1// SPDX-License-Identifier: GPL-2.0
2/* Driver for SGI's IOC3 based Ethernet cards as found in the PCI card.
3 *
4 * Copyright (C) 1999, 2000, 01, 03, 06 Ralf Baechle
5 * Copyright (C) 1995, 1999, 2000, 2001 by Silicon Graphics, Inc.
6 *
7 * References:
8 * o IOC3 ASIC specification 4.51, 1996-04-18
9 * o IEEE 802.3 specification, 2000 edition
10 * o DP38840A Specification, National Semiconductor, March 1997
11 *
12 * To do:
13 *
14 * o Use prefetching for large packets. What is a good lower limit for
15 * prefetching?
16 * o Use hardware checksums.
17 * o Which PHYs might possibly be attached to the IOC3 in real live,
18 * which workarounds are required for them? Do we ever have Lucent's?
19 * o For the 2.5 branch kill the mii-tool ioctls.
20 */
21
22#define IOC3_NAME "ioc3-eth"
23#define IOC3_VERSION "2.6.3-4"
24
25#include <linux/delay.h>
26#include <linux/kernel.h>
27#include <linux/mm.h>
28#include <linux/errno.h>
29#include <linux/module.h>
30#include <linux/init.h>
31#include <linux/crc16.h>
32#include <linux/crc32.h>
33#include <linux/mii.h>
34#include <linux/in.h>
35#include <linux/io.h>
36#include <linux/ip.h>
37#include <linux/tcp.h>
38#include <linux/udp.h>
39#include <linux/gfp.h>
40#include <linux/netdevice.h>
41#include <linux/etherdevice.h>
42#include <linux/ethtool.h>
43#include <linux/skbuff.h>
44#include <linux/dma-mapping.h>
45#include <linux/platform_device.h>
46#include <linux/nvmem-consumer.h>
47
48#include <net/ip.h>
49
50#include <asm/sn/ioc3.h>
51#include <asm/pci/bridge.h>
52
53#define CRC16_INIT 0
54#define CRC16_VALID 0xb001
55
56/* Number of RX buffers. This is tunable in the range of 16 <= x < 512.
57 * The value must be a power of two.
58 */
59#define RX_BUFFS 64
60#define RX_RING_ENTRIES 512 /* fixed in hardware */
61#define RX_RING_MASK (RX_RING_ENTRIES - 1)
62#define RX_RING_SIZE (RX_RING_ENTRIES * sizeof(u64))
63
64/* 128 TX buffers (not tunable) */
65#define TX_RING_ENTRIES 128
66#define TX_RING_MASK (TX_RING_ENTRIES - 1)
67#define TX_RING_SIZE (TX_RING_ENTRIES * sizeof(struct ioc3_etxd))
68
69/* IOC3 does dma transfers in 128 byte blocks */
70#define IOC3_DMA_XFER_LEN 128UL
71
72/* Every RX buffer starts with 8 byte descriptor data */
73#define RX_OFFSET (sizeof(struct ioc3_erxbuf) + NET_IP_ALIGN)
74#define RX_BUF_SIZE (13 * IOC3_DMA_XFER_LEN)
75
76#define ETCSR_FD ((21 << ETCSR_IPGR2_SHIFT) | (21 << ETCSR_IPGR1_SHIFT) | 21)
77#define ETCSR_HD ((17 << ETCSR_IPGR2_SHIFT) | (11 << ETCSR_IPGR1_SHIFT) | 21)
78
79/* Private per NIC data of the driver. */
80struct ioc3_private {
81 struct ioc3_ethregs *regs;
82 struct device *dma_dev;
83 u32 *ssram;
84 unsigned long *rxr; /* pointer to receiver ring */
85 void *tx_ring;
86 struct ioc3_etxd *txr;
87 dma_addr_t rxr_dma;
88 dma_addr_t txr_dma;
89 struct sk_buff *rx_skbs[RX_RING_ENTRIES];
90 struct sk_buff *tx_skbs[TX_RING_ENTRIES];
91 int rx_ci; /* RX consumer index */
92 int rx_pi; /* RX producer index */
93 int tx_ci; /* TX consumer index */
94 int tx_pi; /* TX producer index */
95 int txqlen;
96 u32 emcr, ehar_h, ehar_l;
97 spinlock_t ioc3_lock;
98 struct mii_if_info mii;
99
100 /* Members used by autonegotiation */
101 struct timer_list ioc3_timer;
102};
103
104static int ioc3_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
105static void ioc3_set_multicast_list(struct net_device *dev);
106static netdev_tx_t ioc3_start_xmit(struct sk_buff *skb, struct net_device *dev);
107static void ioc3_timeout(struct net_device *dev, unsigned int txqueue);
108static inline unsigned int ioc3_hash(const unsigned char *addr);
109static void ioc3_start(struct ioc3_private *ip);
110static inline void ioc3_stop(struct ioc3_private *ip);
111static void ioc3_init(struct net_device *dev);
112static int ioc3_alloc_rx_bufs(struct net_device *dev);
113static void ioc3_free_rx_bufs(struct ioc3_private *ip);
114static inline void ioc3_clean_tx_ring(struct ioc3_private *ip);
115
116static const struct ethtool_ops ioc3_ethtool_ops;
117
118static inline unsigned long aligned_rx_skb_addr(unsigned long addr)
119{
120 return (~addr + 1) & (IOC3_DMA_XFER_LEN - 1UL);
121}
122
123static inline int ioc3_alloc_skb(struct ioc3_private *ip, struct sk_buff **skb,
124 struct ioc3_erxbuf **rxb, dma_addr_t *rxb_dma)
125{
126 struct sk_buff *new_skb;
127 dma_addr_t d;
128 int offset;
129
130 new_skb = alloc_skb(RX_BUF_SIZE + IOC3_DMA_XFER_LEN - 1, GFP_ATOMIC);
131 if (!new_skb)
132 return -ENOMEM;
133
134 /* ensure buffer is aligned to IOC3_DMA_XFER_LEN */
135 offset = aligned_rx_skb_addr(addr: (unsigned long)new_skb->data);
136 if (offset)
137 skb_reserve(skb: new_skb, len: offset);
138
139 d = dma_map_single(ip->dma_dev, new_skb->data,
140 RX_BUF_SIZE, DMA_FROM_DEVICE);
141
142 if (dma_mapping_error(dev: ip->dma_dev, dma_addr: d)) {
143 dev_kfree_skb_any(skb: new_skb);
144 return -ENOMEM;
145 }
146 *rxb_dma = d;
147 *rxb = (struct ioc3_erxbuf *)new_skb->data;
148 skb_reserve(new_skb, RX_OFFSET);
149 *skb = new_skb;
150
151 return 0;
152}
153
154#ifdef CONFIG_PCI_XTALK_BRIDGE
155static inline unsigned long ioc3_map(dma_addr_t addr, unsigned long attr)
156{
157 return (addr & ~PCI64_ATTR_BAR) | attr;
158}
159
160#define ERBAR_VAL (ERBAR_BARRIER_BIT << ERBAR_RXBARR_SHIFT)
161#else
162static inline unsigned long ioc3_map(dma_addr_t addr, unsigned long attr)
163{
