922}
1923
1924static int sub_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1925{
1926 const struct bpf_insn *insn = &meta->insn;
1927
1928 emit_alu(nfp_prog, reg_both(insn->dst_reg * 2),
1929 reg_a(insn->dst_reg * 2), op: ALU_OP_SUB,
1930 reg_b(insn->src_reg * 2));
1931 emit_alu(nfp_prog, reg_both(insn->dst_reg * 2 + 1),
1932 reg_a(insn->dst_reg * 2 + 1), op: ALU_OP_SUB_C,
1933 reg_b(insn->src_reg * 2 + 1));
1934
1935 return 0;
1936}
1937
1938static int sub_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1939{
1940 const struct bpf_insn *insn = &meta->insn;
1941 u64 imm = insn->imm; /* sign extend */
1942
1943 wrp_alu_imm(nfp_prog, dst: insn->dst_reg * 2, alu_op: ALU_OP_SUB, imm: imm & ~0U);
1944 wrp_alu_imm(nfp_prog, dst: insn->dst_reg * 2 + 1, alu_op: ALU_OP_SUB_C, imm: imm >> 32);
1945
1946 return 0;
1947}
1948
1949static int mul_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1950{
1951 return wrp_mul(nfp_prog, meta, gen_high_half: true, ropnd_from_reg: true);
1952}
1953
1954static int mul_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1955{
1956 return wrp_mul(nfp_prog, meta, gen_high_half: true, ropnd_from_reg: false);
1957}
1958
1959static int div_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1960{
1961 const struct bpf_insn *insn = &meta->insn;
1962
1963 return wrp_div_imm(nfp_prog, dst: insn->dst_reg * 2, imm: insn->imm);
1964}
1965
1966static int div_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1967{
1968 /* NOTE: verifier hook has rejected cases for which verifier doesn't
1969 * know whether the source operand is constant or not.
1970 */
1971 return wrp_div_imm(nfp_prog, dst: meta->insn.dst_reg * 2, imm: meta->umin_src);
1972}
1973
1974static int neg_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1975{
1976 const struct bpf_insn *insn = &meta->insn;
1977
1978 emit_alu(nfp_prog, reg_both(insn->dst_reg * 2), reg_imm(0),
1979 op: ALU_OP_SUB, reg_b(insn->dst_reg * 2));
1980 emit_alu(nfp_prog, reg_both(insn->dst_reg * 2 + 1), reg_imm(0),
1981 op: ALU_OP_SUB_C, reg_b(insn->dst_reg * 2 + 1));
1982
1983 return 0;
1984}
1985
1986/* Pseudo code:
1987 * if shift_amt >= 32
1988 * dst_high = dst_low << shift_amt[4:0]
1989 * dst_low = 0;
1990 * else
1991 * dst_high = (dst_high, dst_low) >> (32 - shift_amt)
1992 * dst_low = dst_low << shift_amt
1993 *
1994 * The indirect shift will use the same logic at runtime.
1995 */
1996static int __shl_imm64(struct nfp_prog *nfp_prog, u8 dst, u8 shift_amt)
1997{
1998 if (!shift_amt)
1999 return 0;
2000
2001 if (shift_amt < 32) {
2002 emit_shf(nfp_prog, reg_both(dst + 1), reg_a(dst + 1),
2003 op: SHF_OP_NONE, reg_b(dst), sc: SHF_SC_R_DSHF,
2004 shift: 32 - shift_amt);
2005 emit_shf(nfp_prog, reg_both(dst), reg_none(), op: SHF_OP_NONE,
2006 reg_b(dst), sc: SHF_SC_L_SHF, shift: shift_amt);
2007 } else if (shift_amt == 32) {
2008 wrp_reg_mov(nfp_prog, dst: dst + 1, src: dst);
2009 wrp_immed(nfp_prog, reg_both(dst), imm: 0);
2010 } else if (shift_amt > 32) {
2011 emit_shf(nfp_prog, reg_both(dst + 1), reg_none(), op: SHF_OP_NONE,
2012 reg_b(dst), sc: SHF_SC_L_SHF, shift: shift_amt - 32);
2013 wrp_immed(nfp_prog, reg_both(dst), imm: 0);
2014 }
2015
2016 return 0;
2017}
2018
2019static int shl_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2020{
2021 const struct bpf_insn *insn = &meta->insn;
2022 u8 dst = insn->dst_reg * 2;
2023
2024 return __shl_imm64(nfp_prog, dst, shift_amt: insn->imm);
2025}
2026
2027static void shl_reg64_lt32_high(struct nfp_prog *nfp_prog, u8 dst, u8 src)
2028{
2029 emit_alu(nfp_prog, imm_both(nfp_prog), reg_imm(32), op: ALU_OP_SUB,
2030 reg_b(src));
2031 emit_alu(nfp_prog, reg_none(), imm_a(nfp_prog), op: ALU_OP_OR, reg_imm(0));
2032 emit_shf_indir(nfp_prog, reg_both(dst + 1), reg_a(dst + 1), op: SHF_OP_NONE,
2033 reg_b(dst), sc: SHF_SC_R_DSHF);
2034}
2035
2036/* NOTE: for indirect left shift, HIGH part should be calculated first. */
2037static void shl_reg64_lt32_low(struct nfp_prog *nfp_prog, u8 dst, u8 src)
2038{
2039 emit_alu(nfp_prog, reg_none(), reg_a(src), op: ALU_OP_OR, reg_imm(0));
2040 emit_shf_indir(nfp_prog, reg_both(dst), reg_none(), op: SHF_OP_NONE,
2041 reg_b(dst), sc: SHF_SC_L_SHF);
2042}
2043
2044static void shl_reg64_lt32(struct nfp_prog *nfp_prog, u8 dst, u8 src)
2045{
2046 shl_reg64_lt32_high(nfp_prog, dst, src);
2047 shl_reg64_lt32_low(nfp_prog, dst, src);
2048}
2049
2050static void shl_reg64_ge32(struct nfp_prog *nfp_prog, u8 dst, u8 src)
2051{
2052 emit_alu(nfp_prog, reg_none(), reg_a(src), op: ALU_OP_OR, reg_imm(0));
2053 emit_shf_indir(nfp_prog, reg_both(dst + 1), reg_none(), op: SHF_OP_NONE,
2054 reg_b(dst), sc: SHF_SC_L_SHF);
2055 wrp_immed(nfp_prog, reg_both(dst), imm: 0);
2056}
2057
2058static int shl_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2059{
2060 const struct bpf_insn *insn = &meta->insn;
2061 u64 umin, umax;
2062 u8 dst, src;
2063
2064 dst = insn->dst_reg * 2;
2065 umin = meta->umin_src;
2066 umax = meta->umax_src;
2067 if (umin == umax)
2068 return __shl_imm64(nfp_prog, dst, shift_amt: umin);
2069
2070 src = insn->src_reg * 2;
2071 if (umax < 32) {
2072 shl_reg64_lt32(nfp_prog, dst, src);
2073 } else if (umin >= 32) {
2074 shl_reg64_ge32(nfp_prog, dst, src);
2075 } else {
2076 /* Generate different instruction sequences depending on runtime
2077 * value of shift amount.
2078 */
2079 u16 label_ge32, label_end;
2080
2081 label_ge32 = nfp_prog_current_offset(nfp_prog) + 7;
2082 emit_br_bset(nfp_prog, reg_a(src), bit: 5, addr: label_ge32, defer: 0);
2083
2084 shl_reg64_lt32_high(nfp_prog, dst, src);
2085 label_end = nfp_prog_current_offset(nfp_prog) + 6;
2086 emit_br(nfp_prog, mask: BR_UNC, addr: label_end, defer: 2);
2087 /* shl_reg64_lt32_low packed in delay slot. */
2088 shl_reg64_lt32_low(nfp_prog, dst, src);
2089
2090 if (!nfp_prog_confirm_current_offset(nfp_prog, off: label_ge32))
2091 return -EINVAL;
2092 shl_reg64_ge32(nfp_prog, dst, src);
2093
2094 if (!nfp_prog_confirm_current_offset(nfp_prog, off: label_end))
2095 return -EINVAL;
2096 }
2097
2098 return 0;
2099}
2100
2101/* Pseudo code:
2102 * if shift_amt >= 32
2103 * dst_high = 0;
2104 * dst_low = dst_high >> shift_amt[4:0]
2105 * else
2106 * dst_high = dst_high >> shift_amt
2107 * dst_low = (dst_high, dst_low) >> shift_amt
2108 *
2109 * The indirect shift will use the same logic at runtime.
2110 */
2111static int __shr_imm64(struct nfp_prog *nfp_prog, u8 dst, u8 shift_amt)
2112{
2113 if (!shift_amt)
2114 return 0;
2115
2116 if (shift_amt < 32) {
2117 emit_shf(nfp_prog, reg_both(dst), reg_a(dst + 1), op: SHF_OP_NONE,
2118 reg_b(dst), sc: SHF_SC_R_DSHF, shift: shift_amt);
2119 emit_shf(nfp_prog, reg_both(dst + 1), reg_none(), op: SHF_OP_NONE,
2120 reg_b(dst + 1), sc: SHF_SC_R_SHF, shift: shift_amt);
2121 } else if (shift_amt == 32) {
2122 wrp_reg_mov(nfp_prog, dst, src: dst + 1);
2123 wrp_immed(nfp_prog, reg_both(dst + 1), imm: 0);
2124 } else if (shift_amt > 32) {
2125 emit_shf(nfp_prog, reg_both(dst), reg_none(), op: SHF_OP_NONE,
2126 reg_b(dst + 1), sc: SHF_SC_R_SHF, shift: shift_amt - 32);
2127 wrp_immed(nfp_prog, reg_both(dst + 1), imm: 0);
2128 }
2129
2130 return 0;
2131}
2132
2133static int shr_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2134{
2135 const struct bpf_insn *insn = &meta->insn;
2136 u8 dst = insn->dst_reg * 2;
2137
2138 return __shr_imm64(nfp_prog, dst, shift_amt: insn->imm);
2139}
2140
2141/* NOTE: for indirect right shift, LOW part should be calculated first. */
2142static void shr_reg64_lt32_high(struct nfp_prog *nfp_prog, u8 dst, u8 src)
2143{
2144 emit_alu(nfp_prog, reg_none(), reg_a(src), op: ALU_OP_OR, reg_imm(0));
2145 emit_shf_indir(nfp_prog, reg_both(dst + 1), reg_none(), op: SHF_OP_NONE,
2146 reg_b(dst + 1), sc: SHF_SC_R_SHF);
2147}
2148
2149static void shr_reg64_lt32_low(struct nfp_prog *nfp_prog, u8 dst, u8 src)
2150{
2151 emit_alu(nfp_prog, reg_none(), reg_a(src), op: ALU_OP_OR, reg_imm(0));
2152 emit_shf_indir(nfp_prog, reg_both(dst), reg_a(dst + 1), op: SHF_OP_NONE,
2153 reg_b(dst), sc: SHF_SC_R_DSHF);
2154}
2155
2156static void shr_reg64_lt32(struct nfp_prog *nfp_prog, u8 dst, u8 src)
2157{
2158 shr_reg64_lt32_low(nfp_prog, dst, src);
2159 shr_reg64_lt32_high(nfp_prog, dst, src);
2160}
2161
2162static void shr_reg64_ge32(struct nfp_prog *nfp_prog, u8 dst, u8 src)
2163{
2164 emit_alu(nfp_prog, reg_none(), reg_a(src), op: ALU_OP_OR, reg_imm(0));
2165 emit_shf_indir(nfp_prog, reg_both(dst), reg_none(), op: SHF_OP_NONE,
2166 reg_b(dst + 1), sc: SHF_SC_R_SHF);
2167 wrp_immed(nfp_prog, reg_both(dst + 1), imm: 0);
2168}
2169
2170static int shr_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2171{
2172 const struct bpf_insn *insn = &meta->insn;
2173 u64 umin, umax;
2174 u8 dst, src;
2175
2176 dst = insn->dst_reg * 2;
2177 umin = meta->umin_src;
2178 umax = meta->umax_src;
2179 if (umin == umax)
2180 return __shr_imm64(nfp_prog, dst, shift_amt: umin);
2181
2182 src = insn->src_reg * 2;
2183 if (umax < 32) {
2184 shr_reg64_lt32(nfp_prog, dst, src);
2185 } else if (umin >= 32) {
2186 shr_reg64_ge32(nfp_prog, dst, src);
2187 } else {
2188 /* Generate different instruction sequences depending on runtime
2189 * value of shift amount.
2190 */
2191 u16 label_ge32, label_end;
2192
2193 label_ge32 = nfp_prog_current_offset(nfp_prog) + 6;
2194 emit_br_bset(nfp_prog, reg_a(src), bit: 5, addr: label_ge32, defer: 0);
2195 shr_reg64_lt32_low(nfp_prog, dst, src);
2196 label_end = nfp_prog_current_offset(nfp_prog) + 6;
2197 emit_br(nfp_prog, mask: BR_UNC, addr: label_end, defer: 2);
2198 /* shr_reg64_lt32_high packed in delay slot. */
2199 shr_reg64_lt32_high(nfp_prog, dst, src);
2200
2201 if (!nfp_prog_confirm_current_offset(nfp_prog, off: label_ge32))
2202 return -EINVAL;
2203 shr_reg64_ge32(nfp_prog, dst, src);
2204
2205 if (!nfp_prog_confirm_current_offset(nfp_prog, off: label_end))
2206 return -EINVAL;
2207 }
2208
2209 return 0;
2210}
2211
2212/* Code logic is the same as __shr_imm64 except ashr requires signedness bit
2213 * told through PREV_ALU result.
