1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
4 <http://rt2x00.serialmonkey.com>
5
6 */
7
8/*
9 Module: rt61pci
10 Abstract: rt61pci device specific routines.
11 Supported chipsets: RT2561, RT2561s, RT2661.
12 */
13
14#include <linux/crc-itu-t.h>
15#include <linux/delay.h>
16#include <linux/etherdevice.h>
17#include <linux/kernel.h>
18#include <linux/module.h>
19#include <linux/slab.h>
20#include <linux/pci.h>
21#include <linux/eeprom_93cx6.h>
22
23#include "rt2x00.h"
24#include "rt2x00mmio.h"
25#include "rt2x00pci.h"
26#include "rt61pci.h"
27
28/*
29 * Allow hardware encryption to be disabled.
30 */
31static bool modparam_nohwcrypt = false;
32module_param_named(nohwcrypt, modparam_nohwcrypt, bool, 0444);
33MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
34
35/*
36 * Register access.
37 * BBP and RF register require indirect register access,
38 * and use the CSR registers PHY_CSR3 and PHY_CSR4 to achieve this.
39 * These indirect registers work with busy bits,
40 * and we will try maximal REGISTER_BUSY_COUNT times to access
41 * the register while taking a REGISTER_BUSY_DELAY us delay
42 * between each attempt. When the busy bit is still set at that time,
43 * the access attempt is considered to have failed,
44 * and we will print an error.
45 */
46#define WAIT_FOR_BBP(__dev, __reg) \
47 rt2x00mmio_regbusy_read((__dev), PHY_CSR3, PHY_CSR3_BUSY, (__reg))
48#define WAIT_FOR_RF(__dev, __reg) \
49 rt2x00mmio_regbusy_read((__dev), PHY_CSR4, PHY_CSR4_BUSY, (__reg))
50#define WAIT_FOR_MCU(__dev, __reg) \
51 rt2x00mmio_regbusy_read((__dev), H2M_MAILBOX_CSR, \
52 H2M_MAILBOX_CSR_OWNER, (__reg))
53
54static void rt61pci_bbp_write(struct rt2x00_dev *rt2x00dev,
55 const unsigned int word, const u8 value)
56{
57 u32 reg;
58
59 mutex_lock(&rt2x00dev->csr_mutex);
60
61 /*
62 * Wait until the BBP becomes available, afterwards we
63 * can safely write the new data into the register.
64 */
65 if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
66 reg = 0;
67 rt2x00_set_field32(&reg, PHY_CSR3_VALUE, value);
68 rt2x00_set_field32(&reg, PHY_CSR3_REGNUM, word);
69 rt2x00_set_field32(&reg, PHY_CSR3_BUSY, 1);
70 rt2x00_set_field32(&reg, PHY_CSR3_READ_CONTROL, 0);
71
72 rt2x00mmio_register_write(rt2x00dev, PHY_CSR3, value: reg);
73 }
74
75 mutex_unlock(lock: &rt2x00dev->csr_mutex);
76}
77
78static u8 rt61pci_bbp_read(struct rt2x00_dev *rt2x00dev,
79 const unsigned int word)
80{
81 u32 reg;
82 u8 value;
83
84 mutex_lock(&rt2x00dev->csr_mutex);
85
86 /*
87 * Wait until the BBP becomes available, afterwards we
88 * can safely write the read request into the register.
89 * After the data has been written, we wait until hardware
90 * returns the correct value, if at any time the register
91 * doesn't become available in time, reg will be 0xffffffff
92 * which means we return 0xff to the caller.
93 */
94 if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
95 reg = 0;
96 rt2x00_set_field32(&reg, PHY_CSR3_REGNUM, word);
97 rt2x00_set_field32(&reg, PHY_CSR3_BUSY, 1);
98 rt2x00_set_field32(&reg, PHY_CSR3_READ_CONTROL, 1);
99
100 rt2x00mmio_register_write(rt2x00dev, PHY_CSR3, value: reg);
101
102 WAIT_FOR_BBP(rt2x00dev, &reg);
103 }
104
105 value = rt2x00_get_field32(reg, PHY_CSR3_VALUE);
106
107 mutex_unlock(lock: &rt2x00dev->csr_mutex);
108
109 return value;
110}
111
112static void rt61pci_rf_write(struct rt2x00_dev *rt2x00dev,
113 const unsigned int word, const u32 value)
114{
115 u32 reg;
116
117 mutex_lock(&rt2x00dev->csr_mutex);
118
119 /*
120 * Wait until the RF becomes available, afterwards we
121 * can safely write the new data into the register.
122 */
123 if (WAIT_FOR_RF(rt2x00dev, &reg)) {
124 reg = 0;
125 rt2x00_set_field32(&reg, PHY_CSR4_VALUE, value);
126 rt2x00_set_field32(&reg, PHY_CSR4_NUMBER_OF_BITS, 21);
127 rt2x00_set_field32(&reg, PHY_CSR4_IF_SELECT, 0);
128 rt2x00_set_field32(&reg, PHY_CSR4_BUSY, 1);
129
130 rt2x00mmio_register_write(rt2x00dev, PHY_CSR4, value: reg);
131 rt2x00_rf_write(rt2x00dev, word, data: value);
132 }
133
134 mutex_unlock(lock: &rt2x00dev->csr_mutex);
135}
136
137static void rt61pci_mcu_request(struct rt2x00_dev *rt2x00dev,
138 const u8 command, const u8 token,
139 const u8 arg0, const u8 arg1)
140{
141 u32 reg;
142
143 mutex_lock(&rt2x00dev->csr_mutex);
144
145 /*
146 * Wait until the MCU becomes available, afterwards we
147 * can safely write the new data into the register.
148 */
149 if (WAIT_FOR_MCU(rt2x00dev, &reg)) {
150 rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_OWNER, 1);
151 rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_CMD_TOKEN, token);
152 rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_ARG0, arg0);
153 rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_ARG1, arg1);
154 rt2x00mmio_register_write(rt2x00dev, H2M_MAILBOX_CSR, value: reg);
155
156 reg = rt2x00mmio_register_read(rt2x00dev, HOST_CMD_CSR);
157 rt2x00_set_field32(&reg, HOST_CMD_CSR_HOST_COMMAND, command);
158 rt2x00_set_field32(&reg, HOST_CMD_CSR_INTERRUPT_MCU, 1);
159 rt2x00mmio_register_write(rt2x00dev, HOST_CMD_CSR, value: reg);
160 }
161
162 mutex_unlock(lock: &rt2x00dev->csr_mutex);
163
164}
165
166static void rt61pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
167{
168 struct rt2x00_dev *rt2x00dev = eeprom->data;
169 u32 reg;
170
171 reg = rt2x00mmio_register_read(rt2x00dev, E2PROM_CSR);
172
173 eeprom->reg_data_in = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_IN);
174 eeprom->reg_data_out = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_OUT);
175 eeprom->reg_data_clock =
176 !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_CLOCK);
177 eeprom->reg_chip_select =
178 !!rt2x00_get_field32(reg, E2PROM_CSR_CHIP_SELECT);
179}
180
181static void rt61pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
182{
183 struct rt2x00_dev *rt2x00dev = eeprom->data;
184 u32 reg = 0;
185
186 rt2x00_set_field32(&reg, E2PROM_CSR_DATA_IN, !!eeprom->reg_data_in);
187 rt2x00_set_field32(&reg, E2PROM_CSR_DATA_OUT, !!eeprom->reg_data_out);
188 rt2x00_set_field32(&reg, E2PROM_CSR_DATA_CLOCK,
189 !!eeprom->reg_data_clock);
190 rt2x00_set_field32(&reg, E2PROM_CSR_CHIP_SELECT,
191 !!eeprom->reg_chip_select);
192
193 rt2x00mmio_register_write(rt2x00dev, E2PROM_CSR, value: reg);
194}
195
196#ifdef CONFIG_RT2X00_LIB_DEBUGFS
197static const struct rt2x00debug rt61pci_rt2x00debug = {
198 .owner = THIS_MODULE,
199 .csr = {
200 .read = rt2x00mmio_register_read,
201 .write = rt2x00mmio_register_write,
202 .flags = RT2X00DEBUGFS_OFFSET,
203 .word_base = CSR_REG_BASE,
204 .word_size = sizeof(u32),
205 .word_count = CSR_REG_SIZE / sizeof(u32),
206 },
207 .eeprom = {
208 .read = rt2x00_eeprom_read,
209 .write = rt2x00_eeprom_write,
210 .word_base = EEPROM_BASE,
211 .word_size = sizeof(u16),
212 .word_count = EEPROM_SIZE / sizeof(u16),
213 },
214 .bbp = {
215 .read = rt61pci_bbp_read,
216 .write = rt61pci_bbp_write,
217 .word_base = BBP_BASE,
218 .word_size = sizeof(u8),
219 .word_count = BBP_SIZE / sizeof(u8),
220 },
221 .rf = {
222 .read = rt2x00_rf_read,
223 .write = rt61pci_rf_write,
224 .word_base = RF_BASE,
225 .word_size = sizeof(u32),
226 .word_count = RF_SIZE / sizeof(u32),
227 },
228};
229#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
230
231static int rt61pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
232{
233 u32 reg;
234
235 reg = rt2x00mmio_register_read(rt2x00dev, MAC_CSR13);
236 return rt2x00_get_field32(reg, MAC_CSR13_VAL5);
237}
238
239#ifdef CONFIG_RT2X00_LIB_LEDS
240static void rt61pci_brightness_set(struct led_classdev *led_cdev,
241 enum led_brightness brightness)
242{
243 struct rt2x00_led *led =
244 container_of(led_cdev, struct rt2x00_led, led_dev);
245 unsigned int enabled = brightness != LED_OFF;
246 unsigned int a_mode =
247 (enabled && led->rt2x00dev->curr_band == NL80211_BAND_5GHZ);
248 unsigned int bg_mode =
249 (enabled && led->rt2x00dev->curr_band == NL80211_BAND_2GHZ);
250
251 if (led->type == LED_TYPE_RADIO) {
252 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
253 MCU_LEDCS_RADIO_STATUS, enabled);
254
255 rt61pci_mcu_request(rt2x00dev: led->rt2x00dev, MCU_LED, token: 0xff,
256 arg0: (led->rt2x00dev->led_mcu_reg & 0xff),
257 arg1: ((led->rt2x00dev->led_mcu_reg >> 8)));
258 } else if (led->type == LED_TYPE_ASSOC) {
259 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
260 MCU_LEDCS_LINK_BG_STATUS, bg_mode);
261 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
262 MCU_LEDCS_LINK_A_STATUS, a_mode);
263
264 rt61pci_mcu_request(rt2x00dev: led->rt2x00dev, MCU_LED, token: 0xff,
265 arg0: (led->rt2x00dev->led_mcu_reg & 0xff),
266 arg1: ((led->rt2x00dev->led_mcu_reg >> 8)));
267 } else if (led->type == LED_TYPE_QUALITY) {
268 /*
269 * The brightness is divided into 6 levels (0 - 5),
270 * this means we need to convert the brightness
271 * argument into the matching level within that range.
272 */
273 rt61pci_mcu_request(rt2x00dev: led->rt2x00dev, MCU_LED_STRENGTH, token: 0xff,
274 arg0: brightness / (LED_FULL / 6), arg1: 0);
275 }
276}
277
278static int rt61pci_blink_set(struct led_classdev *led_cdev,
279 unsigned long *delay_on,
280 unsigned long *delay_off)
281{
282 struct rt2x00_led *led =
283 container_of(led_cdev, struct rt2x00_led, led_dev);
284 u32 reg;
285
286 reg = rt2x00mmio_register_read(rt2x00dev: led->rt2x00dev, MAC_CSR14);
287 rt2x00_set_field32(&reg, MAC_CSR14_ON_PERIOD, *delay_on);
288 rt2x00_set_field32(&reg, MAC_CSR14_OFF_PERIOD, *delay_off);
289 rt2x00mmio_register_write(rt2x00dev: led->rt2x00dev, MAC_CSR14, value: reg);
290
291 return 0;
292}
293
294static void rt61pci_init_led(struct rt2x00_dev *rt2x00dev,
295 struct rt2x00_led *led,
296 enum led_type type)
297{
298 led->rt2x00dev = rt2x00dev;
299 led->type = type;
300 led->led_dev.brightness_set = rt61pci_brightness_set;
301 led->led_dev.blink_set = rt61pci_blink_set;
302 led->flags = LED_INITIALIZED;
303}
304#endif /* CONFIG_RT2X00_LIB_LEDS */
305
306/*
307 * Configuration handlers.
308 */
309static int rt61pci_config_shared_key(struct rt2x00_dev *rt2x00dev,
310 struct rt2x00lib_crypto *crypto,
311 struct ieee80211_key_conf *key)
312{
313 /*
314 * Let the software handle the shared keys,
315 * since the hardware decryption does not work reliably,
316 * because the firmware does not know the key's keyidx.
317 */
318 return -EOPNOTSUPP;
319}
320
321static int rt61pci_config_pairwise_key(struct rt2x00_dev *rt2x00dev,
322 struct rt2x00lib_crypto *crypto,
323 struct ieee80211_key_conf *key)
324{
325 struct hw_pairwise_ta_entry addr_entry;
326 struct hw_key_entry key_entry;
327 u32 mask;
328 u32 reg;
329
330 if (crypto->cmd == SET_KEY) {
331 /*
332 * rt2x00lib can't determine the correct free
333 * key_idx for pairwise keys. We have 2 registers
334 * with key valid bits. The goal is simple: read
335 * the first register. If that is full, move to
336 * the next register.
337 * When both registers are full, we drop the key.
338 * Otherwise, we use the first invalid entry.
339 */
340 reg = rt2x00mmio_register_read(rt2x00dev, SEC_CSR2);
341 if (reg && reg == ~0) {
342 key->hw_key_idx = 32;
343 reg = rt2x00mmio_register_read(rt2x00dev, SEC_CSR3);
344 if (reg && reg == ~0)
345 return -ENOSPC;
346 }
347
348 key->hw_key_idx += reg ? ffz(reg) : 0;
349
350 /*
351 * Upload key to hardware
352 */
353 memcpy(key_entry.key, crypto->key,
354 sizeof(key_entry.key));
355 memcpy(key_entry.tx_mic, crypto->tx_mic,
356 sizeof(key_entry.tx_mic));
357 memcpy(key_entry.rx_mic, crypto->rx_mic,
358 sizeof(key_entry.rx_mic));
359
360 memset(&addr_entry, 0, sizeof(addr_entry));
361 memcpy(&addr_entry, crypto->address, ETH_ALEN);
362 addr_entry.cipher = crypto->cipher;
363
364 reg = PAIRWISE_KEY_ENTRY(key->hw_key_idx);
365 rt2x00mmio_register_multiwrite(rt2x00dev, offset: reg,
366 value: &key_entry, length: sizeof(key_entry));
367
368 reg = PAIRWISE_TA_ENTRY(key->hw_key_idx);
369 rt2x00mmio_register_multiwrite(rt2x00dev, offset: reg,
370 value: &addr_entry, length: sizeof(addr_entry));
371
372 /*
373 * Enable pairwise lookup table for given BSS idx.
374 * Without this, received frames will not be decrypted
375 * by the hardware.
376 */
377 reg = rt2x00mmio_register_read(rt2x00dev, SEC_CSR4);
378 reg |= (1 << crypto->bssidx);
379 rt2x00mmio_register_write(rt2x00dev, SEC_CSR4, value: reg);
380
381 /*
382 * The driver does not support the IV/EIV generation
383 * in hardware. However it doesn't support the IV/EIV
384 * inside the ieee80211 frame either, but requires it
385 * to be provided separately for the descriptor.
386 * rt2x00lib will cut the IV/EIV data out of all frames
387 * given to us by mac80211, but we must tell mac80211
388 * to generate the IV/EIV data.
389 */
390 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
391 }
392
393 /*
394 * SEC_CSR2 and SEC_CSR3 contain only single-bit fields to indicate
395 * a particular key is valid. Because using the FIELD32()
396 * defines directly will cause a lot of overhead, we use
397 * a calculation to determine the correct bit directly.