164 return addr;
165}
166
167#define ERBAR_VAL 0
168#endif
169
170static int ioc3eth_nvmem_match(struct device *dev, const void *data)
171{
172 const char *name = dev_name(dev);
173 const char *prefix = data;
174 int prefix_len;
175
176 prefix_len = strlen(prefix);
177 if (strlen(name) < (prefix_len + 3))
178 return 0;
179
180 if (memcmp(p: prefix, q: name, size: prefix_len) != 0)
181 return 0;
182
183 /* found nvmem device which is attached to our ioc3
184 * now check for one wire family code 09, 89 and 91
185 */
186 if (memcmp(p: name + prefix_len, q: "09-", size: 3) == 0)
187 return 1;
188 if (memcmp(p: name + prefix_len, q: "89-", size: 3) == 0)
189 return 1;
190 if (memcmp(p: name + prefix_len, q: "91-", size: 3) == 0)
191 return 1;
192
193 return 0;
194}
195
196static int ioc3eth_get_mac_addr(struct resource *res, u8 mac_addr[6])
197{
198 struct nvmem_device *nvmem;
199 char prefix[24];
200 u8 prom[16];
201 int ret;
202 int i;
203
204 snprintf(buf: prefix, size: sizeof(prefix), fmt: "ioc3-%012llx-",
205 res->start & ~0xffff);
206
207 nvmem = nvmem_device_find(data: prefix, match: ioc3eth_nvmem_match);
208 if (IS_ERR(ptr: nvmem))
209 return PTR_ERR(ptr: nvmem);
210
211 ret = nvmem_device_read(nvmem, offset: 0, bytes: 16, buf: prom);
212 nvmem_device_put(nvmem);
213 if (ret < 0)
214 return ret;
215
216 /* check, if content is valid */
217 if (prom[0] != 0x0a ||
218 crc16(CRC16_INIT, buffer: prom, len: 13) != CRC16_VALID)
219 return -EINVAL;
220
221 for (i = 0; i < 6; i++)
222 mac_addr[i] = prom[10 - i];
223
224 return 0;
225}
226
227static void __ioc3_set_mac_address(struct net_device *dev)
228{
229 struct ioc3_private *ip = netdev_priv(dev);
230
231 writel(val: (dev->dev_addr[5] << 8) |
232 dev->dev_addr[4],
233 addr: &ip->regs->emar_h);
234 writel(val: (dev->dev_addr[3] << 24) |
235 (dev->dev_addr[2] << 16) |
236 (dev->dev_addr[1] << 8) |
237 dev->dev_addr[0],
238 addr: &ip->regs->emar_l);
239}
240
241static int ioc3_set_mac_address(struct net_device *dev, void *addr)
242{
243 struct ioc3_private *ip = netdev_priv(dev);
244 struct sockaddr *sa = addr;
245
246 eth_hw_addr_set(dev, addr: sa->sa_data);
247
248 spin_lock_irq(lock: &ip->ioc3_lock);
249 __ioc3_set_mac_address(dev);
250 spin_unlock_irq(lock: &ip->ioc3_lock);
251
252 return 0;
253}
254
255/* Caller must hold the ioc3_lock ever for MII readers. This is also
256 * used to protect the transmitter side but it's low contention.
257 */
258static int ioc3_mdio_read(struct net_device *dev, int phy, int reg)
259{
260 struct ioc3_private *ip = netdev_priv(dev);
261 struct ioc3_ethregs *regs = ip->regs;
262
263 while (readl(addr: &regs->micr) & MICR_BUSY)
264 ;
265 writel((phy << MICR_PHYADDR_SHIFT) | reg | MICR_READTRIG,
266 &regs->micr);
267 while (readl(addr: &regs->micr) & MICR_BUSY)
268 ;
269
270 return readl(addr: &regs->midr_r) & MIDR_DATA_MASK;
271}
272
273static void ioc3_mdio_write(struct net_device *dev, int phy, int reg, int data)
274{
275 struct ioc3_private *ip = netdev_priv(dev);
276 struct ioc3_ethregs *regs = ip->regs;
277
278 while (readl(addr: &regs->micr) & MICR_BUSY)
279 ;
280 writel(val: data, addr: &regs->midr_w);
281 writel((phy << MICR_PHYADDR_SHIFT) | reg, &regs->micr);
282 while (readl(addr: &regs->micr) & MICR_BUSY)
283 ;
284}
285
286static int ioc3_mii_init(struct ioc3_private *ip);
287
288static struct net_device_stats *ioc3_get_stats(struct net_device *dev)
289{
290 struct ioc3_private *ip = netdev_priv(dev);
291 struct ioc3_ethregs *regs = ip->regs;
292
293 dev->stats.collisions += readl(addr: &regs->etcdc) & ETCDC_COLLCNT_MASK;
294 return &dev->stats;
295}
296
297static void ioc3_tcpudp_checksum(struct sk_buff *skb, u32 hwsum, int len)
298{
299 struct ethhdr *eh = eth_hdr(skb);
300 unsigned int proto;
301 unsigned char *cp;
302 struct iphdr *ih;
303 u32 csum, ehsum;
304 u16 *ew;
305
306 /* Did hardware handle the checksum at all? The cases we can handle
307 * are:
308 *
309 * - TCP and UDP checksums of IPv4 only.
310 * - IPv6 would be doable but we keep that for later ...
311 * - Only unfragmented packets. Did somebody already tell you
312 * fragmentation is evil?
313 * - don't care about packet size. Worst case when processing a
314 * malformed packet we'll try to access the packet at ip header +
315 * 64 bytes which is still inside the skb. Even in the unlikely
316 * case where the checksum is right the higher layers will still
317 * drop the packet as appropriate.
318 */
319 if (eh->h_proto != htons(ETH_P_IP))
320 return;
321
322 ih = (struct iphdr *)((char *)eh + ETH_HLEN);
323 if (ip_is_fragment(iph: ih))
324 return;
325
326 proto = ih->protocol;
327 if (proto != IPPROTO_TCP && proto != IPPROTO_UDP)
328 return;
329
330 /* Same as tx - compute csum of pseudo header */
331 csum = hwsum +
332 (ih->tot_len - (ih->ihl << 2)) +
333 htons((u16)ih->protocol) +
334 (ih->saddr >> 16) + (ih->saddr & 0xffff) +
335 (ih->daddr >> 16) + (ih->daddr & 0xffff);
336
337 /* Sum up ethernet dest addr, src addr and protocol */
338 ew = (u16 *)eh;
339 ehsum = ew[0] + ew[1] + ew[2] + ew[3] + ew[4] + ew[5] + ew[6];
340
341 ehsum = (ehsum & 0xffff) + (ehsum >> 16);
342 ehsum = (ehsum & 0xffff) + (ehsum >> 16);
343
344 csum += 0xffff ^ ehsum;
345
346 /* In the next step we also subtract the 1's complement
347 * checksum of the trailing ethernet CRC.
