1/*
2 * This file is provided under a dual BSD/GPLv2 license. When using or
3 * redistributing this file, you may do so under either license.
4 *
5 * GPL LICENSE SUMMARY
6 *
7 * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of version 2 of the GNU General Public License as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
21 * The full GNU General Public License is included in this distribution
22 * in the file called LICENSE.GPL.
23 *
24 * BSD LICENSE
25 *
26 * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
27 * All rights reserved.
28 *
29 * Redistribution and use in source and binary forms, with or without
30 * modification, are permitted provided that the following conditions
31 * are met:
32 *
33 * * Redistributions of source code must retain the above copyright
34 * notice, this list of conditions and the following disclaimer.
35 * * Redistributions in binary form must reproduce the above copyright
36 * notice, this list of conditions and the following disclaimer in
37 * the documentation and/or other materials provided with the
38 * distribution.
39 * * Neither the name of Intel Corporation nor the names of its
40 * contributors may be used to endorse or promote products derived
41 * from this software without specific prior written permission.
42 *
43 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
44 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
45 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
46 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
47 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
48 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
49 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
50 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
51 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
52 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
53 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
54 */
55
56#include "isci.h"
57#include "host.h"
58#include "phy.h"
59#include "scu_event_codes.h"
60#include "probe_roms.h"
61
62#undef C
63#define C(a) (#a)
64static const char *phy_state_name(enum sci_phy_states state)
65{
66 static const char * const strings[] = PHY_STATES;
67
68 return strings[state];
69}
70#undef C
71
72/* Maximum arbitration wait time in micro-seconds */
73#define SCIC_SDS_PHY_MAX_ARBITRATION_WAIT_TIME (700)
74
75enum sas_linkrate sci_phy_linkrate(struct isci_phy *iphy)
76{
77 return iphy->max_negotiated_speed;
78}
79
80static struct isci_host *phy_to_host(struct isci_phy *iphy)
81{
82 struct isci_phy *table = iphy - iphy->phy_index;
83 struct isci_host *ihost = container_of(table, typeof(*ihost), phys[0]);
84
85 return ihost;
86}
87
88static struct device *sciphy_to_dev(struct isci_phy *iphy)
89{
90 return &phy_to_host(iphy)->pdev->dev;
91}
92
93static enum sci_status
94sci_phy_transport_layer_initialization(struct isci_phy *iphy,
95 struct scu_transport_layer_registers __iomem *reg)
96{
97 u32 tl_control;
98
99 iphy->transport_layer_registers = reg;
100
101 writel(SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX,
102 addr: &iphy->transport_layer_registers->stp_rni);
103
104 /*
105 * Hardware team recommends that we enable the STP prefetch for all
106 * transports
107 */
108 tl_control = readl(addr: &iphy->transport_layer_registers->control);
109 tl_control |= SCU_TLCR_GEN_BIT(STP_WRITE_DATA_PREFETCH);
110 writel(val: tl_control, addr: &iphy->transport_layer_registers->control);
111
112 return SCI_SUCCESS;
113}
114
115static enum sci_status
116sci_phy_link_layer_initialization(struct isci_phy *iphy,
117 struct scu_link_layer_registers __iomem *llr)
118{
119 struct isci_host *ihost = iphy->owning_port->owning_controller;
120 struct sci_phy_user_params *phy_user;
121 struct sci_phy_oem_params *phy_oem;
122 int phy_idx = iphy->phy_index;
123 struct sci_phy_cap phy_cap;
124 u32 phy_configuration;
125 u32 parity_check = 0;
126 u32 parity_count = 0;
127 u32 llctl, link_rate;
128 u32 clksm_value = 0;
129 u32 sp_timeouts = 0;
130
131 phy_user = &ihost->user_parameters.phys[phy_idx];
132 phy_oem = &ihost->oem_parameters.phys[phy_idx];
133 iphy->link_layer_registers = llr;
134
135 /* Set our IDENTIFY frame data */
136 #define SCI_END_DEVICE 0x01
137
138 writel(SCU_SAS_TIID_GEN_BIT(SMP_INITIATOR) |
139 SCU_SAS_TIID_GEN_BIT(SSP_INITIATOR) |
140 SCU_SAS_TIID_GEN_BIT(STP_INITIATOR) |
141 SCU_SAS_TIID_GEN_BIT(DA_SATA_HOST) |
142 SCU_SAS_TIID_GEN_VAL(DEVICE_TYPE, SCI_END_DEVICE),
143 addr: &llr->transmit_identification);
144
145 /* Write the device SAS Address */
146 writel(val: 0xFEDCBA98, addr: &llr->sas_device_name_high);
147 writel(val: phy_idx, addr: &llr->sas_device_name_low);
148
149 /* Write the source SAS Address */
150 writel(val: phy_oem->sas_address.high, addr: &llr->source_sas_address_high);
151 writel(val: phy_oem->sas_address.low, addr: &llr->source_sas_address_low);
152
153 /* Clear and Set the PHY Identifier */
154 writel(val: 0, addr: &llr->identify_frame_phy_id);
155 writel(SCU_SAS_TIPID_GEN_VALUE(ID, phy_idx), addr: &llr->identify_frame_phy_id);
156
157 /* Change the initial state of the phy configuration register */
158 phy_configuration = readl(addr: &llr->phy_configuration);
159
160 /* Hold OOB state machine in reset */
161 phy_configuration |= SCU_SAS_PCFG_GEN_BIT(OOB_RESET);
162 writel(val: phy_configuration, addr: &llr->phy_configuration);
163
164 /* Configure the SNW capabilities */
165 phy_cap.all = 0;
166 phy_cap.start = 1;
167 phy_cap.gen3_no_ssc = 1;
168 phy_cap.gen2_no_ssc = 1;
169 phy_cap.gen1_no_ssc = 1;
170 if (ihost->oem_parameters.controller.do_enable_ssc) {
171 struct scu_afe_registers __iomem *afe = &ihost->scu_registers->afe;
172 struct scu_afe_transceiver __iomem *xcvr = &afe->scu_afe_xcvr[phy_idx];
173 struct isci_pci_info *pci_info = to_pci_info(pdev: ihost->pdev);
174 bool en_sas = false;
175 bool en_sata = false;
176 u32 sas_type = 0;
177 u32 sata_spread = 0x2;
178 u32 sas_spread = 0x2;
179
180 phy_cap.gen3_ssc = 1;
181 phy_cap.gen2_ssc = 1;
182 phy_cap.gen1_ssc = 1;
183
184 if (pci_info->orom->hdr.version < ISCI_ROM_VER_1_1)
185 en_sas = en_sata = true;
186 else {
187 sata_spread = ihost->oem_parameters.controller.ssc_sata_tx_spread_level;
188 sas_spread = ihost->oem_parameters.controller.ssc_sas_tx_spread_level;
189
190 if (sata_spread)
191 en_sata = true;
192
193 if (sas_spread) {
194 en_sas = true;
195 sas_type = ihost->oem_parameters.controller.ssc_sas_tx_type;
196 }
197
198 }
199
200 if (en_sas) {
201 u32 reg;
202
203 reg = readl(addr: &xcvr->afe_xcvr_control0);
204 reg |= (0x00100000 | (sas_type << 19));
205 writel(val: reg, addr: &xcvr->afe_xcvr_control0);
206
207 reg = readl(addr: &xcvr->afe_tx_ssc_control);
208 reg |= sas_spread << 8;
209 writel(val: reg, addr: &xcvr->afe_tx_ssc_control);
210 }
211
212 if (en_sata) {
213 u32 reg;
214
215 reg = readl(addr: &xcvr->afe_tx_ssc_control);
216 reg |= sata_spread;
217 writel(val: reg, addr: &xcvr->afe_tx_ssc_control);
218
219 reg = readl(addr: &llr->stp_control);
220 reg |= 1 << 12;
221 writel(val: reg, addr: &llr->stp_control);
222 }
223 }
224
225 /* The SAS specification indicates that the phy_capabilities that
226 * are transmitted shall have an even parity. Calculate the parity.