2214 */
2215static int __ashr_imm64(struct nfp_prog *nfp_prog, u8 dst, u8 shift_amt)
2216{
2217 if (!shift_amt)
2218 return 0;
2219
2220 if (shift_amt < 32) {
2221 emit_shf(nfp_prog, reg_both(dst), reg_a(dst + 1), op: SHF_OP_NONE,
2222 reg_b(dst), sc: SHF_SC_R_DSHF, shift: shift_amt);
2223 /* Set signedness bit. */
2224 emit_alu(nfp_prog, reg_none(), reg_a(dst + 1), op: ALU_OP_OR,
2225 reg_imm(0));
2226 emit_shf(nfp_prog, reg_both(dst + 1), reg_none(), op: SHF_OP_ASHR,
2227 reg_b(dst + 1), sc: SHF_SC_R_SHF, shift: shift_amt);
2228 } else if (shift_amt == 32) {
2229 /* NOTE: this also helps setting signedness bit. */
2230 wrp_reg_mov(nfp_prog, dst, src: dst + 1);
2231 emit_shf(nfp_prog, reg_both(dst + 1), reg_none(), op: SHF_OP_ASHR,
2232 reg_b(dst + 1), sc: SHF_SC_R_SHF, shift: 31);
2233 } else if (shift_amt > 32) {
2234 emit_alu(nfp_prog, reg_none(), reg_a(dst + 1), op: ALU_OP_OR,
2235 reg_imm(0));
2236 emit_shf(nfp_prog, reg_both(dst), reg_none(), op: SHF_OP_ASHR,
2237 reg_b(dst + 1), sc: SHF_SC_R_SHF, shift: shift_amt - 32);
2238 emit_shf(nfp_prog, reg_both(dst + 1), reg_none(), op: SHF_OP_ASHR,
2239 reg_b(dst + 1), sc: SHF_SC_R_SHF, shift: 31);
2240 }
2241
2242 return 0;
2243}
2244
2245static int ashr_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2246{
2247 const struct bpf_insn *insn = &meta->insn;
2248 u8 dst = insn->dst_reg * 2;
2249
2250 return __ashr_imm64(nfp_prog, dst, shift_amt: insn->imm);
2251}
2252
2253static void ashr_reg64_lt32_high(struct nfp_prog *nfp_prog, u8 dst, u8 src)
2254{
2255 /* NOTE: the first insn will set both indirect shift amount (source A)
2256 * and signedness bit (MSB of result).
2257 */
2258 emit_alu(nfp_prog, reg_none(), reg_a(src), op: ALU_OP_OR, reg_b(dst + 1));
2259 emit_shf_indir(nfp_prog, reg_both(dst + 1), reg_none(), op: SHF_OP_ASHR,
2260 reg_b(dst + 1), sc: SHF_SC_R_SHF);
2261}
2262
2263static void ashr_reg64_lt32_low(struct nfp_prog *nfp_prog, u8 dst, u8 src)
2264{
2265 /* NOTE: it is the same as logic shift because we don't need to shift in
2266 * signedness bit when the shift amount is less than 32.
2267 */
2268 return shr_reg64_lt32_low(nfp_prog, dst, src);
2269}
2270
2271static void ashr_reg64_lt32(struct nfp_prog *nfp_prog, u8 dst, u8 src)
2272{
2273 ashr_reg64_lt32_low(nfp_prog, dst, src);
2274 ashr_reg64_lt32_high(nfp_prog, dst, src);
2275}
2276
2277static void ashr_reg64_ge32(struct nfp_prog *nfp_prog, u8 dst, u8 src)
2278{
2279 emit_alu(nfp_prog, reg_none(), reg_a(src), op: ALU_OP_OR, reg_b(dst + 1));
2280 emit_shf_indir(nfp_prog, reg_both(dst), reg_none(), op: SHF_OP_ASHR,
2281 reg_b(dst + 1), sc: SHF_SC_R_SHF);
2282 emit_shf(nfp_prog, reg_both(dst + 1), reg_none(), op: SHF_OP_ASHR,
2283 reg_b(dst + 1), sc: SHF_SC_R_SHF, shift: 31);
2284}
2285
2286/* Like ashr_imm64, but need to use indirect shift. */
2287static int ashr_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2288{
2289 const struct bpf_insn *insn = &meta->insn;
2290 u64 umin, umax;
2291 u8 dst, src;
2292
2293 dst = insn->dst_reg * 2;
2294 umin = meta->umin_src;
2295 umax = meta->umax_src;
2296 if (umin == umax)
2297 return __ashr_imm64(nfp_prog, dst, shift_amt: umin);
2298
2299 src = insn->src_reg * 2;
2300 if (umax < 32) {
2301 ashr_reg64_lt32(nfp_prog, dst, src);
2302 } else if (umin >= 32) {
2303 ashr_reg64_ge32(nfp_prog, dst, src);
2304 } else {
2305 u16 label_ge32, label_end;
2306
2307 label_ge32 = nfp_prog_current_offset(nfp_prog) + 6;
2308 emit_br_bset(nfp_prog, reg_a(src), bit: 5, addr: label_ge32, defer: 0);
2309 ashr_reg64_lt32_low(nfp_prog, dst, src);
2310 label_end = nfp_prog_current_offset(nfp_prog) + 6;
2311 emit_br(nfp_prog, mask: BR_UNC, addr: label_end, defer: 2);
2312 /* ashr_reg64_lt32_high packed in delay slot. */
2313 ashr_reg64_lt32_high(nfp_prog, dst, src);
2314
2315 if (!nfp_prog_confirm_current_offset(nfp_prog, off: label_ge32))
2316 return -EINVAL;
2317 ashr_reg64_ge32(nfp_prog, dst, src);
2318
2319 if (!nfp_prog_confirm_current_offset(nfp_prog, off: label_end))
2320 return -EINVAL;
2321 }
2322
2323 return 0;
2324}
2325
2326static int mov_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2327{
2328 const struct bpf_insn *insn = &meta->insn;
2329
2330 wrp_reg_mov(nfp_prog, dst: insn->dst_reg * 2, src: insn->src_reg * 2);
2331 wrp_immed(nfp_prog, reg_both(insn->dst_reg * 2 + 1), imm: 0);
2332
2333 return 0;
2334}
2335
2336static int mov_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2337{
2338 const struct bpf_insn *insn = &meta->insn;
2339
2340 wrp_immed(nfp_prog, reg_both(insn->dst_reg * 2), imm: insn->imm);
2341 wrp_immed(nfp_prog, reg_both(insn->dst_reg * 2 + 1), imm: 0);
2342
2343 return 0;
2344}
2345
2346static int xor_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2347{
2348 return wrp_alu32_reg(nfp_prog, meta, alu_op: ALU_OP_XOR);
2349}
2350
2351static int xor_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2352{
2353 return wrp_alu32_imm(nfp_prog, meta, alu_op: ALU_OP_XOR);
2354}
2355
2356static int and_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2357{
2358 return wrp_alu32_reg(nfp_prog, meta, alu_op: ALU_OP_AND);
2359}
2360
2361static int and_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2362{
2363 return wrp_alu32_imm(nfp_prog, meta, alu_op: ALU_OP_AND);
2364}
2365
2366static int or_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2367{
2368 return wrp_alu32_reg(nfp_prog, meta, alu_op: ALU_OP_OR);
2369}
2370
2371static int or_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2372{
2373 return wrp_alu32_imm(nfp_prog, meta, alu_op: ALU_OP_OR);
2374}
2375
2376static int add_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2377{
2378 return wrp_alu32_reg(nfp_prog, meta, alu_op: ALU_OP_ADD);
2379}
2380
2381static int add_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2382{
2383 return wrp_alu32_imm(nfp_prog, meta, alu_op: ALU_OP_ADD);
2384}
2385
2386static int sub_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2387{
2388 return wrp_alu32_reg(nfp_prog, meta, alu_op: ALU_OP_SUB);
2389}
2390
2391static int sub_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2392{
2393 return wrp_alu32_imm(nfp_prog, meta, alu_op: ALU_OP_SUB);
2394}
2395
2396static int mul_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2397{
2398 return wrp_mul(nfp_prog, meta, gen_high_half: false, ropnd_from_reg: true);
2399}
2400
2401static int mul_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2402{
2403 return wrp_mul(nfp_prog, meta, gen_high_half: false, ropnd_from_reg: false);
2404}
2405
2406static int div_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2407{
2408 return div_reg64(nfp_prog, meta);
2409}
2410
2411static int div_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2412{
2413 return div_imm64(nfp_prog, meta);
2414}
2415
2416static int neg_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2417{
2418 u8 dst = meta->insn.dst_reg * 2;
2419
2420 emit_alu(nfp_prog, reg_both(dst), reg_imm(0), op: ALU_OP_SUB, reg_b(dst));
2421 wrp_zext(nfp_prog, meta, dst);
2422
2423 return 0;
2424}
2425
2426static int
2427__ashr_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta, u8 dst,
2428 u8 shift_amt)
2429{
2430 if (shift_amt) {
2431 /* Set signedness bit (MSB of result). */
2432 emit_alu(nfp_prog, reg_none(), reg_a(dst), op: ALU_OP_OR,
2433 reg_imm(0));
2434 emit_shf(nfp_prog, reg_both(dst), reg_none(), op: SHF_OP_ASHR,
2435 reg_b(dst), sc: SHF_SC_R_SHF, shift: shift_amt);
2436 }
2437 wrp_zext(nfp_prog, meta, dst);
2438
2439 return 0;
2440}
2441
2442static int ashr_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2443{
2444 const struct bpf_insn *insn = &meta->insn;
2445 u64 umin, umax;
2446 u8 dst, src;
2447
2448 dst = insn->dst_reg * 2;
2449 umin = meta->umin_src;
2450 umax = meta->umax_src;
2451 if (umin == umax)
2452 return __ashr_imm(nfp_prog, meta, dst, shift_amt: umin);
2453
2454 src = insn->src_reg * 2;
2455 /* NOTE: the first insn will set both indirect shift amount (source A)
2456 * and signedness bit (MSB of result).
2457 */
2458 emit_alu(nfp_prog, reg_none(), reg_a(src), op: ALU_OP_OR, reg_b(dst));
2459 emit_shf_indir(nfp_prog, reg_both(dst), reg_none(), op: SHF_OP_ASHR,
2460 reg_b(dst), sc: SHF_SC_R_SHF);
2461 wrp_zext(nfp_prog, meta, dst);
2462
2463 return 0;
2464}
2465
2466static int ashr_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2467{
2468 const struct bpf_insn *insn = &meta->insn;
2469 u8 dst = insn->dst_reg * 2;
2470
2471 return __ashr_imm(nfp_prog, meta, dst, shift_amt: insn->imm);
2472}
2473
2474static int
2475__shr_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta, u8 dst,
2476 u8 shift_amt)
2477{
2478 if (shift_amt)
2479 emit_shf(nfp_prog, reg_both(dst), reg_none(), op: SHF_OP_NONE,
2480 reg_b(dst), sc: SHF_SC_R_SHF, shift: shift_amt);
2481 wrp_zext(nfp_prog, meta, dst);
2482 return 0;
2483}
2484
2485static int shr_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2486{
2487 const struct bpf_insn *insn = &meta->insn;
2488 u8 dst = insn->dst_reg * 2;
2489
2490 return __shr_imm(nfp_prog, meta, dst, shift_amt: insn->imm);
2491}
2492
2493static int shr_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2494{
2495 const struct bpf_insn *insn = &meta->insn;
2496 u64 umin, umax;
2497 u8 dst, src;
2498
2499 dst = insn->dst_reg * 2;
2500 umin = meta->umin_src;
2501 umax = meta->umax_src;
2502 if (umin == umax)
2503 return __shr_imm(nfp_prog, meta, dst, shift_amt: umin);
2504
2505 src = insn->src_reg * 2;
2506 emit_alu(nfp_prog, reg_none(), reg_a(src), op: ALU_OP_OR, reg_imm(0));
2507 emit_shf_indir(nfp_prog, reg_both(dst), reg_none(), op: SHF_OP_NONE,
2508 reg_b(dst), sc: SHF_SC_R_SHF);
2509 wrp_zext(nfp_prog, meta, dst);
2510 return 0;
2511}
2512
2513static int
2514__shl_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta, u8 dst,
2515 u8 shift_amt)
2516{
2517 if (shift_amt)
2518 emit_shf(nfp_prog, reg_both(dst), reg_none(), op: SHF_OP_NONE,
2519 reg_b(dst), sc: SHF_SC_L_SHF, shift: shift_amt);
2520 wrp_zext(nfp_prog, meta, dst);
2521 return 0;
2522}
2523
2524static int shl_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2525{
2526 const struct bpf_insn *insn = &meta->insn;
2527 u8 dst = insn->dst_reg * 2;
2528
2529 return __shl_imm(nfp_prog, meta, dst, shift_amt: insn->imm);
2530}
2531
2532static int shl_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2533{
2534 const struct bpf_insn *insn = &meta->insn;
2535 u64 umin, umax;
2536 u8 dst, src;
2537
2538 dst = insn->dst_reg * 2;
2539 umin = meta->umin_src;
2540 umax = meta->umax_src;
2541 if (umin == umax)
2542 return __shl_imm(nfp_prog, meta, dst, shift_amt: umin);
2543
2544 src = insn->src_reg * 2;
2545 shl_reg64_lt32_low(nfp_prog, dst, src);
2546 wrp_zext(nfp_prog, meta, dst);
2547 return 0;
2548}
2549
2550static int end_reg32(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2551{
2552 const struct bpf_insn *insn = &meta->insn;
2553 u8 gpr = insn->dst_reg * 2;
2554
2555 switch (insn->imm) {
2556 case 16:
2557 emit_ld_field(nfp_prog, reg_both(gpr), bmask: 0x9, reg_b(gpr),
2558 sc: SHF_SC_R_ROT, shift: 8);
2559 emit_ld_field(nfp_prog, reg_both(gpr), bmask: 0xe, reg_a(gpr),
2560 sc: SHF_SC_R_SHF, shift: 16);
2561
2562 wrp_immed(nfp_prog, reg_both(gpr + 1), imm: 0);
2563 break;
2564 case 32:
2565 wrp_end32(nfp_prog, reg_a(gpr), gpr_out: gpr);
2566 wrp_immed(nfp_prog, reg_both(gpr + 1), imm: 0);
2567 break;
2568 case 64:
2569 wrp_mov(nfp_prog, imm_a(nfp_prog), reg_b(gpr + 1));
2570
2571 wrp_end32(nfp_prog, reg_a(gpr), gpr_out: gpr + 1);
2572 wrp_end32(nfp_prog, imm_a(nfp_prog), gpr_out: gpr);
2573 break;
2574 }
2575
2576 return 0;
2577}
2578
2579static int imm_ld8_part2(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2580{
2581 struct nfp_insn_meta *prev = nfp_meta_prev(meta);
2582 u32 imm_lo, imm_hi;
2583 u8 dst;
2584
2585 dst = prev->insn.dst_reg * 2;
2586 imm_lo = prev->insn.imm;
2587 imm_hi = meta->insn.imm;
2588
2589 wrp_immed(nfp_prog, reg_both(dst), imm: imm_lo);
2590
2591 /* mov is always 1 insn, load imm may be two, so try to use mov */
2592 if (imm_hi == imm_lo)
2593 wrp_mov(nfp_prog, reg_both(dst + 1), reg_a(dst));
2594 else
2595 wrp_immed(nfp_prog, reg_both(dst + 1), imm: imm_hi);
2596
2597 return 0;
2598}
2599
2600static int imm_ld8(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2601{
2602 meta->double_cb = imm_ld8_part2;
2603 return 0;
2604}
2605
2606static int data_ld1(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2607{
2608 return construct_data_ld(nfp_prog, meta, offset: meta->insn.imm, size: 1);
2609}
2610
2611static int data_ld2(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2612{
2613 return construct_data_ld(nfp_prog, meta, offset: meta->insn.imm, size: 2);
2614}
2615
2616static int data_ld4(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2617{
2618 return construct_data_ld(nfp_prog, meta, offset: meta->insn.imm, size: 4);