348 */
349 cp = (char *)eh + len; /* points at trailing CRC */
350 if (len & 1) {
351 csum += 0xffff ^ (u16)((cp[1] << 8) | cp[0]);
352 csum += 0xffff ^ (u16)((cp[3] << 8) | cp[2]);
353 } else {
354 csum += 0xffff ^ (u16)((cp[0] << 8) | cp[1]);
355 csum += 0xffff ^ (u16)((cp[2] << 8) | cp[3]);
356 }
357
358 csum = (csum & 0xffff) + (csum >> 16);
359 csum = (csum & 0xffff) + (csum >> 16);
360
361 if (csum == 0xffff)
362 skb->ip_summed = CHECKSUM_UNNECESSARY;
363}
364
365static inline void ioc3_rx(struct net_device *dev)
366{
367 struct ioc3_private *ip = netdev_priv(dev);
368 struct sk_buff *skb, *new_skb;
369 int rx_entry, n_entry, len;
370 struct ioc3_erxbuf *rxb;
371 unsigned long *rxr;
372 dma_addr_t d;
373 u32 w0, err;
374
375 rxr = ip->rxr; /* Ring base */
376 rx_entry = ip->rx_ci; /* RX consume index */
377 n_entry = ip->rx_pi;
378
379 skb = ip->rx_skbs[rx_entry];
380 rxb = (struct ioc3_erxbuf *)(skb->data - RX_OFFSET);
381 w0 = be32_to_cpu(rxb->w0);
382
383 while (w0 & ERXBUF_V) {
384 err = be32_to_cpu(rxb->err); /* It's valid ... */
385 if (err & ERXBUF_GOODPKT) {
386 len = ((w0 >> ERXBUF_BYTECNT_SHIFT) & 0x7ff) - 4;
387 skb_put(skb, len);
388 skb->protocol = eth_type_trans(skb, dev);
389
390 if (ioc3_alloc_skb(ip, skb: &new_skb, rxb: &rxb, rxb_dma: &d)) {
391 /* Ouch, drop packet and just recycle packet
392 * to keep the ring filled.
393 */
394 dev->stats.rx_dropped++;
395 new_skb = skb;
396 d = rxr[rx_entry];
397 goto next;
398 }
399
400 if (likely(dev->features & NETIF_F_RXCSUM))
401 ioc3_tcpudp_checksum(skb,
402 hwsum: w0 & ERXBUF_IPCKSUM_MASK,
403 len);
404
405 dma_unmap_single(ip->dma_dev, rxr[rx_entry],
406 RX_BUF_SIZE, DMA_FROM_DEVICE);
407
408 netif_rx(skb);
409
410 ip->rx_skbs[rx_entry] = NULL; /* Poison */
411
412 dev->stats.rx_packets++; /* Statistics */
413 dev->stats.rx_bytes += len;
414 } else {
415 /* The frame is invalid and the skb never
416 * reached the network layer so we can just
417 * recycle it.
418 */
419 new_skb = skb;
420 d = rxr[rx_entry];
421 dev->stats.rx_errors++;
422 }
423 if (err & ERXBUF_CRCERR) /* Statistics */
424 dev->stats.rx_crc_errors++;
425 if (err & ERXBUF_FRAMERR)
426 dev->stats.rx_frame_errors++;
427
428next:
429 ip->rx_skbs[n_entry] = new_skb;
430 rxr[n_entry] = cpu_to_be64(ioc3_map(d, PCI64_ATTR_BAR));
431 rxb->w0 = 0; /* Clear valid flag */
432 n_entry = (n_entry + 1) & RX_RING_MASK; /* Update erpir */
433
434 /* Now go on to the next ring entry. */
435 rx_entry = (rx_entry + 1) & RX_RING_MASK;
436 skb = ip->rx_skbs[rx_entry];
437 rxb = (struct ioc3_erxbuf *)(skb->data - RX_OFFSET);
438 w0 = be32_to_cpu(rxb->w0);
439 }
440 writel(val: (n_entry << 3) | ERPIR_ARM, addr: &ip->regs->erpir);
441 ip->rx_pi = n_entry;
442 ip->rx_ci = rx_entry;
443}
444
445static inline void ioc3_tx(struct net_device *dev)
446{
447 struct ioc3_private *ip = netdev_priv(dev);
448 struct ioc3_ethregs *regs = ip->regs;
449 unsigned long packets, bytes;
450 int tx_entry, o_entry;
451 struct sk_buff *skb;
452 u32 etcir;
453
454 spin_lock(lock: &ip->ioc3_lock);
455 etcir = readl(addr: &regs->etcir);
456
457 tx_entry = (etcir >> 7) & TX_RING_MASK;
458 o_entry = ip->tx_ci;
459 packets = 0;
460 bytes = 0;
461
462 while (o_entry != tx_entry) {
463 packets++;
464 skb = ip->tx_skbs[o_entry];
465 bytes += skb->len;
466 dev_consume_skb_irq(skb);
467 ip->tx_skbs[o_entry] = NULL;
468
469 o_entry = (o_entry + 1) & TX_RING_MASK; /* Next */
470
471 etcir = readl(addr: &regs->etcir); /* More pkts sent? */
472 tx_entry = (etcir >> 7) & TX_RING_MASK;
473 }
474
475 dev->stats.tx_packets += packets;
476 dev->stats.tx_bytes += bytes;
477 ip->txqlen -= packets;
478
479 if (netif_queue_stopped(dev) && ip->txqlen < TX_RING_ENTRIES)
480 netif_wake_queue(dev);
481
482 ip->tx_ci = o_entry;
483 spin_unlock(lock: &ip->ioc3_lock);
484}
485
486/* Deal with fatal IOC3 errors. This condition might be caused by a hard or
487 * software problems, so we should try to recover
488 * more gracefully if this ever happens. In theory we might be flooded
489 * with such error interrupts if something really goes wrong, so we might
490 * also consider to take the interface down.