227 */
228 parity_check = phy_cap.all;
229 while (parity_check != 0) {
230 if (parity_check & 0x1)
231 parity_count++;
232 parity_check >>= 1;
233 }
234
235 /* If parity indicates there are an odd number of bits set, then
236 * set the parity bit to 1 in the phy capabilities.
237 */
238 if ((parity_count % 2) != 0)
239 phy_cap.parity = 1;
240
241 writel(val: phy_cap.all, addr: &llr->phy_capabilities);
242
243 /* Set the enable spinup period but disable the ability to send
244 * notify enable spinup
245 */
246 writel(SCU_ENSPINUP_GEN_VAL(COUNT,
247 phy_user->notify_enable_spin_up_insertion_frequency),
248 addr: &llr->notify_enable_spinup_control);
249
250 /* Write the ALIGN Insertion Ferequency for connected phy and
251 * inpendent of connected state
252 */
253 clksm_value = SCU_ALIGN_INSERTION_FREQUENCY_GEN_VAL(CONNECTED,
254 phy_user->in_connection_align_insertion_frequency);
255
256 clksm_value |= SCU_ALIGN_INSERTION_FREQUENCY_GEN_VAL(GENERAL,
257 phy_user->align_insertion_frequency);
258
259 writel(val: clksm_value, addr: &llr->clock_skew_management);
260
261 if (is_c0(pdev: ihost->pdev) || is_c1(pdev: ihost->pdev)) {
262 writel(val: 0x04210400, addr: &llr->afe_lookup_table_control);
263 writel(val: 0x020A7C05, addr: &llr->sas_primitive_timeout);
264 } else
265 writel(val: 0x02108421, addr: &llr->afe_lookup_table_control);
266
267 llctl = SCU_SAS_LLCTL_GEN_VAL(NO_OUTBOUND_TASK_TIMEOUT,
268 (u8)ihost->user_parameters.no_outbound_task_timeout);
269
270 switch (phy_user->max_speed_generation) {
271 case SCIC_SDS_PARM_GEN3_SPEED:
272 link_rate = SCU_SAS_LINK_LAYER_CONTROL_MAX_LINK_RATE_GEN3;
273 break;
274 case SCIC_SDS_PARM_GEN2_SPEED:
275 link_rate = SCU_SAS_LINK_LAYER_CONTROL_MAX_LINK_RATE_GEN2;
276 break;
277 default:
278 link_rate = SCU_SAS_LINK_LAYER_CONTROL_MAX_LINK_RATE_GEN1;
279 break;
280 }
281 llctl |= SCU_SAS_LLCTL_GEN_VAL(MAX_LINK_RATE, link_rate);
282 writel(val: llctl, addr: &llr->link_layer_control);
283
284 sp_timeouts = readl(addr: &llr->sas_phy_timeouts);
285
286 /* Clear the default 0x36 (54us) RATE_CHANGE timeout value. */
287 sp_timeouts &= ~SCU_SAS_PHYTOV_GEN_VAL(RATE_CHANGE, 0xFF);
288
289 /* Set RATE_CHANGE timeout value to 0x3B (59us). This ensures SCU can
290 * lock with 3Gb drive when SCU max rate is set to 1.5Gb.
291 */
292 sp_timeouts |= SCU_SAS_PHYTOV_GEN_VAL(RATE_CHANGE, 0x3B);
293
294 writel(val: sp_timeouts, addr: &llr->sas_phy_timeouts);
295
296 if (is_a2(pdev: ihost->pdev)) {
297 /* Program the max ARB time for the PHY to 700us so we
298 * inter-operate with the PMC expander which shuts down
299 * PHYs if the expander PHY generates too many breaks.
300 * This time value will guarantee that the initiator PHY
301 * will generate the break.
302 */
303 writel(SCIC_SDS_PHY_MAX_ARBITRATION_WAIT_TIME,
304 addr: &llr->maximum_arbitration_wait_timer_timeout);
305 }
306
307 /* Disable link layer hang detection, rely on the OS timeout for
308 * I/O timeouts.
309 */
310 writel(val: 0, addr: &llr->link_layer_hang_detection_timeout);
311
312 /* We can exit the initial state to the stopped state */
313 sci_change_state(sm: &iphy->sm, next_state: SCI_PHY_STOPPED);
314
315 return SCI_SUCCESS;
316}
317
318static void phy_sata_timeout(struct timer_list *t)
319{
320 struct sci_timer *tmr = from_timer(tmr, t, timer);
321 struct isci_phy *iphy = container_of(tmr, typeof(*iphy), sata_timer);
322 struct isci_host *ihost = iphy->owning_port->owning_controller;
323 unsigned long flags;
324
325 spin_lock_irqsave(&ihost->scic_lock, flags);
326
327 if (tmr->cancel)
328 goto done;
329
330 dev_dbg(sciphy_to_dev(iphy),
331 "%s: SCIC SDS Phy 0x%p did not receive signature fis before "
332 "timeout.\n",
333 __func__,
334 iphy);
335
336 sci_change_state(sm: &iphy->sm, next_state: SCI_PHY_STARTING);
337done:
338 spin_unlock_irqrestore(lock: &ihost->scic_lock, flags);
339}
340
341/**
342 * phy_get_non_dummy_port() - This method returns the port currently containing
343 * this phy. If the phy is currently contained by the dummy port, then the phy
344 * is considered to not be part of a port.
345 *
346 * @iphy: This parameter specifies the phy for which to retrieve the
347 * containing port.
348 *
349 * This method returns a handle to a port that contains the supplied phy.
350 * NULL This value is returned if the phy is not part of a real
351 * port (i.e. it's contained in the dummy port). !NULL All other
352 * values indicate a handle/pointer to the port containing the phy.
353 */
354struct isci_port *phy_get_non_dummy_port(struct isci_phy *iphy)
355{
356 struct isci_port *iport = iphy->owning_port;
357
358 if (iport->physical_port_index == SCIC_SDS_DUMMY_PORT)
359 return NULL;
360
361 return iphy->owning_port;
362}
363
364/*
365 * sci_phy_set_port() - This method will assign a port to the phy object.
366 */
367void sci_phy_set_port(
368 struct isci_phy *iphy,
369 struct isci_port *iport)
370{
371 iphy->owning_port = iport;
372
373 if (iphy->bcn_received_while_port_unassigned) {
374 iphy->bcn_received_while_port_unassigned = false;
375 sci_port_broadcast_change_received(iport: iphy->owning_port, iphy);
376 }
377}
378
379enum sci_status sci_phy_initialize(struct isci_phy *iphy,
380 struct scu_transport_layer_registers __iomem *tl,
381 struct scu_link_layer_registers __iomem *ll)
382{
383 /* Perfrom the initialization of the TL hardware */
384 sci_phy_transport_layer_initialization(iphy, reg: tl);
385
386 /* Perofrm the initialization of the PE hardware */
387 sci_phy_link_layer_initialization(iphy, llr: ll);
388
389 /* There is nothing that needs to be done in this state just
390 * transition to the stopped state
391 */
392 sci_change_state(sm: &iphy->sm, next_state: SCI_PHY_STOPPED);
393
394 return SCI_SUCCESS;
395}
396
397/**
398 * sci_phy_setup_transport() - This method assigns the direct attached device ID for this phy.
399 *
400 * @iphy: The phy for which the direct attached device id is to
401 * be assigned.
402 * @device_id: The direct attached device ID to assign to the phy.
403 * This will either be the RNi for the device or an invalid RNi if there
404 * is no current device assigned to the phy.