398 */
399 if (key->hw_key_idx < 32) {
400 mask = 1 << key->hw_key_idx;
401
402 reg = rt2x00mmio_register_read(rt2x00dev, SEC_CSR2);
403 if (crypto->cmd == SET_KEY)
404 reg |= mask;
405 else if (crypto->cmd == DISABLE_KEY)
406 reg &= ~mask;
407 rt2x00mmio_register_write(rt2x00dev, SEC_CSR2, value: reg);
408 } else {
409 mask = 1 << (key->hw_key_idx - 32);
410
411 reg = rt2x00mmio_register_read(rt2x00dev, SEC_CSR3);
412 if (crypto->cmd == SET_KEY)
413 reg |= mask;
414 else if (crypto->cmd == DISABLE_KEY)
415 reg &= ~mask;
416 rt2x00mmio_register_write(rt2x00dev, SEC_CSR3, value: reg);
417 }
418
419 return 0;
420}
421
422static void rt61pci_config_filter(struct rt2x00_dev *rt2x00dev,
423 const unsigned int filter_flags)
424{
425 u32 reg;
426
427 /*
428 * Start configuration steps.
429 * Note that the version error will always be dropped
430 * and broadcast frames will always be accepted since
431 * there is no filter for it at this time.
432 */
433 reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR0);
434 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_CRC,
435 !(filter_flags & FIF_FCSFAIL));
436 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_PHYSICAL,
437 !(filter_flags & FIF_PLCPFAIL));
438 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_CONTROL,
439 !(filter_flags & (FIF_CONTROL | FIF_PSPOLL)));
440 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_NOT_TO_ME,
441 !test_bit(CONFIG_MONITORING, &rt2x00dev->flags));
442 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_TO_DS,
443 !test_bit(CONFIG_MONITORING, &rt2x00dev->flags) &&
444 !rt2x00dev->intf_ap_count);
445 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_VERSION_ERROR, 1);
446 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_MULTICAST,
447 !(filter_flags & FIF_ALLMULTI));
448 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_BROADCAST, 0);
449 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_ACK_CTS,
450 !(filter_flags & FIF_CONTROL));
451 rt2x00mmio_register_write(rt2x00dev, TXRX_CSR0, value: reg);
452}
453
454static void rt61pci_config_intf(struct rt2x00_dev *rt2x00dev,
455 struct rt2x00_intf *intf,
456 struct rt2x00intf_conf *conf,
457 const unsigned int flags)
458{
459 u32 reg;
460
461 if (flags & CONFIG_UPDATE_TYPE) {
462 /*
463 * Enable synchronisation.
464 */
465 reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR9);
466 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_SYNC, conf->sync);
467 rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, value: reg);
468 }
469
470 if (flags & CONFIG_UPDATE_MAC) {
471 reg = le32_to_cpu(conf->mac[1]);
472 rt2x00_set_field32(&reg, MAC_CSR3_UNICAST_TO_ME_MASK, 0xff);
473 conf->mac[1] = cpu_to_le32(reg);
474
475 rt2x00mmio_register_multiwrite(rt2x00dev, MAC_CSR2,
476 value: conf->mac, length: sizeof(conf->mac));
477 }
478
479 if (flags & CONFIG_UPDATE_BSSID) {
480 reg = le32_to_cpu(conf->bssid[1]);
481 rt2x00_set_field32(&reg, MAC_CSR5_BSS_ID_MASK, 3);
482 conf->bssid[1] = cpu_to_le32(reg);
483
484 rt2x00mmio_register_multiwrite(rt2x00dev, MAC_CSR4,
485 value: conf->bssid,
486 length: sizeof(conf->bssid));
487 }
488}
489
490static void rt61pci_config_erp(struct rt2x00_dev *rt2x00dev,
491 struct rt2x00lib_erp *erp,
492 u32 changed)
493{
494 u32 reg;
495
496 reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR0);
497 rt2x00_set_field32(&reg, TXRX_CSR0_RX_ACK_TIMEOUT, 0x32);
498 rt2x00_set_field32(&reg, TXRX_CSR0_TSF_OFFSET, IEEE80211_HEADER);
499 rt2x00mmio_register_write(rt2x00dev, TXRX_CSR0, value: reg);
500
501 if (changed & BSS_CHANGED_ERP_PREAMBLE) {
502 reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR4);
503 rt2x00_set_field32(&reg, TXRX_CSR4_AUTORESPOND_ENABLE, 1);
504 rt2x00_set_field32(&reg, TXRX_CSR4_AUTORESPOND_PREAMBLE,
505 !!erp->short_preamble);
506 rt2x00mmio_register_write(rt2x00dev, TXRX_CSR4, value: reg);
507 }
508
509 if (changed & BSS_CHANGED_BASIC_RATES)
510 rt2x00mmio_register_write(rt2x00dev, TXRX_CSR5,
511 value: erp->basic_rates);
512
513 if (changed & BSS_CHANGED_BEACON_INT) {
514 reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR9);
515 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_INTERVAL,
516 erp->beacon_int * 16);
517 rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, value: reg);
518 }
519
520 if (changed & BSS_CHANGED_ERP_SLOT) {
521 reg = rt2x00mmio_register_read(rt2x00dev, MAC_CSR9);
522 rt2x00_set_field32(&reg, MAC_CSR9_SLOT_TIME, erp->slot_time);
523 rt2x00mmio_register_write(rt2x00dev, MAC_CSR9, value: reg);
524
525 reg = rt2x00mmio_register_read(rt2x00dev, MAC_CSR8);
526 rt2x00_set_field32(&reg, MAC_CSR8_SIFS, erp->sifs);
527 rt2x00_set_field32(&reg, MAC_CSR8_SIFS_AFTER_RX_OFDM, 3);
528 rt2x00_set_field32(&reg, MAC_CSR8_EIFS, erp->eifs);
529 rt2x00mmio_register_write(rt2x00dev, MAC_CSR8, value: reg);
530 }
531}
532
533static void rt61pci_config_antenna_5x(struct rt2x00_dev *rt2x00dev,
534 struct antenna_setup *ant)
535{
536 u8 r3;
537 u8 r4;
538 u8 r77;
539
540 r3 = rt61pci_bbp_read(rt2x00dev, word: 3);
541 r4 = rt61pci_bbp_read(rt2x00dev, word: 4);
542 r77 = rt61pci_bbp_read(rt2x00dev, word: 77);
543
544 rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, rt2x00_rf(rt2x00dev, RF5325));
545
546 /*
547 * Configure the RX antenna.
548 */
549 switch (ant->rx) {
550 case ANTENNA_HW_DIVERSITY:
551 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
552 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END,
553 (rt2x00dev->curr_band != NL80211_BAND_5GHZ));
554 break;
555 case ANTENNA_A:
556 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
557 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
558 if (rt2x00dev->curr_band == NL80211_BAND_5GHZ)
559 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
560 else
561 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
562 break;
563 case ANTENNA_B:
564 default:
565 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
566 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
567 if (rt2x00dev->curr_band == NL80211_BAND_5GHZ)
568 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
569 else
570 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
571 break;
572 }
573
574 rt61pci_bbp_write(rt2x00dev, word: 77, value: r77);
575 rt61pci_bbp_write(rt2x00dev, word: 3, value: r3);
576 rt61pci_bbp_write(rt2x00dev, word: 4, value: r4);
577}
578
579static void rt61pci_config_antenna_2x(struct rt2x00_dev *rt2x00dev,
580 struct antenna_setup *ant)
581{
582 u8 r3;
583 u8 r4;
584 u8 r77;
585
586 r3 = rt61pci_bbp_read(rt2x00dev, word: 3);
587 r4 = rt61pci_bbp_read(rt2x00dev, word: 4);
588 r77 = rt61pci_bbp_read(rt2x00dev, word: 77);
589
590 rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, rt2x00_rf(rt2x00dev, RF2529));
591 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END,
592 !rt2x00_has_cap_frame_type(rt2x00dev));
593
594 /*
595 * Configure the RX antenna.
596 */
597 switch (ant->rx) {
598 case ANTENNA_HW_DIVERSITY:
599 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
600 break;
601 case ANTENNA_A:
602 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
603 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
604 break;
605 case ANTENNA_B:
606 default:
607 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
608 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
609 break;
610 }
611
612 rt61pci_bbp_write(rt2x00dev, word: 77, value: r77);
613 rt61pci_bbp_write(rt2x00dev, word: 3, value: r3);
614 rt61pci_bbp_write(rt2x00dev, word: 4, value: r4);
615}
616
617static void rt61pci_config_antenna_2529_rx(struct rt2x00_dev *rt2x00dev,
618 const int p1, const int p2)
619{
620 u32 reg;
621
622 reg = rt2x00mmio_register_read(rt2x00dev, MAC_CSR13);
623
624 rt2x00_set_field32(&reg, MAC_CSR13_DIR4, 0);
625 rt2x00_set_field32(&reg, MAC_CSR13_VAL4, p1);
626
627 rt2x00_set_field32(&reg, MAC_CSR13_DIR3, 0);
628 rt2x00_set_field32(&reg, MAC_CSR13_VAL3, !p2);
629
630 rt2x00mmio_register_write(rt2x00dev, MAC_CSR13, value: reg);
631}
632
633static void rt61pci_config_antenna_2529(struct rt2x00_dev *rt2x00dev,
634 struct antenna_setup *ant)
635{
636 u8 r3;
637 u8 r4;
638 u8 r77;
639
640 r3 = rt61pci_bbp_read(rt2x00dev, word: 3);
641 r4 = rt61pci_bbp_read(rt2x00dev, word: 4);
642 r77 = rt61pci_bbp_read(rt2x00dev, word: 77);
643
644 /*
645 * Configure the RX antenna.
646 */
647 switch (ant->rx) {
648 case ANTENNA_A:
649 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
650 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
651 rt61pci_config_antenna_2529_rx(rt2x00dev, p1: 0, p2: 0);
652 break;
653 case ANTENNA_HW_DIVERSITY:
654 /*
655 * FIXME: Antenna selection for the rf 2529 is very confusing
656 * in the legacy driver. Just default to antenna B until the
657 * legacy code can be properly translated into rt2x00 code.
658 */
659 case ANTENNA_B:
660 default:
661 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
662 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
663 rt61pci_config_antenna_2529_rx(rt2x00dev, p1: 1, p2: 1);
664 break;
665 }
666
667 rt61pci_bbp_write(rt2x00dev, word: 77, value: r77);
668 rt61pci_bbp_write(rt2x00dev, word: 3, value: r3);
669 rt61pci_bbp_write(rt2x00dev, word: 4, value: r4);
670}
671
672struct antenna_sel {
673 u8 word;
674 /*
675 * value[0] -> non-LNA
676 * value[1] -> LNA
677 */
678 u8 value[2];
679};
680
681static const struct antenna_sel antenna_sel_a[] = {
682 { 96, { 0x58, 0x78 } },
683 { 104, { 0x38, 0x48 } },
684 { 75, { 0xfe, 0x80 } },
685 { 86, { 0xfe, 0x80 } },
686 { 88, { 0xfe, 0x80 } },
687 { 35, { 0x60, 0x60 } },
688 { 97, { 0x58, 0x58 } },
689 { 98, { 0x58, 0x58 } },
690};
691
692static const struct antenna_sel antenna_sel_bg[] = {
693 { 96, { 0x48, 0x68 } },
694 { 104, { 0x2c, 0x3c } },
695 { 75, { 0xfe, 0x80 } },
696 { 86, { 0xfe, 0x80 } },
697 { 88, { 0xfe, 0x80 } },
698 { 35, { 0x50, 0x50 } },
699 { 97, { 0x48, 0x48 } },
700 { 98, { 0x48, 0x48 } },
701};
702
703static void rt61pci_config_ant(struct rt2x00_dev *rt2x00dev,
704 struct antenna_setup *ant)
705{
706 const struct antenna_sel *sel;
707 unsigned int lna;
708 unsigned int i;
709 u32 reg;
710
711 /*
712 * We should never come here because rt2x00lib is supposed
713 * to catch this and send us the correct antenna explicitely.
714 */
715 BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
716 ant->tx == ANTENNA_SW_DIVERSITY);
717
718 if (rt2x00dev->curr_band == NL80211_BAND_5GHZ) {
719 sel = antenna_sel_a;
720 lna = rt2x00_has_cap_external_lna_a(rt2x00dev);
721 } else {
722 sel = antenna_sel_bg;
723 lna = rt2x00_has_cap_external_lna_bg(rt2x00dev);
724 }
725
726 for (i = 0; i < ARRAY_SIZE(antenna_sel_a); i++)
727 rt61pci_bbp_write(rt2x00dev, word: sel[i].word, value: sel[i].value[lna]);
728
729 reg = rt2x00mmio_register_read(rt2x00dev, PHY_CSR0);
730
731 rt2x00_set_field32(&reg, PHY_CSR0_PA_PE_BG,
732 rt2x00dev->curr_band == NL80211_BAND_2GHZ);
733 rt2x00_set_field32(&reg, PHY_CSR0_PA_PE_A,
734 rt2x00dev->curr_band == NL80211_BAND_5GHZ);
735
736 rt2x00mmio_register_write(rt2x00dev, PHY_CSR0, value: reg);
737
738 if (rt2x00_rf(rt2x00dev, RF5225) || rt2x00_rf(rt2x00dev, RF5325))
739 rt61pci_config_antenna_5x(rt2x00dev, ant);
740 else if (rt2x00_rf(rt2x00dev, RF2527))
741 rt61pci_config_antenna_2x(rt2x00dev, ant);
742 else if (rt2x00_rf(rt2x00dev, RF2529)) {
743 if (rt2x00_has_cap_double_antenna(rt2x00dev))
744 rt61pci_config_antenna_2x(rt2x00dev, ant);
745 else
746 rt61pci_config_antenna_2529(rt2x00dev, ant);
747 }
748}
749
750static void rt61pci_config_lna_gain(struct rt2x00_dev *rt2x00dev,
751 struct rt2x00lib_conf *libconf)
752{
753 u16 eeprom;
754 short lna_gain = 0;
755
756 if (libconf->conf->chandef.chan->band == NL80211_BAND_2GHZ) {
757 if (rt2x00_has_cap_external_lna_bg(rt2x00dev))
758 lna_gain += 14;
759
760 eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG);
761 lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_BG_1);
762 } else {
763 if (rt2x00_has_cap_external_lna_a(rt2x00dev))
764 lna_gain += 14;
765
766 eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A);
767 lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_A_1);
768 }
769
770 rt2x00dev->lna_gain = lna_gain;
771}
772
773static void rt61pci_config_channel(struct rt2x00_dev *rt2x00dev,
774 struct rf_channel *rf, const int txpower)
775{
776 u8 r3;
777 u8 r94;
778 u8 smart;
779
780 rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
781 rt2x00_set_field32(&rf->rf4, RF4_FREQ_OFFSET, rt2x00dev->freq_offset);
782
783 smart = !(rt2x00_rf(rt2x00dev, RF5225) || rt2x00_rf(rt2x00dev, RF2527));
784
785 r3 = rt61pci_bbp_read(rt2x00dev, word: 3);
786 rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, smart);
787 rt61pci_bbp_write(rt2x00dev, word: 3, value: r3);
788
789 r94 = 6;
790 if (txpower > MAX_TXPOWER && txpower <= (MAX_TXPOWER + r94))
791 r94 += txpower - MAX_TXPOWER;
792 else if (txpower < MIN_TXPOWER && txpower >= (MIN_TXPOWER - r94))
793 r94 += txpower;
794 rt61pci_bbp_write(rt2x00dev, word: 94, value: r94);
795
796 rt61pci_rf_write(rt2x00dev, word: 1, value: rf->rf1);
797 rt61pci_rf_write(rt2x00dev, word: 2, value: rf->rf2);
798 rt61pci_rf_write(rt2x00dev, word: 3, value: rf->rf3 & ~0x00000004);
799 rt61pci_rf_write(rt2x00dev, word: 4, value: rf->rf4);
800
801 udelay(200);
802
803 rt61pci_rf_write(rt2x00dev, word: 1, value: rf->rf1);
804 rt61pci_rf_write(rt2x00dev, word: 2, value: rf->rf2);
805 rt61pci_rf_write(rt2x00dev, word: 3, value: rf->rf3 | 0x00000004);
806 rt61pci_rf_write(rt2x00dev, word: 4, value: rf->rf4);
807
808 udelay(200);
809
810 rt61pci_rf_write(rt2x00dev, word: 1, value: rf->rf1);
811 rt61pci_rf_write(rt2x00dev, word: 2, value: rf->rf2);
812 rt61pci_rf_write(rt2x00dev, word: 3, value: rf->rf3 & ~0x00000004);
813 rt61pci_rf_write(rt2x00dev, word: 4, value: rf->rf4);
814
815 msleep(msecs: 1);
816}
817
818static void rt61pci_config_txpower(struct rt2x00_dev *rt2x00dev,
819 const int txpower)
820{
821 struct rf_channel rf;
822
823 rf.rf1 = rt2x00_rf_read(rt2x00dev, word: 1);
824 rf.rf2 = rt2x00_rf_read(rt2x00dev, word: 2);
825 rf.rf3 = rt2x00_rf_read(rt2x00dev, word: 3);
826 rf.rf4 = rt2x00_rf_read(rt2x00dev, word: 4);
827
828 rt61pci_config_channel(rt2x00dev, rf: &rf, txpower);
829}
830
831static void rt61pci_config_retry_limit(struct rt2x00_dev *rt2x00dev,
832 struct rt2x00lib_conf *libconf)
833{
834 u32 reg;
835
836 reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR4);
837 rt2x00_set_field32(&reg, TXRX_CSR4_OFDM_TX_RATE_DOWN, 1);
838 rt2x00_set_field32(&reg, TXRX_CSR4_OFDM_TX_RATE_STEP, 0);
839 rt2x00_set_field32(&reg, TXRX_CSR4_OFDM_TX_FALLBACK_CCK, 0);
840 rt2x00_set_field32(&reg, TXRX_CSR4_LONG_RETRY_LIMIT,
841 libconf->conf->long_frame_max_tx_count);
842 rt2x00_set_field32(&reg, TXRX_CSR4_SHORT_RETRY_LIMIT,
843 libconf->conf->short_frame_max_tx_count);
844 rt2x00mmio_register_write(rt2x00dev, TXRX_CSR4, value: reg);
845}
846
847static void rt61pci_config_ps(struct rt2x00_dev *rt2x00dev,
848 struct rt2x00lib_conf *libconf)
849{
850 enum dev_state state =
851 (libconf->conf->flags & IEEE80211_CONF_PS) ?
