1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (c) 2015-2021, Linaro Limited
4 * Copyright (c) 2016, EPAM Systems
5 */
6
7#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
8
9#include <linux/arm-smccc.h>
10#include <linux/cpuhotplug.h>
11#include <linux/errno.h>
12#include <linux/firmware.h>
13#include <linux/interrupt.h>
14#include <linux/io.h>
15#include <linux/irqdomain.h>
16#include <linux/kernel.h>
17#include <linux/mm.h>
18#include <linux/module.h>
19#include <linux/of.h>
20#include <linux/of_irq.h>
21#include <linux/of_platform.h>
22#include <linux/platform_device.h>
23#include <linux/sched.h>
24#include <linux/slab.h>
25#include <linux/string.h>
26#include <linux/tee_drv.h>
27#include <linux/types.h>
28#include <linux/workqueue.h>
29#include "optee_private.h"
30#include "optee_smc.h"
31#include "optee_rpc_cmd.h"
32#include <linux/kmemleak.h>
33#define CREATE_TRACE_POINTS
34#include "optee_trace.h"
35
36/*
37 * This file implement the SMC ABI used when communicating with secure world
38 * OP-TEE OS via raw SMCs.
39 * This file is divided into the following sections:
40 * 1. Convert between struct tee_param and struct optee_msg_param
41 * 2. Low level support functions to register shared memory in secure world
42 * 3. Dynamic shared memory pool based on alloc_pages()
43 * 4. Do a normal scheduled call into secure world
44 * 5. Asynchronous notification
45 * 6. Driver initialization.
46 */
47
48/*
49 * A typical OP-TEE private shm allocation is 224 bytes (argument struct
50 * with 6 parameters, needed for open session). So with an alignment of 512
51 * we'll waste a bit more than 50%. However, it's only expected that we'll
52 * have a handful of these structs allocated at a time. Most memory will
53 * be allocated aligned to the page size, So all in all this should scale
54 * up and down quite well.
55 */
56#define OPTEE_MIN_STATIC_POOL_ALIGN 9 /* 512 bytes aligned */
57
58/* SMC ABI considers at most a single TEE firmware */
59static unsigned int pcpu_irq_num;
60
61static int optee_cpuhp_enable_pcpu_irq(unsigned int cpu)
62{
63 enable_percpu_irq(irq: pcpu_irq_num, type: IRQ_TYPE_NONE);
64
65 return 0;
66}
67
68static int optee_cpuhp_disable_pcpu_irq(unsigned int cpu)
69{
70 disable_percpu_irq(irq: pcpu_irq_num);
71
72 return 0;
73}
74
75/*
76 * 1. Convert between struct tee_param and struct optee_msg_param
77 *
78 * optee_from_msg_param() and optee_to_msg_param() are the main
79 * functions.
80 */
81
82static int from_msg_param_tmp_mem(struct tee_param *p, u32 attr,
83 const struct optee_msg_param *mp)
84{
85 struct tee_shm *shm;
86 phys_addr_t pa;
87 int rc;
88
89 p->attr = TEE_IOCTL_PARAM_ATTR_TYPE_MEMREF_INPUT +
90 attr - OPTEE_MSG_ATTR_TYPE_TMEM_INPUT;
91 p->u.memref.size = mp->u.tmem.size;
92 shm = (struct tee_shm *)(unsigned long)mp->u.tmem.shm_ref;
93 if (!shm) {
94 p->u.memref.shm_offs = 0;
95 p->u.memref.shm = NULL;
96 return 0;
97 }
98
99 rc = tee_shm_get_pa(shm, offs: 0, pa: &pa);
100 if (rc)
101 return rc;
102
103 p->u.memref.shm_offs = mp->u.tmem.buf_ptr - pa;
104 p->u.memref.shm = shm;
105
106 return 0;
107}
108
109static void from_msg_param_reg_mem(struct tee_param *p, u32 attr,
110 const struct optee_msg_param *mp)
111{
112 struct tee_shm *shm;