491 */
492static void ioc3_error(struct net_device *dev, u32 eisr)
493{
494 struct ioc3_private *ip = netdev_priv(dev);
495
496 spin_lock(lock: &ip->ioc3_lock);
497
498 if (eisr & EISR_RXOFLO)
499 net_err_ratelimited("%s: RX overflow.\n", dev->name);
500 if (eisr & EISR_RXBUFOFLO)
501 net_err_ratelimited("%s: RX buffer overflow.\n", dev->name);
502 if (eisr & EISR_RXMEMERR)
503 net_err_ratelimited("%s: RX PCI error.\n", dev->name);
504 if (eisr & EISR_RXPARERR)
505 net_err_ratelimited("%s: RX SSRAM parity error.\n", dev->name);
506 if (eisr & EISR_TXBUFUFLO)
507 net_err_ratelimited("%s: TX buffer underflow.\n", dev->name);
508 if (eisr & EISR_TXMEMERR)
509 net_err_ratelimited("%s: TX PCI error.\n", dev->name);
510
511 ioc3_stop(ip);
512 ioc3_free_rx_bufs(ip);
513 ioc3_clean_tx_ring(ip);
514
515 ioc3_init(dev);
516 if (ioc3_alloc_rx_bufs(dev)) {
517 netdev_err(dev, format: "%s: rx buffer allocation failed\n", __func__);
518 spin_unlock(lock: &ip->ioc3_lock);
519 return;
520 }
521 ioc3_start(ip);
522 ioc3_mii_init(ip);
523
524 netif_wake_queue(dev);
525
526 spin_unlock(lock: &ip->ioc3_lock);
527}
528
529/* The interrupt handler does all of the Rx thread work and cleans up
530 * after the Tx thread.
531 */
532static irqreturn_t ioc3_interrupt(int irq, void *dev_id)
533{
534 struct ioc3_private *ip = netdev_priv(dev: dev_id);
535 struct ioc3_ethregs *regs = ip->regs;
536 u32 eisr;
537
538 eisr = readl(addr: &regs->eisr);
539 writel(val: eisr, addr: &regs->eisr);
540 readl(addr: &regs->eisr); /* Flush */
541
542 if (eisr & (EISR_RXOFLO | EISR_RXBUFOFLO | EISR_RXMEMERR |
543 EISR_RXPARERR | EISR_TXBUFUFLO | EISR_TXMEMERR))
544 ioc3_error(dev: dev_id, eisr);
545 if (eisr & EISR_RXTIMERINT)
546 ioc3_rx(dev: dev_id);
547 if (eisr & EISR_TXEXPLICIT)
548 ioc3_tx(dev: dev_id);
549
550 return IRQ_HANDLED;
551}
552
553static inline void ioc3_setup_duplex(struct ioc3_private *ip)
554{
555 struct ioc3_ethregs *regs = ip->regs;
556
557 spin_lock_irq(lock: &ip->ioc3_lock);
558
559 if (ip->mii.full_duplex) {
560 writel(ETCSR_FD, &regs->etcsr);
561 ip->emcr |= EMCR_DUPLEX;
562 } else {
563 writel(ETCSR_HD, &regs->etcsr);
564 ip->emcr &= ~EMCR_DUPLEX;
565 }
566 writel(val: ip->emcr, addr: &regs->emcr);
567
568 spin_unlock_irq(lock: &ip->ioc3_lock);
569}
570
571static void ioc3_timer(struct timer_list *t)
572{
573 struct ioc3_private *ip = from_timer(ip, t, ioc3_timer);
574
575 /* Print the link status if it has changed */
576 mii_check_media(mii: &ip->mii, ok_to_print: 1, init_media: 0);
577 ioc3_setup_duplex(ip);
578
579 ip->ioc3_timer.expires = jiffies + ((12 * HZ) / 10); /* 1.2s */
580 add_timer(timer: &ip->ioc3_timer);
581}
582
583/* Try to find a PHY. There is no apparent relation between the MII addresses
584 * in the SGI documentation and what we find in reality, so we simply probe
585 * for the PHY.
586 */
587static int ioc3_mii_init(struct ioc3_private *ip)
588{
589 u16 word;
590 int i;
591
592 for (i = 0; i < 32; i++) {
593 word = ioc3_mdio_read(dev: ip->mii.dev, phy: i, MII_PHYSID1);
594
595 if (word != 0xffff && word != 0x0000) {
596 ip->mii.phy_id = i;
597 return 0;
598 }
599 }
600 ip->mii.phy_id = -1;
601 return -ENODEV;
602}
603
604static void ioc3_mii_start(struct ioc3_private *ip)
605{
606 ip->ioc3_timer.expires = jiffies + (12 * HZ) / 10; /* 1.2 sec. */
607 add_timer(timer: &ip->ioc3_timer);
608}
609
610static inline void ioc3_tx_unmap(struct ioc3_private *ip, int entry)
611{
612 struct ioc3_etxd *desc;
613 u32 cmd, bufcnt, len;
614
615 desc = &ip->txr[entry];
616 cmd = be32_to_cpu(desc->cmd);
617 bufcnt = be32_to_cpu(desc->bufcnt);
618 if (cmd & ETXD_B1V) {
619 len = (bufcnt & ETXD_B1CNT_MASK) >> ETXD_B1CNT_SHIFT;
620 dma_unmap_single(ip->dma_dev, be64_to_cpu(desc->p1),
621 len, DMA_TO_DEVICE);
622 }
623 if (cmd & ETXD_B2V) {
624 len = (bufcnt & ETXD_B2CNT_MASK) >> ETXD_B2CNT_SHIFT;
625 dma_unmap_single(ip->dma_dev, be64_to_cpu(desc->p2),
626 len, DMA_TO_DEVICE);
627 }
628}
629
630static inline void ioc3_clean_tx_ring(struct ioc3_private *ip)
631{
632 struct sk_buff *skb;
633 int i;
634
635 for (i = 0; i < TX_RING_ENTRIES; i++) {
636 skb = ip->tx_skbs[i];
637 if (skb) {
638 ioc3_tx_unmap(ip, entry: i);
639 ip->tx_skbs[i] = NULL;
640 dev_kfree_skb_any(skb);
641 }
642 ip->txr[i].cmd = 0;
643 }
644 ip->tx_pi = 0;
645 ip->tx_ci = 0;
646}
647
648static void ioc3_free_rx_bufs(struct ioc3_private *ip)
649{
650 int rx_entry, n_entry;
651 struct sk_buff *skb;
652
653 n_entry = ip->rx_ci;
654 rx_entry = ip->rx_pi;
655
656 while (n_entry != rx_entry) {
657 skb = ip->rx_skbs[n_entry];
658 if (skb) {
659 dma_unmap_single(ip->dma_dev,
660 be64_to_cpu(ip->rxr[n_entry]),
661 RX_BUF_SIZE, DMA_FROM_DEVICE);
662 dev_kfree_skb_any(skb);
663 }
664 n_entry = (n_entry + 1) & RX_RING_MASK;
665 }
666}
667
668static int ioc3_alloc_rx_bufs(struct net_device *dev)
669{
670 struct ioc3_private *ip = netdev_priv(dev);
671 struct ioc3_erxbuf *rxb;
672 dma_addr_t d;
673 int i;
674
675 /* Now the rx buffers. The RX ring may be larger but
676 * we only allocate 16 buffers for now. Need to tune
677 * this for performance and memory later.