852 STATE_SLEEP : STATE_AWAKE;
853 u32 reg;
854
855 if (state == STATE_SLEEP) {
856 reg = rt2x00mmio_register_read(rt2x00dev, MAC_CSR11);
857 rt2x00_set_field32(&reg, MAC_CSR11_DELAY_AFTER_TBCN,
858 rt2x00dev->beacon_int - 10);
859 rt2x00_set_field32(&reg, MAC_CSR11_TBCN_BEFORE_WAKEUP,
860 libconf->conf->listen_interval - 1);
861 rt2x00_set_field32(&reg, MAC_CSR11_WAKEUP_LATENCY, 5);
862
863 /* We must first disable autowake before it can be enabled */
864 rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 0);
865 rt2x00mmio_register_write(rt2x00dev, MAC_CSR11, value: reg);
866
867 rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 1);
868 rt2x00mmio_register_write(rt2x00dev, MAC_CSR11, value: reg);
869
870 rt2x00mmio_register_write(rt2x00dev, SOFT_RESET_CSR,
871 value: 0x00000005);
872 rt2x00mmio_register_write(rt2x00dev, IO_CNTL_CSR, value: 0x0000001c);
873 rt2x00mmio_register_write(rt2x00dev, PCI_USEC_CSR, value: 0x00000060);
874
875 rt61pci_mcu_request(rt2x00dev, MCU_SLEEP, token: 0xff, arg0: 0, arg1: 0);
876 } else {
877 reg = rt2x00mmio_register_read(rt2x00dev, MAC_CSR11);
878 rt2x00_set_field32(&reg, MAC_CSR11_DELAY_AFTER_TBCN, 0);
879 rt2x00_set_field32(&reg, MAC_CSR11_TBCN_BEFORE_WAKEUP, 0);
880 rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 0);
881 rt2x00_set_field32(&reg, MAC_CSR11_WAKEUP_LATENCY, 0);
882 rt2x00mmio_register_write(rt2x00dev, MAC_CSR11, value: reg);
883
884 rt2x00mmio_register_write(rt2x00dev, SOFT_RESET_CSR,
885 value: 0x00000007);
886 rt2x00mmio_register_write(rt2x00dev, IO_CNTL_CSR, value: 0x00000018);
887 rt2x00mmio_register_write(rt2x00dev, PCI_USEC_CSR, value: 0x00000020);
888
889 rt61pci_mcu_request(rt2x00dev, MCU_WAKEUP, token: 0xff, arg0: 0, arg1: 0);
890 }
891}
892
893static void rt61pci_config(struct rt2x00_dev *rt2x00dev,
894 struct rt2x00lib_conf *libconf,
895 const unsigned int flags)
896{
897 /* Always recalculate LNA gain before changing configuration */
898 rt61pci_config_lna_gain(rt2x00dev, libconf);
899
900 if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
901 rt61pci_config_channel(rt2x00dev, rf: &libconf->rf,
902 txpower: libconf->conf->power_level);
903 if ((flags & IEEE80211_CONF_CHANGE_POWER) &&
904 !(flags & IEEE80211_CONF_CHANGE_CHANNEL))
905 rt61pci_config_txpower(rt2x00dev, txpower: libconf->conf->power_level);
906 if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
907 rt61pci_config_retry_limit(rt2x00dev, libconf);
908 if (flags & IEEE80211_CONF_CHANGE_PS)
909 rt61pci_config_ps(rt2x00dev, libconf);
910}
911
912/*
913 * Link tuning
914 */
915static void rt61pci_link_stats(struct rt2x00_dev *rt2x00dev,
916 struct link_qual *qual)
917{
918 u32 reg;
919
920 /*
921 * Update FCS error count from register.
922 */
923 reg = rt2x00mmio_register_read(rt2x00dev, STA_CSR0);
924 qual->rx_failed = rt2x00_get_field32(reg, STA_CSR0_FCS_ERROR);
925
926 /*
927 * Update False CCA count from register.
928 */
929 reg = rt2x00mmio_register_read(rt2x00dev, STA_CSR1);
930 qual->false_cca = rt2x00_get_field32(reg, STA_CSR1_FALSE_CCA_ERROR);
931}
932
933static inline void rt61pci_set_vgc(struct rt2x00_dev *rt2x00dev,
934 struct link_qual *qual, u8 vgc_level)
935{
936 if (qual->vgc_level != vgc_level) {
937 rt61pci_bbp_write(rt2x00dev, word: 17, value: vgc_level);
938 qual->vgc_level = vgc_level;
939 qual->vgc_level_reg = vgc_level;
940 }
941}
942
943static void rt61pci_reset_tuner(struct rt2x00_dev *rt2x00dev,
944 struct link_qual *qual)
945{
946 rt61pci_set_vgc(rt2x00dev, qual, vgc_level: 0x20);
947}
948
949static void rt61pci_link_tuner(struct rt2x00_dev *rt2x00dev,
950 struct link_qual *qual, const u32 count)
951{
952 u8 up_bound;
953 u8 low_bound;
954
955 /*
956 * Determine r17 bounds.
957 */
958 if (rt2x00dev->curr_band == NL80211_BAND_5GHZ) {
959 low_bound = 0x28;
960 up_bound = 0x48;
961 if (rt2x00_has_cap_external_lna_a(rt2x00dev)) {
962 low_bound += 0x10;
963 up_bound += 0x10;
964 }
965 } else {
966 low_bound = 0x20;
967 up_bound = 0x40;
968 if (rt2x00_has_cap_external_lna_bg(rt2x00dev)) {
969 low_bound += 0x10;
970 up_bound += 0x10;
971 }
972 }
973
974 /*
975 * If we are not associated, we should go straight to the
976 * dynamic CCA tuning.
977 */
978 if (!rt2x00dev->intf_associated)
979 goto dynamic_cca_tune;
980
981 /*
982 * Special big-R17 for very short distance
983 */
984 if (qual->rssi >= -35) {
985 rt61pci_set_vgc(rt2x00dev, qual, vgc_level: 0x60);
986 return;
987 }
988
989 /*
990 * Special big-R17 for short distance
991 */
992 if (qual->rssi >= -58) {
993 rt61pci_set_vgc(rt2x00dev, qual, vgc_level: up_bound);
994 return;
995 }
996
997 /*
998 * Special big-R17 for middle-short distance
999 */
1000 if (qual->rssi >= -66) {
1001 rt61pci_set_vgc(rt2x00dev, qual, vgc_level: low_bound + 0x10);
1002 return;
1003 }
1004
1005 /*
1006 * Special mid-R17 for middle distance
1007 */
1008 if (qual->rssi >= -74) {
1009 rt61pci_set_vgc(rt2x00dev, qual, vgc_level: low_bound + 0x08);
1010 return;
1011 }
1012
1013 /*
1014 * Special case: Change up_bound based on the rssi.
1015 * Lower up_bound when rssi is weaker then -74 dBm.
1016 */
1017 up_bound -= 2 * (-74 - qual->rssi);
1018 if (low_bound > up_bound)
1019 up_bound = low_bound;
1020
1021 if (qual->vgc_level > up_bound) {
1022 rt61pci_set_vgc(rt2x00dev, qual, vgc_level: up_bound);
1023 return;
1024 }
1025
1026dynamic_cca_tune:
1027
1028 /*
1029 * r17 does not yet exceed upper limit, continue and base
1030 * the r17 tuning on the false CCA count.
1031 */
1032 if ((qual->false_cca > 512) && (qual->vgc_level < up_bound))
1033 rt61pci_set_vgc(rt2x00dev, qual, vgc_level: ++qual->vgc_level);
1034 else if ((qual->false_cca < 100) && (qual->vgc_level > low_bound))
1035 rt61pci_set_vgc(rt2x00dev, qual, vgc_level: --qual->vgc_level);
1036}
1037
1038/*
1039 * Queue handlers.
1040 */
1041static void rt61pci_start_queue(struct data_queue *queue)
1042{
1043 struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
1044 u32 reg;
1045
1046 switch (queue->qid) {
1047 case QID_RX:
1048 reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR0);
1049 rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX, 0);
1050 rt2x00mmio_register_write(rt2x00dev, TXRX_CSR0, value: reg);
1051 break;
1052 case QID_BEACON:
1053 reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR9);
1054 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 1);
1055 rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 1);
1056 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 1);
1057 rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, value: reg);
1058 break;
1059 default:
1060 break;
1061 }
1062}
1063
1064static void rt61pci_kick_queue(struct data_queue *queue)
1065{
1066 struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
1067 u32 reg;
1068
1069 switch (queue->qid) {
1070 case QID_AC_VO:
1071 reg = rt2x00mmio_register_read(rt2x00dev, TX_CNTL_CSR);
1072 rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC0, 1);
1073 rt2x00mmio_register_write(rt2x00dev, TX_CNTL_CSR, value: reg);
1074 break;
1075 case QID_AC_VI:
1076 reg = rt2x00mmio_register_read(rt2x00dev, TX_CNTL_CSR);
1077 rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC1, 1);
1078 rt2x00mmio_register_write(rt2x00dev, TX_CNTL_CSR, value: reg);
1079 break;
1080 case QID_AC_BE:
1081 reg = rt2x00mmio_register_read(rt2x00dev, TX_CNTL_CSR);
1082 rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC2, 1);
1083 rt2x00mmio_register_write(rt2x00dev, TX_CNTL_CSR, value: reg);
1084 break;
1085 case QID_AC_BK:
1086 reg = rt2x00mmio_register_read(rt2x00dev, TX_CNTL_CSR);
1087 rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC3, 1);
1088 rt2x00mmio_register_write(rt2x00dev, TX_CNTL_CSR, value: reg);
1089 break;
1090 default:
1091 break;
1092 }
1093}
1094
1095static void rt61pci_stop_queue(struct data_queue *queue)
1096{
1097 struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
1098 u32 reg;
1099
1100 switch (queue->qid) {
1101 case QID_AC_VO:
1102 reg = rt2x00mmio_register_read(rt2x00dev, TX_CNTL_CSR);
1103 rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC0, 1);
1104 rt2x00mmio_register_write(rt2x00dev, TX_CNTL_CSR, value: reg);
1105 break;
1106 case QID_AC_VI:
1107 reg = rt2x00mmio_register_read(rt2x00dev, TX_CNTL_CSR);
1108 rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC1, 1);
1109 rt2x00mmio_register_write(rt2x00dev, TX_CNTL_CSR, value: reg);
1110 break;
1111 case QID_AC_BE:
1112 reg = rt2x00mmio_register_read(rt2x00dev, TX_CNTL_CSR);
1113 rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC2, 1);
1114 rt2x00mmio_register_write(rt2x00dev, TX_CNTL_CSR, value: reg);
1115 break;
1116 case QID_AC_BK:
1117 reg = rt2x00mmio_register_read(rt2x00dev, TX_CNTL_CSR);
1118 rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC3, 1);
1119 rt2x00mmio_register_write(rt2x00dev, TX_CNTL_CSR, value: reg);
1120 break;
1121 case QID_RX:
1122 reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR0);
1123 rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX, 1);
1124 rt2x00mmio_register_write(rt2x00dev, TXRX_CSR0, value: reg);
1125 break;
1126 case QID_BEACON:
1127 reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR9);
1128 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 0);
1129 rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 0);
1130 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
1131 rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, value: reg);
1132
1133 /*
1134 * Wait for possibly running tbtt tasklets.
1135 */
1136 tasklet_kill(t: &rt2x00dev->tbtt_tasklet);
1137 break;
1138 default:
1139 break;
1140 }
1141}
1142
1143/*
1144 * Firmware functions
1145 */
1146static char *rt61pci_get_firmware_name(struct rt2x00_dev *rt2x00dev)
1147{
1148 u16 chip;
1149 char *fw_name;
1150
1151 pci_read_config_word(to_pci_dev(rt2x00dev->dev), PCI_DEVICE_ID, val: &chip);
1152 switch (chip) {
1153 case RT2561_PCI_ID:
1154 fw_name = FIRMWARE_RT2561;
1155 break;
1156 case RT2561s_PCI_ID:
1157 fw_name = FIRMWARE_RT2561s;
1158 break;
1159 case RT2661_PCI_ID:
1160 fw_name = FIRMWARE_RT2661;
1161 break;
1162 default:
1163 fw_name = NULL;
1164 break;
1165 }
1166
1167 return fw_name;
1168}
1169
1170static int rt61pci_check_firmware(struct rt2x00_dev *rt2x00dev,
1171 const u8 *data, const size_t len)
1172{
1173 u16 fw_crc;
1174 u16 crc;
1175
1176 /*
1177 * Only support 8kb firmware files.
1178 */
1179 if (len != 8192)
1180 return FW_BAD_LENGTH;
1181
1182 /*
1183 * The last 2 bytes in the firmware array are the crc checksum itself.
1184 * This means that we should never pass those 2 bytes to the crc
1185 * algorithm.
1186 */
1187 fw_crc = (data[len - 2] << 8 | data[len - 1]);
1188
1189 /*
1190 * Use the crc itu-t algorithm.
1191 */
1192 crc = crc_itu_t(crc: 0, buffer: data, len: len - 2);
1193 crc = crc_itu_t_byte(crc, data: 0);
1194 crc = crc_itu_t_byte(crc, data: 0);
1195
1196 return (fw_crc == crc) ? FW_OK : FW_BAD_CRC;
1197}
1198
1199static int rt61pci_load_firmware(struct rt2x00_dev *rt2x00dev,
1200 const u8 *data, const size_t len)
1201{
1202 int i;
1203 u32 reg;
1204
1205 /*
1206 * Wait for stable hardware.