113
114 p->attr = TEE_IOCTL_PARAM_ATTR_TYPE_MEMREF_INPUT +
115 attr - OPTEE_MSG_ATTR_TYPE_RMEM_INPUT;
116 p->u.memref.size = mp->u.rmem.size;
117 shm = (struct tee_shm *)(unsigned long)mp->u.rmem.shm_ref;
118
119 if (shm) {
120 p->u.memref.shm_offs = mp->u.rmem.offs;
121 p->u.memref.shm = shm;
122 } else {
123 p->u.memref.shm_offs = 0;
124 p->u.memref.shm = NULL;
125 }
126}
127
128/**
129 * optee_from_msg_param() - convert from OPTEE_MSG parameters to
130 * struct tee_param
131 * @optee: main service struct
132 * @params: subsystem internal parameter representation
133 * @num_params: number of elements in the parameter arrays
134 * @msg_params: OPTEE_MSG parameters
135 * Returns 0 on success or <0 on failure
136 */
137static int optee_from_msg_param(struct optee *optee, struct tee_param *params,
138 size_t num_params,
139 const struct optee_msg_param *msg_params)
140{
141 int rc;
142 size_t n;
143
144 for (n = 0; n < num_params; n++) {
145 struct tee_param *p = params + n;
146 const struct optee_msg_param *mp = msg_params + n;
147 u32 attr = mp->attr & OPTEE_MSG_ATTR_TYPE_MASK;
148
149 switch (attr) {
150 case OPTEE_MSG_ATTR_TYPE_NONE:
151 p->attr = TEE_IOCTL_PARAM_ATTR_TYPE_NONE;
152 memset(&p->u, 0, sizeof(p->u));
153 break;
154 case OPTEE_MSG_ATTR_TYPE_VALUE_INPUT:
155 case OPTEE_MSG_ATTR_TYPE_VALUE_OUTPUT:
156 case OPTEE_MSG_ATTR_TYPE_VALUE_INOUT:
157 optee_from_msg_param_value(p, attr, mp);
158 break;
159 case OPTEE_MSG_ATTR_TYPE_TMEM_INPUT:
160 case OPTEE_MSG_ATTR_TYPE_TMEM_OUTPUT:
161 case OPTEE_MSG_ATTR_TYPE_TMEM_INOUT:
162 rc = from_msg_param_tmp_mem(p, attr, mp);
163 if (rc)
164 return rc;
165 break;
166 case OPTEE_MSG_ATTR_TYPE_RMEM_INPUT:
167 case OPTEE_MSG_ATTR_TYPE_RMEM_OUTPUT:
168 case OPTEE_MSG_ATTR_TYPE_RMEM_INOUT:
169 from_msg_param_reg_mem(p, attr, mp);
170 break;
171
172 default:
173 return -EINVAL;
174 }
175 }
176 return 0;
177}
178
179static int to_msg_param_tmp_mem(struct optee_msg_param *mp,
180 const struct tee_param *p)
181{
182 int rc;
183 phys_addr_t pa;
184
185 mp->attr = OPTEE_MSG_ATTR_TYPE_TMEM_INPUT + p->attr -
186 TEE_IOCTL_PARAM_ATTR_TYPE_MEMREF_INPUT;
187
188 mp->u.tmem.shm_ref = (unsigned long)p->u.memref.shm;
189 mp->u.tmem.size = p->u.memref.size;
190
191 if (!p->u.memref.shm) {
192 mp->u.tmem.buf_ptr = 0;
193 return 0;
194 }
195
196 rc = tee_shm_get_pa(shm: p->u.memref.shm, offs: p->u.memref.shm_offs, pa: &pa);
197 if (rc)
198 return rc;
199
200 mp->u.tmem.buf_ptr = pa;
201 mp->attr |= OPTEE_MSG_ATTR_CACHE_PREDEFINED <<
202 OPTEE_MSG_ATTR_CACHE_SHIFT;
203
204 return 0;
205}
206
207static int to_msg_param_reg_mem(struct optee_msg_param *mp,
208 const struct tee_param *p)
209{
210 mp->attr = OPTEE_MSG_ATTR_TYPE_RMEM_INPUT + p->attr -
211 TEE_IOCTL_PARAM_ATTR_TYPE_MEMREF_INPUT;
212
213 mp->u.rmem.shm_ref = (unsigned long)p->u.memref.shm;
214 mp->u.rmem.size = p->u.memref.size;
215 mp->u.rmem.offs = p->u.memref.shm_offs;
216 return 0;
217}
218
219/**
220 * optee_to_msg_param() - convert from struct tee_params to OPTEE_MSG parameters
221 * @optee: main service struct
222 * @msg_params: OPTEE_MSG parameters
223 * @num_params: number of elements in the parameter arrays
224 * @params: subsystem itnernal parameter representation