2619}
2620
2621static int data_ind_ld1(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2622{
2623 return construct_data_ind_ld(nfp_prog, meta, offset: meta->insn.imm,
2624 src: meta->insn.src_reg * 2, size: 1);
2625}
2626
2627static int data_ind_ld2(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2628{
2629 return construct_data_ind_ld(nfp_prog, meta, offset: meta->insn.imm,
2630 src: meta->insn.src_reg * 2, size: 2);
2631}
2632
2633static int data_ind_ld4(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2634{
2635 return construct_data_ind_ld(nfp_prog, meta, offset: meta->insn.imm,
2636 src: meta->insn.src_reg * 2, size: 4);
2637}
2638
2639static int
2640mem_ldx_stack(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
2641 unsigned int size, unsigned int ptr_off)
2642{
2643 return mem_op_stack(nfp_prog, meta, size, ptr_off,
2644 gpr: meta->insn.dst_reg * 2, ptr_gpr: meta->insn.src_reg * 2,
2645 clr_gpr: true, step: wrp_lmem_load);
2646}
2647
2648static int mem_ldx_skb(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
2649 u8 size)
2650{
2651 swreg dst = reg_both(meta->insn.dst_reg * 2);
2652
2653 switch (meta->insn.off) {
2654 case offsetof(struct __sk_buff, len):
2655 if (size != sizeof_field(struct __sk_buff, len))
2656 return -EOPNOTSUPP;
2657 wrp_mov(nfp_prog, dst, plen_reg(nfp_prog));
2658 break;
2659 case offsetof(struct __sk_buff, data):
2660 if (size != sizeof_field(struct __sk_buff, data))
2661 return -EOPNOTSUPP;
2662 wrp_mov(nfp_prog, dst, pptr_reg(nfp_prog));
2663 break;
2664 case offsetof(struct __sk_buff, data_end):
2665 if (size != sizeof_field(struct __sk_buff, data_end))
2666 return -EOPNOTSUPP;
2667 emit_alu(nfp_prog, dst,
2668 plen_reg(nfp_prog), op: ALU_OP_ADD, pptr_reg(nfp_prog));
2669 break;
2670 default:
2671 return -EOPNOTSUPP;
2672 }
2673
2674 wrp_immed(nfp_prog, reg_both(meta->insn.dst_reg * 2 + 1), imm: 0);
2675
2676 return 0;
2677}
2678
2679static int mem_ldx_xdp(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
2680 u8 size)
2681{
2682 swreg dst = reg_both(meta->insn.dst_reg * 2);
2683
2684 switch (meta->insn.off) {
2685 case offsetof(struct xdp_md, data):
2686 if (size != sizeof_field(struct xdp_md, data))
2687 return -EOPNOTSUPP;
2688 wrp_mov(nfp_prog, dst, pptr_reg(nfp_prog));
2689 break;
2690 case offsetof(struct xdp_md, data_end):
2691 if (size != sizeof_field(struct xdp_md, data_end))
2692 return -EOPNOTSUPP;
2693 emit_alu(nfp_prog, dst,
2694 plen_reg(nfp_prog), op: ALU_OP_ADD, pptr_reg(nfp_prog));
2695 break;
2696 default:
2697 return -EOPNOTSUPP;
2698 }
2699
2700 wrp_immed(nfp_prog, reg_both(meta->insn.dst_reg * 2 + 1), imm: 0);
2701
2702 return 0;
2703}
2704
2705static int
2706mem_ldx_data(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
2707 unsigned int size)
2708{
2709 swreg tmp_reg;
2710
2711 tmp_reg = re_load_imm_any(nfp_prog, imm: meta->insn.off, imm_b(nfp_prog));
2712
2713 return data_ld_host_order_addr32(nfp_prog, meta, src_gpr: meta->insn.src_reg * 2,
2714 offset: tmp_reg, dst_gpr: meta->insn.dst_reg * 2, size);
2715}
2716
2717static int
2718mem_ldx_emem(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
2719 unsigned int size)
2720{
2721 swreg tmp_reg;
2722
2723 tmp_reg = re_load_imm_any(nfp_prog, imm: meta->insn.off, imm_b(nfp_prog));
2724
2725 return data_ld_host_order_addr40(nfp_prog, meta, src_gpr: meta->insn.src_reg * 2,
2726 offset: tmp_reg, dst_gpr: meta->insn.dst_reg * 2, size);
2727}
2728
2729static void
2730mem_ldx_data_init_pktcache(struct nfp_prog *nfp_prog,
2731 struct nfp_insn_meta *meta)
2732{
2733 s16 range_start = meta->pkt_cache.range_start;
2734 s16 range_end = meta->pkt_cache.range_end;
2735 swreg src_base, off;
2736 u8 xfer_num, len;
2737 bool indir;
2738
2739 off = re_load_imm_any(nfp_prog, imm: range_start, imm_b(nfp_prog));
2740 src_base = reg_a(meta->insn.src_reg * 2);
2741 len = range_end - range_start;
2742 xfer_num = round_up(len, REG_WIDTH) / REG_WIDTH;
2743
2744 indir = len > 8 * REG_WIDTH;
2745 /* Setup PREV_ALU for indirect mode. */
2746 if (indir)
2747 wrp_immed(nfp_prog, reg_none(),
2748 CMD_OVE_LEN | FIELD_PREP(CMD_OV_LEN, xfer_num - 1));
2749
2750 /* Cache memory into transfer-in registers. */
2751 emit_cmd_any(nfp_prog, op: CMD_TGT_READ32_SWAP, mode: CMD_MODE_32b, xfer: 0, lreg: src_base,
2752 rreg: off, size: xfer_num - 1, ctx: CMD_CTX_SWAP, indir);
2753}
2754
2755static int
2756mem_ldx_data_from_pktcache_unaligned(struct nfp_prog *nfp_prog,
2757 struct nfp_insn_meta *meta,
2758 unsigned int size)
2759{
2760 s16 range_start = meta->pkt_cache.range_start;
2761 s16 insn_off = meta->insn.off - range_start;
2762 swreg dst_lo, dst_hi, src_lo, src_mid;
2763 u8 dst_gpr = meta->insn.dst_reg * 2;
2764 u8 len_lo = size, len_mid = 0;
2765 u8 idx = insn_off / REG_WIDTH;
2766 u8 off = insn_off % REG_WIDTH;
2767
2768 dst_hi = reg_both(dst_gpr + 1);
2769 dst_lo = reg_both(dst_gpr);
2770 src_lo = reg_xfer(idx);
2771
2772 /* The read length could involve as many as three registers. */
2773 if (size > REG_WIDTH - off) {
2774 /* Calculate the part in the second register. */
2775 len_lo = REG_WIDTH - off;
2776 len_mid = size - len_lo;
2777
2778 /* Calculate the part in the third register. */
2779 if (size > 2 * REG_WIDTH - off)
2780 len_mid = REG_WIDTH;
2781 }
2782
2783 wrp_reg_subpart(nfp_prog, dst: dst_lo, src: src_lo, field_len: len_lo, offset: off);
2784
2785 if (!len_mid) {
2786 wrp_zext(nfp_prog, meta, dst: dst_gpr);
2787 return 0;
2788 }
2789
2790 src_mid = reg_xfer(idx + 1);
2791
2792 if (size <= REG_WIDTH) {
2793 wrp_reg_or_subpart(nfp_prog, dst: dst_lo, src: src_mid, field_len: len_mid, offset: len_lo);
2794 wrp_zext(nfp_prog, meta, dst: dst_gpr);
2795 } else {
2796 swreg src_hi = reg_xfer(idx + 2);
2797
2798 wrp_reg_or_subpart(nfp_prog, dst: dst_lo, src: src_mid,
2799 REG_WIDTH - len_lo, offset: len_lo);
2800 wrp_reg_subpart(nfp_prog, dst: dst_hi, src: src_mid, field_len: len_lo,
2801 REG_WIDTH - len_lo);
2802 wrp_reg_or_subpart(nfp_prog, dst: dst_hi, src: src_hi, REG_WIDTH - len_lo,
2803 offset: len_lo);
2804 }
2805
2806 return 0;
2807}
2808
2809static int
2810mem_ldx_data_from_pktcache_aligned(struct nfp_prog *nfp_prog,
2811 struct nfp_insn_meta *meta,
2812 unsigned int size)
2813{
2814 swreg dst_lo, dst_hi, src_lo;
2815 u8 dst_gpr, idx;
2816
2817 idx = (meta->insn.off - meta->pkt_cache.range_start) / REG_WIDTH;
2818 dst_gpr = meta->insn.dst_reg * 2;
2819 dst_hi = reg_both(dst_gpr + 1);
2820 dst_lo = reg_both(dst_gpr);
2821 src_lo = reg_xfer(idx);
2822
2823 if (size < REG_WIDTH) {
2824 wrp_reg_subpart(nfp_prog, dst: dst_lo, src: src_lo, field_len: size, offset: 0);
2825 wrp_zext(nfp_prog, meta, dst: dst_gpr);
2826 } else if (size == REG_WIDTH) {
2827 wrp_mov(nfp_prog, dst: dst_lo, src: src_lo);
2828 wrp_zext(nfp_prog, meta, dst: dst_gpr);
2829 } else {
2830 swreg src_hi = reg_xfer(idx + 1);
2831
2832 wrp_mov(nfp_prog, dst: dst_lo, src: src_lo);
2833 wrp_mov(nfp_prog, dst: dst_hi, src: src_hi);
2834 }
2835
2836 return 0;
2837}
2838
2839static int
2840mem_ldx_data_from_pktcache(struct nfp_prog *nfp_prog,
2841 struct nfp_insn_meta *meta, unsigned int size)
2842{
2843 u8 off = meta->insn.off - meta->pkt_cache.range_start;
2844
2845 if (IS_ALIGNED(off, REG_WIDTH))
2846 return mem_ldx_data_from_pktcache_aligned(nfp_prog, meta, size);
2847
2848 return mem_ldx_data_from_pktcache_unaligned(nfp_prog, meta, size);
2849}
2850
2851static int
2852mem_ldx(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
2853 unsigned int size)
2854{
2855 if (meta->ldst_gather_len)
2856 return nfp_cpp_memcpy(nfp_prog, meta);
2857
2858 if (meta->ptr.type == PTR_TO_CTX) {
2859 if (nfp_prog->type == BPF_PROG_TYPE_XDP)
2860 return mem_ldx_xdp(nfp_prog, meta, size);
2861 else
2862 return mem_ldx_skb(nfp_prog, meta, size);
2863 }
2864
2865 if (meta->ptr.type == PTR_TO_PACKET) {
2866 if (meta->pkt_cache.range_end) {
2867 if (meta->pkt_cache.do_init)
2868 mem_ldx_data_init_pktcache(nfp_prog, meta);
2869
2870 return mem_ldx_data_from_pktcache(nfp_prog, meta, size);
2871 } else {
2872 return mem_ldx_data(nfp_prog, meta, size);
2873 }
2874 }
2875
2876 if (meta->ptr.type == PTR_TO_STACK)
2877 return mem_ldx_stack(nfp_prog, meta, size,
2878 ptr_off: meta->ptr.off + meta->ptr.var_off.value);
2879
2880 if (meta->ptr.type == PTR_TO_MAP_VALUE)
2881 return mem_ldx_emem(nfp_prog, meta, size);
2882
2883 return -EOPNOTSUPP;
2884}
2885
2886static int mem_ldx1(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2887{
2888 return mem_ldx(nfp_prog, meta, size: 1);
2889}
2890
2891static int mem_ldx2(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2892{
2893 return mem_ldx(nfp_prog, meta, size: 2);
2894}
2895
2896static int mem_ldx4(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2897{
2898 return mem_ldx(nfp_prog, meta, size: 4);
2899}
2900
2901static int mem_ldx8(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2902{
2903 return mem_ldx(nfp_prog, meta, size: 8);
2904}
2905
2906static int
2907mem_st_data(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
2908 unsigned int size)
2909{
2910 u64 imm = meta->insn.imm; /* sign extend */
2911 swreg off_reg;
2912
2913 off_reg = re_load_imm_any(nfp_prog, imm: meta->insn.off, imm_b(nfp_prog));
2914
2915 return data_st_host_order(nfp_prog, dst_gpr: meta->insn.dst_reg * 2, offset: off_reg,
2916 imm, size);
2917}
2918
2919static int mem_st(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
2920 unsigned int size)
2921{
2922 if (meta->ptr.type == PTR_TO_PACKET)
2923 return mem_st_data(nfp_prog, meta, size);
2924
2925 return -EOPNOTSUPP;
2926}
2927
2928static int mem_st1(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2929{
2930 return mem_st(nfp_prog, meta, size: 1);
2931}
2932
2933static int mem_st2(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2934{
2935 return mem_st(nfp_prog, meta, size: 2);
2936}
2937
2938static int mem_st4(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2939{
2940 return mem_st(nfp_prog, meta, size: 4);
2941}
2942
2943static int mem_st8(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2944{
2945 return mem_st(nfp_prog, meta, size: 8);
2946}
2947
2948static int
2949mem_stx_data(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
2950 unsigned int size)
2951{
2952 swreg off_reg;
2953
2954 off_reg = re_load_imm_any(nfp_prog, imm: meta->insn.off, imm_b(nfp_prog));
2955
2956 return data_stx_host_order(nfp_prog, dst_gpr: meta->insn.dst_reg * 2, offset: off_reg,
2957 src_gpr: meta->insn.src_reg * 2, size);
2958}
2959
2960static int
2961mem_stx_stack(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
2962 unsigned int size, unsigned int ptr_off)
2963{
2964 return mem_op_stack(nfp_prog, meta, size, ptr_off,
2965 gpr: meta->insn.src_reg * 2, ptr_gpr: meta->insn.dst_reg * 2,
2966 clr_gpr: false, step: wrp_lmem_store);
2967}
2968
2969static int mem_stx_xdp(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2970{
2971 switch (meta->insn.off) {
2972 case offsetof(struct xdp_md, rx_queue_index):
2973 return nfp_queue_select(nfp_prog, meta);
2974 }
2975
2976 WARN_ON_ONCE(1); /* verifier should have rejected bad accesses */
2977 return -EOPNOTSUPP;
2978}
2979
2980static int
2981mem_stx(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
2982 unsigned int size)
2983{
2984 if (meta->ptr.type == PTR_TO_PACKET)
2985 return mem_stx_data(nfp_prog, meta, size);
2986
2987 if (meta->ptr.type == PTR_TO_STACK)
2988 return mem_stx_stack(nfp_prog, meta, size,
2989 ptr_off: meta->ptr.off + meta->ptr.var_off.value);
2990
2991 return -EOPNOTSUPP;
2992}
2993
2994static int mem_stx1(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2995{
2996 return mem_stx(nfp_prog, meta, size: 1);
2997}
2998
2999static int mem_stx2(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
3000{
3001 return mem_stx(nfp_prog, meta, size: 2);
3002}
3003
3004static int mem_stx4(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
3005{
3006 if (meta->ptr.type == PTR_TO_CTX)
3007 if (nfp_prog->type == BPF_PROG_TYPE_XDP)
3008 return mem_stx_xdp(nfp_prog, meta);
3009 return mem_stx(nfp_prog, meta, size: 4);
3010}
3011
3012static int mem_stx8(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
3013{
3014 return mem_stx(nfp_prog, meta, size: 8);
3015}
3016
3017static int
3018mem_xadd(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta, bool is64)
3019{
3020 u8 dst_gpr = meta->insn.dst_reg * 2;
3021 u8 src_gpr = meta->insn.src_reg * 2;
3022 unsigned int full_add, out;
3023 swreg addra, addrb, off;
3024
3025 off = ur_load_imm_any(nfp_prog, imm: meta->insn.off, imm_b(nfp_prog));
3026
3027 /* We can fit 16 bits into command immediate, if we know the immediate
3028 * is guaranteed to either always or never fit into 16 bit we only
3029 * generate code to handle that particular case, otherwise generate
3030 * code for both.