405 */
406void sci_phy_setup_transport(struct isci_phy *iphy, u32 device_id)
407{
408 u32 tl_control;
409
410 writel(val: device_id, addr: &iphy->transport_layer_registers->stp_rni);
411
412 /*
413 * The read should guarantee that the first write gets posted
414 * before the next write
415 */
416 tl_control = readl(addr: &iphy->transport_layer_registers->control);
417 tl_control |= SCU_TLCR_GEN_BIT(CLEAR_TCI_NCQ_MAPPING_TABLE);
418 writel(val: tl_control, addr: &iphy->transport_layer_registers->control);
419}
420
421static void sci_phy_suspend(struct isci_phy *iphy)
422{
423 u32 scu_sas_pcfg_value;
424
425 scu_sas_pcfg_value =
426 readl(addr: &iphy->link_layer_registers->phy_configuration);
427 scu_sas_pcfg_value |= SCU_SAS_PCFG_GEN_BIT(SUSPEND_PROTOCOL_ENGINE);
428 writel(val: scu_sas_pcfg_value,
429 addr: &iphy->link_layer_registers->phy_configuration);
430
431 sci_phy_setup_transport(iphy, SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX);
432}
433
434void sci_phy_resume(struct isci_phy *iphy)
435{
436 u32 scu_sas_pcfg_value;
437
438 scu_sas_pcfg_value =
439 readl(addr: &iphy->link_layer_registers->phy_configuration);
440 scu_sas_pcfg_value &= ~SCU_SAS_PCFG_GEN_BIT(SUSPEND_PROTOCOL_ENGINE);
441 writel(val: scu_sas_pcfg_value,
442 addr: &iphy->link_layer_registers->phy_configuration);
443}
444
445void sci_phy_get_sas_address(struct isci_phy *iphy, struct sci_sas_address *sas)
446{
447 sas->high = readl(addr: &iphy->link_layer_registers->source_sas_address_high);
448 sas->low = readl(addr: &iphy->link_layer_registers->source_sas_address_low);
449}
450
451void sci_phy_get_attached_sas_address(struct isci_phy *iphy, struct sci_sas_address *sas)
452{
453 struct sas_identify_frame *iaf;
454
455 iaf = &iphy->frame_rcvd.iaf;
456 memcpy(sas, iaf->sas_addr, SAS_ADDR_SIZE);
457}
458
459void sci_phy_get_protocols(struct isci_phy *iphy, struct sci_phy_proto *proto)
460{
461 proto->all = readl(addr: &iphy->link_layer_registers->transmit_identification);
462}
463
464enum sci_status sci_phy_start(struct isci_phy *iphy)
465{
466 enum sci_phy_states state = iphy->sm.current_state_id;
467
468 if (state != SCI_PHY_STOPPED) {
469 dev_dbg(sciphy_to_dev(iphy), "%s: in wrong state: %s\n",
470 __func__, phy_state_name(state));
471 return SCI_FAILURE_INVALID_STATE;
472 }
473
474 sci_change_state(sm: &iphy->sm, next_state: SCI_PHY_STARTING);
475 return SCI_SUCCESS;
476}
477
478enum sci_status sci_phy_stop(struct isci_phy *iphy)
479{
480 enum sci_phy_states state = iphy->sm.current_state_id;
481
482 switch (state) {
483 case SCI_PHY_SUB_INITIAL:
484 case SCI_PHY_SUB_AWAIT_OSSP_EN:
485 case SCI_PHY_SUB_AWAIT_SAS_SPEED_EN:
486 case SCI_PHY_SUB_AWAIT_SAS_POWER:
487 case SCI_PHY_SUB_AWAIT_SATA_POWER:
488 case SCI_PHY_SUB_AWAIT_SATA_PHY_EN:
489 case SCI_PHY_SUB_AWAIT_SATA_SPEED_EN:
490 case SCI_PHY_SUB_AWAIT_SIG_FIS_UF:
491 case SCI_PHY_SUB_FINAL:
492 case SCI_PHY_READY:
493 break;
494 default:
495 dev_dbg(sciphy_to_dev(iphy), "%s: in wrong state: %s\n",
496 __func__, phy_state_name(state));
497 return SCI_FAILURE_INVALID_STATE;
498 }
499
500 sci_change_state(sm: &iphy->sm, next_state: SCI_PHY_STOPPED);
501 return SCI_SUCCESS;
502}
503
504enum sci_status sci_phy_reset(struct isci_phy *iphy)
505{
506 enum sci_phy_states state = iphy->sm.current_state_id;
507
508 if (state != SCI_PHY_READY) {
509 dev_dbg(sciphy_to_dev(iphy), "%s: in wrong state: %s\n",
510 __func__, phy_state_name(state));
511 return SCI_FAILURE_INVALID_STATE;
512 }
513
514 sci_change_state(sm: &iphy->sm, next_state: SCI_PHY_RESETTING);
515 return SCI_SUCCESS;
516}
517
518enum sci_status sci_phy_consume_power_handler(struct isci_phy *iphy)
519{
520 enum sci_phy_states state = iphy->sm.current_state_id;
521
522 switch (state) {
523 case SCI_PHY_SUB_AWAIT_SAS_POWER: {
524 u32 enable_spinup;
525
526 enable_spinup = readl(addr: &iphy->link_layer_registers->notify_enable_spinup_control);
527 enable_spinup |= SCU_ENSPINUP_GEN_BIT(ENABLE);
528 writel(val: enable_spinup, addr: &iphy->link_layer_registers->notify_enable_spinup_control);
529
530 /* Change state to the final state this substate machine has run to completion */
531 sci_change_state(sm: &iphy->sm, next_state: SCI_PHY_SUB_FINAL);
532
533 return SCI_SUCCESS;
534 }
535 case SCI_PHY_SUB_AWAIT_SATA_POWER: {
536 u32 scu_sas_pcfg_value;
537
538 /* Release the spinup hold state and reset the OOB state machine */
539 scu_sas_pcfg_value =
540 readl(addr: &iphy->link_layer_registers->phy_configuration);
541 scu_sas_pcfg_value &=
542 ~(SCU_SAS_PCFG_GEN_BIT(SATA_SPINUP_HOLD) | SCU_SAS_PCFG_GEN_BIT(OOB_ENABLE));
543 scu_sas_pcfg_value |= SCU_SAS_PCFG_GEN_BIT(OOB_RESET);
544 writel(val: scu_sas_pcfg_value,
545 addr: &iphy->link_layer_registers->phy_configuration);
546
547 /* Now restart the OOB operation */
548 scu_sas_pcfg_value &= ~SCU_SAS_PCFG_GEN_BIT(OOB_RESET);
549 scu_sas_pcfg_value |= SCU_SAS_PCFG_GEN_BIT(OOB_ENABLE);
550 writel(val: scu_sas_pcfg_value,
551 addr: &iphy->link_layer_registers->phy_configuration);
552
553 /* Change state to the final state this substate machine has run to completion */
554 sci_change_state(sm: &iphy->sm, next_state: SCI_PHY_SUB_AWAIT_SATA_PHY_EN);
555
556 return SCI_SUCCESS;
557 }
558 default:
559 dev_dbg(sciphy_to_dev(iphy), "%s: in wrong state: %s\n",
560 __func__, phy_state_name(state));
561 return SCI_FAILURE_INVALID_STATE;
562 }
563}
564
565static void sci_phy_start_sas_link_training(struct isci_phy *iphy)
566{
567 /* continue the link training for the phy as if it were a SAS PHY
568 * instead of a SATA PHY. This is done because the completion queue had a SAS
569 * PHY DETECTED event when the state machine was expecting a SATA PHY event.
570 */
571 u32 phy_control;
572
573 phy_control = readl(addr: &iphy->link_layer_registers->phy_configuration);
574 phy_control |= SCU_SAS_PCFG_GEN_BIT(SATA_SPINUP_HOLD);
575 writel(val: phy_control,
576 addr: &iphy->link_layer_registers->phy_configuration);
577
578 sci_change_state(sm: &iphy->sm, next_state: SCI_PHY_SUB_AWAIT_SAS_SPEED_EN);
579
580 iphy->protocol = SAS_PROTOCOL_SSP;
581}
582
583static void sci_phy_start_sata_link_training(struct isci_phy *iphy)
584{
585 /* This method continues the link training for the phy as if it were a SATA PHY
586 * instead of a SAS PHY. This is done because the completion queue had a SATA
587 * SPINUP HOLD event when the state machine was expecting a SAS PHY event. none
588 */
589 sci_change_state(sm: &iphy->sm, next_state: SCI_PHY_SUB_AWAIT_SATA_POWER);
590
591 iphy->protocol = SAS_PROTOCOL_SATA;
592}
593
594/**
595 * sci_phy_complete_link_training - perform processing common to
596 * all protocols upon completion of link training.