225 * Returns 0 on success or <0 on failure
226 */
227static int optee_to_msg_param(struct optee *optee,
228 struct optee_msg_param *msg_params,
229 size_t num_params, const struct tee_param *params)
230{
231 int rc;
232 size_t n;
233
234 for (n = 0; n < num_params; n++) {
235 const struct tee_param *p = params + n;
236 struct optee_msg_param *mp = msg_params + n;
237
238 switch (p->attr) {
239 case TEE_IOCTL_PARAM_ATTR_TYPE_NONE:
240 mp->attr = TEE_IOCTL_PARAM_ATTR_TYPE_NONE;
241 memset(&mp->u, 0, sizeof(mp->u));
242 break;
243 case TEE_IOCTL_PARAM_ATTR_TYPE_VALUE_INPUT:
244 case TEE_IOCTL_PARAM_ATTR_TYPE_VALUE_OUTPUT:
245 case TEE_IOCTL_PARAM_ATTR_TYPE_VALUE_INOUT:
246 optee_to_msg_param_value(mp, p);
247 break;
248 case TEE_IOCTL_PARAM_ATTR_TYPE_MEMREF_INPUT:
249 case TEE_IOCTL_PARAM_ATTR_TYPE_MEMREF_OUTPUT:
250 case TEE_IOCTL_PARAM_ATTR_TYPE_MEMREF_INOUT:
251 if (tee_shm_is_dynamic(shm: p->u.memref.shm))
252 rc = to_msg_param_reg_mem(mp, p);
253 else
254 rc = to_msg_param_tmp_mem(mp, p);
255 if (rc)
256 return rc;
257 break;
258 default:
259 return -EINVAL;
260 }
261 }
262 return 0;
263}
264
265/*
266 * 2. Low level support functions to register shared memory in secure world
267 *
268 * Functions to enable/disable shared memory caching in secure world, that
269 * is, lazy freeing of previously allocated shared memory. Freeing is
270 * performed when a request has been compled.
271 *
272 * Functions to register and unregister shared memory both for normal
273 * clients and for tee-supplicant.
274 */
275
276/**
277 * optee_enable_shm_cache() - Enables caching of some shared memory allocation
278 * in OP-TEE
279 * @optee: main service struct
280 */
281static void optee_enable_shm_cache(struct optee *optee)
282{
283 struct optee_call_waiter w;
284
285 /* We need to retry until secure world isn't busy. */
286 optee_cq_wait_init(cq: &optee->call_queue, w: &w);
287 while (true) {
288 struct arm_smccc_res res;
289
290 optee->smc.invoke_fn(OPTEE_SMC_ENABLE_SHM_CACHE,
291 0, 0, 0, 0, 0, 0, 0, &res);
292 if (res.a0 == OPTEE_SMC_RETURN_OK)
293 break;
294 optee_cq_wait_for_completion(cq: &optee->call_queue, w: &w);
295 }
296 optee_cq_wait_final(cq: &optee->call_queue, w: &w);
297}
298
299/**
300 * __optee_disable_shm_cache() - Disables caching of some shared memory
301 * allocation in OP-TEE
302 * @optee: main service struct
303 * @is_mapped: true if the cached shared memory addresses were mapped by this
304 * kernel, are safe to dereference, and should be freed
305 */
306static void __optee_disable_shm_cache(struct optee *optee, bool is_mapped)
307{
308 struct optee_call_waiter w;
309
310 /* We need to retry until secure world isn't busy. */
311 optee_cq_wait_init(cq: &optee->call_queue, w: &w);
312 while (true) {
313 union {
314 struct arm_smccc_res smccc;
315 struct optee_smc_disable_shm_cache_result result;
316 } res;
317
318 optee->smc.invoke_fn(OPTEE_SMC_DISABLE_SHM_CACHE,
319 0, 0, 0, 0, 0, 0, 0, &res.smccc);
320 if (res.result.status == OPTEE_SMC_RETURN_ENOTAVAIL)
321 break; /* All shm's freed */
322 if (res.result.status == OPTEE_SMC_RETURN_OK) {
323 struct tee_shm *shm;
324
325 /*
326 * Shared memory references that were not mapped by
327 * this kernel must be ignored to prevent a crash.