3031 */
3032 out = nfp_prog_current_offset(nfp_prog);
3033 full_add = nfp_prog_current_offset(nfp_prog);
3034
3035 if (meta->insn.off) {
3036 out += 2;
3037 full_add += 2;
3038 }
3039 if (meta->xadd_maybe_16bit) {
3040 out += 3;
3041 full_add += 3;
3042 }
3043 if (meta->xadd_over_16bit)
3044 out += 2 + is64;
3045 if (meta->xadd_maybe_16bit && meta->xadd_over_16bit) {
3046 out += 5;
3047 full_add += 5;
3048 }
3049
3050 /* Generate the branch for choosing add_imm vs add */
3051 if (meta->xadd_maybe_16bit && meta->xadd_over_16bit) {
3052 swreg max_imm = imm_a(nfp_prog);
3053
3054 wrp_immed(nfp_prog, dst: max_imm, imm: 0xffff);
3055 emit_alu(nfp_prog, reg_none(),
3056 lreg: max_imm, op: ALU_OP_SUB, reg_b(src_gpr));
3057 emit_alu(nfp_prog, reg_none(),
3058 reg_imm(0), op: ALU_OP_SUB_C, reg_b(src_gpr + 1));
3059 emit_br(nfp_prog, mask: BR_BLO, addr: full_add, defer: meta->insn.off ? 2 : 0);
3060 /* defer for add */
3061 }
3062
3063 /* If insn has an offset add to the address */
3064 if (!meta->insn.off) {
3065 addra = reg_a(dst_gpr);
3066 addrb = reg_b(dst_gpr + 1);
3067 } else {
3068 emit_alu(nfp_prog, imma_a(nfp_prog),
3069 reg_a(dst_gpr), op: ALU_OP_ADD, rreg: off);
3070 emit_alu(nfp_prog, imma_b(nfp_prog),
3071 reg_a(dst_gpr + 1), op: ALU_OP_ADD_C, reg_imm(0));
3072 addra = imma_a(nfp_prog);
3073 addrb = imma_b(nfp_prog);
3074 }
3075
3076 /* Generate the add_imm if 16 bits are possible */
3077 if (meta->xadd_maybe_16bit) {
3078 swreg prev_alu = imm_a(nfp_prog);
3079
3080 wrp_immed(nfp_prog, dst: prev_alu,
3081 FIELD_PREP(CMD_OVE_DATA, 2) |
3082 CMD_OVE_LEN |
3083 FIELD_PREP(CMD_OV_LEN, 0x8 | is64 << 2));
3084 wrp_reg_or_subpart(nfp_prog, dst: prev_alu, reg_b(src_gpr), field_len: 2, offset: 2);
3085 emit_cmd_indir(nfp_prog, op: CMD_TGT_ADD_IMM, mode: CMD_MODE_40b_BA, xfer: 0,
3086 lreg: addra, rreg: addrb, size: 0, ctx: CMD_CTX_NO_SWAP);
3087
3088 if (meta->xadd_over_16bit)
3089 emit_br(nfp_prog, mask: BR_UNC, addr: out, defer: 0);
3090 }
3091
3092 if (!nfp_prog_confirm_current_offset(nfp_prog, off: full_add))
3093 return -EINVAL;
3094
3095 /* Generate the add if 16 bits are not guaranteed */
3096 if (meta->xadd_over_16bit) {
3097 emit_cmd(nfp_prog, op: CMD_TGT_ADD, mode: CMD_MODE_40b_BA, xfer: 0,
3098 lreg: addra, rreg: addrb, size: is64 << 2,
3099 ctx: is64 ? CMD_CTX_SWAP_DEFER2 : CMD_CTX_SWAP_DEFER1);
3100
3101 wrp_mov(nfp_prog, reg_xfer(0), reg_a(src_gpr));
3102 if (is64)
3103 wrp_mov(nfp_prog, reg_xfer(1), reg_a(src_gpr + 1));
3104 }
3105
3106 if (!nfp_prog_confirm_current_offset(nfp_prog, off: out))
3107 return -EINVAL;
3108
3109 return 0;
3110}
3111
3112static int mem_atomic4(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
3113{
3114 if (meta->insn.imm != BPF_ADD)
3115 return -EOPNOTSUPP;
3116
3117 return mem_xadd(nfp_prog, meta, is64: false);
3118}
3119
3120static int mem_atomic8(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
3121{
3122 if (meta->insn.imm != BPF_ADD)
3123 return -EOPNOTSUPP;
3124
3125 return mem_xadd(nfp_prog, meta, is64: true);
3126}
3127
3128static int jump(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
3129{
3130 emit_br(nfp_prog, mask: BR_UNC, addr: meta->insn.off, defer: 0);
3131
3132 return 0;
3133}
3134
3135static int jeq_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
3136{
3137 const struct bpf_insn *insn = &meta->insn;
3138 u64 imm = insn->imm; /* sign extend */
3139 swreg or1, or2, tmp_reg;
3140
3141 or1 = reg_a(insn->dst_reg * 2);
3142 or2 = reg_b(insn->dst_reg * 2 + 1);
3143
3144 if (imm & ~0U) {
3145 tmp_reg = ur_load_imm_any(nfp_prog, imm: imm & ~0U, imm_b(nfp_prog));
3146 emit_alu(nfp_prog, imm_a(nfp_prog),
3147 reg_a(insn->dst_reg * 2), op: ALU_OP_XOR, rreg: tmp_reg);
3148 or1 = imm_a(nfp_prog);
3149 }
3150
3151 if (imm >> 32) {
3152 tmp_reg = ur_load_imm_any(nfp_prog, imm: imm >> 32, imm_b(nfp_prog));
3153 emit_alu(nfp_prog, imm_b(nfp_prog),
3154 reg_a(insn->dst_reg * 2 + 1), op: ALU_OP_XOR, rreg: tmp_reg);
3155 or2 = imm_b(nfp_prog);
3156 }
3157
3158 emit_alu(nfp_prog, reg_none(), lreg: or1, op: ALU_OP_OR, rreg: or2);
3159 emit_br(nfp_prog, mask: BR_BEQ, addr: insn->off, defer: 0);
3160
3161 return 0;
3162}
3163
3164static int jeq32_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
3165{
3166 const struct bpf_insn *insn = &meta->insn;
3167 swreg tmp_reg;
3168
3169 tmp_reg = ur_load_imm_any(nfp_prog, imm: insn->imm, imm_b(nfp_prog));
3170 emit_alu(nfp_prog, reg_none(),
3171 reg_a(insn->dst_reg * 2), op: ALU_OP_XOR, rreg: tmp_reg);
3172 emit_br(nfp_prog, mask: BR_BEQ, addr: insn->off, defer: 0);
3173
3174 return 0;
3175}
3176
3177static int jset_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
3178{
3179 const struct bpf_insn *insn = &meta->insn;
3180 u64 imm = insn->imm; /* sign extend */
3181 u8 dst_gpr = insn->dst_reg * 2;
3182 swreg tmp_reg;
3183
3184 tmp_reg = ur_load_imm_any(nfp_prog, imm: imm & ~0U, imm_b(nfp_prog));
3185 emit_alu(nfp_prog, imm_b(nfp_prog),
3186 reg_a(dst_gpr), op: ALU_OP_AND, rreg: tmp_reg);
3187 /* Upper word of the mask can only be 0 or ~0 from sign extension,
3188 * so either ignore it or OR the whole thing in.
3189 */
3190 if (is_mbpf_jmp64(meta) && imm >> 32) {
3191 emit_alu(nfp_prog, reg_none(),
3192 reg_a(dst_gpr + 1), op: ALU_OP_OR, imm_b(nfp_prog));
3193 }
3194 emit_br(nfp_prog, mask: BR_BNE, addr: insn->off, defer: 0);
3195
3196 return 0;
3197}
3198
3199static int jne_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
3200{
3201 const struct bpf_insn *insn = &meta->insn;
3202 u64 imm = insn->imm; /* sign extend */
3203 bool is_jmp32 = is_mbpf_jmp32(meta);
3204 swreg tmp_reg;
3205
3206 if (!imm) {
3207 if (is_jmp32)
3208 emit_alu(nfp_prog, reg_none(), reg_none(), op: ALU_OP_NONE,
3209 reg_b(insn->dst_reg * 2));
3210 else
3211 emit_alu(nfp_prog, reg_none(), reg_a(insn->dst_reg * 2),
3212 op: ALU_OP_OR, reg_b(insn->dst_reg * 2 + 1));
3213 emit_br(nfp_prog, mask: BR_BNE, addr: insn->off, defer: 0);
3214 return 0;
3215 }
3216
3217 tmp_reg = ur_load_imm_any(nfp_prog, imm: imm & ~0U, imm_b(nfp_prog));
3218 emit_alu(nfp_prog, reg_none(),
3219 reg_a(insn->dst_reg * 2), op: ALU_OP_XOR, rreg: tmp_reg);
3220 emit_br(nfp_prog, mask: BR_BNE, addr: insn->off, defer: 0);
3221
3222 if (is_jmp32)
3223 return 0;
3224
3225 tmp_reg = ur_load_imm_any(nfp_prog, imm: imm >> 32, imm_b(nfp_prog));
3226 emit_alu(nfp_prog, reg_none(),
3227 reg_a(insn->dst_reg * 2 + 1), op: ALU_OP_XOR, rreg: tmp_reg);
3228 emit_br(nfp_prog, mask: BR_BNE, addr: insn->off, defer: 0);
3229
3230 return 0;
3231}
3232
3233static int jeq_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
3234{
3235 const struct bpf_insn *insn = &meta->insn;
3236
3237 emit_alu(nfp_prog, imm_a(nfp_prog), reg_a(insn->dst_reg * 2),
3238 op: ALU_OP_XOR, reg_b(insn->src_reg * 2));
3239 if (is_mbpf_jmp64(meta)) {
3240 emit_alu(nfp_prog, imm_b(nfp_prog),
3241 reg_a(insn->dst_reg * 2 + 1), op: ALU_OP_XOR,
3242 reg_b(insn->src_reg * 2 + 1));
3243 emit_alu(nfp_prog, reg_none(), imm_a(nfp_prog), op: ALU_OP_OR,
3244 imm_b(nfp_prog));
3245 }
3246 emit_br(nfp_prog, mask: BR_BEQ, addr: insn->off, defer: 0);
3247
3248 return 0;
3249}
3250
3251static int jset_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
3252{
3253 return wrp_test_reg(nfp_prog, meta, alu_op: ALU_OP_AND, br_mask: BR_BNE);
3254}
3255
3256static int jne_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
3257{
3258 return wrp_test_reg(nfp_prog, meta, alu_op: ALU_OP_XOR, br_mask: BR_BNE);
3259}
3260
3261static int
3262bpf_to_bpf_call(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
3263{
3264 u32 ret_tgt, stack_depth, offset_br;
3265 swreg tmp_reg;
3266
3267 stack_depth = round_up(nfp_prog->stack_frame_depth, STACK_FRAME_ALIGN);
3268 /* Space for saving the return address is accounted for by the callee,
3269 * so stack_depth can be zero for the main function.
3270 */
3271 if (stack_depth) {
3272 tmp_reg = ur_load_imm_any(nfp_prog, imm: stack_depth,
3273 stack_imm(nfp_prog));
3274 emit_alu(nfp_prog, stack_reg(nfp_prog),
3275 stack_reg(nfp_prog), op: ALU_OP_ADD, rreg: tmp_reg);
3276 emit_csr_wr(nfp_prog, stack_reg(nfp_prog),
3277 NFP_CSR_ACT_LM_ADDR0);
3278 }
3279
3280 /* Two cases for jumping to the callee:
3281 *
3282 * - If callee uses and needs to save R6~R9 then:
3283 * 1. Put the start offset of the callee into imm_b(). This will
3284 * require a fixup step, as we do not necessarily know this
3285 * address yet.
3286 * 2. Put the return address from the callee to the caller into
3287 * register ret_reg().
3288 * 3. (After defer slots are consumed) Jump to the subroutine that
3289 * pushes the registers to the stack.
3290 * The subroutine acts as a trampoline, and returns to the address in
3291 * imm_b(), i.e. jumps to the callee.
3292 *
3293 * - If callee does not need to save R6~R9 then just load return
3294 * address to the caller in ret_reg(), and jump to the callee
3295 * directly.
3296 *
3297 * Using ret_reg() to pass the return address to the callee is set here
3298 * as a convention. The callee can then push this address onto its
3299 * stack frame in its prologue. The advantages of passing the return
3300 * address through ret_reg(), instead of pushing it to the stack right
3301 * here, are the following:
3302 * - It looks cleaner.
3303 * - If the called function is called multiple time, we get a lower
3304 * program size.
3305 * - We save two no-op instructions that should be added just before
3306 * the emit_br() when stack depth is not null otherwise.
3307 * - If we ever find a register to hold the return address during whole
3308 * execution of the callee, we will not have to push the return
3309 * address to the stack for leaf functions.