1207 */
1208 for (i = 0; i < 100; i++) {
1209 reg = rt2x00mmio_register_read(rt2x00dev, MAC_CSR0);
1210 if (reg)
1211 break;
1212 msleep(msecs: 1);
1213 }
1214
1215 if (!reg) {
1216 rt2x00_err(rt2x00dev, "Unstable hardware\n");
1217 return -EBUSY;
1218 }
1219
1220 /*
1221 * Prepare MCU and mailbox for firmware loading.
1222 */
1223 reg = 0;
1224 rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 1);
1225 rt2x00mmio_register_write(rt2x00dev, MCU_CNTL_CSR, value: reg);
1226 rt2x00mmio_register_write(rt2x00dev, M2H_CMD_DONE_CSR, value: 0xffffffff);
1227 rt2x00mmio_register_write(rt2x00dev, H2M_MAILBOX_CSR, value: 0);
1228 rt2x00mmio_register_write(rt2x00dev, HOST_CMD_CSR, value: 0);
1229
1230 /*
1231 * Write firmware to device.
1232 */
1233 reg = 0;
1234 rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 1);
1235 rt2x00_set_field32(&reg, MCU_CNTL_CSR_SELECT_BANK, 1);
1236 rt2x00mmio_register_write(rt2x00dev, MCU_CNTL_CSR, value: reg);
1237
1238 rt2x00mmio_register_multiwrite(rt2x00dev, FIRMWARE_IMAGE_BASE,
1239 value: data, length: len);
1240
1241 rt2x00_set_field32(&reg, MCU_CNTL_CSR_SELECT_BANK, 0);
1242 rt2x00mmio_register_write(rt2x00dev, MCU_CNTL_CSR, value: reg);
1243
1244 rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 0);
1245 rt2x00mmio_register_write(rt2x00dev, MCU_CNTL_CSR, value: reg);
1246
1247 for (i = 0; i < 100; i++) {
1248 reg = rt2x00mmio_register_read(rt2x00dev, MCU_CNTL_CSR);
1249 if (rt2x00_get_field32(reg, MCU_CNTL_CSR_READY))
1250 break;
1251 msleep(msecs: 1);
1252 }
1253
1254 if (i == 100) {
1255 rt2x00_err(rt2x00dev, "MCU Control register not ready\n");
1256 return -EBUSY;
1257 }
1258
1259 /*
1260 * Hardware needs another millisecond before it is ready.
1261 */
1262 msleep(msecs: 1);
1263
1264 /*
1265 * Reset MAC and BBP registers.
1266 */
1267 reg = 0;
1268 rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 1);
1269 rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 1);
1270 rt2x00mmio_register_write(rt2x00dev, MAC_CSR1, value: reg);
1271
1272 reg = rt2x00mmio_register_read(rt2x00dev, MAC_CSR1);
1273 rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 0);
1274 rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 0);
1275 rt2x00mmio_register_write(rt2x00dev, MAC_CSR1, value: reg);
1276
1277 reg = rt2x00mmio_register_read(rt2x00dev, MAC_CSR1);
1278 rt2x00_set_field32(&reg, MAC_CSR1_HOST_READY, 1);
1279 rt2x00mmio_register_write(rt2x00dev, MAC_CSR1, value: reg);
1280
1281 return 0;
1282}
1283
1284/*
1285 * Initialization functions.
1286 */
1287static bool rt61pci_get_entry_state(struct queue_entry *entry)
1288{
1289 struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
1290 u32 word;
1291
1292 if (entry->queue->qid == QID_RX) {
1293 word = rt2x00_desc_read(desc: entry_priv->desc, word: 0);
1294
1295 return rt2x00_get_field32(word, RXD_W0_OWNER_NIC);
1296 } else {
1297 word = rt2x00_desc_read(desc: entry_priv->desc, word: 0);
1298
1299 return (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
1300 rt2x00_get_field32(word, TXD_W0_VALID));
1301 }
1302}
1303
1304static void rt61pci_clear_entry(struct queue_entry *entry)
1305{
1306 struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
1307 struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb: entry->skb);
1308 u32 word;
1309
1310 if (entry->queue->qid == QID_RX) {
1311 word = rt2x00_desc_read(desc: entry_priv->desc, word: 5);
1312 rt2x00_set_field32(&word, RXD_W5_BUFFER_PHYSICAL_ADDRESS,
1313 skbdesc->skb_dma);
1314 rt2x00_desc_write(desc: entry_priv->desc, word: 5, value: word);
1315
1316 word = rt2x00_desc_read(desc: entry_priv->desc, word: 0);
1317 rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
1318 rt2x00_desc_write(desc: entry_priv->desc, word: 0, value: word);
1319 } else {
1320 word = rt2x00_desc_read(desc: entry_priv->desc, word: 0);
1321 rt2x00_set_field32(&word, TXD_W0_VALID, 0);
1322 rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
1323 rt2x00_desc_write(desc: entry_priv->desc, word: 0, value: word);
1324 }
1325}
1326
1327static int rt61pci_init_queues(struct rt2x00_dev *rt2x00dev)
1328{
1329 struct queue_entry_priv_mmio *entry_priv;
1330 u32 reg;
1331
1332 /*
1333 * Initialize registers.
1334 */
1335 reg = rt2x00mmio_register_read(rt2x00dev, TX_RING_CSR0);
1336 rt2x00_set_field32(&reg, TX_RING_CSR0_AC0_RING_SIZE,
1337 rt2x00dev->tx[0].limit);
1338 rt2x00_set_field32(&reg, TX_RING_CSR0_AC1_RING_SIZE,
1339 rt2x00dev->tx[1].limit);
1340 rt2x00_set_field32(&reg, TX_RING_CSR0_AC2_RING_SIZE,
1341 rt2x00dev->tx[2].limit);
1342 rt2x00_set_field32(&reg, TX_RING_CSR0_AC3_RING_SIZE,
1343 rt2x00dev->tx[3].limit);
1344 rt2x00mmio_register_write(rt2x00dev, TX_RING_CSR0, value: reg);
1345
1346 reg = rt2x00mmio_register_read(rt2x00dev, TX_RING_CSR1);
1347 rt2x00_set_field32(&reg, TX_RING_CSR1_TXD_SIZE,
1348 rt2x00dev->tx[0].desc_size / 4);
1349 rt2x00mmio_register_write(rt2x00dev, TX_RING_CSR1, value: reg);
1350
1351 entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
1352 reg = rt2x00mmio_register_read(rt2x00dev, AC0_BASE_CSR);
1353 rt2x00_set_field32(&reg, AC0_BASE_CSR_RING_REGISTER,
1354 entry_priv->desc_dma);
1355 rt2x00mmio_register_write(rt2x00dev, AC0_BASE_CSR, value: reg);
1356
1357 entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
1358 reg = rt2x00mmio_register_read(rt2x00dev, AC1_BASE_CSR);
1359 rt2x00_set_field32(&reg, AC1_BASE_CSR_RING_REGISTER,
1360 entry_priv->desc_dma);
1361 rt2x00mmio_register_write(rt2x00dev, AC1_BASE_CSR, value: reg);
1362
1363 entry_priv = rt2x00dev->tx[2].entries[0].priv_data;
1364 reg = rt2x00mmio_register_read(rt2x00dev, AC2_BASE_CSR);
1365 rt2x00_set_field32(&reg, AC2_BASE_CSR_RING_REGISTER,
1366 entry_priv->desc_dma);
1367 rt2x00mmio_register_write(rt2x00dev, AC2_BASE_CSR, value: reg);
1368
1369 entry_priv = rt2x00dev->tx[3].entries[0].priv_data;
1370 reg = rt2x00mmio_register_read(rt2x00dev, AC3_BASE_CSR);
1371 rt2x00_set_field32(&reg, AC3_BASE_CSR_RING_REGISTER,
1372 entry_priv->desc_dma);
1373 rt2x00mmio_register_write(rt2x00dev, AC3_BASE_CSR, value: reg);
1374
1375 reg = rt2x00mmio_register_read(rt2x00dev, RX_RING_CSR);
1376 rt2x00_set_field32(&reg, RX_RING_CSR_RING_SIZE, rt2x00dev->rx->limit);
1377 rt2x00_set_field32(&reg, RX_RING_CSR_RXD_SIZE,
1378 rt2x00dev->rx->desc_size / 4);
1379 rt2x00_set_field32(&reg, RX_RING_CSR_RXD_WRITEBACK_SIZE, 4);
1380 rt2x00mmio_register_write(rt2x00dev, RX_RING_CSR, value: reg);
1381
1382 entry_priv = rt2x00dev->rx->entries[0].priv_data;
1383 reg = rt2x00mmio_register_read(rt2x00dev, RX_BASE_CSR);
1384 rt2x00_set_field32(&reg, RX_BASE_CSR_RING_REGISTER,
1385 entry_priv->desc_dma);
1386 rt2x00mmio_register_write(rt2x00dev, RX_BASE_CSR, value: reg);
1387
1388 reg = rt2x00mmio_register_read(rt2x00dev, TX_DMA_DST_CSR);
1389 rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC0, 2);
1390 rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC1, 2);
1391 rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC2, 2);
1392 rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC3, 2);
1393 rt2x00mmio_register_write(rt2x00dev, TX_DMA_DST_CSR, value: reg);
1394
1395 reg = rt2x00mmio_register_read(rt2x00dev, LOAD_TX_RING_CSR);
1396 rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC0, 1);
1397 rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC1, 1);
1398 rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC2, 1);
1399 rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC3, 1);
1400 rt2x00mmio_register_write(rt2x00dev, LOAD_TX_RING_CSR, value: reg);
1401
1402 reg = rt2x00mmio_register_read(rt2x00dev, RX_CNTL_CSR);
1403 rt2x00_set_field32(&reg, RX_CNTL_CSR_LOAD_RXD, 1);
1404 rt2x00mmio_register_write(rt2x00dev, RX_CNTL_CSR, value: reg);
1405
1406 return 0;
1407}
1408
1409static int rt61pci_init_registers(struct rt2x00_dev *rt2x00dev)
1410{
1411 u32 reg;
1412
1413 reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR0);
1414 rt2x00_set_field32(&reg, TXRX_CSR0_AUTO_TX_SEQ, 1);
1415 rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX, 0);
1416 rt2x00_set_field32(&reg, TXRX_CSR0_TX_WITHOUT_WAITING, 0);
1417 rt2x00mmio_register_write(rt2x00dev, TXRX_CSR0, value: reg);
1418
1419 reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR1);
1420 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID0, 47); /* CCK Signal */
1421 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID0_VALID, 1);
1422 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID1, 30); /* Rssi */
1423 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID1_VALID, 1);
1424 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID2, 42); /* OFDM Rate */
1425 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID2_VALID, 1);
1426 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID3, 30); /* Rssi */
1427 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID3_VALID, 1);
1428 rt2x00mmio_register_write(rt2x00dev, TXRX_CSR1, value: reg);
1429
1430 /*
1431 * CCK TXD BBP registers
1432 */
1433 reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR2);
1434 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID0, 13);
1435 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID0_VALID, 1);
1436 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID1, 12);
1437 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID1_VALID, 1);
1438 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID2, 11);
1439 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID2_VALID, 1);
1440 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID3, 10);
1441 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID3_VALID, 1);
1442 rt2x00mmio_register_write(rt2x00dev, TXRX_CSR2, value: reg);
1443
1444 /*
1445 * OFDM TXD BBP registers
1446 */
1447 reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR3);
1448 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID0, 7);
1449 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID0_VALID, 1);
1450 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID1, 6);
1451 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID1_VALID, 1);
1452 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID2, 5);
1453 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID2_VALID, 1);
1454 rt2x00mmio_register_write(rt2x00dev, TXRX_CSR3, value: reg);
1455
1456 reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR7);
1457 rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_6MBS, 59);
1458 rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_9MBS, 53);
1459 rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_12MBS, 49);
1460 rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_18MBS, 46);
1461 rt2x00mmio_register_write(rt2x00dev, TXRX_CSR7, value: reg);
1462
1463 reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR8);
1464 rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_24MBS, 44);
1465 rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_36MBS, 42);
1466 rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_48MBS, 42);
1467 rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_54MBS, 42);
1468 rt2x00mmio_register_write(rt2x00dev, TXRX_CSR8, value: reg);
1469
1470 reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR9);
1471 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_INTERVAL, 0);
1472 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 0);
1473 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_SYNC, 0);
1474 rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 0);
1475 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
1476 rt2x00_set_field32(&reg, TXRX_CSR9_TIMESTAMP_COMPENSATE, 0);
1477 rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, value: reg);
1478
1479 rt2x00mmio_register_write(rt2x00dev, TXRX_CSR15, value: 0x0000000f);
1480
1481 rt2x00mmio_register_write(rt2x00dev, MAC_CSR6, value: 0x00000fff);
1482
1483 reg = rt2x00mmio_register_read(rt2x00dev, MAC_CSR9);
1484 rt2x00_set_field32(&reg, MAC_CSR9_CW_SELECT, 0);
1485 rt2x00mmio_register_write(rt2x00dev, MAC_CSR9, value: reg);
1486
1487 rt2x00mmio_register_write(rt2x00dev, MAC_CSR10, value: 0x0000071c);
1488
1489 if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
1490 return -EBUSY;
1491
1492 rt2x00mmio_register_write(rt2x00dev, MAC_CSR13, value: 0x0000e000);
1493
1494 /*
1495 * Invalidate all Shared Keys (SEC_CSR0),
1496 * and clear the Shared key Cipher algorithms (SEC_CSR1 & SEC_CSR5)
1497 */
1498 rt2x00mmio_register_write(rt2x00dev, SEC_CSR0, value: 0x00000000);
1499 rt2x00mmio_register_write(rt2x00dev, SEC_CSR1, value: 0x00000000);
1500 rt2x00mmio_register_write(rt2x00dev, SEC_CSR5, value: 0x00000000);
1501
1502 rt2x00mmio_register_write(rt2x00dev, PHY_CSR1, value: 0x000023b0);
1503 rt2x00mmio_register_write(rt2x00dev, PHY_CSR5, value: 0x060a100c);
1504 rt2x00mmio_register_write(rt2x00dev, PHY_CSR6, value: 0x00080606);
1505 rt2x00mmio_register_write(rt2x00dev, PHY_CSR7, value: 0x00000a08);
1506
1507 rt2x00mmio_register_write(rt2x00dev, PCI_CFG_CSR, value: 0x28ca4404);
1508
1509 rt2x00mmio_register_write(rt2x00dev, TEST_MODE_CSR, value: 0x00000200);
1510
1511 rt2x00mmio_register_write(rt2x00dev, M2H_CMD_DONE_CSR, value: 0xffffffff);
1512
1513 /*
1514 * Clear all beacons
1515 * For the Beacon base registers we only need to clear
1516 * the first byte since that byte contains the VALID and OWNER
1517 * bits which (when set to 0) will invalidate the entire beacon.
1518 */
1519 rt2x00mmio_register_write(rt2x00dev, HW_BEACON_BASE0, value: 0);
1520 rt2x00mmio_register_write(rt2x00dev, HW_BEACON_BASE1, value: 0);
1521 rt2x00mmio_register_write(rt2x00dev, HW_BEACON_BASE2, value: 0);
1522 rt2x00mmio_register_write(rt2x00dev, HW_BEACON_BASE3, value: 0);
1523
1524 /*
1525 * We must clear the error counters.
1526 * These registers are cleared on read,
1527 * so we may pass a useless variable to store the value.
1528 */
1529 reg = rt2x00mmio_register_read(rt2x00dev, STA_CSR0);
1530 reg = rt2x00mmio_register_read(rt2x00dev, STA_CSR1);
1531 reg = rt2x00mmio_register_read(rt2x00dev, STA_CSR2);
1532
1533 /*
1534 * Reset MAC and BBP registers.