597 * @iphy: This parameter specifies the phy object for which link training
598 * has completed.
599 * @max_link_rate: This parameter specifies the maximum link rate to be
600 * associated with this phy.
601 * @next_state: This parameter specifies the next state for the phy's starting
602 * sub-state machine.
603 *
604 */
605static void sci_phy_complete_link_training(struct isci_phy *iphy,
606 enum sas_linkrate max_link_rate,
607 u32 next_state)
608{
609 iphy->max_negotiated_speed = max_link_rate;
610
611 sci_change_state(sm: &iphy->sm, next_state);
612}
613
614static const char *phy_event_name(u32 event_code)
615{
616 switch (scu_get_event_code(event_code)) {
617 case SCU_EVENT_PORT_SELECTOR_DETECTED:
618 return "port selector";
619 case SCU_EVENT_SENT_PORT_SELECTION:
620 return "port selection";
621 case SCU_EVENT_HARD_RESET_TRANSMITTED:
622 return "tx hard reset";
623 case SCU_EVENT_HARD_RESET_RECEIVED:
624 return "rx hard reset";
625 case SCU_EVENT_RECEIVED_IDENTIFY_TIMEOUT:
626 return "identify timeout";
627 case SCU_EVENT_LINK_FAILURE:
628 return "link fail";
629 case SCU_EVENT_SATA_SPINUP_HOLD:
630 return "sata spinup hold";
631 case SCU_EVENT_SAS_15_SSC:
632 case SCU_EVENT_SAS_15:
633 return "sas 1.5";
634 case SCU_EVENT_SAS_30_SSC:
635 case SCU_EVENT_SAS_30:
636 return "sas 3.0";
637 case SCU_EVENT_SAS_60_SSC:
638 case SCU_EVENT_SAS_60:
639 return "sas 6.0";
640 case SCU_EVENT_SATA_15_SSC:
641 case SCU_EVENT_SATA_15:
642 return "sata 1.5";
643 case SCU_EVENT_SATA_30_SSC:
644 case SCU_EVENT_SATA_30:
645 return "sata 3.0";
646 case SCU_EVENT_SATA_60_SSC:
647 case SCU_EVENT_SATA_60:
648 return "sata 6.0";
649 case SCU_EVENT_SAS_PHY_DETECTED:
650 return "sas detect";
651 case SCU_EVENT_SATA_PHY_DETECTED:
652 return "sata detect";
653 default:
654 return "unknown";
655 }
656}
657
658#define phy_event_dbg(iphy, state, code) \
659 dev_dbg(sciphy_to_dev(iphy), "phy-%d:%d: %s event: %s (%x)\n", \
660 phy_to_host(iphy)->id, iphy->phy_index, \
661 phy_state_name(state), phy_event_name(code), code)
662
663#define phy_event_warn(iphy, state, code) \
664 dev_warn(sciphy_to_dev(iphy), "phy-%d:%d: %s event: %s (%x)\n", \
665 phy_to_host(iphy)->id, iphy->phy_index, \
666 phy_state_name(state), phy_event_name(code), code)
667
668
669static void scu_link_layer_set_txcomsas_timeout(struct isci_phy *iphy, u32 timeout)
670{
671 u32 val;
672
673 /* Extend timeout */
674 val = readl(addr: &iphy->link_layer_registers->transmit_comsas_signal);
675 val &= ~SCU_SAS_LLTXCOMSAS_GEN_VAL(NEGTIME, SCU_SAS_LINK_LAYER_TXCOMSAS_NEGTIME_MASK);
676 val |= SCU_SAS_LLTXCOMSAS_GEN_VAL(NEGTIME, timeout);
677
678 writel(val, addr: &iphy->link_layer_registers->transmit_comsas_signal);
679}
680
681enum sci_status sci_phy_event_handler(struct isci_phy *iphy, u32 event_code)
682{
683 enum sci_phy_states state = iphy->sm.current_state_id;
684
685 switch (state) {
686 case SCI_PHY_SUB_AWAIT_OSSP_EN:
687 switch (scu_get_event_code(event_code)) {
688 case SCU_EVENT_SAS_PHY_DETECTED:
689 sci_phy_start_sas_link_training(iphy);
690 iphy->is_in_link_training = true;
691 break;
692 case SCU_EVENT_SATA_SPINUP_HOLD:
693 sci_phy_start_sata_link_training(iphy);
694 iphy->is_in_link_training = true;
695 break;
696 case SCU_EVENT_RECEIVED_IDENTIFY_TIMEOUT:
697 /* Extend timeout value */
698 scu_link_layer_set_txcomsas_timeout(iphy, SCU_SAS_LINK_LAYER_TXCOMSAS_NEGTIME_EXTENDED);
699
700 /* Start the oob/sn state machine over again */
701 sci_change_state(sm: &iphy->sm, next_state: SCI_PHY_STARTING);
702 break;
703 default:
704 phy_event_dbg(iphy, state, event_code);
705 return SCI_FAILURE;
706 }
707 return SCI_SUCCESS;
708 case SCI_PHY_SUB_AWAIT_SAS_SPEED_EN:
709 switch (scu_get_event_code(event_code)) {
710 case SCU_EVENT_SAS_PHY_DETECTED:
711 /*
712 * Why is this being reported again by the controller?
713 * We would re-enter this state so just stay here */
714 break;
715 case SCU_EVENT_SAS_15:
716 case SCU_EVENT_SAS_15_SSC:
717 sci_phy_complete_link_training(iphy, max_link_rate: SAS_LINK_RATE_1_5_GBPS,
718 next_state: SCI_PHY_SUB_AWAIT_IAF_UF);
719 break;
720 case SCU_EVENT_SAS_30:
721 case SCU_EVENT_SAS_30_SSC:
722 sci_phy_complete_link_training(iphy, max_link_rate: SAS_LINK_RATE_3_0_GBPS,
723 next_state: SCI_PHY_SUB_AWAIT_IAF_UF);
724 break;
725 case SCU_EVENT_SAS_60:
726 case SCU_EVENT_SAS_60_SSC:
727 sci_phy_complete_link_training(iphy, max_link_rate: SAS_LINK_RATE_6_0_GBPS,
728 next_state: SCI_PHY_SUB_AWAIT_IAF_UF);
729 break;
730 case SCU_EVENT_SATA_SPINUP_HOLD:
731 /*
732 * We were doing SAS PHY link training and received a SATA PHY event
733 * continue OOB/SN as if this were a SATA PHY */
734 sci_phy_start_sata_link_training(iphy);
735 break;
736 case SCU_EVENT_LINK_FAILURE:
737 /* Change the timeout value to default */
738 scu_link_layer_set_txcomsas_timeout(iphy, SCU_SAS_LINK_LAYER_TXCOMSAS_NEGTIME_DEFAULT);
739
740 /* Link failure change state back to the starting state */
741 sci_change_state(sm: &iphy->sm, next_state: SCI_PHY_STARTING);
742 break;
743 case SCU_EVENT_RECEIVED_IDENTIFY_TIMEOUT:
744 /* Extend the timeout value */
745 scu_link_layer_set_txcomsas_timeout(iphy, SCU_SAS_LINK_LAYER_TXCOMSAS_NEGTIME_EXTENDED);
746
747 /* Start the oob/sn state machine over again */
748 sci_change_state(sm: &iphy->sm, next_state: SCI_PHY_STARTING);
749 break;
750 default:
751 phy_event_warn(iphy, state, event_code);
752 return SCI_FAILURE;
753 }
754 return SCI_SUCCESS;
755 case SCI_PHY_SUB_AWAIT_IAF_UF:
756 switch (scu_get_event_code(event_code)) {
757 case SCU_EVENT_SAS_PHY_DETECTED:
758 /* Backup the state machine */
759 sci_phy_start_sas_link_training(iphy);
760 break;
761 case SCU_EVENT_SATA_SPINUP_HOLD:
762 /* We were doing SAS PHY link training and received a
763 * SATA PHY event continue OOB/SN as if this were a
764 * SATA PHY
765 */
766 sci_phy_start_sata_link_training(iphy);
767 break;
768 case SCU_EVENT_RECEIVED_IDENTIFY_TIMEOUT:
769 /* Extend the timeout value */
770 scu_link_layer_set_txcomsas_timeout(iphy, SCU_SAS_LINK_LAYER_TXCOMSAS_NEGTIME_EXTENDED);
771
772 /* Start the oob/sn state machine over again */
773 sci_change_state(sm: &iphy->sm, next_state: SCI_PHY_STARTING);
774 break;
775 case SCU_EVENT_LINK_FAILURE:
776 scu_link_layer_set_txcomsas_timeout(iphy, SCU_SAS_LINK_LAYER_TXCOMSAS_NEGTIME_DEFAULT);
777 fallthrough;
778 case SCU_EVENT_HARD_RESET_RECEIVED:
779 /* Start the oob/sn state machine over again */
780 sci_change_state(sm: &iphy->sm, next_state: SCI_PHY_STARTING);
781 break;
782 default:
783 phy_event_warn(iphy, state, event_code);
784 return SCI_FAILURE;
785 }
786 return SCI_SUCCESS;
787 case SCI_PHY_SUB_AWAIT_SAS_POWER:
788 switch (scu_get_event_code(event_code)) {
789 case SCU_EVENT_LINK_FAILURE:
790 /* Change the timeout value to default */
791 scu_link_layer_set_txcomsas_timeout(iphy, SCU_SAS_LINK_LAYER_TXCOMSAS_NEGTIME_DEFAULT);
792
793 /* Link failure change state back to the starting state */
794 sci_change_state(sm: &iphy->sm, next_state: SCI_PHY_STARTING);
795 break;
796 default:
797 phy_event_warn(iphy, state, event_code);
798 return SCI_FAILURE;
799 }
800 return SCI_SUCCESS;
801 case SCI_PHY_SUB_AWAIT_SATA_POWER:
802 switch (scu_get_event_code(event_code)) {
803 case SCU_EVENT_LINK_FAILURE:
804 /* Change the timeout value to default */
805 scu_link_layer_set_txcomsas_timeout(iphy, SCU_SAS_LINK_LAYER_TXCOMSAS_NEGTIME_DEFAULT);
806
807 /* Link failure change state back to the starting state */
808 sci_change_state(sm: &iphy->sm, next_state: SCI_PHY_STARTING);
809 break;
810 case SCU_EVENT_SATA_SPINUP_HOLD:
811 /* These events are received every 10ms and are
812 * expected while in this state
813 */
814 break;
815
816 case SCU_EVENT_SAS_PHY_DETECTED:
817 /* There has been a change in the phy type before OOB/SN for the
818 * SATA finished start down the SAS link traning path.
819 */
820 sci_phy_start_sas_link_training(iphy);
821 break;
822
823 default:
824 phy_event_warn(iphy, state, event_code);
825 return SCI_FAILURE;
826 }
827 return SCI_SUCCESS;
828 case SCI_PHY_SUB_AWAIT_SATA_PHY_EN:
829 switch (scu_get_event_code(event_code)) {
830 case SCU_EVENT_LINK_FAILURE:
831 /* Change the timeout value to default */
832 scu_link_layer_set_txcomsas_timeout(iphy, SCU_SAS_LINK_LAYER_TXCOMSAS_NEGTIME_DEFAULT);
833
834 /* Link failure change state back to the starting state */
835 sci_change_state(sm: &iphy->sm, next_state: SCI_PHY_STARTING);
836 break;
837 case SCU_EVENT_SATA_SPINUP_HOLD:
838 /* These events might be received since we dont know how many may be in
839 * the completion queue while waiting for power
840 */
841 break;
842 case SCU_EVENT_SATA_PHY_DETECTED:
843 iphy->protocol = SAS_PROTOCOL_SATA;
844
845 /* We have received the SATA PHY notification change state */
846 sci_change_state(sm: &iphy->sm, next_state: SCI_PHY_SUB_AWAIT_SATA_SPEED_EN);
847 break;
848 case SCU_EVENT_SAS_PHY_DETECTED:
849 /* There has been a change in the phy type before OOB/SN for the
850 * SATA finished start down the SAS link traning path.
851 */
852 sci_phy_start_sas_link_training(iphy);
853 break;
854 default:
855 phy_event_warn(iphy, state, event_code);
856 return SCI_FAILURE;
857 }
858 return SCI_SUCCESS;
859 case SCI_PHY_SUB_AWAIT_SATA_SPEED_EN:
860 switch (scu_get_event_code(event_code)) {
861 case SCU_EVENT_SATA_PHY_DETECTED:
862 /*
863 * The hardware reports multiple SATA PHY detected events
864 * ignore the extras */
865 break;
866 case SCU_EVENT_SATA_15:
867 case SCU_EVENT_SATA_15_SSC:
868 sci_phy_complete_link_training(iphy, max_link_rate: SAS_LINK_RATE_1_5_GBPS,
869 next_state: SCI_PHY_SUB_AWAIT_SIG_FIS_UF);
870 break;
871 case SCU_EVENT_SATA_30:
872 case SCU_EVENT_SATA_30_SSC:
873 sci_phy_complete_link_training(iphy, max_link_rate: SAS_LINK_RATE_3_0_GBPS,
874 next_state: SCI_PHY_SUB_AWAIT_SIG_FIS_UF);
875 break;
876 case SCU_EVENT_SATA_60:
877 case SCU_EVENT_SATA_60_SSC:
878 sci_phy_complete_link_training(iphy, max_link_rate: SAS_LINK_RATE_6_0_GBPS,
879 next_state: SCI_PHY_SUB_AWAIT_SIG_FIS_UF);
880 break;
881 case SCU_EVENT_LINK_FAILURE:
882 /* Change the timeout value to default */
883 scu_link_layer_set_txcomsas_timeout(iphy, SCU_SAS_LINK_LAYER_TXCOMSAS_NEGTIME_DEFAULT);
884
885 /* Link failure change state back to the starting state */
886 sci_change_state(sm: &iphy->sm, next_state: SCI_PHY_STARTING);
887 break;
888 case SCU_EVENT_SAS_PHY_DETECTED:
889 /*
890 * There has been a change in the phy type before OOB/SN for the
891 * SATA finished start down the SAS link traning path. */
892 sci_phy_start_sas_link_training(iphy);
893 break;
894 default:
895 phy_event_warn(iphy, state, event_code);
896 return SCI_FAILURE;
897 }
898
899 return SCI_SUCCESS;
900 case SCI_PHY_SUB_AWAIT_SIG_FIS_UF:
901 switch (scu_get_event_code(event_code)) {
902 case SCU_EVENT_SATA_PHY_DETECTED:
903 /* Backup the state machine */
904 sci_change_state(sm: &iphy->sm, next_state: SCI_PHY_SUB_AWAIT_SATA_SPEED_EN);
905 break;
906
907 case SCU_EVENT_LINK_FAILURE:
908 /* Change the timeout value to default */
909 scu_link_layer_set_txcomsas_timeout(iphy, SCU_SAS_LINK_LAYER_TXCOMSAS_NEGTIME_DEFAULT);
910
911 /* Link failure change state back to the starting state */
912 sci_change_state(sm: &iphy->sm, next_state: SCI_PHY_STARTING);
913 break;
914
915 default:
916 phy_event_warn(iphy, state, event_code);
917 return SCI_FAILURE;
918 }
919 return SCI_SUCCESS;
920 case SCI_PHY_READY:
921 switch (scu_get_event_code(event_code)) {
922 case SCU_EVENT_LINK_FAILURE:
923 /* Set default timeout */
924 scu_link_layer_set_txcomsas_timeout(iphy, SCU_SAS_LINK_LAYER_TXCOMSAS_NEGTIME_DEFAULT);
925
926 /* Link failure change state back to the starting state */
927 sci_change_state(sm: &iphy->sm, next_state: SCI_PHY_STARTING);
928 break;
929 case SCU_EVENT_BROADCAST_CHANGE:
930 case SCU_EVENT_BROADCAST_SES:
931 case SCU_EVENT_BROADCAST_RESERVED0:
932 case SCU_EVENT_BROADCAST_RESERVED1:
933 case SCU_EVENT_BROADCAST_EXPANDER:
934 case SCU_EVENT_BROADCAST_AEN:
935 /* Broadcast change received. Notify the port. */
936 if (phy_get_non_dummy_port(iphy) != NULL)
937 sci_port_broadcast_change_received(iport: iphy->owning_port, iphy);
938 else
939 iphy->bcn_received_while_port_unassigned = true;
940 break;
941 case SCU_EVENT_BROADCAST_RESERVED3:
942 case SCU_EVENT_BROADCAST_RESERVED4:
943 default:
944 phy_event_warn(iphy, state, event_code);
945 return SCI_FAILURE_INVALID_STATE;
946 }
947 return SCI_SUCCESS;
948 case SCI_PHY_RESETTING:
949 switch (scu_get_event_code(event_code)) {
950 case SCU_EVENT_HARD_RESET_TRANSMITTED:
951 /* Link failure change state back to the starting state */
952 sci_change_state(sm: &iphy->sm, next_state: SCI_PHY_STARTING);
953 break;
954 default:
955 phy_event_warn(iphy, state, event_code);