3310 */
3311 if (!meta->jmp_dst) {
3312 pr_err("BUG: BPF-to-BPF call has no destination recorded\n");
3313 return -ELOOP;
3314 }
3315 if (nfp_prog->subprog[meta->jmp_dst->subprog_idx].needs_reg_push) {
3316 ret_tgt = nfp_prog_current_offset(nfp_prog) + 3;
3317 emit_br_relo(nfp_prog, mask: BR_UNC, BR_OFF_RELO, defer: 2,
3318 relo: RELO_BR_GO_CALL_PUSH_REGS);
3319 offset_br = nfp_prog_current_offset(nfp_prog);
3320 wrp_immed_relo(nfp_prog, imm_b(nfp_prog), imm: 0, relo: RELO_IMMED_REL);
3321 } else {
3322 ret_tgt = nfp_prog_current_offset(nfp_prog) + 2;
3323 emit_br(nfp_prog, mask: BR_UNC, addr: meta->insn.imm, defer: 1);
3324 offset_br = nfp_prog_current_offset(nfp_prog);
3325 }
3326 wrp_immed_relo(nfp_prog, ret_reg(nfp_prog), imm: ret_tgt, relo: RELO_IMMED_REL);
3327
3328 if (!nfp_prog_confirm_current_offset(nfp_prog, off: ret_tgt))
3329 return -EINVAL;
3330
3331 if (stack_depth) {
3332 tmp_reg = ur_load_imm_any(nfp_prog, imm: stack_depth,
3333 stack_imm(nfp_prog));
3334 emit_alu(nfp_prog, stack_reg(nfp_prog),
3335 stack_reg(nfp_prog), op: ALU_OP_SUB, rreg: tmp_reg);
3336 emit_csr_wr(nfp_prog, stack_reg(nfp_prog),
3337 NFP_CSR_ACT_LM_ADDR0);
3338 wrp_nops(nfp_prog, count: 3);
3339 }
3340
3341 meta->num_insns_after_br = nfp_prog_current_offset(nfp_prog);
3342 meta->num_insns_after_br -= offset_br;
3343
3344 return 0;
3345}
3346
3347static int helper_call(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
3348{
3349 switch (meta->insn.imm) {
3350 case BPF_FUNC_xdp_adjust_head:
3351 return adjust_head(nfp_prog, meta);
3352 case BPF_FUNC_xdp_adjust_tail:
3353 return adjust_tail(nfp_prog, meta);
3354 case BPF_FUNC_map_lookup_elem:
3355 case BPF_FUNC_map_update_elem:
3356 case BPF_FUNC_map_delete_elem:
3357 return map_call_stack_common(nfp_prog, meta);
3358 case BPF_FUNC_get_prandom_u32:
3359 return nfp_get_prandom_u32(nfp_prog, meta);
3360 case BPF_FUNC_perf_event_output:
3361 return nfp_perf_event_output(nfp_prog, meta);
3362 default:
3363 WARN_ONCE(1, "verifier allowed unsupported function\n");
3364 return -EOPNOTSUPP;
3365 }
3366}
3367
3368static int call(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
3369{
3370 if (is_mbpf_pseudo_call(meta))
3371 return bpf_to_bpf_call(nfp_prog, meta);
3372 else
3373 return helper_call(nfp_prog, meta);
3374}
3375
3376static bool nfp_is_main_function(struct nfp_insn_meta *meta)
3377{
3378 return meta->subprog_idx == 0;
3379}
3380
3381static int goto_out(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
3382{
3383 emit_br_relo(nfp_prog, mask: BR_UNC, BR_OFF_RELO, defer: 0, relo: RELO_BR_GO_OUT);
3384
3385 return 0;
3386}
3387
3388static int
3389nfp_subprog_epilogue(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
3390{
3391 if (nfp_prog->subprog[meta->subprog_idx].needs_reg_push) {
3392 /* Pop R6~R9 to the stack via related subroutine.
3393 * We loaded the return address to the caller into ret_reg().
3394 * This means that the subroutine does not come back here, we
3395 * make it jump back to the subprogram caller directly!
3396 */
3397 emit_br_relo(nfp_prog, mask: BR_UNC, BR_OFF_RELO, defer: 1,
3398 relo: RELO_BR_GO_CALL_POP_REGS);
3399 /* Pop return address from the stack. */
3400 wrp_mov(nfp_prog, ret_reg(nfp_prog), reg_lm(0, 0));
3401 } else {
3402 /* Pop return address from the stack. */
3403 wrp_mov(nfp_prog, ret_reg(nfp_prog), reg_lm(0, 0));
3404 /* Jump back to caller if no callee-saved registers were used
3405 * by the subprogram.
3406 */
3407 emit_rtn(nfp_prog, ret_reg(nfp_prog), defer: 0);
3408 }
3409
3410 return 0;
3411}
3412
3413static int jmp_exit(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
3414{
3415 if (nfp_is_main_function(meta))
3416 return goto_out(nfp_prog, meta);
3417 else
3418 return nfp_subprog_epilogue(nfp_prog, meta);
3419}
3420
3421static const instr_cb_t instr_cb[256] = {
3422 [BPF_ALU64 | BPF_MOV | BPF_X] = mov_reg64,
3423 [BPF_ALU64 | BPF_MOV | BPF_K] = mov_imm64,
3424 [BPF_ALU64 | BPF_XOR | BPF_X] = xor_reg64,
3425 [BPF_ALU64 | BPF_XOR | BPF_K] = xor_imm64,
3426 [BPF_ALU64 | BPF_AND | BPF_X] = and_reg64,
3427 [BPF_ALU64 | BPF_AND | BPF_K] = and_imm64,
3428 [BPF_ALU64 | BPF_OR | BPF_X] = or_reg64,
3429 [BPF_ALU64 | BPF_OR | BPF_K] = or_imm64,
3430 [BPF_ALU64 | BPF_ADD | BPF_X] = add_reg64,
3431 [BPF_ALU64 | BPF_ADD | BPF_K] = add_imm64,
3432 [BPF_ALU64 | BPF_SUB | BPF_X] = sub_reg64,
3433 [BPF_ALU64 | BPF_SUB | BPF_K] = sub_imm64,
3434 [BPF_ALU64 | BPF_MUL | BPF_X] = mul_reg64,
3435 [BPF_ALU64 | BPF_MUL | BPF_K] = mul_imm64,
3436 [BPF_ALU64 | BPF_DIV | BPF_X] = div_reg64,
3437 [BPF_ALU64 | BPF_DIV | BPF_K] = div_imm64,
3438 [BPF_ALU64 | BPF_NEG] = neg_reg64,
3439 [BPF_ALU64 | BPF_LSH | BPF_X] = shl_reg64,
3440 [BPF_ALU64 | BPF_LSH | BPF_K] = shl_imm64,
3441 [BPF_ALU64 | BPF_RSH | BPF_X] = shr_reg64,
3442 [BPF_ALU64 | BPF_RSH | BPF_K] = shr_imm64,
3443 [BPF_ALU64 | BPF_ARSH | BPF_X] = ashr_reg64,
3444 [BPF_ALU64 | BPF_ARSH | BPF_K] = ashr_imm64,
3445 [BPF_ALU | BPF_MOV | BPF_X] = mov_reg,
3446 [BPF_ALU | BPF_MOV | BPF_K] = mov_imm,
3447 [BPF_ALU | BPF_XOR | BPF_X] = xor_reg,
3448 [BPF_ALU | BPF_XOR | BPF_K] = xor_imm,
3449 [BPF_ALU | BPF_AND | BPF_X] = and_reg,
3450 [BPF_ALU | BPF_AND | BPF_K] = and_imm,
3451 [BPF_ALU | BPF_OR | BPF_X] = or_reg,
3452 [BPF_ALU | BPF_OR | BPF_K] = or_imm,
3453 [BPF_ALU | BPF_ADD | BPF_X] = add_reg,
3454 [BPF_ALU | BPF_ADD | BPF_K] = add_imm,
3455 [BPF_ALU | BPF_SUB | BPF_X] = sub_reg,
3456 [BPF_ALU | BPF_SUB | BPF_K] = sub_imm,
3457 [BPF_ALU | BPF_MUL | BPF_X] = mul_reg,
3458 [BPF_ALU | BPF_MUL | BPF_K] = mul_imm,
3459 [BPF_ALU | BPF_DIV | BPF_X] = div_reg,
3460 [BPF_ALU | BPF_DIV | BPF_K] = div_imm,
3461 [BPF_ALU | BPF_NEG] = neg_reg,
3462 [BPF_ALU | BPF_LSH | BPF_X] = shl_reg,
3463 [BPF_ALU | BPF_LSH | BPF_K] = shl_imm,
3464 [BPF_ALU | BPF_RSH | BPF_X] = shr_reg,
3465 [BPF_ALU | BPF_RSH | BPF_K] = shr_imm,
3466 [BPF_ALU | BPF_ARSH | BPF_X] = ashr_reg,
3467 [BPF_ALU | BPF_ARSH | BPF_K] = ashr_imm,
3468 [BPF_ALU | BPF_END | BPF_X] = end_reg32,
3469 [BPF_LD | BPF_IMM | BPF_DW] = imm_ld8,
3470 [BPF_LD | BPF_ABS | BPF_B] = data_ld1,
3471 [BPF_LD | BPF_ABS | BPF_H] = data_ld2,
3472 [BPF_LD | BPF_ABS | BPF_W] = data_ld4,
3473 [BPF_LD | BPF_IND | BPF_B] = data_ind_ld1,
3474 [BPF_LD | BPF_IND | BPF_H] = data_ind_ld2,
3475 [BPF_LD | BPF_IND | BPF_W] = data_ind_ld4,
3476 [BPF_LDX | BPF_MEM | BPF_B] = mem_ldx1,
3477 [BPF_LDX | BPF_MEM | BPF_H] = mem_ldx2,
3478 [BPF_LDX | BPF_MEM | BPF_W] = mem_ldx4,
3479 [BPF_LDX | BPF_MEM | BPF_DW] = mem_ldx8,
3480 [BPF_STX | BPF_MEM | BPF_B] = mem_stx1,
3481 [BPF_STX | BPF_MEM | BPF_H] = mem_stx2,
3482 [BPF_STX | BPF_MEM | BPF_W] = mem_stx4,
3483 [BPF_STX | BPF_MEM | BPF_DW] = mem_stx8,
3484 [BPF_STX | BPF_ATOMIC | BPF_W] = mem_atomic4,
3485 [BPF_STX | BPF_ATOMIC | BPF_DW] = mem_atomic8,
3486 [BPF_ST | BPF_MEM | BPF_B] = mem_st1,
3487 [BPF_ST | BPF_MEM | BPF_H] = mem_st2,
3488 [BPF_ST | BPF_MEM | BPF_W] = mem_st4,
3489 [BPF_ST | BPF_MEM | BPF_DW] = mem_st8,
3490 [BPF_JMP | BPF_JA | BPF_K] = jump,
3491 [BPF_JMP | BPF_JEQ | BPF_K] = jeq_imm,
3492 [BPF_JMP | BPF_JGT | BPF_K] = cmp_imm,
3493 [BPF_JMP | BPF_JGE | BPF_K] = cmp_imm,
3494 [BPF_JMP | BPF_JLT | BPF_K] = cmp_imm,
3495 [BPF_JMP | BPF_JLE | BPF_K] = cmp_imm,
3496 [BPF_JMP | BPF_JSGT | BPF_K] = cmp_imm,
3497 [BPF_JMP | BPF_JSGE | BPF_K] = cmp_imm,
3498 [BPF_JMP | BPF_JSLT | BPF_K] = cmp_imm,
3499 [BPF_JMP | BPF_JSLE | BPF_K] = cmp_imm,
3500 [BPF_JMP | BPF_JSET | BPF_K] = jset_imm,
3501 [BPF_JMP | BPF_JNE | BPF_K] = jne_imm,
3502 [BPF_JMP | BPF_JEQ | BPF_X] = jeq_reg,
3503 [BPF_JMP | BPF_JGT | BPF_X] = cmp_reg,
3504 [BPF_JMP | BPF_JGE | BPF_X] = cmp_reg,
3505 [BPF_JMP | BPF_JLT | BPF_X] = cmp_reg,
3506 [BPF_JMP | BPF_JLE | BPF_X] = cmp_reg,
3507 [BPF_JMP | BPF_JSGT | BPF_X] = cmp_reg,
3508 [BPF_JMP | BPF_JSGE | BPF_X] = cmp_reg,
3509 [BPF_JMP | BPF_JSLT | BPF_X] = cmp_reg,
3510 [BPF_JMP | BPF_JSLE | BPF_X] = cmp_reg,
3511 [BPF_JMP | BPF_JSET | BPF_X] = jset_reg,
3512 [BPF_JMP | BPF_JNE | BPF_X] = jne_reg,
3513 [BPF_JMP32 | BPF_JEQ | BPF_K] = jeq32_imm,
3514 [BPF_JMP32 | BPF_JGT | BPF_K] = cmp_imm,
3515 [BPF_JMP32 | BPF_JGE | BPF_K] = cmp_imm,
3516 [BPF_JMP32 | BPF_JLT | BPF_K] = cmp_imm,
3517 [BPF_JMP32 | BPF_JLE | BPF_K] = cmp_imm,
3518 [BPF_JMP32 | BPF_JSGT | BPF_K] =cmp_imm,
3519 [BPF_JMP32 | BPF_JSGE | BPF_K] =cmp_imm,
3520 [BPF_JMP32 | BPF_JSLT | BPF_K] =cmp_imm,
3521 [BPF_JMP32 | BPF_JSLE | BPF_K] =cmp_imm,
3522 [BPF_JMP32 | BPF_JSET | BPF_K] =jset_imm,
3523 [BPF_JMP32 | BPF_JNE | BPF_K] = jne_imm,
3524 [BPF_JMP32 | BPF_JEQ | BPF_X] = jeq_reg,
3525 [BPF_JMP32 | BPF_JGT | BPF_X] = cmp_reg,
3526 [BPF_JMP32 | BPF_JGE | BPF_X] = cmp_reg,
3527 [BPF_JMP32 | BPF_JLT | BPF_X] = cmp_reg,
3528 [BPF_JMP32 | BPF_JLE | BPF_X] = cmp_reg,
3529 [BPF_JMP32 | BPF_JSGT | BPF_X] =cmp_reg,
3530 [BPF_JMP32 | BPF_JSGE | BPF_X] =cmp_reg,
3531 [BPF_JMP32 | BPF_JSLT | BPF_X] =cmp_reg,
3532 [BPF_JMP32 | BPF_JSLE | BPF_X] =cmp_reg,
3533 [BPF_JMP32 | BPF_JSET | BPF_X] =jset_reg,
3534 [BPF_JMP32 | BPF_JNE | BPF_X] = jne_reg,
3535 [BPF_JMP | BPF_CALL] = call,
3536 [BPF_JMP | BPF_EXIT] = jmp_exit,
3537};
3538
3539/* --- Assembler logic --- */
3540static int
3541nfp_fixup_immed_relo(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
3542 struct nfp_insn_meta *jmp_dst, u32 br_idx)
3543{
3544 if (immed_get_value(instr: nfp_prog->prog[br_idx + 1])) {
3545 pr_err("BUG: failed to fix up callee register saving\n");
3546 return -EINVAL;
3547 }
3548
3549 immed_set_value(instr: &nfp_prog->prog[br_idx + 1], immed: jmp_dst->off);
3550
3551 return 0;
3552}
3553
3554static int nfp_fixup_branches(struct nfp_prog *nfp_prog)
3555{
3556 struct nfp_insn_meta *meta, *jmp_dst;
3557 u32 idx, br_idx;
3558 int err;
3559
3560 list_for_each_entry(meta, &nfp_prog->insns, l) {
3561 if (meta->flags & FLAG_INSN_SKIP_MASK)
3562 continue;
3563 if (!is_mbpf_jmp(meta))
3564 continue;
3565 if (meta->insn.code == (BPF_JMP | BPF_EXIT) &&
3566 !nfp_is_main_function(meta))
3567 continue;
3568 if (is_mbpf_helper_call(meta))
3569 continue;
3570
3571 if (list_is_last(list: &meta->l, head: &nfp_prog->insns))
3572 br_idx = nfp_prog->last_bpf_off;
3573 else
3574 br_idx = list_next_entry(meta, l)->off - 1;
3575
3576 /* For BPF-to-BPF function call, a stack adjustment sequence is
3577 * generated after the return instruction. Therefore, we must
3578 * withdraw the length of this sequence to have br_idx pointing
3579 * to where the "branch" NFP instruction is expected to be.