678 */
679 for (i = 0; i < RX_BUFFS; i++) {
680 if (ioc3_alloc_skb(ip, skb: &ip->rx_skbs[i], rxb: &rxb, rxb_dma: &d))
681 return -ENOMEM;
682
683 rxb->w0 = 0; /* Clear valid flag */
684 ip->rxr[i] = cpu_to_be64(ioc3_map(d, PCI64_ATTR_BAR));
685 }
686 ip->rx_ci = 0;
687 ip->rx_pi = RX_BUFFS;
688
689 return 0;
690}
691
692static inline void ioc3_ssram_disc(struct ioc3_private *ip)
693{
694 struct ioc3_ethregs *regs = ip->regs;
695 u32 *ssram0 = &ip->ssram[0x0000];
696 u32 *ssram1 = &ip->ssram[0x4000];
697 u32 pattern = 0x5555;
698
699 /* Assume the larger size SSRAM and enable parity checking */
700 writel(readl(&regs->emcr) | (EMCR_BUFSIZ | EMCR_RAMPAR), &regs->emcr);
701 readl(addr: &regs->emcr); /* Flush */
702
703 writel(val: pattern, addr: ssram0);
704 writel(~pattern & IOC3_SSRAM_DM, ssram1);
705
706 if ((readl(ssram0) & IOC3_SSRAM_DM) != pattern ||
707 (readl(ssram1) & IOC3_SSRAM_DM) != (~pattern & IOC3_SSRAM_DM)) {
708 /* set ssram size to 64 KB */
709 ip->emcr |= EMCR_RAMPAR;
710 writel(readl(&regs->emcr) & ~EMCR_BUFSIZ, &regs->emcr);
711 } else {
712 ip->emcr |= EMCR_BUFSIZ | EMCR_RAMPAR;
713 }
714}
715
716static void ioc3_init(struct net_device *dev)
717{
718 struct ioc3_private *ip = netdev_priv(dev);
719 struct ioc3_ethregs *regs = ip->regs;
720
721 del_timer_sync(timer: &ip->ioc3_timer); /* Kill if running */
722
723 writel(EMCR_RST, &regs->emcr); /* Reset */
724 readl(addr: &regs->emcr); /* Flush WB */
725 udelay(4); /* Give it time ... */
726 writel(val: 0, addr: &regs->emcr);
727 readl(addr: &regs->emcr);
728
729 /* Misc registers */
730 writel(ERBAR_VAL, addr: &regs->erbar);
731 readl(addr: &regs->etcdc); /* Clear on read */
732 writel(val: 15, addr: &regs->ercsr); /* RX low watermark */
733 writel(val: 0, addr: &regs->ertr); /* Interrupt immediately */
734 __ioc3_set_mac_address(dev);
735 writel(val: ip->ehar_h, addr: &regs->ehar_h);
736 writel(val: ip->ehar_l, addr: &regs->ehar_l);
737 writel(val: 42, addr: &regs->ersr); /* XXX should be random */
738}
739
740static void ioc3_start(struct ioc3_private *ip)
741{
742 struct ioc3_ethregs *regs = ip->regs;
743 unsigned long ring;
744
745 /* Now the rx ring base, consume & produce registers. */
746 ring = ioc3_map(ip->rxr_dma, PCI64_ATTR_PREC);
747 writel(val: ring >> 32, addr: &regs->erbr_h);
748 writel(val: ring & 0xffffffff, addr: &regs->erbr_l);
749 writel(val: ip->rx_ci << 3, addr: &regs->ercir);
750 writel((ip->rx_pi << 3) | ERPIR_ARM, &regs->erpir);
751
752 ring = ioc3_map(ip->txr_dma, PCI64_ATTR_PREC);
753
754 ip->txqlen = 0; /* nothing queued */
755
756 /* Now the tx ring base, consume & produce registers. */
757 writel(val: ring >> 32, addr: &regs->etbr_h);
758 writel(val: ring & 0xffffffff, addr: &regs->etbr_l);
759 writel(val: ip->tx_pi << 7, addr: &regs->etpir);
760 writel(val: ip->tx_ci << 7, addr: &regs->etcir);
761 readl(addr: &regs->etcir); /* Flush */
762
763 ip->emcr |= ((RX_OFFSET / 2) << EMCR_RXOFF_SHIFT) | EMCR_TXDMAEN |
764 EMCR_TXEN | EMCR_RXDMAEN | EMCR_RXEN | EMCR_PADEN;
765 writel(val: ip->emcr, addr: &regs->emcr);
766 writel(EISR_RXTIMERINT | EISR_RXOFLO | EISR_RXBUFOFLO |
767 EISR_RXMEMERR | EISR_RXPARERR | EISR_TXBUFUFLO |
768 EISR_TXEXPLICIT | EISR_TXMEMERR, &regs->eier);
769 readl(addr: &regs->eier);
770}
771
772static inline void ioc3_stop(struct ioc3_private *ip)
773{
774 struct ioc3_ethregs *regs = ip->regs;
775
776 writel(val: 0, addr: &regs->emcr); /* Shutup */
777 writel(val: 0, addr: &regs->eier); /* Disable interrupts */
778 readl(addr: &regs->eier); /* Flush */
779}
780
781static int ioc3_open(struct net_device *dev)
782{
783 struct ioc3_private *ip = netdev_priv(dev);
784
785 ip->ehar_h = 0;
786 ip->ehar_l = 0;
787
788 ioc3_init(dev);
789 if (ioc3_alloc_rx_bufs(dev)) {
790 netdev_err(dev, format: "%s: rx buffer allocation failed\n", __func__);
791 return -ENOMEM;
792 }
793 ioc3_start(ip);
794 ioc3_mii_start(ip);
795
796 netif_start_queue(dev);
797 return 0;
798}
799
800static int ioc3_close(struct net_device *dev)
801{
802 struct ioc3_private *ip = netdev_priv(dev);
803
804 del_timer_sync(timer: &ip->ioc3_timer);
805
806 netif_stop_queue(dev);
807
808 ioc3_stop(ip);
809
810 ioc3_free_rx_bufs(ip);
811 ioc3_clean_tx_ring(ip);
812
813 return 0;
814}
815
816static const struct net_device_ops ioc3_netdev_ops = {
817 .ndo_open = ioc3_open,
818 .ndo_stop = ioc3_close,
819 .ndo_start_xmit = ioc3_start_xmit,
820 .ndo_tx_timeout = ioc3_timeout,
821 .ndo_get_stats = ioc3_get_stats,
822 .ndo_set_rx_mode = ioc3_set_multicast_list,
823 .ndo_eth_ioctl = ioc3_ioctl,
824 .ndo_validate_addr = eth_validate_addr,
825 .ndo_set_mac_address = ioc3_set_mac_address,
826};
827
828static int ioc3eth_probe(struct platform_device *pdev)
829{
830 u32 sw_physid1, sw_physid2, vendor, model, rev;
831 struct ioc3_private *ip;
832 struct net_device *dev;
833 struct resource *regs;
834 u8 mac_addr[6];
835 int err;
836