956 return SCI_FAILURE_INVALID_STATE;
957 }
958 return SCI_SUCCESS;
959 default:
960 dev_dbg(sciphy_to_dev(iphy), "%s: in wrong state: %s\n",
961 __func__, phy_state_name(state));
962 return SCI_FAILURE_INVALID_STATE;
963 }
964}
965
966enum sci_status sci_phy_frame_handler(struct isci_phy *iphy, u32 frame_index)
967{
968 enum sci_phy_states state = iphy->sm.current_state_id;
969 struct isci_host *ihost = iphy->owning_port->owning_controller;
970 enum sci_status result;
971 unsigned long flags;
972
973 switch (state) {
974 case SCI_PHY_SUB_AWAIT_IAF_UF: {
975 u32 *frame_words;
976 struct sas_identify_frame iaf;
977
978 result = sci_unsolicited_frame_control_get_header(uf_control: &ihost->uf_control,
979 frame_index,
980 frame_header: (void **)&frame_words);
981
982 if (result != SCI_SUCCESS)
983 return result;
984
985 sci_swab32_cpy(dest: &iaf, src: frame_words, word_cnt: sizeof(iaf) / sizeof(u32));
986 if (iaf.frame_type == 0) {
987 u32 state;
988
989 spin_lock_irqsave(&iphy->sas_phy.frame_rcvd_lock, flags);
990 memcpy(&iphy->frame_rcvd.iaf, &iaf, sizeof(iaf));
991 spin_unlock_irqrestore(lock: &iphy->sas_phy.frame_rcvd_lock, flags);
992 if (iaf.smp_tport) {
993 /* We got the IAF for an expander PHY go to the final
994 * state since there are no power requirements for
995 * expander phys.
996 */
997 state = SCI_PHY_SUB_FINAL;
998 } else {
999 /* We got the IAF we can now go to the await spinup
1000 * semaphore state
1001 */
1002 state = SCI_PHY_SUB_AWAIT_SAS_POWER;
1003 }
1004 sci_change_state(sm: &iphy->sm, next_state: state);
1005 result = SCI_SUCCESS;
1006 } else
1007 dev_warn(sciphy_to_dev(iphy),
1008 "%s: PHY starting substate machine received "
1009 "unexpected frame id %x\n",
1010 __func__, frame_index);
1011
1012 sci_controller_release_frame(ihost, frame_index);
1013 return result;
1014 }
1015 case SCI_PHY_SUB_AWAIT_SIG_FIS_UF: {
1016 struct dev_to_host_fis *frame_header;
1017 u32 *fis_frame_data;
1018
1019 result = sci_unsolicited_frame_control_get_header(uf_control: &ihost->uf_control,
1020 frame_index,
1021 frame_header: (void **)&frame_header);
1022
1023 if (result != SCI_SUCCESS)
1024 return result;
1025
1026 if ((frame_header->fis_type == FIS_REGD2H) &&
1027 !(frame_header->status & ATA_BUSY)) {
1028 sci_unsolicited_frame_control_get_buffer(uf_control: &ihost->uf_control,
1029 frame_index,
1030 frame_buffer: (void **)&fis_frame_data);
1031
1032 spin_lock_irqsave(&iphy->sas_phy.frame_rcvd_lock, flags);
1033 sci_controller_copy_sata_response(response_buffer: &iphy->frame_rcvd.fis,
1034 frame_header,
1035 frame_buffer: fis_frame_data);
1036 spin_unlock_irqrestore(lock: &iphy->sas_phy.frame_rcvd_lock, flags);
1037
1038 /* got IAF we can now go to the await spinup semaphore state */
1039 sci_change_state(sm: &iphy->sm, next_state: SCI_PHY_SUB_FINAL);
1040
1041 result = SCI_SUCCESS;
1042 } else
1043 dev_warn(sciphy_to_dev(iphy),
1044 "%s: PHY starting substate machine received "
1045 "unexpected frame id %x\n",
1046 __func__, frame_index);
1047
1048 /* Regardless of the result we are done with this frame with it */
1049 sci_controller_release_frame(ihost, frame_index);
1050
1051 return result;
1052 }
1053 default:
1054 dev_dbg(sciphy_to_dev(iphy), "%s: in wrong state: %s\n",
1055 __func__, phy_state_name(state));
1056 return SCI_FAILURE_INVALID_STATE;
1057 }
1058
1059}
1060
1061static void sci_phy_starting_initial_substate_enter(struct sci_base_state_machine *sm)
1062{
1063 struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1064
1065 /* This is just an temporary state go off to the starting state */
1066 sci_change_state(sm: &iphy->sm, next_state: SCI_PHY_SUB_AWAIT_OSSP_EN);
1067}
1068
1069static void sci_phy_starting_await_sas_power_substate_enter(struct sci_base_state_machine *sm)
1070{
1071 struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1072 struct isci_host *ihost = iphy->owning_port->owning_controller;
1073
1074 sci_controller_power_control_queue_insert(ihost, iphy);
1075}
1076
1077static void sci_phy_starting_await_sas_power_substate_exit(struct sci_base_state_machine *sm)
1078{
1079 struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1080 struct isci_host *ihost = iphy->owning_port->owning_controller;
1081
1082 sci_controller_power_control_queue_remove(ihost, iphy);
1083}
1084
1085static void sci_phy_starting_await_sata_power_substate_enter(struct sci_base_state_machine *sm)
1086{
1087 struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1088 struct isci_host *ihost = iphy->owning_port->owning_controller;
1089
1090 sci_controller_power_control_queue_insert(ihost, iphy);
1091}
1092
1093static void sci_phy_starting_await_sata_power_substate_exit(struct sci_base_state_machine *sm)
1094{
1095 struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1096 struct isci_host *ihost = iphy->owning_port->owning_controller;
1097
1098 sci_controller_power_control_queue_remove(ihost, iphy);
1099}
1100
1101static void sci_phy_starting_await_sata_phy_substate_enter(struct sci_base_state_machine *sm)
1102{
1103 struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1104
1105 sci_mod_timer(tmr: &iphy->sata_timer, SCIC_SDS_SATA_LINK_TRAINING_TIMEOUT);
1106}
1107
1108static void sci_phy_starting_await_sata_phy_substate_exit(struct sci_base_state_machine *sm)
1109{
1110 struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1111
1112 sci_del_timer(tmr: &iphy->sata_timer);
1113}
1114
1115static void sci_phy_starting_await_sata_speed_substate_enter(struct sci_base_state_machine *sm)
1116{
1117 struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1118
1119 sci_mod_timer(tmr: &iphy->sata_timer, SCIC_SDS_SATA_LINK_TRAINING_TIMEOUT);
1120}
1121
1122static void sci_phy_starting_await_sata_speed_substate_exit(struct sci_base_state_machine *sm)
1123{
1124 struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1125
1126 sci_del_timer(tmr: &iphy->sata_timer);
1127}
1128
1129static void sci_phy_starting_await_sig_fis_uf_substate_enter(struct sci_base_state_machine *sm)
1130{
1131 struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1132
1133 if (sci_port_link_detected(iport: iphy->owning_port, iphy)) {
1134
1135 /*
1136 * Clear the PE suspend condition so we can actually
1137 * receive SIG FIS
1138 * The hardware will not respond to the XRDY until the PE
1139 * suspend condition is cleared.