1535 */
1536 reg = rt2x00mmio_register_read(rt2x00dev, MAC_CSR1);
1537 rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 1);
1538 rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 1);
1539 rt2x00mmio_register_write(rt2x00dev, MAC_CSR1, value: reg);
1540
1541 reg = rt2x00mmio_register_read(rt2x00dev, MAC_CSR1);
1542 rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 0);
1543 rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 0);
1544 rt2x00mmio_register_write(rt2x00dev, MAC_CSR1, value: reg);
1545
1546 reg = rt2x00mmio_register_read(rt2x00dev, MAC_CSR1);
1547 rt2x00_set_field32(&reg, MAC_CSR1_HOST_READY, 1);
1548 rt2x00mmio_register_write(rt2x00dev, MAC_CSR1, value: reg);
1549
1550 return 0;
1551}
1552
1553static int rt61pci_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
1554{
1555 unsigned int i;
1556 u8 value;
1557
1558 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1559 value = rt61pci_bbp_read(rt2x00dev, word: 0);
1560 if ((value != 0xff) && (value != 0x00))
1561 return 0;
1562 udelay(REGISTER_BUSY_DELAY);
1563 }
1564
1565 rt2x00_err(rt2x00dev, "BBP register access failed, aborting\n");
1566 return -EACCES;
1567}
1568
1569static int rt61pci_init_bbp(struct rt2x00_dev *rt2x00dev)
1570{
1571 unsigned int i;
1572 u16 eeprom;
1573 u8 reg_id;
1574 u8 value;
1575
1576 if (unlikely(rt61pci_wait_bbp_ready(rt2x00dev)))
1577 return -EACCES;
1578
1579 rt61pci_bbp_write(rt2x00dev, word: 3, value: 0x00);
1580 rt61pci_bbp_write(rt2x00dev, word: 15, value: 0x30);
1581 rt61pci_bbp_write(rt2x00dev, word: 21, value: 0xc8);
1582 rt61pci_bbp_write(rt2x00dev, word: 22, value: 0x38);
1583 rt61pci_bbp_write(rt2x00dev, word: 23, value: 0x06);
1584 rt61pci_bbp_write(rt2x00dev, word: 24, value: 0xfe);
1585 rt61pci_bbp_write(rt2x00dev, word: 25, value: 0x0a);
1586 rt61pci_bbp_write(rt2x00dev, word: 26, value: 0x0d);
1587 rt61pci_bbp_write(rt2x00dev, word: 34, value: 0x12);
1588 rt61pci_bbp_write(rt2x00dev, word: 37, value: 0x07);
1589 rt61pci_bbp_write(rt2x00dev, word: 39, value: 0xf8);
1590 rt61pci_bbp_write(rt2x00dev, word: 41, value: 0x60);
1591 rt61pci_bbp_write(rt2x00dev, word: 53, value: 0x10);
1592 rt61pci_bbp_write(rt2x00dev, word: 54, value: 0x18);
1593 rt61pci_bbp_write(rt2x00dev, word: 60, value: 0x10);
1594 rt61pci_bbp_write(rt2x00dev, word: 61, value: 0x04);
1595 rt61pci_bbp_write(rt2x00dev, word: 62, value: 0x04);
1596 rt61pci_bbp_write(rt2x00dev, word: 75, value: 0xfe);
1597 rt61pci_bbp_write(rt2x00dev, word: 86, value: 0xfe);
1598 rt61pci_bbp_write(rt2x00dev, word: 88, value: 0xfe);
1599 rt61pci_bbp_write(rt2x00dev, word: 90, value: 0x0f);
1600 rt61pci_bbp_write(rt2x00dev, word: 99, value: 0x00);
1601 rt61pci_bbp_write(rt2x00dev, word: 102, value: 0x16);
1602 rt61pci_bbp_write(rt2x00dev, word: 107, value: 0x04);
1603
1604 for (i = 0; i < EEPROM_BBP_SIZE; i++) {
1605 eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i);
1606
1607 if (eeprom != 0xffff && eeprom != 0x0000) {
1608 reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
1609 value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
1610 rt61pci_bbp_write(rt2x00dev, word: reg_id, value);
1611 }
1612 }
1613
1614 return 0;
1615}
1616
1617/*
1618 * Device state switch handlers.
1619 */
1620static void rt61pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
1621 enum dev_state state)
1622{
1623 int mask = (state == STATE_RADIO_IRQ_OFF);
1624 u32 reg;
1625 unsigned long flags;
1626
1627 /*
1628 * When interrupts are being enabled, the interrupt registers
1629 * should clear the register to assure a clean state.
1630 */
1631 if (state == STATE_RADIO_IRQ_ON) {
1632 reg = rt2x00mmio_register_read(rt2x00dev, INT_SOURCE_CSR);
1633 rt2x00mmio_register_write(rt2x00dev, INT_SOURCE_CSR, value: reg);
1634
1635 reg = rt2x00mmio_register_read(rt2x00dev, MCU_INT_SOURCE_CSR);
1636 rt2x00mmio_register_write(rt2x00dev, MCU_INT_SOURCE_CSR, value: reg);
1637 }
1638
1639 /*
1640 * Only toggle the interrupts bits we are going to use.
1641 * Non-checked interrupt bits are disabled by default.
1642 */
1643 spin_lock_irqsave(&rt2x00dev->irqmask_lock, flags);
1644
1645 reg = rt2x00mmio_register_read(rt2x00dev, INT_MASK_CSR);
1646 rt2x00_set_field32(&reg, INT_MASK_CSR_TXDONE, mask);
1647 rt2x00_set_field32(&reg, INT_MASK_CSR_RXDONE, mask);
1648 rt2x00_set_field32(&reg, INT_MASK_CSR_BEACON_DONE, mask);
1649 rt2x00_set_field32(&reg, INT_MASK_CSR_ENABLE_MITIGATION, mask);
1650 rt2x00_set_field32(&reg, INT_MASK_CSR_MITIGATION_PERIOD, 0xff);
1651 rt2x00mmio_register_write(rt2x00dev, INT_MASK_CSR, value: reg);
1652
1653 reg = rt2x00mmio_register_read(rt2x00dev, MCU_INT_MASK_CSR);
1654 rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_0, mask);
1655 rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_1, mask);
1656 rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_2, mask);
1657 rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_3, mask);
1658 rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_4, mask);
1659 rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_5, mask);
1660 rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_6, mask);
1661 rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_7, mask);
1662 rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_TWAKEUP, mask);
1663 rt2x00mmio_register_write(rt2x00dev, MCU_INT_MASK_CSR, value: reg);
1664
1665 spin_unlock_irqrestore(lock: &rt2x00dev->irqmask_lock, flags);
1666
1667 if (state == STATE_RADIO_IRQ_OFF) {
1668 /*
1669 * Ensure that all tasklets are finished.
1670 */
1671 tasklet_kill(t: &rt2x00dev->txstatus_tasklet);
1672 tasklet_kill(t: &rt2x00dev->rxdone_tasklet);
1673 tasklet_kill(t: &rt2x00dev->autowake_tasklet);
1674 tasklet_kill(t: &rt2x00dev->tbtt_tasklet);
1675 }
1676}
1677
1678static int rt61pci_enable_radio(struct rt2x00_dev *rt2x00dev)
1679{
1680 u32 reg;
1681
1682 /*
1683 * Initialize all registers.
1684 */
1685 if (unlikely(rt61pci_init_queues(rt2x00dev) ||
1686 rt61pci_init_registers(rt2x00dev) ||
1687 rt61pci_init_bbp(rt2x00dev)))
1688 return -EIO;
1689
1690 /*
1691 * Enable RX.
1692 */
1693 reg = rt2x00mmio_register_read(rt2x00dev, RX_CNTL_CSR);
1694 rt2x00_set_field32(&reg, RX_CNTL_CSR_ENABLE_RX_DMA, 1);
1695 rt2x00mmio_register_write(rt2x00dev, RX_CNTL_CSR, value: reg);
1696
1697 return 0;
1698}
1699
1700static void rt61pci_disable_radio(struct rt2x00_dev *rt2x00dev)
1701{
1702 /*
1703 * Disable power
1704 */
1705 rt2x00mmio_register_write(rt2x00dev, MAC_CSR10, value: 0x00001818);
1706}
1707
1708static int rt61pci_set_state(struct rt2x00_dev *rt2x00dev, enum dev_state state)
1709{
1710 u32 reg, reg2;
1711 unsigned int i;
1712 bool put_to_sleep;
1713
1714 put_to_sleep = (state != STATE_AWAKE);
1715
1716 reg = rt2x00mmio_register_read(rt2x00dev, MAC_CSR12);
1717 rt2x00_set_field32(&reg, MAC_CSR12_FORCE_WAKEUP, !put_to_sleep);
1718 rt2x00_set_field32(&reg, MAC_CSR12_PUT_TO_SLEEP, put_to_sleep);
1719 rt2x00mmio_register_write(rt2x00dev, MAC_CSR12, value: reg);
1720
1721 /*
1722 * Device is not guaranteed to be in the requested state yet.
1723 * We must wait until the register indicates that the
1724 * device has entered the correct state.
1725 */
1726 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1727 reg2 = rt2x00mmio_register_read(rt2x00dev, MAC_CSR12);
1728 state = rt2x00_get_field32(reg2, MAC_CSR12_BBP_CURRENT_STATE);
1729 if (state == !put_to_sleep)
1730 return 0;
1731 rt2x00mmio_register_write(rt2x00dev, MAC_CSR12, value: reg);
1732 msleep(msecs: 10);
1733 }
1734
1735 return -EBUSY;
1736}
1737
1738static int rt61pci_set_device_state(struct rt2x00_dev *rt2x00dev,
1739 enum dev_state state)
1740{
1741 int retval = 0;
1742
1743 switch (state) {
1744 case STATE_RADIO_ON:
1745 retval = rt61pci_enable_radio(rt2x00dev);
1746 break;
1747 case STATE_RADIO_OFF:
1748 rt61pci_disable_radio(rt2x00dev);
1749 break;
1750 case STATE_RADIO_IRQ_ON:
1751 case STATE_RADIO_IRQ_OFF:
1752 rt61pci_toggle_irq(rt2x00dev, state);
1753 break;
1754 case STATE_DEEP_SLEEP:
1755 case STATE_SLEEP:
1756 case STATE_STANDBY:
1757 case STATE_AWAKE:
1758 retval = rt61pci_set_state(rt2x00dev, state);
1759 break;
1760 default:
1761 retval = -ENOTSUPP;
1762 break;
1763 }
1764
1765 if (unlikely(retval))
1766 rt2x00_err(rt2x00dev, "Device failed to enter state %d (%d)\n",
1767 state, retval);
1768
1769 return retval;
1770}
1771
1772/*
1773 * TX descriptor initialization
1774 */
1775static void rt61pci_write_tx_desc(struct queue_entry *entry,
1776 struct txentry_desc *txdesc)
1777{
1778 struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb: entry->skb);
1779 struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
1780 __le32 *txd = entry_priv->desc;
1781 u32 word;
1782
1783 /*
1784 * Start writing the descriptor words.
1785 */
1786 word = rt2x00_desc_read(desc: txd, word: 1);
1787 rt2x00_set_field32(&word, TXD_W1_HOST_Q_ID, entry->queue->qid);
1788 rt2x00_set_field32(&word, TXD_W1_AIFSN, entry->queue->aifs);
1789 rt2x00_set_field32(&word, TXD_W1_CWMIN, entry->queue->cw_min);
1790 rt2x00_set_field32(&word, TXD_W1_CWMAX, entry->queue->cw_max);
1791 rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, txdesc->iv_offset);
1792 rt2x00_set_field32(&word, TXD_W1_HW_SEQUENCE,
1793 test_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags));
1794 rt2x00_set_field32(&word, TXD_W1_BUFFER_COUNT, 1);
1795 rt2x00_desc_write(desc: txd, word: 1, value: word);
1796
1797 word = rt2x00_desc_read(desc: txd, word: 2);
1798 rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, txdesc->u.plcp.signal);
1799 rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, txdesc->u.plcp.service);
1800 rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW,
1801 txdesc->u.plcp.length_low);
1802 rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH,
1803 txdesc->u.plcp.length_high);
1804 rt2x00_desc_write(desc: txd, word: 2, value: word);
1805
1806 if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags)) {
1807 _rt2x00_desc_write(desc: txd, word: 3, value: skbdesc->iv[0]);
1808 _rt2x00_desc_write(desc: txd, word: 4, value: skbdesc->iv[1]);
1809 }
1810
1811 word = rt2x00_desc_read(desc: txd, word: 5);
1812 rt2x00_set_field32(&word, TXD_W5_PID_TYPE, entry->queue->qid);
1813 rt2x00_set_field32(&word, TXD_W5_PID_SUBTYPE, entry->entry_idx);
1814 rt2x00_set_field32(&word, TXD_W5_TX_POWER,
1815 TXPOWER_TO_DEV(entry->queue->rt2x00dev->tx_power));
1816 rt2x00_set_field32(&word, TXD_W5_WAITING_DMA_DONE_INT, 1);
1817 rt2x00_desc_write(desc: txd, word: 5, value: word);
1818
1819 if (entry->queue->qid != QID_BEACON) {
1820 word = rt2x00_desc_read(desc: txd, word: 6);
1821 rt2x00_set_field32(&word, TXD_W6_BUFFER_PHYSICAL_ADDRESS,
1822 skbdesc->skb_dma);
1823 rt2x00_desc_write(desc: txd, word: 6, value: word);
1824
1825 word = rt2x00_desc_read(desc: txd, word: 11);
1826 rt2x00_set_field32(&word, TXD_W11_BUFFER_LENGTH0,
1827 txdesc->length);
1828 rt2x00_desc_write(desc: txd, word: 11, value: word);
1829 }
1830
1831 /*
1832 * Writing TXD word 0 must the last to prevent a race condition with
1833 * the device, whereby the device may take hold of the TXD before we
1834 * finished updating it.
1835 */
1836 word = rt2x00_desc_read(desc: txd, word: 0);
1837 rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
1838 rt2x00_set_field32(&word, TXD_W0_VALID, 1);
1839 rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1840 test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1841 rt2x00_set_field32(&word, TXD_W0_ACK,
1842 test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1843 rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1844 test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1845 rt2x00_set_field32(&word, TXD_W0_OFDM,
1846 (txdesc->rate_mode == RATE_MODE_OFDM));
1847 rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->u.plcp.ifs);
1848 rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
1849 test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
1850 rt2x00_set_field32(&word, TXD_W0_TKIP_MIC,
1851 test_bit(ENTRY_TXD_ENCRYPT_MMIC, &txdesc->flags));
1852 rt2x00_set_field32(&word, TXD_W0_KEY_TABLE,
1853 test_bit(ENTRY_TXD_ENCRYPT_PAIRWISE, &txdesc->flags));
1854 rt2x00_set_field32(&word, TXD_W0_KEY_INDEX, txdesc->key_idx);
1855 rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, txdesc->length);
1856 rt2x00_set_field32(&word, TXD_W0_BURST,
1857 test_bit(ENTRY_TXD_BURST, &txdesc->flags));
1858 rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, txdesc->cipher);
1859 rt2x00_desc_write(desc: txd, word: 0, value: word);
1860
1861 /*
1862 * Register descriptor details in skb frame descriptor.
1863 */
1864 skbdesc->desc = txd;
1865 skbdesc->desc_len = (entry->queue->qid == QID_BEACON) ? TXINFO_SIZE :
1866 TXD_DESC_SIZE;
1867}
1868
1869/*
1870 * TX data initialization
1871 */
1872static void rt61pci_write_beacon(struct queue_entry *entry,
1873 struct txentry_desc *txdesc)
1874{
1875 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1876 struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
1877 unsigned int beacon_base;
1878 unsigned int padding_len;
1879 u32 orig_reg, reg;
1880
1881 /*
1882 * Disable beaconing while we are reloading the beacon data,
1883 * otherwise we might be sending out invalid data.
1884 */
1885 reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR9);
1886 orig_reg = reg;
1887 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
1888 rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, value: reg);
1889
1890 /*
1891 * Write the TX descriptor for the beacon.
1892 */
1893 rt61pci_write_tx_desc(entry, txdesc);
1894
1895 /*
1896 * Dump beacon to userspace through debugfs.
1897 */
1898 rt2x00debug_dump_frame(rt2x00dev, type: DUMP_FRAME_BEACON, entry);
1899
1900 /*
1901 * Write entire beacon with descriptor and padding to register.