837 regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
838 if (!regs) {
839 dev_err(&pdev->dev, "Invalid resource\n");
840 return -EINVAL;
841 }
842 /* get mac addr from one wire prom */
843 if (ioc3eth_get_mac_addr(res: regs, mac_addr))
844 return -EPROBE_DEFER; /* not available yet */
845
846 dev = alloc_etherdev(sizeof(struct ioc3_private));
847 if (!dev)
848 return -ENOMEM;
849
850 SET_NETDEV_DEV(dev, &pdev->dev);
851
852 ip = netdev_priv(dev);
853 ip->dma_dev = pdev->dev.parent;
854 ip->regs = devm_platform_ioremap_resource(pdev, index: 0);
855 if (IS_ERR(ptr: ip->regs)) {
856 err = PTR_ERR(ptr: ip->regs);
857 goto out_free;
858 }
859
860 ip->ssram = devm_platform_ioremap_resource(pdev, index: 1);
861 if (IS_ERR(ptr: ip->ssram)) {
862 err = PTR_ERR(ptr: ip->ssram);
863 goto out_free;
864 }
865
866 dev->irq = platform_get_irq(pdev, 0);
867 if (dev->irq < 0) {
868 err = dev->irq;
869 goto out_free;
870 }
871
872 if (devm_request_irq(dev: &pdev->dev, irq: dev->irq, handler: ioc3_interrupt,
873 IRQF_SHARED, devname: "ioc3-eth", dev_id: dev)) {
874 dev_err(&pdev->dev, "Can't get irq %d\n", dev->irq);
875 err = -ENODEV;
876 goto out_free;
877 }
878
879 spin_lock_init(&ip->ioc3_lock);
880 timer_setup(&ip->ioc3_timer, ioc3_timer, 0);
881
882 ioc3_stop(ip);
883
884 /* Allocate rx ring. 4kb = 512 entries, must be 4kb aligned */
885 ip->rxr = dma_alloc_coherent(dev: ip->dma_dev, RX_RING_SIZE, dma_handle: &ip->rxr_dma,
886 GFP_KERNEL);
887 if (!ip->rxr) {
888 pr_err("ioc3-eth: rx ring allocation failed\n");
889 err = -ENOMEM;
890 goto out_stop;
891 }
892
893 /* Allocate tx rings. 16kb = 128 bufs, must be 16kb aligned */
894 ip->tx_ring = dma_alloc_coherent(ip->dma_dev, TX_RING_SIZE + SZ_16K - 1,
895 &ip->txr_dma, GFP_KERNEL);
896 if (!ip->tx_ring) {
897 pr_err("ioc3-eth: tx ring allocation failed\n");
898 err = -ENOMEM;
899 goto out_stop;
900 }
901 /* Align TX ring */
902 ip->txr = PTR_ALIGN(ip->tx_ring, SZ_16K);
903 ip->txr_dma = ALIGN(ip->txr_dma, SZ_16K);
904
905 ioc3_init(dev);
906
907 ip->mii.phy_id_mask = 0x1f;
908 ip->mii.reg_num_mask = 0x1f;
909 ip->mii.dev = dev;
910 ip->mii.mdio_read = ioc3_mdio_read;
911 ip->mii.mdio_write = ioc3_mdio_write;
912
913 ioc3_mii_init(ip);
914
915 if (ip->mii.phy_id == -1) {
916 netdev_err(dev, format: "Didn't find a PHY, goodbye.\n");
917 err = -ENODEV;
918 goto out_stop;
919 }
920
921 ioc3_mii_start(ip);
922 ioc3_ssram_disc(ip);
923 eth_hw_addr_set(dev, addr: mac_addr);
924
925 /* The IOC3-specific entries in the device structure. */
926 dev->watchdog_timeo = 5 * HZ;
927 dev->netdev_ops = &ioc3_netdev_ops;
928 dev->ethtool_ops = &ioc3_ethtool_ops;
929 dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_RXCSUM;
930 dev->features = NETIF_F_IP_CSUM | NETIF_F_HIGHDMA;
931
932 sw_physid1 = ioc3_mdio_read(dev, phy: ip->mii.phy_id, MII_PHYSID1);
933 sw_physid2 = ioc3_mdio_read(dev, phy: ip->mii.phy_id, MII_PHYSID2);
934
935 err = register_netdev(dev);
936 if (err)
937 goto out_stop;
938
939 mii_check_media(mii: &ip->mii, ok_to_print: 1, init_media: 1);
940 ioc3_setup_duplex(ip);
941
942 vendor = (sw_physid1 << 12) | (sw_physid2 >> 4);
943 model = (sw_physid2 >> 4) & 0x3f;
944 rev = sw_physid2 & 0xf;
945 netdev_info(dev, format: "Using PHY %d, vendor 0x%x, model %d, rev %d.\n",
946 ip->mii.phy_id, vendor, model, rev);
947 netdev_info(dev, "IOC3 SSRAM has %d kbyte.\n",
948 ip->emcr & EMCR_BUFSIZ ? 128 : 64);
949
950 return 0;
951
952out_stop:
953 del_timer_sync(timer: &ip->ioc3_timer);
954 if (ip->rxr)
955 dma_free_coherent(dev: ip->dma_dev, RX_RING_SIZE, cpu_addr: ip->rxr,
956 dma_handle: ip->rxr_dma);
957 if (ip->tx_ring)
958 dma_free_coherent(ip->dma_dev, TX_RING_SIZE + SZ_16K - 1, ip->tx_ring,
959 ip->txr_dma);
960out_free:
961 free_netdev(dev);
962 return err;
963}
964
965static void ioc3eth_remove(struct platform_device *pdev)
966{
967 struct net_device *dev = platform_get_drvdata(pdev);
968 struct ioc3_private *ip = netdev_priv(dev);
969
970 dma_free_coherent(dev: ip->dma_dev, RX_RING_SIZE, cpu_addr: ip->rxr, dma_handle: ip->rxr_dma);
971 dma_free_coherent(ip->dma_dev, TX_RING_SIZE + SZ_16K - 1, ip->tx_ring, ip->txr_dma);
972
973 unregister_netdev(dev);
974 del_timer_sync(timer: &ip->ioc3_timer);
975 free_netdev(dev);
976}
977
978
979static netdev_tx_t ioc3_start_xmit(struct sk_buff *skb, struct net_device *dev)
980{
981 struct ioc3_private *ip = netdev_priv(dev);
982 struct ioc3_etxd *desc;
983 unsigned long data;
984 unsigned int len;
985 int produce;
986 u32 w0 = 0;
987
988 /* IOC3 has a fairly simple minded checksumming hardware which simply
989 * adds up the 1's complement checksum for the entire packet and
990 * inserts it at an offset which can be specified in the descriptor
991 * into the transmit packet. This means we have to compensate for the
992 * MAC header which should not be summed and the TCP/UDP pseudo headers
993 * manually.