328 */
329 if (!is_mapped)
330 continue;
331
332 shm = reg_pair_to_ptr(reg0: res.result.shm_upper32,
333 reg1: res.result.shm_lower32);
334 tee_shm_free(shm);
335 } else {
336 optee_cq_wait_for_completion(cq: &optee->call_queue, w: &w);
337 }
338 }
339 optee_cq_wait_final(cq: &optee->call_queue, w: &w);
340}
341
342/**
343 * optee_disable_shm_cache() - Disables caching of mapped shared memory
344 * allocations in OP-TEE
345 * @optee: main service struct
346 */
347static void optee_disable_shm_cache(struct optee *optee)
348{
349 return __optee_disable_shm_cache(optee, is_mapped: true);
350}
351
352/**
353 * optee_disable_unmapped_shm_cache() - Disables caching of shared memory
354 * allocations in OP-TEE which are not
355 * currently mapped
356 * @optee: main service struct
357 */
358static void optee_disable_unmapped_shm_cache(struct optee *optee)
359{
360 return __optee_disable_shm_cache(optee, is_mapped: false);
361}
362
363#define PAGELIST_ENTRIES_PER_PAGE \
364 ((OPTEE_MSG_NONCONTIG_PAGE_SIZE / sizeof(u64)) - 1)
365
366/*
367 * The final entry in each pagelist page is a pointer to the next
368 * pagelist page.
369 */
370static size_t get_pages_list_size(size_t num_entries)
371{
372 int pages = DIV_ROUND_UP(num_entries, PAGELIST_ENTRIES_PER_PAGE);
373
374 return pages * OPTEE_MSG_NONCONTIG_PAGE_SIZE;
375}
376
377static u64 *optee_allocate_pages_list(size_t num_entries)
378{
379 return alloc_pages_exact(size: get_pages_list_size(num_entries), GFP_KERNEL);
380}
381
382static void optee_free_pages_list(void *list, size_t num_entries)
383{
384 free_pages_exact(virt: list, size: get_pages_list_size(num_entries));
385}
386
387/**
388 * optee_fill_pages_list() - write list of user pages to given shared
389 * buffer.
390 *
391 * @dst: page-aligned buffer where list of pages will be stored
392 * @pages: array of pages that represents shared buffer
393 * @num_pages: number of entries in @pages
394 * @page_offset: offset of user buffer from page start
395 *
396 * @dst should be big enough to hold list of user page addresses and
397 * links to the next pages of buffer
398 */
399static void optee_fill_pages_list(u64 *dst, struct page **pages, int num_pages,
400 size_t page_offset)
401{
402 int n = 0;
403 phys_addr_t optee_page;
404 /*
405 * Refer to OPTEE_MSG_ATTR_NONCONTIG description in optee_msg.h
406 * for details.
407 */
408 struct {
409 u64 pages_list[PAGELIST_ENTRIES_PER_PAGE];
410 u64 next_page_data;
411 } *pages_data;
412
413 /*
414 * Currently OP-TEE uses 4k page size and it does not looks
415 * like this will change in the future. On other hand, there are
416 * no know ARM architectures with page size < 4k.
417 * Thus the next built assert looks redundant. But the following
418 * code heavily relies on this assumption, so it is better be
419 * safe than sorry.
420 */
421 BUILD_BUG_ON(PAGE_SIZE < OPTEE_MSG_NONCONTIG_PAGE_SIZE);
422
423 pages_data = (void *)dst;
424 /*
425 * If linux page is bigger than 4k, and user buffer offset is
426 * larger than 4k/8k/12k/etc this will skip first 4k pages,
427 * because they bear no value data for OP-TEE.