3580 */
3581 if (is_mbpf_pseudo_call(meta))
3582 br_idx -= meta->num_insns_after_br;
3583
3584 if (!nfp_is_br(insn: nfp_prog->prog[br_idx])) {
3585 pr_err("Fixup found block not ending in branch %d %02x %016llx!!\n",
3586 br_idx, meta->insn.code, nfp_prog->prog[br_idx]);
3587 return -ELOOP;
3588 }
3589
3590 if (meta->insn.code == (BPF_JMP | BPF_EXIT))
3591 continue;
3592
3593 /* Leave special branches for later */
3594 if (FIELD_GET(OP_RELO_TYPE, nfp_prog->prog[br_idx]) !=
3595 RELO_BR_REL && !is_mbpf_pseudo_call(meta))
3596 continue;
3597
3598 if (!meta->jmp_dst) {
3599 pr_err("Non-exit jump doesn't have destination info recorded!!\n");
3600 return -ELOOP;
3601 }
3602
3603 jmp_dst = meta->jmp_dst;
3604
3605 if (jmp_dst->flags & FLAG_INSN_SKIP_PREC_DEPENDENT) {
3606 pr_err("Branch landing on removed instruction!!\n");
3607 return -ELOOP;
3608 }
3609
3610 if (is_mbpf_pseudo_call(meta) &&
3611 nfp_prog->subprog[jmp_dst->subprog_idx].needs_reg_push) {
3612 err = nfp_fixup_immed_relo(nfp_prog, meta,
3613 jmp_dst, br_idx);
3614 if (err)
3615 return err;
3616 }
3617
3618 if (FIELD_GET(OP_RELO_TYPE, nfp_prog->prog[br_idx]) !=
3619 RELO_BR_REL)
3620 continue;
3621
3622 for (idx = meta->off; idx <= br_idx; idx++) {
3623 if (!nfp_is_br(insn: nfp_prog->prog[idx]))
3624 continue;
3625 br_set_offset(instr: &nfp_prog->prog[idx], offset: jmp_dst->off);
3626 }
3627 }
3628
3629 return 0;
3630}
3631
3632static void nfp_intro(struct nfp_prog *nfp_prog)
3633{
3634 wrp_immed(nfp_prog, plen_reg(nfp_prog), GENMASK(13, 0));
3635 emit_alu(nfp_prog, plen_reg(nfp_prog),
3636 plen_reg(nfp_prog), op: ALU_OP_AND, pv_len(nfp_prog));
3637}
3638
3639static void
3640nfp_subprog_prologue(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
3641{
3642 /* Save return address into the stack. */
3643 wrp_mov(nfp_prog, reg_lm(0, 0), ret_reg(nfp_prog));
3644}
3645
3646static void
3647nfp_start_subprog(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
3648{
3649 unsigned int depth = nfp_prog->subprog[meta->subprog_idx].stack_depth;
3650
3651 nfp_prog->stack_frame_depth = round_up(depth, 4);
3652 nfp_subprog_prologue(nfp_prog, meta);
3653}
3654
3655bool nfp_is_subprog_start(struct nfp_insn_meta *meta)
3656{
3657 return meta->flags & FLAG_INSN_IS_SUBPROG_START;
3658}
3659
3660static void nfp_outro_tc_da(struct nfp_prog *nfp_prog)
3661{
3662 /* TC direct-action mode:
3663 * 0,1 ok NOT SUPPORTED[1]
3664 * 2 drop 0x22 -> drop, count as stat1
3665 * 4,5 nuke 0x02 -> drop
3666 * 7 redir 0x44 -> redir, count as stat2
3667 * * unspec 0x11 -> pass, count as stat0
3668 *
3669 * [1] We can't support OK and RECLASSIFY because we can't tell TC
3670 * the exact decision made. We are forced to support UNSPEC
3671 * to handle aborts so that's the only one we handle for passing
3672 * packets up the stack.
3673 */
3674 /* Target for aborts */
3675 nfp_prog->tgt_abort = nfp_prog_current_offset(nfp_prog);
3676
3677 emit_br_relo(nfp_prog, mask: BR_UNC, BR_OFF_RELO, defer: 2, relo: RELO_BR_NEXT_PKT);
3678
3679 wrp_mov(nfp_prog, reg_a(0), NFP_BPF_ABI_FLAGS);
3680 emit_ld_field(nfp_prog, reg_a(0), bmask: 0xc, reg_imm(0x11), sc: SHF_SC_L_SHF, shift: 16);
3681
3682 /* Target for normal exits */
3683 nfp_prog->tgt_out = nfp_prog_current_offset(nfp_prog);
3684
3685 /* if R0 > 7 jump to abort */
3686 emit_alu(nfp_prog, reg_none(), reg_imm(7), op: ALU_OP_SUB, reg_b(0));
3687 emit_br(nfp_prog, mask: BR_BLO, addr: nfp_prog->tgt_abort, defer: 0);
3688 wrp_mov(nfp_prog, reg_a(0), NFP_BPF_ABI_FLAGS);
3689
3690 wrp_immed(nfp_prog, reg_b(2), imm: 0x41221211);
3691 wrp_immed(nfp_prog, reg_b(3), imm: 0x41001211);
3692
3693 emit_shf(nfp_prog, reg_a(1),
3694 reg_none(), op: SHF_OP_NONE, reg_b(0), sc: SHF_SC_L_SHF, shift: 2);
3695
3696 emit_alu(nfp_prog, reg_none(), reg_a(1), op: ALU_OP_OR, reg_imm(0));
3697 emit_shf(nfp_prog, reg_a(2),
3698 reg_imm(0xf), op: SHF_OP_AND, reg_b(2), sc: SHF_SC_R_SHF, shift: 0);
3699
3700 emit_alu(nfp_prog, reg_none(), reg_a(1), op: ALU_OP_OR, reg_imm(0));
3701 emit_shf(nfp_prog, reg_b(2),
3702 reg_imm(0xf), op: SHF_OP_AND, reg_b(3), sc: SHF_SC_R_SHF, shift: 0);
3703
3704 emit_br_relo(nfp_prog, mask: BR_UNC, BR_OFF_RELO, defer: 2, relo: RELO_BR_NEXT_PKT);
3705
3706 emit_shf(nfp_prog, reg_b(2),
3707 reg_a(2), op: SHF_OP_OR, reg_b(2), sc: SHF_SC_L_SHF, shift: 4);
3708 emit_ld_field(nfp_prog, reg_a(0), bmask: 0xc, reg_b(2), sc: SHF_SC_L_SHF, shift: 16);
3709}
3710
3711static void nfp_outro_xdp(struct nfp_prog *nfp_prog)
3712{
3713 /* XDP return codes:
3714 * 0 aborted 0x82 -> drop, count as stat3
3715 * 1 drop 0x22 -> drop, count as stat1
3716 * 2 pass 0x11 -> pass, count as stat0
3717 * 3 tx 0x44 -> redir, count as stat2
3718 * * unknown 0x82 -> drop, count as stat3
3719 */
3720 /* Target for aborts */
3721 nfp_prog->tgt_abort = nfp_prog_current_offset(nfp_prog);
3722
3723 emit_br_relo(nfp_prog, mask: BR_UNC, BR_OFF_RELO, defer: 2, relo: RELO_BR_NEXT_PKT);
3724
3725 wrp_mov(nfp_prog, reg_a(0), NFP_BPF_ABI_FLAGS);
3726 emit_ld_field(nfp_prog, reg_a(0), bmask: 0xc, reg_imm(0x82), sc: SHF_SC_L_SHF, shift: 16);
3727
3728 /* Target for normal exits */
3729 nfp_prog->tgt_out = nfp_prog_current_offset(nfp_prog);
3730
3731 /* if R0 > 3 jump to abort */
3732 emit_alu(nfp_prog, reg_none(), reg_imm(3), op: ALU_OP_SUB, reg_b(0));
3733 emit_br(nfp_prog, mask: BR_BLO, addr: nfp_prog->tgt_abort, defer: 0);
3734
3735 wrp_immed(nfp_prog, reg_b(2), imm: 0x44112282);
3736
3737 emit_shf(nfp_prog, reg_a(1),
3738 reg_none(), op: SHF_OP_NONE, reg_b(0), sc: SHF_SC_L_SHF, shift: 3);
3739
3740 emit_alu(nfp_prog, reg_none(), reg_a(1), op: ALU_OP_OR, reg_imm(0));
3741 emit_shf(nfp_prog, reg_b(2),
3742 reg_imm(0xff), op: SHF_OP_AND, reg_b(2), sc: SHF_SC_R_SHF, shift: 0);
3743
3744 emit_br_relo(nfp_prog, mask: BR_UNC, BR_OFF_RELO, defer: 2, relo: RELO_BR_NEXT_PKT);
3745
3746 wrp_mov(nfp_prog, reg_a(0), NFP_BPF_ABI_FLAGS);
3747 emit_ld_field(nfp_prog, reg_a(0), bmask: 0xc, reg_b(2), sc: SHF_SC_L_SHF, shift: 16);
3748}
3749
3750static bool nfp_prog_needs_callee_reg_save(struct nfp_prog *nfp_prog)
3751{
3752 unsigned int idx;
3753
3754 for (idx = 1; idx < nfp_prog->subprog_cnt; idx++)
3755 if (nfp_prog->subprog[idx].needs_reg_push)
3756 return true;
3757
3758 return false;
3759}
3760
3761static void nfp_push_callee_registers(struct nfp_prog *nfp_prog)
3762{
3763 u8 reg;
3764
3765 /* Subroutine: Save all callee saved registers (R6 ~ R9).
3766 * imm_b() holds the return address.
3767 */
3768 nfp_prog->tgt_call_push_regs = nfp_prog_current_offset(nfp_prog);
3769 for (reg = BPF_REG_6; reg <= BPF_REG_9; reg++) {
3770 u8 adj = (reg - BPF_REG_0) * 2;
3771 u8 idx = (reg - BPF_REG_6) * 2;
3772
3773 /* The first slot in the stack frame is used to push the return
3774 * address in bpf_to_bpf_call(), start just after.
3775 */
3776 wrp_mov(nfp_prog, reg_lm(0, 1 + idx), reg_b(adj));
3777
3778 if (reg == BPF_REG_8)
3779 /* Prepare to jump back, last 3 insns use defer slots */
3780 emit_rtn(nfp_prog, imm_b(nfp_prog), defer: 3);
3781
3782 wrp_mov(nfp_prog, reg_lm(0, 1 + idx + 1), reg_b(adj + 1));
3783 }
3784}
3785
3786static void nfp_pop_callee_registers(struct nfp_prog *nfp_prog)
3787{
3788 u8 reg;
3789
3790 /* Subroutine: Restore all callee saved registers (R6 ~ R9).
3791 * ret_reg() holds the return address.
3792 */
3793 nfp_prog->tgt_call_pop_regs = nfp_prog_current_offset(nfp_prog);
3794 for (reg = BPF_REG_6; reg <= BPF_REG_9; reg++) {
3795 u8 adj = (reg - BPF_REG_0) * 2;
3796 u8 idx = (reg - BPF_REG_6) * 2;
3797
3798 /* The first slot in the stack frame holds the return address,
3799 * start popping just after that.