994 */
995 if (skb->ip_summed == CHECKSUM_PARTIAL) {
996 const struct iphdr *ih = ip_hdr(skb);
997 const int proto = ntohs(ih->protocol);
998 unsigned int csoff;
999 u32 csum, ehsum;
1000 u16 *eh;
1001
1002 /* The MAC header. skb->mac seem the logic approach
1003 * to find the MAC header - except it's a NULL pointer ...
1004 */
1005 eh = (u16 *)skb->data;
1006
1007 /* Sum up dest addr, src addr and protocol */
1008 ehsum = eh[0] + eh[1] + eh[2] + eh[3] + eh[4] + eh[5] + eh[6];
1009
1010 /* Skip IP header; it's sum is always zero and was
1011 * already filled in by ip_output.c
1012 */
1013 csum = csum_tcpudp_nofold(saddr: ih->saddr, daddr: ih->daddr,
1014 len: ih->tot_len - (ih->ihl << 2),
1015 proto, sum: csum_fold(sum: ehsum));
1016
1017 csum = (csum & 0xffff) + (csum >> 16); /* Fold again */
1018 csum = (csum & 0xffff) + (csum >> 16);
1019
1020 csoff = ETH_HLEN + (ih->ihl << 2);
1021 if (proto == IPPROTO_UDP) {
1022 csoff += offsetof(struct udphdr, check);
1023 udp_hdr(skb)->check = csum;
1024 }
1025 if (proto == IPPROTO_TCP) {
1026 csoff += offsetof(struct tcphdr, check);
1027 tcp_hdr(skb)->check = csum;
1028 }
1029
1030 w0 = ETXD_DOCHECKSUM | (csoff << ETXD_CHKOFF_SHIFT);
1031 }
1032
1033 spin_lock_irq(lock: &ip->ioc3_lock);
1034
1035 data = (unsigned long)skb->data;
1036 len = skb->len;
1037
1038 produce = ip->tx_pi;
1039 desc = &ip->txr[produce];
1040
1041 if (len <= 104) {
1042 /* Short packet, let's copy it directly into the ring. */
1043 skb_copy_from_linear_data(skb, to: desc->data, len: skb->len);
1044 if (len < ETH_ZLEN) {
1045 /* Very short packet, pad with zeros at the end. */
1046 memset(desc->data + len, 0, ETH_ZLEN - len);
1047 len = ETH_ZLEN;
1048 }
1049 desc->cmd = cpu_to_be32(len | ETXD_INTWHENDONE | ETXD_D0V | w0);
1050 desc->bufcnt = cpu_to_be32(len);
1051 } else if ((data ^ (data + len - 1)) & 0x4000) {
1052 unsigned long b2 = (data | 0x3fffUL) + 1UL;
1053 unsigned long s1 = b2 - data;
1054 unsigned long s2 = data + len - b2;
1055 dma_addr_t d1, d2;
1056
1057 desc->cmd = cpu_to_be32(len | ETXD_INTWHENDONE |
1058 ETXD_B1V | ETXD_B2V | w0);
1059 desc->bufcnt = cpu_to_be32((s1 << ETXD_B1CNT_SHIFT) |
1060 (s2 << ETXD_B2CNT_SHIFT));
1061 d1 = dma_map_single(ip->dma_dev, skb->data, s1, DMA_TO_DEVICE);
1062 if (dma_mapping_error(dev: ip->dma_dev, dma_addr: d1))
1063 goto drop_packet;
1064 d2 = dma_map_single(ip->dma_dev, (void *)b2, s1, DMA_TO_DEVICE);
1065 if (dma_mapping_error(dev: ip->dma_dev, dma_addr: d2)) {
1066 dma_unmap_single(ip->dma_dev, d1, len, DMA_TO_DEVICE);
1067 goto drop_packet;
1068 }
1069 desc->p1 = cpu_to_be64(ioc3_map(d1, PCI64_ATTR_PREF));
1070 desc->p2 = cpu_to_be64(ioc3_map(d2, PCI64_ATTR_PREF));
1071 } else {
1072 dma_addr_t d;
1073
1074 /* Normal sized packet that doesn't cross a page boundary. */
1075 desc->cmd = cpu_to_be32(len | ETXD_INTWHENDONE | ETXD_B1V | w0);
1076 desc->bufcnt = cpu_to_be32(len << ETXD_B1CNT_SHIFT);
1077 d = dma_map_single(ip->dma_dev, skb->data, len, DMA_TO_DEVICE);
1078 if (dma_mapping_error(dev: ip->dma_dev, dma_addr: d))
1079 goto drop_packet;
1080 desc->p1 = cpu_to_be64(ioc3_map(d, PCI64_ATTR_PREF));
1081 }
1082
1083 mb(); /* make sure all descriptor changes are visible */
1084
1085 ip->tx_skbs[produce] = skb; /* Remember skb */
1086 produce = (produce + 1) & TX_RING_MASK;
1087 ip->tx_pi = produce;
1088 writel(val: produce << 7, addr: &ip->regs->etpir); /* Fire ... */
1089
1090 ip->txqlen++;
1091
1092 if (ip->txqlen >= (TX_RING_ENTRIES - 1))
1093 netif_stop_queue(dev);
1094
1095 spin_unlock_irq(lock: &ip->ioc3_lock);
1096
1097 return NETDEV_TX_OK;
1098
1099drop_packet:
1100 dev_kfree_skb_any(skb);
1101 dev->stats.tx_dropped++;
1102
1103 spin_unlock_irq(lock: &ip->ioc3_lock);
1104
1105 return NETDEV_TX_OK;
1106}
1107
1108static void ioc3_timeout(struct net_device *dev, unsigned int txqueue)
1109{
1110 struct ioc3_private *ip = netdev_priv(dev);
1111
1112 netdev_err(dev, format: "transmit timed out, resetting\n");
1113
1114 spin_lock_irq(lock: &ip->ioc3_lock);
1115
1116 ioc3_stop(ip);
1117 ioc3_free_rx_bufs(ip);
1118 ioc3_clean_tx_ring(ip);
1119
1120 ioc3_init(dev);
1121 if (ioc3_alloc_rx_bufs(dev)) {
1122 netdev_err(dev, format: "%s: rx buffer allocation failed\n", __func__);
1123 spin_unlock_irq(lock: &ip->ioc3_lock);
1124 return;
1125 }
1126 ioc3_start(ip);
1127 ioc3_mii_init(ip);
1128 ioc3_mii_start(ip);
1129
1130 spin_unlock_irq(lock: &ip->ioc3_lock);
1131
1132 netif_wake_queue(dev);
1133}