1902 */
1903 padding_len = roundup(entry->skb->len, 4) - entry->skb->len;
1904 if (padding_len && skb_pad(skb: entry->skb, pad: padding_len)) {
1905 rt2x00_err(rt2x00dev, "Failure padding beacon, aborting\n");
1906 /* skb freed by skb_pad() on failure */
1907 entry->skb = NULL;
1908 rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, value: orig_reg);
1909 return;
1910 }
1911
1912 beacon_base = HW_BEACON_OFFSET(entry->entry_idx);
1913 rt2x00mmio_register_multiwrite(rt2x00dev, offset: beacon_base,
1914 value: entry_priv->desc, TXINFO_SIZE);
1915 rt2x00mmio_register_multiwrite(rt2x00dev, offset: beacon_base + TXINFO_SIZE,
1916 value: entry->skb->data,
1917 length: entry->skb->len + padding_len);
1918
1919 /*
1920 * Enable beaconing again.
1921 *
1922 * For Wi-Fi faily generated beacons between participating
1923 * stations. Set TBTT phase adaptive adjustment step to 8us.
1924 */
1925 rt2x00mmio_register_write(rt2x00dev, TXRX_CSR10, value: 0x00001008);
1926
1927 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 1);
1928 rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, value: reg);
1929
1930 /*
1931 * Clean up beacon skb.
1932 */
1933 dev_kfree_skb_any(skb: entry->skb);
1934 entry->skb = NULL;
1935}
1936
1937static void rt61pci_clear_beacon(struct queue_entry *entry)
1938{
1939 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1940 u32 orig_reg, reg;
1941
1942 /*
1943 * Disable beaconing while we are reloading the beacon data,
1944 * otherwise we might be sending out invalid data.
1945 */
1946 orig_reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR9);
1947 reg = orig_reg;
1948 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
1949 rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, value: reg);
1950
1951 /*
1952 * Clear beacon.
1953 */
1954 rt2x00mmio_register_write(rt2x00dev,
1955 HW_BEACON_OFFSET(entry->entry_idx), value: 0);
1956
1957 /*
1958 * Restore global beaconing state.
1959 */
1960 rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, value: orig_reg);
1961}
1962
1963/*
1964 * RX control handlers
1965 */
1966static int rt61pci_agc_to_rssi(struct rt2x00_dev *rt2x00dev, int rxd_w1)
1967{
1968 u8 offset = rt2x00dev->lna_gain;
1969 u8 lna;
1970
1971 lna = rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_LNA);
1972 switch (lna) {
1973 case 3:
1974 offset += 90;
1975 break;
1976 case 2:
1977 offset += 74;
1978 break;
1979 case 1:
1980 offset += 64;
1981 break;
1982 default:
1983 return 0;
1984 }
1985
1986 if (rt2x00dev->curr_band == NL80211_BAND_5GHZ) {
1987 if (lna == 3 || lna == 2)
1988 offset += 10;
1989 }
1990
1991 return rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_AGC) * 2 - offset;
1992}
1993
1994static void rt61pci_fill_rxdone(struct queue_entry *entry,
1995 struct rxdone_entry_desc *rxdesc)
1996{
1997 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1998 struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
1999 u32 word0;
2000 u32 word1;
2001
2002 word0 = rt2x00_desc_read(desc: entry_priv->desc, word: 0);
2003 word1 = rt2x00_desc_read(desc: entry_priv->desc, word: 1);
2004
2005 if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
2006 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
2007
2008 rxdesc->cipher = rt2x00_get_field32(word0, RXD_W0_CIPHER_ALG);
2009 rxdesc->cipher_status = rt2x00_get_field32(word0, RXD_W0_CIPHER_ERROR);
2010
2011 if (rxdesc->cipher != CIPHER_NONE) {
2012 rxdesc->iv[0] = _rt2x00_desc_read(desc: entry_priv->desc, word: 2);
2013 rxdesc->iv[1] = _rt2x00_desc_read(desc: entry_priv->desc, word: 3);
2014 rxdesc->dev_flags |= RXDONE_CRYPTO_IV;
2015
2016 rxdesc->icv = _rt2x00_desc_read(desc: entry_priv->desc, word: 4);
2017 rxdesc->dev_flags |= RXDONE_CRYPTO_ICV;
2018
2019 /*
2020 * Hardware has stripped IV/EIV data from 802.11 frame during
2021 * decryption. It has provided the data separately but rt2x00lib
2022 * should decide if it should be reinserted.
2023 */
2024 rxdesc->flags |= RX_FLAG_IV_STRIPPED;
2025
2026 /*
2027 * The hardware has already checked the Michael Mic and has
2028 * stripped it from the frame. Signal this to mac80211.
2029 */
2030 rxdesc->flags |= RX_FLAG_MMIC_STRIPPED;
2031
2032 if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
2033 rxdesc->flags |= RX_FLAG_DECRYPTED;
2034 else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
2035 rxdesc->flags |= RX_FLAG_MMIC_ERROR;
2036 }
2037
2038 /*
2039 * Obtain the status about this packet.
2040 * When frame was received with an OFDM bitrate,
2041 * the signal is the PLCP value. If it was received with
2042 * a CCK bitrate the signal is the rate in 100kbit/s.
2043 */
2044 rxdesc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL);
2045 rxdesc->rssi = rt61pci_agc_to_rssi(rt2x00dev, rxd_w1: word1);
2046 rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
2047
2048 if (rt2x00_get_field32(word0, RXD_W0_OFDM))
2049 rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
2050 else
2051 rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE;
2052 if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
2053 rxdesc->dev_flags |= RXDONE_MY_BSS;
2054}
2055
2056/*
2057 * Interrupt functions.
2058 */
2059static void rt61pci_txdone(struct rt2x00_dev *rt2x00dev)
2060{
2061 struct data_queue *queue;
2062 struct queue_entry *entry;
2063 struct queue_entry *entry_done;
2064 struct queue_entry_priv_mmio *entry_priv;
2065 struct txdone_entry_desc txdesc;
2066 u32 word;
2067 u32 reg;
2068 int type;
2069 int index;
2070 int i;
2071
2072 /*
2073 * TX_STA_FIFO is a stack of X entries, hence read TX_STA_FIFO
2074 * at most X times and also stop processing once the TX_STA_FIFO_VALID
2075 * flag is not set anymore.
2076 *
2077 * The legacy drivers use X=TX_RING_SIZE but state in a comment
2078 * that the TX_STA_FIFO stack has a size of 16. We stick to our
2079 * tx ring size for now.
2080 */
2081 for (i = 0; i < rt2x00dev->tx->limit; i++) {
2082 reg = rt2x00mmio_register_read(rt2x00dev, STA_CSR4);
2083 if (!rt2x00_get_field32(reg, STA_CSR4_VALID))
2084 break;
2085
2086 /*
2087 * Skip this entry when it contains an invalid
2088 * queue identication number.
2089 */
2090 type = rt2x00_get_field32(reg, STA_CSR4_PID_TYPE);
2091 queue = rt2x00queue_get_tx_queue(rt2x00dev, queue: type);
2092 if (unlikely(!queue))
2093 continue;
2094
2095 /*
2096 * Skip this entry when it contains an invalid
2097 * index number.
2098 */
2099 index = rt2x00_get_field32(reg, STA_CSR4_PID_SUBTYPE);
2100 if (unlikely(index >= queue->limit))
2101 continue;
2102
2103 entry = &queue->entries[index];
2104 entry_priv = entry->priv_data;
2105 word = rt2x00_desc_read(desc: entry_priv->desc, word: 0);
2106
2107 if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
2108 !rt2x00_get_field32(word, TXD_W0_VALID))
2109 return;
2110
2111 entry_done = rt2x00queue_get_entry(queue, index: Q_INDEX_DONE);
2112 while (entry != entry_done) {
2113 /* Catch up.
2114 * Just report any entries we missed as failed.
2115 */
2116 rt2x00_warn(rt2x00dev, "TX status report missed for entry %d\n",
2117 entry_done->entry_idx);
2118
2119 rt2x00lib_txdone_noinfo(entry: entry_done, status: TXDONE_UNKNOWN);
2120 entry_done = rt2x00queue_get_entry(queue, index: Q_INDEX_DONE);
2121 }
2122
2123 /*
2124 * Obtain the status about this packet.
2125 */
2126 txdesc.flags = 0;
2127 switch (rt2x00_get_field32(reg, STA_CSR4_TX_RESULT)) {
2128 case 0: /* Success, maybe with retry */
2129 __set_bit(TXDONE_SUCCESS, &txdesc.flags);
2130 break;
2131 case 6: /* Failure, excessive retries */
2132 __set_bit(TXDONE_EXCESSIVE_RETRY, &txdesc.flags);
2133 fallthrough; /* this is a failed frame! */
2134 default: /* Failure */
2135 __set_bit(TXDONE_FAILURE, &txdesc.flags);
2136 }
2137 txdesc.retry = rt2x00_get_field32(reg, STA_CSR4_RETRY_COUNT);
2138
2139 /*
2140 * the frame was retried at least once
2141 * -> hw used fallback rates
2142 */
2143 if (txdesc.retry)
2144 __set_bit(TXDONE_FALLBACK, &txdesc.flags);
2145
2146 rt2x00lib_txdone(entry, txdesc: &txdesc);
2147 }
2148}
2149
2150static void rt61pci_wakeup(struct rt2x00_dev *rt2x00dev)
2151{
2152 struct rt2x00lib_conf libconf = { .conf = &rt2x00dev->hw->conf };
2153
2154 rt61pci_config(rt2x00dev, libconf: &libconf, flags: IEEE80211_CONF_CHANGE_PS);
2155}
2156
2157static inline void rt61pci_enable_interrupt(struct rt2x00_dev *rt2x00dev,
2158 struct rt2x00_field32 irq_field)
2159{
2160 u32 reg;
2161
2162 /*
2163 * Enable a single interrupt. The interrupt mask register
2164 * access needs locking.
2165 */
2166 spin_lock_irq(lock: &rt2x00dev->irqmask_lock);
2167
2168 reg = rt2x00mmio_register_read(rt2x00dev, INT_MASK_CSR);
2169 rt2x00_set_field32(&reg, irq_field, 0);
2170 rt2x00mmio_register_write(rt2x00dev, INT_MASK_CSR, value: reg);
2171
2172 spin_unlock_irq(lock: &rt2x00dev->irqmask_lock);
2173}
2174
2175static void rt61pci_enable_mcu_interrupt(struct rt2x00_dev *rt2x00dev,
2176 struct rt2x00_field32 irq_field)
2177{
2178 u32 reg;
2179
2180 /*
2181 * Enable a single MCU interrupt. The interrupt mask register
2182 * access needs locking.
2183 */
2184 spin_lock_irq(lock: &rt2x00dev->irqmask_lock);
2185
2186 reg = rt2x00mmio_register_read(rt2x00dev, MCU_INT_MASK_CSR);
2187 rt2x00_set_field32(&reg, irq_field, 0);
2188 rt2x00mmio_register_write(rt2x00dev, MCU_INT_MASK_CSR, value: reg);
2189
2190 spin_unlock_irq(lock: &rt2x00dev->irqmask_lock);
2191}
2192
2193static void rt61pci_txstatus_tasklet(struct tasklet_struct *t)
2194{
2195 struct rt2x00_dev *rt2x00dev = from_tasklet(rt2x00dev, t,
2196 txstatus_tasklet);
2197
2198 rt61pci_txdone(rt2x00dev);
2199 if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
2200 rt61pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_TXDONE);
2201}
2202
2203static void rt61pci_tbtt_tasklet(struct tasklet_struct *t)
2204{
2205 struct rt2x00_dev *rt2x00dev = from_tasklet(rt2x00dev, t, tbtt_tasklet);
2206 rt2x00lib_beacondone(rt2x00dev);
2207 if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
2208 rt61pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_BEACON_DONE);
2209}
2210
2211static void rt61pci_rxdone_tasklet(struct tasklet_struct *t)
2212{
2213 struct rt2x00_dev *rt2x00dev = from_tasklet(rt2x00dev, t,
2214 rxdone_tasklet);
2215 if (rt2x00mmio_rxdone(rt2x00dev))
2216 tasklet_schedule(t: &rt2x00dev->rxdone_tasklet);
2217 else if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
2218 rt61pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_RXDONE);
2219}
2220
2221static void rt61pci_autowake_tasklet(struct tasklet_struct *t)
2222{
2223 struct rt2x00_dev *rt2x00dev = from_tasklet(rt2x00dev, t,
2224 autowake_tasklet);
2225 rt61pci_wakeup(rt2x00dev);
2226 rt2x00mmio_register_write(rt2x00dev,
2227 M2H_CMD_DONE_CSR, value: 0xffffffff);
2228 if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
2229 rt61pci_enable_mcu_interrupt(rt2x00dev, MCU_INT_MASK_CSR_TWAKEUP);
2230}
2231
2232static irqreturn_t rt61pci_interrupt(int irq, void *dev_instance)
2233{
2234 struct rt2x00_dev *rt2x00dev = dev_instance;
2235 u32 reg_mcu, mask_mcu;
2236 u32 reg, mask;
2237
2238 /*
2239 * Get the interrupt sources & saved to local variable.
2240 * Write register value back to clear pending interrupts.
2241 */
2242 reg_mcu = rt2x00mmio_register_read(rt2x00dev, MCU_INT_SOURCE_CSR);
2243 rt2x00mmio_register_write(rt2x00dev, MCU_INT_SOURCE_CSR, value: reg_mcu);
2244
2245 reg = rt2x00mmio_register_read(rt2x00dev, INT_SOURCE_CSR);
2246 rt2x00mmio_register_write(rt2x00dev, INT_SOURCE_CSR, value: reg);
2247
2248 if (!reg && !reg_mcu)
2249 return IRQ_NONE;
2250
2251 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
2252 return IRQ_HANDLED;
2253
2254 /*
2255 * Schedule tasklets for interrupt handling.
2256 */
2257 if (rt2x00_get_field32(reg, INT_SOURCE_CSR_RXDONE))
2258 tasklet_schedule(t: &rt2x00dev->rxdone_tasklet);
2259
2260 if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TXDONE))
2261 tasklet_schedule(t: &rt2x00dev->txstatus_tasklet);
2262
2263 if (rt2x00_get_field32(reg, INT_SOURCE_CSR_BEACON_DONE))
2264 tasklet_hi_schedule(t: &rt2x00dev->tbtt_tasklet);
2265
2266 if (rt2x00_get_field32(reg_mcu, MCU_INT_SOURCE_CSR_TWAKEUP))
2267 tasklet_schedule(t: &rt2x00dev->autowake_tasklet);
2268
2269 /*
2270 * Since INT_MASK_CSR and INT_SOURCE_CSR use the same bits
2271 * for interrupts and interrupt masks we can just use the value of
2272 * INT_SOURCE_CSR to create the interrupt mask.
2273 */
2274 mask = reg;
2275 mask_mcu = reg_mcu;
2276
2277 /*
2278 * Disable all interrupts for which a tasklet was scheduled right now,
2279 * the tasklet will reenable the appropriate interrupts.
2280 */
2281 spin_lock(lock: &rt2x00dev->irqmask_lock);
2282
2283 reg = rt2x00mmio_register_read(rt2x00dev, INT_MASK_CSR);
2284 reg |= mask;
2285 rt2x00mmio_register_write(rt2x00dev, INT_MASK_CSR, value: reg);
2286
2287 reg = rt2x00mmio_register_read(rt2x00dev, MCU_INT_MASK_CSR);
2288 reg |= mask_mcu;
2289 rt2x00mmio_register_write(rt2x00dev, MCU_INT_MASK_CSR, value: reg);
2290
2291 spin_unlock(lock: &rt2x00dev->irqmask_lock);
2292
2293 return IRQ_HANDLED;
2294}
2295
2296/*
2297 * Device probe functions.
2298 */
2299static int rt61pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
2300{
2301 struct eeprom_93cx6 eeprom;
2302 u32 reg;
2303 u16 word;
2304 u8 *mac;
2305 s8 value;
2306
2307 reg = rt2x00mmio_register_read(rt2x00dev, E2PROM_CSR);
2308
2309 eeprom.data = rt2x00dev;
2310 eeprom.register_read = rt61pci_eepromregister_read;
2311 eeprom.register_write = rt61pci_eepromregister_write;
2312 eeprom.width = rt2x00_get_field32(reg, E2PROM_CSR_TYPE_93C46) ?