428 */
429 optee_page = page_to_phys(*pages) +
430 round_down(page_offset, OPTEE_MSG_NONCONTIG_PAGE_SIZE);
431
432 while (true) {
433 pages_data->pages_list[n++] = optee_page;
434
435 if (n == PAGELIST_ENTRIES_PER_PAGE) {
436 pages_data->next_page_data =
437 virt_to_phys(address: pages_data + 1);
438 pages_data++;
439 n = 0;
440 }
441
442 optee_page += OPTEE_MSG_NONCONTIG_PAGE_SIZE;
443 if (!(optee_page & ~PAGE_MASK)) {
444 if (!--num_pages)
445 break;
446 pages++;
447 optee_page = page_to_phys(*pages);
448 }
449 }
450}
451
452static int optee_shm_register(struct tee_context *ctx, struct tee_shm *shm,
453 struct page **pages, size_t num_pages,
454 unsigned long start)
455{
456 struct optee *optee = tee_get_drvdata(teedev: ctx->teedev);
457 struct optee_msg_arg *msg_arg;
458 struct tee_shm *shm_arg;
459 u64 *pages_list;
460 size_t sz;
461 int rc;
462
463 if (!num_pages)
464 return -EINVAL;
465
466 rc = optee_check_mem_type(start, num_pages);
467 if (rc)
468 return rc;
469
470 pages_list = optee_allocate_pages_list(num_entries: num_pages);
471 if (!pages_list)
472 return -ENOMEM;
473
474 /*
475 * We're about to register shared memory we can't register shared
476 * memory for this request or there's a catch-22.
477 *
478 * So in this we'll have to do the good old temporary private
479 * allocation instead of using optee_get_msg_arg().
480 */
481 sz = optee_msg_arg_size(rpc_param_count: optee->rpc_param_count);
482 shm_arg = tee_shm_alloc_priv_buf(ctx, size: sz);
483 if (IS_ERR(ptr: shm_arg)) {
484 rc = PTR_ERR(ptr: shm_arg);
485 goto out;
486 }
487 msg_arg = tee_shm_get_va(shm: shm_arg, offs: 0);
488 if (IS_ERR(ptr: msg_arg)) {
489 rc = PTR_ERR(ptr: msg_arg);
490 goto out;
491 }
492
493 optee_fill_pages_list(dst: pages_list, pages, num_pages,
494 page_offset: tee_shm_get_page_offset(shm));
495
496 memset(msg_arg, 0, OPTEE_MSG_GET_ARG_SIZE(1));
497 msg_arg->num_params = 1;
498 msg_arg->cmd = OPTEE_MSG_CMD_REGISTER_SHM;
499 msg_arg->params->attr = OPTEE_MSG_ATTR_TYPE_TMEM_OUTPUT |
500 OPTEE_MSG_ATTR_NONCONTIG;
501 msg_arg->params->u.tmem.shm_ref = (unsigned long)shm;
502 msg_arg->params->u.tmem.size = tee_shm_get_size(shm);
503 /*
504 * In the least bits of msg_arg->params->u.tmem.buf_ptr we
505 * store buffer offset from 4k page, as described in OP-TEE ABI.
506 */
507 msg_arg->params->u.tmem.buf_ptr = virt_to_phys(address: pages_list) |
508 (tee_shm_get_page_offset(shm) & (OPTEE_MSG_NONCONTIG_PAGE_SIZE - 1));
509
510 if (optee->ops->do_call_with_arg(ctx, shm_arg, 0) ||
511 msg_arg->ret != TEEC_SUCCESS)
512 rc = -EINVAL;
513
514 tee_shm_free(shm: shm_arg);
515out:
516 optee_free_pages_list(list: pages_list, num_entries: num_pages);
517 return rc;
518}
519
520static int optee_shm_unregister(struct tee_context *ctx, struct tee_shm *shm)
521{
522 struct optee *optee = tee_get_drvdata(teedev: ctx->teedev);
523 struct optee_msg_arg *msg_arg;
524 struct tee_shm *shm_arg;
525 int rc = 0;
526 size_t sz;
527
528 /*
529 * We're about to unregister shared memory and we may not be able
530 * register shared memory for this request in case we're called
531 * from optee_shm_arg_cache_uninit().