1134
1135/* Given a multicast ethernet address, this routine calculates the
1136 * address's bit index in the logical address filter mask
1137 */
1138static inline unsigned int ioc3_hash(const unsigned char *addr)
1139{
1140 unsigned int temp = 0;
1141 int bits;
1142 u32 crc;
1143
1144 crc = ether_crc_le(ETH_ALEN, addr);
1145
1146 crc &= 0x3f; /* bit reverse lowest 6 bits for hash index */
1147 for (bits = 6; --bits >= 0; ) {
1148 temp <<= 1;
1149 temp |= (crc & 0x1);
1150 crc >>= 1;
1151 }
1152
1153 return temp;
1154}
1155
1156static void ioc3_get_drvinfo(struct net_device *dev,
1157 struct ethtool_drvinfo *info)
1158{
1159 strscpy(p: info->driver, IOC3_NAME, size: sizeof(info->driver));
1160 strscpy(p: info->version, IOC3_VERSION, size: sizeof(info->version));
1161 strscpy(info->bus_info, pci_name(to_pci_dev(dev->dev.parent)),
1162 sizeof(info->bus_info));
1163}
1164
1165static int ioc3_get_link_ksettings(struct net_device *dev,
1166 struct ethtool_link_ksettings *cmd)
1167{
1168 struct ioc3_private *ip = netdev_priv(dev);
1169
1170 spin_lock_irq(lock: &ip->ioc3_lock);
1171 mii_ethtool_get_link_ksettings(mii: &ip->mii, cmd);
1172 spin_unlock_irq(lock: &ip->ioc3_lock);
1173
1174 return 0;
1175}
1176
1177static int ioc3_set_link_ksettings(struct net_device *dev,
1178 const struct ethtool_link_ksettings *cmd)
1179{
1180 struct ioc3_private *ip = netdev_priv(dev);
1181 int rc;
1182
1183 spin_lock_irq(lock: &ip->ioc3_lock);
1184 rc = mii_ethtool_set_link_ksettings(mii: &ip->mii, cmd);
1185 spin_unlock_irq(lock: &ip->ioc3_lock);
1186
1187 return rc;
1188}
1189
1190static int ioc3_nway_reset(struct net_device *dev)
1191{
1192 struct ioc3_private *ip = netdev_priv(dev);
1193 int rc;
1194
1195 spin_lock_irq(lock: &ip->ioc3_lock);
1196 rc = mii_nway_restart(mii: &ip->mii);
1197 spin_unlock_irq(lock: &ip->ioc3_lock);
1198
1199 return rc;
1200}
1201
1202static u32 ioc3_get_link(struct net_device *dev)
1203{
1204 struct ioc3_private *ip = netdev_priv(dev);
1205 int rc;
1206
1207 spin_lock_irq(lock: &ip->ioc3_lock);
1208 rc = mii_link_ok(mii: &ip->mii);
1209 spin_unlock_irq(lock: &ip->ioc3_lock);
1210
1211 return rc;
1212}
1213
1214static const struct ethtool_ops ioc3_ethtool_ops = {
1215 .get_drvinfo = ioc3_get_drvinfo,
1216 .nway_reset = ioc3_nway_reset,
1217 .get_link = ioc3_get_link,
1218 .get_link_ksettings = ioc3_get_link_ksettings,
1219 .set_link_ksettings = ioc3_set_link_ksettings,
1220};
1221
1222static int ioc3_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1223{
1224 struct ioc3_private *ip = netdev_priv(dev);
1225 int rc;
1226
1227 spin_lock_irq(lock: &ip->ioc3_lock);
1228 rc = generic_mii_ioctl(mii_if: &ip->mii, mii_data: if_mii(rq), cmd, NULL);
1229 spin_unlock_irq(lock: &ip->ioc3_lock);
1230
1231 return rc;
1232}
1233
1234static void ioc3_set_multicast_list(struct net_device *dev)
1235{
1236 struct ioc3_private *ip = netdev_priv(dev);
1237 struct ioc3_ethregs *regs = ip->regs;
1238 struct netdev_hw_addr *ha;
1239 u64 ehar = 0;
1240
1241 spin_lock_irq(lock: &ip->ioc3_lock);
1242
1243 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
1244 ip->emcr |= EMCR_PROMISC;
1245 writel(val: ip->emcr, addr: &regs->emcr);
1246 readl(addr: &regs->emcr);
1247 } else {
1248 ip->emcr &= ~EMCR_PROMISC;
1249 writel(val: ip->emcr, addr: &regs->emcr); /* Clear promiscuous. */
1250 readl(addr: &regs->emcr);
1251
1252 if ((dev->flags & IFF_ALLMULTI) ||
1253 (netdev_mc_count(dev) > 64)) {
1254 /* Too many for hashing to make sense or we want all
1255 * multicast packets anyway, so skip computing all the
1256 * hashes and just accept all packets.
1257 */
1258 ip->ehar_h = 0xffffffff;
1259 ip->ehar_l = 0xffffffff;
1260 } else {
1261 netdev_for_each_mc_addr(ha, dev) {
1262 ehar |= (1UL << ioc3_hash(addr: ha->addr));
1263 }
1264 ip->ehar_h = ehar >> 32;
1265 ip->ehar_l = ehar & 0xffffffff;
1266 }
1267 writel(val: ip->ehar_h, addr: &regs->ehar_h);
1268 writel(val: ip->ehar_l, addr: &regs->ehar_l);
1269 }
1270
1271 spin_unlock_irq(lock: &ip->ioc3_lock);
1272}
1273
1274static struct platform_driver ioc3eth_driver = {
1275 .probe = ioc3eth_probe,
1276 .remove_new = ioc3eth_remove,
1277 .driver = {
1278 .name = "ioc3-eth",
1279 }
1280};
1281
1282module_platform_driver(ioc3eth_driver);
1283
1284MODULE_AUTHOR("Ralf Baechle <ralf@linux-mips.org>");
1285MODULE_DESCRIPTION("SGI IOC3 Ethernet driver");
1286MODULE_LICENSE("GPL");
1287

source code of linux/drivers/net/ethernet/sgi/ioc3-eth.c