1140 */
1141 sci_phy_resume(iphy);
1142
1143 sci_mod_timer(tmr: &iphy->sata_timer,
1144 SCIC_SDS_SIGNATURE_FIS_TIMEOUT);
1145 } else
1146 iphy->is_in_link_training = false;
1147}
1148
1149static void sci_phy_starting_await_sig_fis_uf_substate_exit(struct sci_base_state_machine *sm)
1150{
1151 struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1152
1153 sci_del_timer(tmr: &iphy->sata_timer);
1154}
1155
1156static void sci_phy_starting_final_substate_enter(struct sci_base_state_machine *sm)
1157{
1158 struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1159
1160 /* State machine has run to completion so exit out and change
1161 * the base state machine to the ready state
1162 */
1163 sci_change_state(sm: &iphy->sm, next_state: SCI_PHY_READY);
1164}
1165
1166/**
1167 * scu_link_layer_stop_protocol_engine()
1168 * @iphy: This is the struct isci_phy object to stop.
1169 *
1170 * This method will stop the struct isci_phy object. This does not reset the
1171 * protocol engine it just suspends it and places it in a state where it will
1172 * not cause the end device to power up. none
1173 */
1174static void scu_link_layer_stop_protocol_engine(
1175 struct isci_phy *iphy)
1176{
1177 u32 scu_sas_pcfg_value;
1178 u32 enable_spinup_value;
1179
1180 /* Suspend the protocol engine and place it in a sata spinup hold state */
1181 scu_sas_pcfg_value =
1182 readl(addr: &iphy->link_layer_registers->phy_configuration);
1183 scu_sas_pcfg_value |=
1184 (SCU_SAS_PCFG_GEN_BIT(OOB_RESET) |
1185 SCU_SAS_PCFG_GEN_BIT(SUSPEND_PROTOCOL_ENGINE) |
1186 SCU_SAS_PCFG_GEN_BIT(SATA_SPINUP_HOLD));
1187 writel(val: scu_sas_pcfg_value,
1188 addr: &iphy->link_layer_registers->phy_configuration);
1189
1190 /* Disable the notify enable spinup primitives */
1191 enable_spinup_value = readl(addr: &iphy->link_layer_registers->notify_enable_spinup_control);
1192 enable_spinup_value &= ~SCU_ENSPINUP_GEN_BIT(ENABLE);
1193 writel(val: enable_spinup_value, addr: &iphy->link_layer_registers->notify_enable_spinup_control);
1194}
1195
1196static void scu_link_layer_start_oob(struct isci_phy *iphy)
1197{
1198 struct scu_link_layer_registers __iomem *ll = iphy->link_layer_registers;
1199 u32 val;
1200
1201 /** Reset OOB sequence - start */
1202 val = readl(addr: &ll->phy_configuration);
1203 val &= ~(SCU_SAS_PCFG_GEN_BIT(OOB_RESET) |
1204 SCU_SAS_PCFG_GEN_BIT(OOB_ENABLE) |
1205 SCU_SAS_PCFG_GEN_BIT(HARD_RESET));
1206 writel(val, addr: &ll->phy_configuration);
1207 readl(addr: &ll->phy_configuration); /* flush */
1208 /** Reset OOB sequence - end */
1209
1210 /** Start OOB sequence - start */
1211 val = readl(addr: &ll->phy_configuration);
1212 val |= SCU_SAS_PCFG_GEN_BIT(OOB_ENABLE);
1213 writel(val, addr: &ll->phy_configuration);
1214 readl(addr: &ll->phy_configuration); /* flush */
1215 /** Start OOB sequence - end */
1216}
1217
1218/**
1219 * scu_link_layer_tx_hard_reset()
1220 * @iphy: This is the struct isci_phy object to stop.
1221 *
1222 * This method will transmit a hard reset request on the specified phy. The SCU
1223 * hardware requires that we reset the OOB state machine and set the hard reset
1224 * bit in the phy configuration register. We then must start OOB over with the
1225 * hard reset bit set.
1226 */
1227static void scu_link_layer_tx_hard_reset(
1228 struct isci_phy *iphy)
1229{
1230 u32 phy_configuration_value;
1231
1232 /*
1233 * SAS Phys must wait for the HARD_RESET_TX event notification to transition
1234 * to the starting state. */
1235 phy_configuration_value =
1236 readl(addr: &iphy->link_layer_registers->phy_configuration);
1237 phy_configuration_value &= ~(SCU_SAS_PCFG_GEN_BIT(OOB_ENABLE));
1238 phy_configuration_value |=
1239 (SCU_SAS_PCFG_GEN_BIT(HARD_RESET) |
1240 SCU_SAS_PCFG_GEN_BIT(OOB_RESET));
1241 writel(val: phy_configuration_value,
1242 addr: &iphy->link_layer_registers->phy_configuration);
1243
1244 /* Now take the OOB state machine out of reset */
1245 phy_configuration_value |= SCU_SAS_PCFG_GEN_BIT(OOB_ENABLE);
1246 phy_configuration_value &= ~SCU_SAS_PCFG_GEN_BIT(OOB_RESET);
1247 writel(val: phy_configuration_value,
1248 addr: &iphy->link_layer_registers->phy_configuration);
1249}
1250
1251static void sci_phy_stopped_state_enter(struct sci_base_state_machine *sm)
1252{
1253 struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1254 struct isci_port *iport = iphy->owning_port;
1255 struct isci_host *ihost = iport->owning_controller;
1256
1257 /*
1258 * @todo We need to get to the controller to place this PE in a
1259 * reset state
1260 */
1261 sci_del_timer(tmr: &iphy->sata_timer);
1262
1263 scu_link_layer_stop_protocol_engine(iphy);
1264
1265 if (iphy->sm.previous_state_id != SCI_PHY_INITIAL)
1266 sci_controller_link_down(ihost, iport: phy_get_non_dummy_port(iphy), iphy);
1267}
1268
1269static void sci_phy_starting_state_enter(struct sci_base_state_machine *sm)
1270{
1271 struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1272 struct isci_port *iport = iphy->owning_port;
1273 struct isci_host *ihost = iport->owning_controller;
1274
1275 scu_link_layer_stop_protocol_engine(iphy);
1276 scu_link_layer_start_oob(iphy);
1277
1278 /* We don't know what kind of phy we are going to be just yet */
1279 iphy->protocol = SAS_PROTOCOL_NONE;
1280 iphy->bcn_received_while_port_unassigned = false;
1281
1282 if (iphy->sm.previous_state_id == SCI_PHY_READY)
1283 sci_controller_link_down(ihost, iport: phy_get_non_dummy_port(iphy), iphy);
1284
1285 sci_change_state(sm: &iphy->sm, next_state: SCI_PHY_SUB_INITIAL);
1286}
1287
1288static void sci_phy_ready_state_enter(struct sci_base_state_machine *sm)
1289{
1290 struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1291 struct isci_port *iport = iphy->owning_port;
1292 struct isci_host *ihost = iport->owning_controller;
1293
1294 sci_controller_link_up(ihost, iport: phy_get_non_dummy_port(iphy), iphy);
1295}
1296
1297static void sci_phy_ready_state_exit(struct sci_base_state_machine *sm)
1298{
1299 struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1300
1301 sci_phy_suspend(iphy);
1302}
1303
1304static void sci_phy_resetting_state_enter(struct sci_base_state_machine *sm)
1305{
1306 struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1307
1308 /* The phy is being reset, therefore deactivate it from the port. In
1309 * the resetting state we don't notify the user regarding link up and
1310 * link down notifications
1311 */
1312 sci_port_deactivate_phy(iport: iphy->owning_port, iphy, do_notify_user: false);
1313
1314 if (iphy->protocol == SAS_PROTOCOL_SSP) {
1315 scu_link_layer_tx_hard_reset(iphy);
1316 } else {
1317 /* The SCU does not need to have a discrete reset state so
1318 * just go back to the starting state.