2313 PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
2314 eeprom.reg_data_in = 0;
2315 eeprom.reg_data_out = 0;
2316 eeprom.reg_data_clock = 0;
2317 eeprom.reg_chip_select = 0;
2318
2319 eeprom_93cx6_multiread(eeprom: &eeprom, EEPROM_BASE, data: rt2x00dev->eeprom,
2320 EEPROM_SIZE / sizeof(u16));
2321
2322 /*
2323 * Start validation of the data that has been read.
2324 */
2325 mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
2326 rt2x00lib_set_mac_address(rt2x00dev, eeprom_mac_addr: mac);
2327
2328 word = rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA);
2329 if (word == 0xffff) {
2330 rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
2331 rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
2332 ANTENNA_B);
2333 rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
2334 ANTENNA_B);
2335 rt2x00_set_field16(&word, EEPROM_ANTENNA_FRAME_TYPE, 0);
2336 rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
2337 rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
2338 rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF5225);
2339 rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, data: word);
2340 rt2x00_eeprom_dbg(rt2x00dev, "Antenna: 0x%04x\n", word);
2341 }
2342
2343 word = rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC);
2344 if (word == 0xffff) {
2345 rt2x00_set_field16(&word, EEPROM_NIC_ENABLE_DIVERSITY, 0);
2346 rt2x00_set_field16(&word, EEPROM_NIC_TX_DIVERSITY, 0);
2347 rt2x00_set_field16(&word, EEPROM_NIC_RX_FIXED, 0);
2348 rt2x00_set_field16(&word, EEPROM_NIC_TX_FIXED, 0);
2349 rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_BG, 0);
2350 rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
2351 rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_A, 0);
2352 rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, data: word);
2353 rt2x00_eeprom_dbg(rt2x00dev, "NIC: 0x%04x\n", word);
2354 }
2355
2356 word = rt2x00_eeprom_read(rt2x00dev, EEPROM_LED);
2357 if (word == 0xffff) {
2358 rt2x00_set_field16(&word, EEPROM_LED_LED_MODE,
2359 LED_MODE_DEFAULT);
2360 rt2x00_eeprom_write(rt2x00dev, EEPROM_LED, data: word);
2361 rt2x00_eeprom_dbg(rt2x00dev, "Led: 0x%04x\n", word);
2362 }
2363
2364 word = rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ);
2365 if (word == 0xffff) {
2366 rt2x00_set_field16(&word, EEPROM_FREQ_OFFSET, 0);
2367 rt2x00_set_field16(&word, EEPROM_FREQ_SEQ, 0);
2368 rt2x00_eeprom_write(rt2x00dev, EEPROM_FREQ, data: word);
2369 rt2x00_eeprom_dbg(rt2x00dev, "Freq: 0x%04x\n", word);
2370 }
2371
2372 word = rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG);
2373 if (word == 0xffff) {
2374 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
2375 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
2376 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, data: word);
2377 rt2x00_eeprom_dbg(rt2x00dev, "RSSI OFFSET BG: 0x%04x\n", word);
2378 } else {
2379 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_1);
2380 if (value < -10 || value > 10)
2381 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
2382 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_2);
2383 if (value < -10 || value > 10)
2384 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
2385 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, data: word);
2386 }
2387
2388 word = rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A);
2389 if (word == 0xffff) {
2390 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
2391 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
2392 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, data: word);
2393 rt2x00_eeprom_dbg(rt2x00dev, "RSSI OFFSET A: 0x%04x\n", word);
2394 } else {
2395 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_1);
2396 if (value < -10 || value > 10)
2397 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
2398 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_2);
2399 if (value < -10 || value > 10)
2400 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
2401 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, data: word);
2402 }
2403
2404 return 0;
2405}
2406
2407static int rt61pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
2408{
2409 u32 reg;
2410 u16 value;
2411 u16 eeprom;
2412
2413 /*
2414 * Read EEPROM word for configuration.
2415 */
2416 eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA);
2417
2418 /*
2419 * Identify RF chipset.
2420 */
2421 value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
2422 reg = rt2x00mmio_register_read(rt2x00dev, MAC_CSR0);
2423 rt2x00_set_chip(rt2x00dev, rt2x00_get_field32(reg, MAC_CSR0_CHIPSET),
2424 rf: value, rt2x00_get_field32(reg, MAC_CSR0_REVISION));
2425
2426 if (!rt2x00_rf(rt2x00dev, RF5225) &&
2427 !rt2x00_rf(rt2x00dev, RF5325) &&
2428 !rt2x00_rf(rt2x00dev, RF2527) &&
2429 !rt2x00_rf(rt2x00dev, RF2529)) {
2430 rt2x00_err(rt2x00dev, "Invalid RF chipset detected\n");
2431 return -ENODEV;
2432 }
2433
2434 /*
2435 * Determine number of antennas.
2436 */
2437 if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_NUM) == 2)
2438 __set_bit(CAPABILITY_DOUBLE_ANTENNA, &rt2x00dev->cap_flags);
2439
2440 /*
2441 * Identify default antenna configuration.
2442 */
2443 rt2x00dev->default_ant.tx =
2444 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
2445 rt2x00dev->default_ant.rx =
2446 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
2447
2448 /*
2449 * Read the Frame type.
2450 */
2451 if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_FRAME_TYPE))
2452 __set_bit(CAPABILITY_FRAME_TYPE, &rt2x00dev->cap_flags);
2453
2454 /*
2455 * Detect if this device has a hardware controlled radio.
2456 */
2457 if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
2458 __set_bit(CAPABILITY_HW_BUTTON, &rt2x00dev->cap_flags);
2459
2460 /*
2461 * Read frequency offset and RF programming sequence.
2462 */
2463 eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ);
2464 if (rt2x00_get_field16(eeprom, EEPROM_FREQ_SEQ))
2465 __set_bit(CAPABILITY_RF_SEQUENCE, &rt2x00dev->cap_flags);
2466
2467 rt2x00dev->freq_offset = rt2x00_get_field16(eeprom, EEPROM_FREQ_OFFSET);
2468
2469 /*
2470 * Read external LNA informations.
2471 */
2472 eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC);
2473
2474 if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_A))
2475 __set_bit(CAPABILITY_EXTERNAL_LNA_A, &rt2x00dev->cap_flags);
2476 if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_BG))
2477 __set_bit(CAPABILITY_EXTERNAL_LNA_BG, &rt2x00dev->cap_flags);
2478
2479 /*
2480 * When working with a RF2529 chip without double antenna,
2481 * the antenna settings should be gathered from the NIC
2482 * eeprom word.
2483 */
2484 if (rt2x00_rf(rt2x00dev, RF2529) &&
2485 !rt2x00_has_cap_double_antenna(rt2x00dev)) {
2486 rt2x00dev->default_ant.rx =
2487 ANTENNA_A + rt2x00_get_field16(eeprom, EEPROM_NIC_RX_FIXED);
2488 rt2x00dev->default_ant.tx =
2489 ANTENNA_B - rt2x00_get_field16(eeprom, EEPROM_NIC_TX_FIXED);
2490
2491 if (rt2x00_get_field16(eeprom, EEPROM_NIC_TX_DIVERSITY))
2492 rt2x00dev->default_ant.tx = ANTENNA_SW_DIVERSITY;
2493 if (rt2x00_get_field16(eeprom, EEPROM_NIC_ENABLE_DIVERSITY))
2494 rt2x00dev->default_ant.rx = ANTENNA_SW_DIVERSITY;
2495 }
2496
2497 /*
2498 * Store led settings, for correct led behaviour.
2499 * If the eeprom value is invalid,
2500 * switch to default led mode.
2501 */
2502#ifdef CONFIG_RT2X00_LIB_LEDS
2503 eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_LED);
2504 value = rt2x00_get_field16(eeprom, EEPROM_LED_LED_MODE);
2505
2506 rt61pci_init_led(rt2x00dev, led: &rt2x00dev->led_radio, type: LED_TYPE_RADIO);
2507 rt61pci_init_led(rt2x00dev, led: &rt2x00dev->led_assoc, type: LED_TYPE_ASSOC);
2508 if (value == LED_MODE_SIGNAL_STRENGTH)
2509 rt61pci_init_led(rt2x00dev, led: &rt2x00dev->led_qual,
2510 type: LED_TYPE_QUALITY);
2511
2512 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_LED_MODE, value);
2513 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_0,
2514 rt2x00_get_field16(eeprom,
2515 EEPROM_LED_POLARITY_GPIO_0));
2516 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_1,
2517 rt2x00_get_field16(eeprom,
2518 EEPROM_LED_POLARITY_GPIO_1));
2519 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_2,
2520 rt2x00_get_field16(eeprom,
2521 EEPROM_LED_POLARITY_GPIO_2));
2522 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_3,
2523 rt2x00_get_field16(eeprom,
2524 EEPROM_LED_POLARITY_GPIO_3));
2525 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_4,
2526 rt2x00_get_field16(eeprom,
2527 EEPROM_LED_POLARITY_GPIO_4));
2528 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_ACT,
2529 rt2x00_get_field16(eeprom, EEPROM_LED_POLARITY_ACT));
2530 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_BG,
2531 rt2x00_get_field16(eeprom,
2532 EEPROM_LED_POLARITY_RDY_G));
2533 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_A,
2534 rt2x00_get_field16(eeprom,
2535 EEPROM_LED_POLARITY_RDY_A));
2536#endif /* CONFIG_RT2X00_LIB_LEDS */
2537
2538 return 0;
2539}
2540
2541/*
2542 * RF value list for RF5225 & RF5325
2543 * Supports: 2.4 GHz & 5.2 GHz, rf_sequence disabled
2544 */
2545static const struct rf_channel rf_vals_noseq[] = {
2546 { 1, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
2547 { 2, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
2548 { 3, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
2549 { 4, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
2550 { 5, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
2551 { 6, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
2552 { 7, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
2553 { 8, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
2554 { 9, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
2555 { 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
2556 { 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
2557 { 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
2558 { 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
2559 { 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },
2560
2561 /* 802.11 UNI / HyperLan 2 */
2562 { 36, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa23 },
2563 { 40, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa03 },
2564 { 44, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa0b },
2565 { 48, 0x00002ccc, 0x000049aa, 0x0009be55, 0x000ffa13 },
2566 { 52, 0x00002ccc, 0x000049ae, 0x0009ae55, 0x000ffa1b },
2567 { 56, 0x00002ccc, 0x000049b2, 0x0009ae55, 0x000ffa23 },
2568 { 60, 0x00002ccc, 0x000049ba, 0x0009ae55, 0x000ffa03 },
2569 { 64, 0x00002ccc, 0x000049be, 0x0009ae55, 0x000ffa0b },
2570
2571 /* 802.11 HyperLan 2 */
2572 { 100, 0x00002ccc, 0x00004a2a, 0x000bae55, 0x000ffa03 },
2573 { 104, 0x00002ccc, 0x00004a2e, 0x000bae55, 0x000ffa0b },
2574 { 108, 0x00002ccc, 0x00004a32, 0x000bae55, 0x000ffa13 },
2575 { 112, 0x00002ccc, 0x00004a36, 0x000bae55, 0x000ffa1b },
2576 { 116, 0x00002ccc, 0x00004a3a, 0x000bbe55, 0x000ffa23 },
2577 { 120, 0x00002ccc, 0x00004a82, 0x000bbe55, 0x000ffa03 },
2578 { 124, 0x00002ccc, 0x00004a86, 0x000bbe55, 0x000ffa0b },
2579 { 128, 0x00002ccc, 0x00004a8a, 0x000bbe55, 0x000ffa13 },
2580 { 132, 0x00002ccc, 0x00004a8e, 0x000bbe55, 0x000ffa1b },
2581 { 136, 0x00002ccc, 0x00004a92, 0x000bbe55, 0x000ffa23 },
2582
2583 /* 802.11 UNII */
2584 { 140, 0x00002ccc, 0x00004a9a, 0x000bbe55, 0x000ffa03 },
2585 { 149, 0x00002ccc, 0x00004aa2, 0x000bbe55, 0x000ffa1f },
2586 { 153, 0x00002ccc, 0x00004aa6, 0x000bbe55, 0x000ffa27 },
2587 { 157, 0x00002ccc, 0x00004aae, 0x000bbe55, 0x000ffa07 },
2588 { 161, 0x00002ccc, 0x00004ab2, 0x000bbe55, 0x000ffa0f },
2589 { 165, 0x00002ccc, 0x00004ab6, 0x000bbe55, 0x000ffa17 },
2590
2591 /* MMAC(Japan)J52 ch 34,38,42,46 */
2592 { 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa0b },
2593 { 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000ffa13 },
2594 { 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa1b },
2595 { 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa23 },
2596};
2597
2598/*
2599 * RF value list for RF5225 & RF5325
2600 * Supports: 2.4 GHz & 5.2 GHz, rf_sequence enabled
2601 */
2602static const struct rf_channel rf_vals_seq[] = {
2603 { 1, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
2604 { 2, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
2605 { 3, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
2606 { 4, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
2607 { 5, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
2608 { 6, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
2609 { 7, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
2610 { 8, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
2611 { 9, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
2612 { 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
2613 { 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
2614 { 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
2615 { 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
2616 { 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },
2617
2618 /* 802.11 UNI / HyperLan 2 */
2619 { 36, 0x00002cd4, 0x0004481a, 0x00098455, 0x000c0a03 },
2620 { 40, 0x00002cd0, 0x00044682, 0x00098455, 0x000c0a03 },
2621 { 44, 0x00002cd0, 0x00044686, 0x00098455, 0x000c0a1b },
2622 { 48, 0x00002cd0, 0x0004468e, 0x00098655, 0x000c0a0b },
2623 { 52, 0x00002cd0, 0x00044692, 0x00098855, 0x000c0a23 },
2624 { 56, 0x00002cd0, 0x0004469a, 0x00098c55, 0x000c0a13 },
2625 { 60, 0x00002cd0, 0x000446a2, 0x00098e55, 0x000c0a03 },
2626 { 64, 0x00002cd0, 0x000446a6, 0x00099255, 0x000c0a1b },
2627
2628 /* 802.11 HyperLan 2 */
2629 { 100, 0x00002cd4, 0x0004489a, 0x000b9855, 0x000c0a03 },
2630 { 104, 0x00002cd4, 0x000448a2, 0x000b9855, 0x000c0a03 },
2631 { 108, 0x00002cd4, 0x000448aa, 0x000b9855, 0x000c0a03 },
2632 { 112, 0x00002cd4, 0x000448b2, 0x000b9a55, 0x000c0a03 },
2633 { 116, 0x00002cd4, 0x000448ba, 0x000b9a55, 0x000c0a03 },
2634 { 120, 0x00002cd0, 0x00044702, 0x000b9a55, 0x000c0a03 },
2635 { 124, 0x00002cd0, 0x00044706, 0x000b9a55, 0x000c0a1b },
2636 { 128, 0x00002cd0, 0x0004470e, 0x000b9c55, 0x000c0a0b },
2637 { 132, 0x00002cd0, 0x00044712, 0x000b9c55, 0x000c0a23 },
2638 { 136, 0x00002cd0, 0x0004471a, 0x000b9e55, 0x000c0a13 },
2639
2640 /* 802.11 UNII */
2641 { 140, 0x00002cd0, 0x00044722, 0x000b9e55, 0x000c0a03 },
2642 { 149, 0x00002cd0, 0x0004472e, 0x000ba255, 0x000c0a1b },
2643 { 153, 0x00002cd0, 0x00044736, 0x000ba255, 0x000c0a0b },
2644 { 157, 0x00002cd4, 0x0004490a, 0x000ba255, 0x000c0a17 },
2645 { 161, 0x00002cd4, 0x00044912, 0x000ba255, 0x000c0a17 },
2646 { 165, 0x00002cd4, 0x0004491a, 0x000ba255, 0x000c0a17 },
2647
2648 /* MMAC(Japan)J52 ch 34,38,42,46 */
2649 { 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000c0a0b },
2650 { 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000c0a13 },
2651 { 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000c0a1b },
2652 { 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000c0a23 },
2653};
2654
2655static int rt61pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
2656{
2657 struct hw_mode_spec *spec = &rt2x00dev->spec;
2658 struct channel_info *info;
2659 u8 *tx_power;
2660 unsigned int i;
2661
2662 /*
2663 * Disable powersaving as default.