532 *
533 * So in order to keep things simple in this function just as in
534 * optee_shm_register() we'll use temporary private allocation
535 * instead of using optee_get_msg_arg().
536 */
537 sz = optee_msg_arg_size(rpc_param_count: optee->rpc_param_count);
538 shm_arg = tee_shm_alloc_priv_buf(ctx, size: sz);
539 if (IS_ERR(ptr: shm_arg))
540 return PTR_ERR(ptr: shm_arg);
541 msg_arg = tee_shm_get_va(shm: shm_arg, offs: 0);
542 if (IS_ERR(ptr: msg_arg)) {
543 rc = PTR_ERR(ptr: msg_arg);
544 goto out;
545 }
546
547 memset(msg_arg, 0, sz);
548 msg_arg->num_params = 1;
549 msg_arg->cmd = OPTEE_MSG_CMD_UNREGISTER_SHM;
550 msg_arg->params[0].attr = OPTEE_MSG_ATTR_TYPE_RMEM_INPUT;
551 msg_arg->params[0].u.rmem.shm_ref = (unsigned long)shm;
552
553 if (optee->ops->do_call_with_arg(ctx, shm_arg, 0) ||
554 msg_arg->ret != TEEC_SUCCESS)
555 rc = -EINVAL;
556out:
557 tee_shm_free(shm: shm_arg);
558 return rc;
559}
560
561static int optee_shm_register_supp(struct tee_context *ctx, struct tee_shm *shm,
562 struct page **pages, size_t num_pages,
563 unsigned long start)
564{
565 /*
566 * We don't want to register supplicant memory in OP-TEE.
567 * Instead information about it will be passed in RPC code.
568 */
569 return optee_check_mem_type(start, num_pages);
570}
571
572static int optee_shm_unregister_supp(struct tee_context *ctx,
573 struct tee_shm *shm)
574{
575 return 0;
576}
577
578/*
579 * 3. Dynamic shared memory pool based on alloc_pages()
580 *
581 * Implements an OP-TEE specific shared memory pool which is used
582 * when dynamic shared memory is supported by secure world.
583 *
584 * The main function is optee_shm_pool_alloc_pages().
585 */
586
587static int pool_op_alloc(struct tee_shm_pool *pool,
588 struct tee_shm *shm, size_t size, size_t align)
589{
590 /*
591 * Shared memory private to the OP-TEE driver doesn't need
592 * to be registered with OP-TEE.
593 */
594 if (shm->flags & TEE_SHM_PRIV)
595 return optee_pool_op_alloc_helper(pool, shm, size, align, NULL);
596
597 return optee_pool_op_alloc_helper(pool, shm, size, align,
598 shm_register: optee_shm_register);
599}
600
601static void pool_op_free(struct tee_shm_pool *pool,
602 struct tee_shm *shm)
603{
604 if (!(shm->flags & TEE_SHM_PRIV))
605 optee_pool_op_free_helper(pool, shm, shm_unregister: optee_shm_unregister);
606 else
607 optee_pool_op_free_helper(pool, shm, NULL);
608}
609
610static void pool_op_destroy_pool(struct tee_shm_pool *pool)
611{
612 kfree(objp: pool);
613}
614
615static const struct tee_shm_pool_ops pool_ops = {
616 .alloc = pool_op_alloc,
617 .free = pool_op_free,
618 .destroy_pool = pool_op_destroy_pool,
619};
620
621/**
622 * optee_shm_pool_alloc_pages() - create page-based allocator pool
623 *
624 * This pool is used when OP-TEE supports dymanic SHM. In this case
625 * command buffers and such are allocated from kernel's own memory.