1319 */
1320 sci_change_state(sm: &iphy->sm, next_state: SCI_PHY_STARTING);
1321 }
1322}
1323
1324static const struct sci_base_state sci_phy_state_table[] = {
1325 [SCI_PHY_INITIAL] = { },
1326 [SCI_PHY_STOPPED] = {
1327 .enter_state = sci_phy_stopped_state_enter,
1328 },
1329 [SCI_PHY_STARTING] = {
1330 .enter_state = sci_phy_starting_state_enter,
1331 },
1332 [SCI_PHY_SUB_INITIAL] = {
1333 .enter_state = sci_phy_starting_initial_substate_enter,
1334 },
1335 [SCI_PHY_SUB_AWAIT_OSSP_EN] = { },
1336 [SCI_PHY_SUB_AWAIT_SAS_SPEED_EN] = { },
1337 [SCI_PHY_SUB_AWAIT_IAF_UF] = { },
1338 [SCI_PHY_SUB_AWAIT_SAS_POWER] = {
1339 .enter_state = sci_phy_starting_await_sas_power_substate_enter,
1340 .exit_state = sci_phy_starting_await_sas_power_substate_exit,
1341 },
1342 [SCI_PHY_SUB_AWAIT_SATA_POWER] = {
1343 .enter_state = sci_phy_starting_await_sata_power_substate_enter,
1344 .exit_state = sci_phy_starting_await_sata_power_substate_exit
1345 },
1346 [SCI_PHY_SUB_AWAIT_SATA_PHY_EN] = {
1347 .enter_state = sci_phy_starting_await_sata_phy_substate_enter,
1348 .exit_state = sci_phy_starting_await_sata_phy_substate_exit
1349 },
1350 [SCI_PHY_SUB_AWAIT_SATA_SPEED_EN] = {
1351 .enter_state = sci_phy_starting_await_sata_speed_substate_enter,
1352 .exit_state = sci_phy_starting_await_sata_speed_substate_exit
1353 },
1354 [SCI_PHY_SUB_AWAIT_SIG_FIS_UF] = {
1355 .enter_state = sci_phy_starting_await_sig_fis_uf_substate_enter,
1356 .exit_state = sci_phy_starting_await_sig_fis_uf_substate_exit
1357 },
1358 [SCI_PHY_SUB_FINAL] = {
1359 .enter_state = sci_phy_starting_final_substate_enter,
1360 },
1361 [SCI_PHY_READY] = {
1362 .enter_state = sci_phy_ready_state_enter,
1363 .exit_state = sci_phy_ready_state_exit,
1364 },
1365 [SCI_PHY_RESETTING] = {
1366 .enter_state = sci_phy_resetting_state_enter,
1367 },
1368 [SCI_PHY_FINAL] = { },
1369};
1370
1371void sci_phy_construct(struct isci_phy *iphy,
1372 struct isci_port *iport, u8 phy_index)
1373{
1374 sci_init_sm(sm: &iphy->sm, state_table: sci_phy_state_table, initial_state: SCI_PHY_INITIAL);
1375
1376 /* Copy the rest of the input data to our locals */
1377 iphy->owning_port = iport;
1378 iphy->phy_index = phy_index;
1379 iphy->bcn_received_while_port_unassigned = false;
1380 iphy->protocol = SAS_PROTOCOL_NONE;
1381 iphy->link_layer_registers = NULL;
1382 iphy->max_negotiated_speed = SAS_LINK_RATE_UNKNOWN;
1383
1384 /* Create the SIGNATURE FIS Timeout timer for this phy */
1385 sci_init_timer(tmr: &iphy->sata_timer, fn: phy_sata_timeout);
1386}
1387
1388void isci_phy_init(struct isci_phy *iphy, struct isci_host *ihost, int index)
1389{
1390 struct sci_oem_params *oem = &ihost->oem_parameters;
1391 u64 sci_sas_addr;
1392 __be64 sas_addr;
1393
1394 sci_sas_addr = oem->phys[index].sas_address.high;
1395 sci_sas_addr <<= 32;
1396 sci_sas_addr |= oem->phys[index].sas_address.low;
1397 sas_addr = cpu_to_be64(sci_sas_addr);
1398 memcpy(iphy->sas_addr, &sas_addr, sizeof(sas_addr));
1399
1400 iphy->sas_phy.enabled = 0;
1401 iphy->sas_phy.id = index;
1402 iphy->sas_phy.sas_addr = &iphy->sas_addr[0];
1403 iphy->sas_phy.frame_rcvd = (u8 *)&iphy->frame_rcvd;
1404 iphy->sas_phy.ha = &ihost->sas_ha;
1405 iphy->sas_phy.lldd_phy = iphy;
1406 iphy->sas_phy.enabled = 1;
1407 iphy->sas_phy.iproto = SAS_PROTOCOL_ALL;
1408 iphy->sas_phy.tproto = 0;
1409 iphy->sas_phy.role = PHY_ROLE_INITIATOR;
1410 iphy->sas_phy.oob_mode = OOB_NOT_CONNECTED;
1411 iphy->sas_phy.linkrate = SAS_LINK_RATE_UNKNOWN;
1412 memset(&iphy->frame_rcvd, 0, sizeof(iphy->frame_rcvd));
1413}
1414
1415
1416/**
1417 * isci_phy_control() - This function is one of the SAS Domain Template
1418 * functions. This is a phy management function.
1419 * @sas_phy: This parameter specifies the sphy being controlled.
1420 * @func: This parameter specifies the phy control function being invoked.
1421 * @buf: This parameter is specific to the phy function being invoked.
1422 *
1423 * status, zero indicates success.
1424 */
1425int isci_phy_control(struct asd_sas_phy *sas_phy,
1426 enum phy_func func,
1427 void *buf)
1428{
1429 int ret = 0;
1430 struct isci_phy *iphy = sas_phy->lldd_phy;
1431 struct asd_sas_port *port = sas_phy->port;
1432 struct isci_host *ihost = sas_phy->ha->lldd_ha;
1433 unsigned long flags;
1434
1435 dev_dbg(&ihost->pdev->dev,
1436 "%s: phy %p; func %d; buf %p; isci phy %p, port %p\n",
1437 __func__, sas_phy, func, buf, iphy, port);
1438
1439 switch (func) {
1440 case PHY_FUNC_DISABLE:
1441 spin_lock_irqsave(&ihost->scic_lock, flags);
1442 scu_link_layer_start_oob(iphy);
1443 sci_phy_stop(iphy);
1444 spin_unlock_irqrestore(lock: &ihost->scic_lock, flags);
1445 break;
1446
1447 case PHY_FUNC_LINK_RESET:
1448 spin_lock_irqsave(&ihost->scic_lock, flags);
1449 scu_link_layer_start_oob(iphy);
1450 sci_phy_stop(iphy);
1451 sci_phy_start(iphy);
1452 spin_unlock_irqrestore(lock: &ihost->scic_lock, flags);
1453 break;
1454
1455 case PHY_FUNC_HARD_RESET:
1456 if (!port)
1457 return -ENODEV;
1458
1459 ret = isci_port_perform_hard_reset(ihost, iport: port->lldd_port, iphy);
1460
1461 break;
1462 case PHY_FUNC_GET_EVENTS: {
1463 struct scu_link_layer_registers __iomem *r;
1464 struct sas_phy *phy = sas_phy->phy;
1465
1466 r = iphy->link_layer_registers;
1467 phy->running_disparity_error_count = readl(addr: &r->running_disparity_error_count);
1468 phy->loss_of_dword_sync_count = readl(addr: &r->loss_of_sync_error_count);
1469 phy->phy_reset_problem_count = readl(addr: &r->phy_reset_problem_count);
1470 phy->invalid_dword_count = readl(addr: &r->invalid_dword_counter);
1471 break;
1472 }
1473
1474 default:
1475 dev_dbg(&ihost->pdev->dev,
1476 "%s: phy %p; func %d NOT IMPLEMENTED!\n",
1477 __func__, sas_phy, func);
1478 ret = -ENOSYS;
1479 break;
1480 }
1481 return ret;
1482}
1483

source code of linux/drivers/scsi/isci/phy.c