2664 */
2665 rt2x00dev->hw->wiphy->flags &= ~WIPHY_FLAG_PS_ON_BY_DEFAULT;
2666
2667 /*
2668 * Initialize all hw fields.
2669 */
2670 ieee80211_hw_set(rt2x00dev->hw, PS_NULLFUNC_STACK);
2671 ieee80211_hw_set(rt2x00dev->hw, SUPPORTS_PS);
2672 ieee80211_hw_set(rt2x00dev->hw, HOST_BROADCAST_PS_BUFFERING);
2673 ieee80211_hw_set(rt2x00dev->hw, SIGNAL_DBM);
2674
2675 SET_IEEE80211_DEV(hw: rt2x00dev->hw, dev: rt2x00dev->dev);
2676 SET_IEEE80211_PERM_ADDR(hw: rt2x00dev->hw,
2677 addr: rt2x00_eeprom_addr(rt2x00dev,
2678 EEPROM_MAC_ADDR_0));
2679
2680 /*
2681 * As rt61 has a global fallback table we cannot specify
2682 * more then one tx rate per frame but since the hw will
2683 * try several rates (based on the fallback table) we should
2684 * initialize max_report_rates to the maximum number of rates
2685 * we are going to try. Otherwise mac80211 will truncate our
2686 * reported tx rates and the rc algortihm will end up with
2687 * incorrect data.
2688 */
2689 rt2x00dev->hw->max_rates = 1;
2690 rt2x00dev->hw->max_report_rates = 7;
2691 rt2x00dev->hw->max_rate_tries = 1;
2692
2693 /*
2694 * Initialize hw_mode information.
2695 */
2696 spec->supported_bands = SUPPORT_BAND_2GHZ;
2697 spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
2698
2699 if (!rt2x00_has_cap_rf_sequence(rt2x00dev)) {
2700 spec->num_channels = 14;
2701 spec->channels = rf_vals_noseq;
2702 } else {
2703 spec->num_channels = 14;
2704 spec->channels = rf_vals_seq;
2705 }
2706
2707 if (rt2x00_rf(rt2x00dev, RF5225) || rt2x00_rf(rt2x00dev, RF5325)) {
2708 spec->supported_bands |= SUPPORT_BAND_5GHZ;
2709 spec->num_channels = ARRAY_SIZE(rf_vals_seq);
2710 }
2711
2712 /*
2713 * Create channel information array
2714 */
2715 info = kcalloc(n: spec->num_channels, size: sizeof(*info), GFP_KERNEL);
2716 if (!info)
2717 return -ENOMEM;
2718
2719 spec->channels_info = info;
2720
2721 tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_G_START);
2722 for (i = 0; i < 14; i++) {
2723 info[i].max_power = MAX_TXPOWER;
2724 info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]);
2725 }
2726
2727 if (spec->num_channels > 14) {
2728 tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_A_START);
2729 for (i = 14; i < spec->num_channels; i++) {
2730 info[i].max_power = MAX_TXPOWER;
2731 info[i].default_power1 =
2732 TXPOWER_FROM_DEV(tx_power[i - 14]);
2733 }
2734 }
2735
2736 return 0;
2737}
2738
2739static int rt61pci_probe_hw(struct rt2x00_dev *rt2x00dev)
2740{
2741 int retval;
2742 u32 reg;
2743
2744 /*
2745 * Disable power saving.
2746 */
2747 rt2x00mmio_register_write(rt2x00dev, SOFT_RESET_CSR, value: 0x00000007);
2748
2749 /*
2750 * Allocate eeprom data.
2751 */
2752 retval = rt61pci_validate_eeprom(rt2x00dev);
2753 if (retval)
2754 return retval;
2755
2756 retval = rt61pci_init_eeprom(rt2x00dev);
2757 if (retval)
2758 return retval;
2759
2760 /*
2761 * Enable rfkill polling by setting GPIO direction of the
2762 * rfkill switch GPIO pin correctly.
2763 */
2764 reg = rt2x00mmio_register_read(rt2x00dev, MAC_CSR13);
2765 rt2x00_set_field32(&reg, MAC_CSR13_DIR5, 1);
2766 rt2x00mmio_register_write(rt2x00dev, MAC_CSR13, value: reg);
2767
2768 /*
2769 * Initialize hw specifications.
2770 */
2771 retval = rt61pci_probe_hw_mode(rt2x00dev);
2772 if (retval)
2773 return retval;
2774
2775 /*
2776 * This device has multiple filters for control frames,
2777 * but has no a separate filter for PS Poll frames.
2778 */
2779 __set_bit(CAPABILITY_CONTROL_FILTERS, &rt2x00dev->cap_flags);
2780
2781 /*
2782 * This device requires firmware and DMA mapped skbs.
2783 */
2784 __set_bit(REQUIRE_FIRMWARE, &rt2x00dev->cap_flags);
2785 __set_bit(REQUIRE_DMA, &rt2x00dev->cap_flags);
2786 if (!modparam_nohwcrypt)
2787 __set_bit(CAPABILITY_HW_CRYPTO, &rt2x00dev->cap_flags);
2788 __set_bit(CAPABILITY_LINK_TUNING, &rt2x00dev->cap_flags);
2789
2790 /*
2791 * Set the rssi offset.
2792 */
2793 rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
2794
2795 return 0;
2796}
2797
2798/*
2799 * IEEE80211 stack callback functions.
2800 */
2801static int rt61pci_conf_tx(struct ieee80211_hw *hw,
2802 struct ieee80211_vif *vif,
2803 unsigned int link_id, u16 queue_idx,
2804 const struct ieee80211_tx_queue_params *params)
2805{
2806 struct rt2x00_dev *rt2x00dev = hw->priv;
2807 struct data_queue *queue;
2808 struct rt2x00_field32 field;
2809 int retval;
2810 u32 reg;
2811 u32 offset;
2812
2813 /*
2814 * First pass the configuration through rt2x00lib, that will
2815 * update the queue settings and validate the input. After that
2816 * we are free to update the registers based on the value
2817 * in the queue parameter.
2818 */
2819 retval = rt2x00mac_conf_tx(hw, vif, link_id, queue: queue_idx, params);
2820 if (retval)
2821 return retval;
2822
2823 /*
2824 * We only need to perform additional register initialization
2825 * for WMM queues.
2826 */
2827 if (queue_idx >= 4)
2828 return 0;
2829
2830 queue = rt2x00queue_get_tx_queue(rt2x00dev, queue: queue_idx);
2831
2832 /* Update WMM TXOP register */
2833 offset = AC_TXOP_CSR0 + (sizeof(u32) * (!!(queue_idx & 2)));
2834 field.bit_offset = (queue_idx & 1) * 16;
2835 field.bit_mask = 0xffff << field.bit_offset;
2836
2837 reg = rt2x00mmio_register_read(rt2x00dev, offset);
2838 rt2x00_set_field32(&reg, field, queue->txop);
2839 rt2x00mmio_register_write(rt2x00dev, offset, value: reg);
2840
2841 /* Update WMM registers */
2842 field.bit_offset = queue_idx * 4;
2843 field.bit_mask = 0xf << field.bit_offset;
2844
2845 reg = rt2x00mmio_register_read(rt2x00dev, AIFSN_CSR);
2846 rt2x00_set_field32(&reg, field, queue->aifs);
2847 rt2x00mmio_register_write(rt2x00dev, AIFSN_CSR, value: reg);
2848
2849 reg = rt2x00mmio_register_read(rt2x00dev, CWMIN_CSR);
2850 rt2x00_set_field32(&reg, field, queue->cw_min);
2851 rt2x00mmio_register_write(rt2x00dev, CWMIN_CSR, value: reg);
2852
2853 reg = rt2x00mmio_register_read(rt2x00dev, CWMAX_CSR);
2854 rt2x00_set_field32(&reg, field, queue->cw_max);
2855 rt2x00mmio_register_write(rt2x00dev, CWMAX_CSR, value: reg);
2856
2857 return 0;
2858}
2859
2860static u64 rt61pci_get_tsf(struct ieee80211_hw *hw, struct ieee80211_vif *vif)
2861{
2862 struct rt2x00_dev *rt2x00dev = hw->priv;
2863 u64 tsf;
2864 u32 reg;
2865
2866 reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR13);
2867 tsf = (u64) rt2x00_get_field32(reg, TXRX_CSR13_HIGH_TSFTIMER) << 32;
2868 reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR12);
2869 tsf |= rt2x00_get_field32(reg, TXRX_CSR12_LOW_TSFTIMER);
2870
2871 return tsf;
2872}
2873
2874static const struct ieee80211_ops rt61pci_mac80211_ops = {
2875 .add_chanctx = ieee80211_emulate_add_chanctx,
2876 .remove_chanctx = ieee80211_emulate_remove_chanctx,
2877 .change_chanctx = ieee80211_emulate_change_chanctx,
2878 .switch_vif_chanctx = ieee80211_emulate_switch_vif_chanctx,
2879 .tx = rt2x00mac_tx,
2880 .wake_tx_queue = ieee80211_handle_wake_tx_queue,
2881 .start = rt2x00mac_start,
2882 .stop = rt2x00mac_stop,
2883 .add_interface = rt2x00mac_add_interface,
2884 .remove_interface = rt2x00mac_remove_interface,
2885 .config = rt2x00mac_config,
2886 .configure_filter = rt2x00mac_configure_filter,
2887 .set_key = rt2x00mac_set_key,
2888 .sw_scan_start = rt2x00mac_sw_scan_start,
2889 .sw_scan_complete = rt2x00mac_sw_scan_complete,
2890 .get_stats = rt2x00mac_get_stats,
2891 .bss_info_changed = rt2x00mac_bss_info_changed,
2892 .conf_tx = rt61pci_conf_tx,
2893 .get_tsf = rt61pci_get_tsf,
2894 .rfkill_poll = rt2x00mac_rfkill_poll,
2895 .flush = rt2x00mac_flush,
2896 .set_antenna = rt2x00mac_set_antenna,
2897 .get_antenna = rt2x00mac_get_antenna,
2898 .get_ringparam = rt2x00mac_get_ringparam,
2899 .tx_frames_pending = rt2x00mac_tx_frames_pending,
2900};
2901
2902static const struct rt2x00lib_ops rt61pci_rt2x00_ops = {
2903 .irq_handler = rt61pci_interrupt,
2904 .txstatus_tasklet = rt61pci_txstatus_tasklet,
2905 .tbtt_tasklet = rt61pci_tbtt_tasklet,
2906 .rxdone_tasklet = rt61pci_rxdone_tasklet,
2907 .autowake_tasklet = rt61pci_autowake_tasklet,
2908 .probe_hw = rt61pci_probe_hw,
2909 .get_firmware_name = rt61pci_get_firmware_name,
2910 .check_firmware = rt61pci_check_firmware,
2911 .load_firmware = rt61pci_load_firmware,
2912 .initialize = rt2x00mmio_initialize,
2913 .uninitialize = rt2x00mmio_uninitialize,
2914 .get_entry_state = rt61pci_get_entry_state,
2915 .clear_entry = rt61pci_clear_entry,
2916 .set_device_state = rt61pci_set_device_state,
2917 .rfkill_poll = rt61pci_rfkill_poll,
2918 .link_stats = rt61pci_link_stats,
2919 .reset_tuner = rt61pci_reset_tuner,
2920 .link_tuner = rt61pci_link_tuner,
2921 .start_queue = rt61pci_start_queue,
2922 .kick_queue = rt61pci_kick_queue,
2923 .stop_queue = rt61pci_stop_queue,
2924 .flush_queue = rt2x00mmio_flush_queue,
2925 .write_tx_desc = rt61pci_write_tx_desc,
2926 .write_beacon = rt61pci_write_beacon,
2927 .clear_beacon = rt61pci_clear_beacon,
2928 .fill_rxdone = rt61pci_fill_rxdone,
2929 .config_shared_key = rt61pci_config_shared_key,
2930 .config_pairwise_key = rt61pci_config_pairwise_key,
2931 .config_filter = rt61pci_config_filter,
2932 .config_intf = rt61pci_config_intf,
2933 .config_erp = rt61pci_config_erp,
2934 .config_ant = rt61pci_config_ant,
2935 .config = rt61pci_config,
2936};
2937
2938static void rt61pci_queue_init(struct data_queue *queue)
2939{
2940 switch (queue->qid) {
2941 case QID_RX:
2942 queue->limit = 32;
2943 queue->data_size = DATA_FRAME_SIZE;
2944 queue->desc_size = RXD_DESC_SIZE;
2945 queue->priv_size = sizeof(struct queue_entry_priv_mmio);
2946 break;
2947
2948 case QID_AC_VO:
2949 case QID_AC_VI:
2950 case QID_AC_BE:
2951 case QID_AC_BK:
2952 queue->limit = 32;
2953 queue->data_size = DATA_FRAME_SIZE;
2954 queue->desc_size = TXD_DESC_SIZE;
2955 queue->priv_size = sizeof(struct queue_entry_priv_mmio);
2956 break;
2957
2958 case QID_BEACON:
2959 queue->limit = 4;
2960 queue->data_size = 0; /* No DMA required for beacons */
2961 queue->desc_size = TXINFO_SIZE;
2962 queue->priv_size = sizeof(struct queue_entry_priv_mmio);
2963 break;
2964
2965 case QID_ATIM:
2966 default:
2967 BUG();
2968 break;
2969 }
2970}
2971
2972static const struct rt2x00_ops rt61pci_ops = {
2973 .name = KBUILD_MODNAME,
2974 .max_ap_intf = 4,
2975 .eeprom_size = EEPROM_SIZE,
2976 .rf_size = RF_SIZE,
2977 .tx_queues = NUM_TX_QUEUES,
2978 .queue_init = rt61pci_queue_init,
2979 .lib = &rt61pci_rt2x00_ops,
2980 .hw = &rt61pci_mac80211_ops,
2981#ifdef CONFIG_RT2X00_LIB_DEBUGFS
2982 .debugfs = &rt61pci_rt2x00debug,
2983#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
2984};
2985
2986/*
2987 * RT61pci module information.
2988 */
2989static const struct pci_device_id rt61pci_device_table[] = {
2990 /* RT2561s */
2991 { PCI_DEVICE(0x1814, 0x0301) },
2992 /* RT2561 v2 */
2993 { PCI_DEVICE(0x1814, 0x0302) },
2994 /* RT2661 */
2995 { PCI_DEVICE(0x1814, 0x0401) },
2996 { 0, }
2997};
2998
2999MODULE_AUTHOR(DRV_PROJECT);
3000MODULE_VERSION(DRV_VERSION);
3001MODULE_DESCRIPTION("Ralink RT61 PCI & PCMCIA Wireless LAN driver.");
3002MODULE_DEVICE_TABLE(pci, rt61pci_device_table);
3003MODULE_FIRMWARE(FIRMWARE_RT2561);
3004MODULE_FIRMWARE(FIRMWARE_RT2561s);
3005MODULE_FIRMWARE(FIRMWARE_RT2661);
3006MODULE_LICENSE("GPL");
3007
3008static int rt61pci_probe(struct pci_dev *pci_dev,
3009 const struct pci_device_id *id)
3010{
3011 return rt2x00pci_probe(pci_dev, ops: &rt61pci_ops);
3012}
3013
3014static struct pci_driver rt61pci_driver = {
3015 .name = KBUILD_MODNAME,
3016 .id_table = rt61pci_device_table,
3017 .probe = rt61pci_probe,
3018 .remove = rt2x00pci_remove,
3019 .driver.pm = &rt2x00pci_pm_ops,
3020};
3021
3022module_pci_driver(rt61pci_driver);
3023

source code of linux/drivers/net/wireless/ralink/rt2x00/rt61pci.c