3800 */
3801 wrp_mov(nfp_prog, reg_both(adj), reg_lm(0, 1 + idx));
3802
3803 if (reg == BPF_REG_8)
3804 /* Prepare to jump back, last 3 insns use defer slots */
3805 emit_rtn(nfp_prog, ret_reg(nfp_prog), defer: 3);
3806
3807 wrp_mov(nfp_prog, reg_both(adj + 1), reg_lm(0, 1 + idx + 1));
3808 }
3809}
3810
3811static void nfp_outro(struct nfp_prog *nfp_prog)
3812{
3813 switch (nfp_prog->type) {
3814 case BPF_PROG_TYPE_SCHED_CLS:
3815 nfp_outro_tc_da(nfp_prog);
3816 break;
3817 case BPF_PROG_TYPE_XDP:
3818 nfp_outro_xdp(nfp_prog);
3819 break;
3820 default:
3821 WARN_ON(1);
3822 }
3823
3824 if (!nfp_prog_needs_callee_reg_save(nfp_prog))
3825 return;
3826
3827 nfp_push_callee_registers(nfp_prog);
3828 nfp_pop_callee_registers(nfp_prog);
3829}
3830
3831static int nfp_translate(struct nfp_prog *nfp_prog)
3832{
3833 struct nfp_insn_meta *meta;
3834 unsigned int depth;
3835 int err;
3836
3837 depth = nfp_prog->subprog[0].stack_depth;
3838 nfp_prog->stack_frame_depth = round_up(depth, 4);
3839
3840 nfp_intro(nfp_prog);
3841 if (nfp_prog->error)
3842 return nfp_prog->error;
3843
3844 list_for_each_entry(meta, &nfp_prog->insns, l) {
3845 instr_cb_t cb = instr_cb[meta->insn.code];
3846
3847 meta->off = nfp_prog_current_offset(nfp_prog);
3848
3849 if (nfp_is_subprog_start(meta)) {
3850 nfp_start_subprog(nfp_prog, meta);
3851 if (nfp_prog->error)
3852 return nfp_prog->error;
3853 }
3854
3855 if (meta->flags & FLAG_INSN_SKIP_MASK) {
3856 nfp_prog->n_translated++;
3857 continue;
3858 }
3859
3860 if (nfp_meta_has_prev(nfp_prog, meta) &&
3861 nfp_meta_prev(meta)->double_cb)
3862 cb = nfp_meta_prev(meta)->double_cb;
3863 if (!cb)
3864 return -ENOENT;
3865 err = cb(nfp_prog, meta);
3866 if (err)
3867 return err;
3868 if (nfp_prog->error)
3869 return nfp_prog->error;
3870
3871 nfp_prog->n_translated++;
3872 }
3873
3874 nfp_prog->last_bpf_off = nfp_prog_current_offset(nfp_prog) - 1;
3875
3876 nfp_outro(nfp_prog);
3877 if (nfp_prog->error)
3878 return nfp_prog->error;
3879
3880 wrp_nops(nfp_prog, NFP_USTORE_PREFETCH_WINDOW);
3881 if (nfp_prog->error)
3882 return nfp_prog->error;
3883
3884 return nfp_fixup_branches(nfp_prog);
3885}
3886
3887/* --- Optimizations --- */
3888static void nfp_bpf_opt_reg_init(struct nfp_prog *nfp_prog)
3889{
3890 struct nfp_insn_meta *meta;
3891
3892 list_for_each_entry(meta, &nfp_prog->insns, l) {
3893 struct bpf_insn insn = meta->insn;
3894
3895 /* Programs converted from cBPF start with register xoring */
3896 if (insn.code == (BPF_ALU64 | BPF_XOR | BPF_X) &&
3897 insn.src_reg == insn.dst_reg)
3898 continue;
3899
3900 /* Programs start with R6 = R1 but we ignore the skb pointer */
3901 if (insn.code == (BPF_ALU64 | BPF_MOV | BPF_X) &&
3902 insn.src_reg == 1 && insn.dst_reg == 6)
3903 meta->flags |= FLAG_INSN_SKIP_PREC_DEPENDENT;
3904
3905 /* Return as soon as something doesn't match */
3906 if (!(meta->flags & FLAG_INSN_SKIP_MASK))
3907 return;
3908 }
3909}
3910
3911/* abs(insn.imm) will fit better into unrestricted reg immediate -
3912 * convert add/sub of a negative number into a sub/add of a positive one.
3913 */
3914static void nfp_bpf_opt_neg_add_sub(struct nfp_prog *nfp_prog)
3915{
3916 struct nfp_insn_meta *meta;
3917
3918 list_for_each_entry(meta, &nfp_prog->insns, l) {
3919 struct bpf_insn insn = meta->insn;
3920
3921 if (meta->flags & FLAG_INSN_SKIP_MASK)
3922 continue;
3923
3924 if (!is_mbpf_alu(meta) && !is_mbpf_jmp(meta))
3925 continue;
3926 if (BPF_SRC(insn.code) != BPF_K)
3927 continue;
3928 if (insn.imm >= 0)
3929 continue;
3930
3931 if (is_mbpf_jmp(meta)) {
3932 switch (BPF_OP(insn.code)) {
3933 case BPF_JGE:
3934 case BPF_JSGE:
3935 case BPF_JLT:
3936 case BPF_JSLT:
3937 meta->jump_neg_op = true;
3938 break;
3939 default:
3940 continue;
3941 }
3942 } else {
3943 if (BPF_OP(insn.code) == BPF_ADD)
3944 insn.code = BPF_CLASS(insn.code) | BPF_SUB;
3945 else if (BPF_OP(insn.code) == BPF_SUB)
3946 insn.code = BPF_CLASS(insn.code) | BPF_ADD;
3947 else
3948 continue;
3949
3950 meta->insn.code = insn.code | BPF_K;
3951 }
3952
3953 meta->insn.imm = -insn.imm;
3954 }
3955}
3956
3957/* Remove masking after load since our load guarantees this is not needed */
3958static void nfp_bpf_opt_ld_mask(struct nfp_prog *nfp_prog)
3959{
3960 struct nfp_insn_meta *meta1, *meta2;
3961 static const s32 exp_mask[] = {
3962 [BPF_B] = 0x000000ffU,
3963 [BPF_H] = 0x0000ffffU,
3964 [BPF_W] = 0xffffffffU,
3965 };
3966
3967 nfp_for_each_insn_walk2(nfp_prog, meta1, meta2) {
3968 struct bpf_insn insn, next;
3969
3970 insn = meta1->insn;
3971 next = meta2->insn;
3972
3973 if (BPF_CLASS(insn.code) != BPF_LD)
3974 continue;
3975 if (BPF_MODE(insn.code) != BPF_ABS &&
3976 BPF_MODE(insn.code) != BPF_IND)
3977 continue;
3978
3979 if (next.code != (BPF_ALU64 | BPF_AND | BPF_K))
3980 continue;
3981
3982 if (!exp_mask[BPF_SIZE(insn.code)])
3983 continue;
3984 if (exp_mask[BPF_SIZE(insn.code)] != next.imm)
3985 continue;
3986
3987 if (next.src_reg || next.dst_reg)
3988 continue;
3989
3990 if (meta2->flags & FLAG_INSN_IS_JUMP_DST)
3991 continue;
3992
3993 meta2->flags |= FLAG_INSN_SKIP_PREC_DEPENDENT;
3994 }
3995}
3996
3997static void nfp_bpf_opt_ld_shift(struct nfp_prog *nfp_prog)
3998{
3999 struct nfp_insn_meta *meta1, *meta2, *meta3;
4000
4001 nfp_for_each_insn_walk3(nfp_prog, meta1, meta2, meta3) {
4002 struct bpf_insn insn, next1, next2;
4003
4004 insn = meta1->insn;
4005 next1 = meta2->insn;
4006 next2 = meta3->insn;
4007
4008 if (BPF_CLASS(insn.code) != BPF_LD)
4009 continue;
4010 if (BPF_MODE(insn.code) != BPF_ABS &&
4011 BPF_MODE(insn.code) != BPF_IND)
4012 continue;
4013 if (BPF_SIZE(insn.code) != BPF_W)
4014 continue;
4015
4016 if (!(next1.code == (BPF_LSH | BPF_K | BPF_ALU64) &&
4017 next2.code == (BPF_RSH | BPF_K | BPF_ALU64)) &&
4018 !(next1.code == (BPF_RSH | BPF_K | BPF_ALU64) &&
4019 next2.code == (BPF_LSH | BPF_K | BPF_ALU64)))
4020 continue;
4021
4022 if (next1.src_reg || next1.dst_reg ||
4023 next2.src_reg || next2.dst_reg)
4024 continue;
4025
4026 if (next1.imm != 0x20 || next2.imm != 0x20)
4027 continue;
4028
4029 if (meta2->flags & FLAG_INSN_IS_JUMP_DST ||
4030 meta3->flags & FLAG_INSN_IS_JUMP_DST)
4031 continue;
4032
4033 meta2->flags |= FLAG_INSN_SKIP_PREC_DEPENDENT;
4034 meta3->flags |= FLAG_INSN_SKIP_PREC_DEPENDENT;
4035 }
4036}
4037
4038/* load/store pair that forms memory copy sould look like the following:
4039 *
4040 * ld_width R, [addr_src + offset_src]
4041 * st_width [addr_dest + offset_dest], R
4042 *
4043 * The destination register of load and source register of store should
4044 * be the same, load and store should also perform at the same width.
4045 * If either of addr_src or addr_dest is stack pointer, we don't do the
4046 * CPP optimization as stack is modelled by registers on NFP.
4047 */
4048static bool
4049curr_pair_is_memcpy(struct nfp_insn_meta *ld_meta,
4050 struct nfp_insn_meta *st_meta)
4051{
4052 struct bpf_insn *ld = &ld_meta->insn;
4053 struct bpf_insn *st = &st_meta->insn;
4054
4055 if (!is_mbpf_load(meta: ld_meta) || !is_mbpf_store(meta: st_meta))
4056 return false;
4057
4058 if (ld_meta->ptr.type != PTR_TO_PACKET &&
4059 ld_meta->ptr.type != PTR_TO_MAP_VALUE)
4060 return false;
4061
4062 if (st_meta->ptr.type != PTR_TO_PACKET)
4063 return false;
4064
4065 if (BPF_SIZE(ld->code) != BPF_SIZE(st->code))
4066 return false;
4067
4068 if (ld->dst_reg != st->src_reg)
4069 return false;
4070
4071 /* There is jump to the store insn in this pair. */
4072 if (st_meta->flags & FLAG_INSN_IS_JUMP_DST)
4073 return false;
4074
4075 return true;
4076}
4077
4078/* Currently, we only support chaining load/store pairs if:
4079 *
4080 * - Their address base registers are the same.
4081 * - Their address offsets are in the same order.
4082 * - They operate at the same memory width.
4083 * - There is no jump into the middle of them.
4084 */
4085static bool
4086curr_pair_chain_with_previous(struct nfp_insn_meta *ld_meta,
4087 struct nfp_insn_meta *st_meta,
4088 struct bpf_insn *prev_ld,
4089 struct bpf_insn *prev_st)
4090{
4091 u8 prev_size, curr_size, prev_ld_base, prev_st_base, prev_ld_dst;
4092 struct bpf_insn *ld = &ld_meta->insn;
4093 struct bpf_insn *st = &st_meta->insn;
4094 s16 prev_ld_off, prev_st_off;
4095
4096 /* This pair is the start pair. */
4097 if (!prev_ld)
4098 return true;
4099
4100 prev_size = BPF_LDST_BYTES(prev_ld);
4101 curr_size = BPF_LDST_BYTES(ld);
4102 prev_ld_base = prev_ld->src_reg;
4103 prev_st_base = prev_st->dst_reg;
4104 prev_ld_dst = prev_ld->dst_reg;
4105 prev_ld_off = prev_ld->off;
4106 prev_st_off = prev_st->off;
4107
4108 if (ld->dst_reg != prev_ld_dst)
4109 return false;
4110
4111 if (ld->src_reg != prev_ld_base || st->dst_reg != prev_st_base)
4112 return false;
4113
4114 if (curr_size != prev_size)
4115 return false;
4116
4117 /* There is jump to the head of this pair. */
4118 if (ld_meta->flags & FLAG_INSN_IS_JUMP_DST)
4119 return false;
4120
4121 /* Both in ascending order. */
4122 if (prev_ld_off + prev_size == ld->off &&
4123 prev_st_off + prev_size == st->off)
4124 return true;
4125
4126 /* Both in descending order. */
4127 if (ld->off + curr_size == prev_ld_off &&
4128 st->off + curr_size == prev_st_off)
4129 return true;
4130
4131 return false;
4132}
4133
4134/* Return TRUE if cross memory access happens. Cross memory access means
4135 * store area is overlapping with load area that a later load might load
4136 * the value from previous store, for this case we can't treat the sequence
4137 * as an memory copy.
4138 */
4139static bool
4140cross_mem_access(struct bpf_insn *ld, struct nfp_insn_meta *head_ld_meta,
4141 struct nfp_insn_meta *head_st_meta)
4142{
4143 s16 head_ld_off, head_st_off, ld_off;
4144
4145 /* Different pointer types does not overlap. */
4146 if (head_ld_meta->ptr.type != head_st_meta->ptr.type)
4147 return false;
4148
4149 /* load and store are both PTR_TO_PACKET, check ID info. */
4150 if (head_ld_meta->ptr.id != head_st_meta->ptr.id)
4151 return true;
4152
4153 /* Canonicalize the offsets. Turn all of them against the original
4154 * base register.
4155 */
4156 head_ld_off = head_ld_meta->insn.off + head_ld_meta->ptr.off;
4157 head_st_off = head_st_meta->insn.off + head_st_meta->ptr.off;
4158 ld_off = ld->off + head_ld_meta->ptr.off;
4159
4160 /* Ascending order cross. */
4161 if (ld_off > head_ld_off &&
4162 head_ld_off < head_st_off && ld_off >= head_st_off)
4163 return true;
4164
4165 /* Descending order cross. */
4166 if (ld_off < head_ld_off &&
4167 head_ld_off > head_st_off && ld_off <= head_st_off)
4168 return true;
4169
4170 return false;
4171}
4172
4173/* This pass try to identify the following instructoin sequences.
4174 *
4175 * load R, [regA + offA]
4176 * store [regB + offB], R
4177 * load R, [regA + offA + const_imm_A]
4178 * store [regB + offB + const_imm_A], R
4179 * load R, [regA + offA + 2 * const_imm_A]
4180 * store [regB + offB + 2 * const_imm_A], R
4181 * ...
4182 *
4183 * Above sequence is typically generated by compiler when lowering
4184 * memcpy. NFP prefer using CPP instructions to accelerate it.
4185 */
4186static void nfp_bpf_opt_ldst_gather(struct nfp_prog *nfp_prog)
4187{
4188 struct nfp_insn_meta *head_ld_meta = NULL;
4189 struct nfp_insn_meta *head_st_meta = NULL;
4190 struct nfp_insn_meta *meta1, *meta2;
4191 struct bpf_insn *prev_ld = NULL;
4192 struct bpf_insn *prev_st = NULL;
4193 u8 count = 0;
4194
4195 nfp_for_each_insn_walk2(nfp_prog, meta1, meta2) {
4196 struct bpf_insn *ld = &meta1->insn;
4197 struct bpf_insn *st = &meta2->insn;
4198
4199 /* Reset record status if any of the following if true:
4200 * - The current insn pair is not load/store.
4201 * - The load/store pair doesn't chain with previous one.
4202 * - The chained load/store pair crossed with previous pair.
4203 * - The chained load/store pair has a total size of memory
4204 * copy beyond 128 bytes which is the maximum length a
4205 * single NFP CPP command can transfer.
4206 */
4207 if (!curr_pair_is_memcpy(ld_meta: meta1, st_meta: meta2) ||
4208 !curr_pair_chain_with_previous(ld_meta: meta1, st_meta: meta2, prev_ld,
4209 prev_st) ||
4210 (head_ld_meta && (cross_mem_access(ld, head_ld_meta,
4211 head_st_meta) ||
4212 head_ld_meta->ldst_gather_len >= 128))) {
4213 if (!count)
4214 continue;
4215
4216 if (count > 1) {
4217 s16 prev_ld_off = prev_ld->off;
4218 s16 prev_st_off = prev_st->off;
4219 s16 head_ld_off = head_ld_meta->insn.off;
4220
4221 if (prev_ld_off < head_ld_off) {
4222 head_ld_meta->insn.off = prev_ld_off;
4223 head_st_meta->insn.off = prev_st_off;
4224 head_ld_meta->ldst_gather_len =
4225 -head_ld_meta->ldst_gather_len;
4226 }
4227
4228 head_ld_meta->paired_st = &head_st_meta->insn;
4229 head_st_meta->flags |=
4230 FLAG_INSN_SKIP_PREC_DEPENDENT;
4231 } else {
4232 head_ld_meta->ldst_gather_len = 0;
4233 }
4234
4235 /* If the chain is ended by an load/store pair then this
4236 * could serve as the new head of the next chain.