626 */
627static struct tee_shm_pool *optee_shm_pool_alloc_pages(void)
628{
629 struct tee_shm_pool *pool = kzalloc(size: sizeof(*pool), GFP_KERNEL);
630
631 if (!pool)
632 return ERR_PTR(error: -ENOMEM);
633
634 pool->ops = &pool_ops;
635
636 return pool;
637}
638
639/*
640 * 4. Do a normal scheduled call into secure world
641 *
642 * The function optee_smc_do_call_with_arg() performs a normal scheduled
643 * call into secure world. During this call may normal world request help
644 * from normal world using RPCs, Remote Procedure Calls. This includes
645 * delivery of non-secure interrupts to for instance allow rescheduling of
646 * the current task.
647 */
648
649static void handle_rpc_func_cmd_shm_free(struct tee_context *ctx,
650 struct optee_msg_arg *arg)
651{
652 struct tee_shm *shm;
653
654 arg->ret_origin = TEEC_ORIGIN_COMMS;
655
656 if (arg->num_params != 1 ||
657 arg->params[0].attr != OPTEE_MSG_ATTR_TYPE_VALUE_INPUT) {
658 arg->ret = TEEC_ERROR_BAD_PARAMETERS;
659 return;
660 }
661
662 shm = (struct tee_shm *)(unsigned long)arg->params[0].u.value.b;
663 switch (arg->params[0].u.value.a) {
664 case OPTEE_RPC_SHM_TYPE_APPL:
665 optee_rpc_cmd_free_suppl(ctx, shm);
666 break;
667 case OPTEE_RPC_SHM_TYPE_KERNEL:
668 tee_shm_free(shm);
669 break;
670 default:
671 arg->ret = TEEC_ERROR_BAD_PARAMETERS;
672 }
673 arg->ret = TEEC_SUCCESS;
674}
675
676static void handle_rpc_func_cmd_shm_alloc(struct tee_context *ctx,
677 struct optee *optee,
678 struct optee_msg_arg *arg,
679 struct optee_call_ctx *call_ctx)
680{
681 phys_addr_t pa;
682 struct tee_shm *shm;
683 size_t sz;
684 size_t n;
685
686 arg->ret_origin = TEEC_ORIGIN_COMMS;
687
688 if (!arg->num_params ||
689 arg->params[0].attr != OPTEE_MSG_ATTR_TYPE_VALUE_INPUT) {
690 arg->ret = TEEC_ERROR_BAD_PARAMETERS;
691 return;
692 }
693
694 for (n = 1; n < arg->num_params; n++) {
695 if (arg->params[n].attr != OPTEE_MSG_ATTR_TYPE_NONE) {
696 arg->ret = TEEC_ERROR_BAD_PARAMETERS;
697 return;
698 }
699 }
700
701 sz = arg->params[0].u.value.b;
702 switch (arg->params[0].u.value.a) {
703 case OPTEE_RPC_SHM_TYPE_APPL:
704 shm = optee_rpc_cmd_alloc_suppl(ctx, sz);
705 break;
706 case OPTEE_RPC_SHM_TYPE_KERNEL:
707 shm = tee_shm_alloc_priv_buf(ctx: optee->ctx, size: sz);
708 break;
709 default:
710 arg->ret = TEEC_ERROR_BAD_PARAMETERS;
711 return;
712 }
713
714 if (IS_ERR(ptr: shm)) {
715 arg->ret = TEEC_ERROR_OUT_OF_MEMORY;
716 return;
717 }
718
719 if (tee_shm_get_pa(shm, offs: 0, pa: &pa)) {
720 arg->ret = TEEC_ERROR_BAD_PARAMETERS;
721 goto bad;
722 }
723
724 sz = tee_shm_get_size(shm);
725
726 if (tee_shm_is_dynamic(shm)) {
727 struct page **pages;
728 u64 *pages_list;
729 size_t page_num;
730
731 pages = tee_shm_get_pages(shm, num_pages: &page_num);
732 if (!pages || !page_num) {
733 arg->ret = TEEC_ERROR_OUT_OF_MEMORY;
734 goto bad;
735 }
736
737 pages_list = optee_allocate_pages_list(num_entries: page_num);
738 if (!pages_list) {
739 arg->ret = TEEC_ERROR_OUT_OF_MEMORY;
740 goto bad;
741 }
742
743 call_ctx->pages_list = pages_list;
744 call_ctx->num_entries = page_num;
745
746 arg->params[0].attr = OPTEE_MSG_ATTR_TYPE_TMEM_OUTPUT |
747 OPTEE_MSG_ATTR_NONCONTIG;
748 /*
749 * In the least bits of u.tmem.buf_ptr we store buffer offset
750 * from 4k page, as described in OP-TEE ABI.