4237 */
4238 if (curr_pair_is_memcpy(ld_meta: meta1, st_meta: meta2)) {
4239 head_ld_meta = meta1;
4240 head_st_meta = meta2;
4241 head_ld_meta->ldst_gather_len =
4242 BPF_LDST_BYTES(ld);
4243 meta1 = nfp_meta_next(meta1);
4244 meta2 = nfp_meta_next(meta2);
4245 prev_ld = ld;
4246 prev_st = st;
4247 count = 1;
4248 } else {
4249 head_ld_meta = NULL;
4250 head_st_meta = NULL;
4251 prev_ld = NULL;
4252 prev_st = NULL;
4253 count = 0;
4254 }
4255
4256 continue;
4257 }
4258
4259 if (!head_ld_meta) {
4260 head_ld_meta = meta1;
4261 head_st_meta = meta2;
4262 } else {
4263 meta1->flags |= FLAG_INSN_SKIP_PREC_DEPENDENT;
4264 meta2->flags |= FLAG_INSN_SKIP_PREC_DEPENDENT;
4265 }
4266
4267 head_ld_meta->ldst_gather_len += BPF_LDST_BYTES(ld);
4268 meta1 = nfp_meta_next(meta1);
4269 meta2 = nfp_meta_next(meta2);
4270 prev_ld = ld;
4271 prev_st = st;
4272 count++;
4273 }
4274}
4275
4276static void nfp_bpf_opt_pkt_cache(struct nfp_prog *nfp_prog)
4277{
4278 struct nfp_insn_meta *meta, *range_node = NULL;
4279 s16 range_start = 0, range_end = 0;
4280 bool cache_avail = false;
4281 struct bpf_insn *insn;
4282 s32 range_ptr_off = 0;
4283 u32 range_ptr_id = 0;
4284
4285 list_for_each_entry(meta, &nfp_prog->insns, l) {
4286 if (meta->flags & FLAG_INSN_IS_JUMP_DST)
4287 cache_avail = false;
4288
4289 if (meta->flags & FLAG_INSN_SKIP_MASK)
4290 continue;
4291
4292 insn = &meta->insn;
4293
4294 if (is_mbpf_store_pkt(meta) ||
4295 insn->code == (BPF_JMP | BPF_CALL) ||
4296 is_mbpf_classic_store_pkt(meta) ||
4297 is_mbpf_classic_load(meta)) {
4298 cache_avail = false;
4299 continue;
4300 }
4301
4302 if (!is_mbpf_load(meta))
4303 continue;
4304
4305 if (meta->ptr.type != PTR_TO_PACKET || meta->ldst_gather_len) {
4306 cache_avail = false;
4307 continue;
4308 }
4309
4310 if (!cache_avail) {
4311 cache_avail = true;
4312 if (range_node)
4313 goto end_current_then_start_new;
4314 goto start_new;
4315 }
4316
4317 /* Check ID to make sure two reads share the same
4318 * variable offset against PTR_TO_PACKET, and check OFF
4319 * to make sure they also share the same constant
4320 * offset.
4321 *
4322 * OFFs don't really need to be the same, because they
4323 * are the constant offsets against PTR_TO_PACKET, so
4324 * for different OFFs, we could canonicalize them to
4325 * offsets against original packet pointer. We don't
4326 * support this.
4327 */
4328 if (meta->ptr.id == range_ptr_id &&
4329 meta->ptr.off == range_ptr_off) {
4330 s16 new_start = range_start;
4331 s16 end, off = insn->off;
4332 s16 new_end = range_end;
4333 bool changed = false;
4334
4335 if (off < range_start) {
4336 new_start = off;
4337 changed = true;
4338 }
4339
4340 end = off + BPF_LDST_BYTES(insn);
4341 if (end > range_end) {
4342 new_end = end;
4343 changed = true;
4344 }
4345
4346 if (!changed)
4347 continue;
4348
4349 if (new_end - new_start <= 64) {
4350 /* Install new range. */
4351 range_start = new_start;
4352 range_end = new_end;
4353 continue;
4354 }
4355 }
4356
4357end_current_then_start_new:
4358 range_node->pkt_cache.range_start = range_start;
4359 range_node->pkt_cache.range_end = range_end;
4360start_new:
4361 range_node = meta;
4362 range_node->pkt_cache.do_init = true;
4363 range_ptr_id = range_node->ptr.id;
4364 range_ptr_off = range_node->ptr.off;
4365 range_start = insn->off;
4366 range_end = insn->off + BPF_LDST_BYTES(insn);
4367 }
4368
4369 if (range_node) {
4370 range_node->pkt_cache.range_start = range_start;
4371 range_node->pkt_cache.range_end = range_end;
4372 }
4373
4374 list_for_each_entry(meta, &nfp_prog->insns, l) {
4375 if (meta->flags & FLAG_INSN_SKIP_MASK)
4376 continue;
4377
4378 if (is_mbpf_load_pkt(meta) && !meta->ldst_gather_len) {
4379 if (meta->pkt_cache.do_init) {
4380 range_start = meta->pkt_cache.range_start;
4381 range_end = meta->pkt_cache.range_end;
4382 } else {
4383 meta->pkt_cache.range_start = range_start;
4384 meta->pkt_cache.range_end = range_end;
4385 }
4386 }
4387 }
4388}
4389
4390static int nfp_bpf_optimize(struct nfp_prog *nfp_prog)
4391{
4392 nfp_bpf_opt_reg_init(nfp_prog);
4393
4394 nfp_bpf_opt_neg_add_sub(nfp_prog);
4395 nfp_bpf_opt_ld_mask(nfp_prog);
4396 nfp_bpf_opt_ld_shift(nfp_prog);
4397 nfp_bpf_opt_ldst_gather(nfp_prog);
4398 nfp_bpf_opt_pkt_cache(nfp_prog);
4399
4400 return 0;
4401}
4402
4403static int nfp_bpf_replace_map_ptrs(struct nfp_prog *nfp_prog)
4404{
4405 struct nfp_insn_meta *meta1, *meta2;
4406 struct nfp_bpf_map *nfp_map;
4407 struct bpf_map *map;
4408 u32 id;
4409
4410 nfp_for_each_insn_walk2(nfp_prog, meta1, meta2) {
4411 if (meta1->flags & FLAG_INSN_SKIP_MASK ||
4412 meta2->flags & FLAG_INSN_SKIP_MASK)
4413 continue;
4414
4415 if (meta1->insn.code != (BPF_LD | BPF_IMM | BPF_DW) ||
4416 meta1->insn.src_reg != BPF_PSEUDO_MAP_FD)
4417 continue;
4418
4419 map = (void *)(unsigned long)((u32)meta1->insn.imm |
4420 (u64)meta2->insn.imm << 32);
4421 if (bpf_map_offload_neutral(map)) {
4422 id = map->id;
4423 } else {
4424 nfp_map = map_to_offmap(map)->dev_priv;
4425 id = nfp_map->tid;
4426 }
4427
4428 meta1->insn.imm = id;
4429 meta2->insn.imm = 0;
4430 }
4431
4432 return 0;
4433}
4434
4435static int nfp_bpf_ustore_calc(u64 *prog, unsigned int len)
4436{
4437 __le64 *ustore = (__force __le64 *)prog;
4438 int i;
4439
4440 for (i = 0; i < len; i++) {
4441 int err;
4442
4443 err = nfp_ustore_check_valid_no_ecc(insn: prog[i]);
4444 if (err)
4445 return err;
4446
4447 ustore[i] = cpu_to_le64(nfp_ustore_calc_ecc_insn(prog[i]));
4448 }
4449
4450 return 0;
4451}
4452
4453static void nfp_bpf_prog_trim(struct nfp_prog *nfp_prog)
4454{
4455 void *prog;
4456
4457 prog = kvmalloc_array(n: nfp_prog->prog_len, size: sizeof(u64), GFP_KERNEL);
4458 if (!prog)
4459 return;
4460
4461 nfp_prog->__prog_alloc_len = nfp_prog->prog_len * sizeof(u64);
4462 memcpy(prog, nfp_prog->prog, nfp_prog->__prog_alloc_len);
4463 kvfree(addr: nfp_prog->prog);
4464 nfp_prog->prog = prog;
4465}
4466
4467int nfp_bpf_jit(struct nfp_prog *nfp_prog)
4468{
4469 int ret;
4470
4471 ret = nfp_bpf_replace_map_ptrs(nfp_prog);
4472 if (ret)
4473 return ret;
4474
4475 ret = nfp_bpf_optimize(nfp_prog);
4476 if (ret)
4477 return ret;
4478
4479 ret = nfp_translate(nfp_prog);
4480 if (ret) {
4481 pr_err("Translation failed with error %d (translated: %u)\n",
4482 ret, nfp_prog->n_translated);
4483 return -EINVAL;
4484 }
4485
4486 nfp_bpf_prog_trim(nfp_prog);
4487
4488 return ret;
4489}
4490
4491void nfp_bpf_jit_prepare(struct nfp_prog *nfp_prog)
4492{
4493 struct nfp_insn_meta *meta;
4494
4495 /* Another pass to record jump information. */
4496 list_for_each_entry(meta, &nfp_prog->insns, l) {
4497 struct nfp_insn_meta *dst_meta;
4498 u64 code = meta->insn.code;
4499 unsigned int dst_idx;
4500 bool pseudo_call;
4501
4502 if (!is_mbpf_jmp(meta))
4503 continue;
4504 if (BPF_OP(code) == BPF_EXIT)
4505 continue;
4506 if (is_mbpf_helper_call(meta))
4507 continue;
4508
4509 /* If opcode is BPF_CALL at this point, this can only be a
4510 * BPF-to-BPF call (a.k.a pseudo call).
4511 */
4512 pseudo_call = BPF_OP(code) == BPF_CALL;
4513
4514 if (pseudo_call)
4515 dst_idx = meta->n + 1 + meta->insn.imm;
4516 else
4517 dst_idx = meta->n + 1 + meta->insn.off;
4518
4519 dst_meta = nfp_bpf_goto_meta(nfp_prog, meta, insn_idx: dst_idx);
4520
4521 if (pseudo_call)
4522 dst_meta->flags |= FLAG_INSN_IS_SUBPROG_START;
4523
4524 dst_meta->flags |= FLAG_INSN_IS_JUMP_DST;
4525 meta->jmp_dst = dst_meta;
4526 }
4527}
4528
4529bool nfp_bpf_supported_opcode(u8 code)
4530{
4531 return !!instr_cb[code];
4532}
4533
4534void *nfp_bpf_relo_for_vnic(struct nfp_prog *nfp_prog, struct nfp_bpf_vnic *bv)
4535{
4536 unsigned int i;
4537 u64 *prog;
4538 int err;
4539
4540 prog = kmemdup(p: nfp_prog->prog, size: nfp_prog->prog_len * sizeof(u64),
4541 GFP_KERNEL);
4542 if (!prog)
4543 return ERR_PTR(error: -ENOMEM);
4544
4545 for (i = 0; i < nfp_prog->prog_len; i++) {
4546 enum nfp_relo_type special;
4547 u32 val;
4548 u16 off;
4549
4550 special = FIELD_GET(OP_RELO_TYPE, prog[i]);
4551 switch (special) {
4552 case RELO_NONE:
4553 continue;
4554 case RELO_BR_REL:
4555 br_add_offset(instr: &prog[i], offset: bv->start_off);
4556 break;
4557 case RELO_BR_GO_OUT:
4558 br_set_offset(instr: &prog[i],
4559 offset: nfp_prog->tgt_out + bv->start_off);
4560 break;
4561 case RELO_BR_GO_ABORT:
4562 br_set_offset(instr: &prog[i],
4563 offset: nfp_prog->tgt_abort + bv->start_off);
4564 break;
4565 case RELO_BR_GO_CALL_PUSH_REGS:
4566 if (!nfp_prog->tgt_call_push_regs) {
4567 pr_err("BUG: failed to detect subprogram registers needs\n");
4568 err = -EINVAL;
4569 goto err_free_prog;
4570 }
4571 off = nfp_prog->tgt_call_push_regs + bv->start_off;
4572 br_set_offset(instr: &prog[i], offset: off);
4573 break;
4574 case RELO_BR_GO_CALL_POP_REGS:
4575 if (!nfp_prog->tgt_call_pop_regs) {
4576 pr_err("BUG: failed to detect subprogram registers needs\n");
4577 err = -EINVAL;
4578 goto err_free_prog;
4579 }
4580 off = nfp_prog->tgt_call_pop_regs + bv->start_off;
4581 br_set_offset(instr: &prog[i], offset: off);
4582 break;
4583 case RELO_BR_NEXT_PKT:
4584 br_set_offset(instr: &prog[i], offset: bv->tgt_done);
4585 break;
4586 case RELO_BR_HELPER:
4587 val = br_get_offset(instr: prog[i]);
4588 val -= BR_OFF_RELO;
4589 switch (val) {
4590 case BPF_FUNC_map_lookup_elem:
4591 val = nfp_prog->bpf->helpers.map_lookup;
4592 break;
4593 case BPF_FUNC_map_update_elem:
4594 val = nfp_prog->bpf->helpers.map_update;
4595 break;
4596 case BPF_FUNC_map_delete_elem:
4597 val = nfp_prog->bpf->helpers.map_delete;
4598 break;
4599 case BPF_FUNC_perf_event_output:
4600 val = nfp_prog->bpf->helpers.perf_event_output;
4601 break;
4602 default:
4603 pr_err("relocation of unknown helper %d\n",
4604 val);
4605 err = -EINVAL;
4606 goto err_free_prog;
4607 }
4608 br_set_offset(instr: &prog[i], offset: val);
4609 break;
4610 case RELO_IMMED_REL:
4611 immed_add_value(instr: &prog[i], offset: bv->start_off);
4612 break;
4613 }
4614
4615 prog[i] &= ~OP_RELO_TYPE;
4616 }
4617
4618 err = nfp_bpf_ustore_calc(prog, len: nfp_prog->prog_len);
4619 if (err)
4620 goto err_free_prog;
4621
4622 return prog;
4623
4624err_free_prog:
4625 kfree(objp: prog);
4626 return ERR_PTR(error: err);
4627}
4628

source code of linux/drivers/net/ethernet/netronome/nfp/bpf/jit.c