751 */
752 arg->params[0].u.tmem.buf_ptr = virt_to_phys(address: pages_list) |
753 (tee_shm_get_page_offset(shm) &
754 (OPTEE_MSG_NONCONTIG_PAGE_SIZE - 1));
755 arg->params[0].u.tmem.size = tee_shm_get_size(shm);
756 arg->params[0].u.tmem.shm_ref = (unsigned long)shm;
757
758 optee_fill_pages_list(dst: pages_list, pages, num_pages: page_num,
759 page_offset: tee_shm_get_page_offset(shm));
760 } else {
761 arg->params[0].attr = OPTEE_MSG_ATTR_TYPE_TMEM_OUTPUT;
762 arg->params[0].u.tmem.buf_ptr = pa;
763 arg->params[0].u.tmem.size = sz;
764 arg->params[0].u.tmem.shm_ref = (unsigned long)shm;
765 }
766
767 arg->ret = TEEC_SUCCESS;
768 return;
769bad:
770 tee_shm_free(shm);
771}
772
773static void free_pages_list(struct optee_call_ctx *call_ctx)
774{
775 if (call_ctx->pages_list) {
776 optee_free_pages_list(list: call_ctx->pages_list,
777 num_entries: call_ctx->num_entries);
778 call_ctx->pages_list = NULL;
779 call_ctx->num_entries = 0;
780 }
781}
782
783static void optee_rpc_finalize_call(struct optee_call_ctx *call_ctx)
784{
785 free_pages_list(call_ctx);
786}
787
788static void handle_rpc_func_cmd(struct tee_context *ctx, struct optee *optee,
789 struct optee_msg_arg *arg,
790 struct optee_call_ctx *call_ctx)
791{
792
793 switch (arg->cmd) {
794 case OPTEE_RPC_CMD_SHM_ALLOC:
795 free_pages_list(call_ctx);
796 handle_rpc_func_cmd_shm_alloc(ctx, optee, arg, call_ctx);
797 break;
798 case OPTEE_RPC_CMD_SHM_FREE:
799 handle_rpc_func_cmd_shm_free(ctx, arg);
800 break;
801 default:
802 optee_rpc_cmd(ctx, optee, arg);
803 }
804}
805
806/**
807 * optee_handle_rpc() - handle RPC from secure world
808 * @ctx: context doing the RPC
809 * @param: value of registers for the RPC
810 * @call_ctx: call context. Preserved during one OP-TEE invocation
811 *
812 * Result of RPC is written back into @param.
813 */
814static void optee_handle_rpc(struct tee_context *ctx,
815 struct optee_msg_arg *rpc_arg,
816 struct optee_rpc_param *param,
817 struct optee_call_ctx *call_ctx)
818{
819 struct tee_device *teedev = ctx->teedev;
820 struct optee *optee = tee_get_drvdata(teedev);
821 struct optee_msg_arg *arg;
822 struct tee_shm *shm;
823 phys_addr_t pa;
824
825 switch (OPTEE_SMC_RETURN_GET_RPC_FUNC(param->a0)) {
826 case OPTEE_SMC_RPC_FUNC_ALLOC:
827 shm = tee_shm_alloc_priv_buf(ctx: optee->ctx, size: param->a1);
828 if (!IS_ERR(ptr: shm) && !tee_shm_get_pa(shm, offs: 0, pa: &pa)) {
829 reg_pair_from_64(reg0: &param->a1, reg1: &param->a2, val: pa);
830 reg_pair_from_64(reg0: &param->a4, reg1: &param->a5,
831 val: (unsigned long)shm);
832 } else {
833 param->a1 = 0;
834 param->a2 = 0;
835 param->a4 = 0;
836 param->a5 = 0;
837 }
838 kmemleak_not_leak(ptr: shm);
839 break;
840 case OPTEE_SMC_RPC_FUNC_FREE:
841 shm = reg_pair_to_ptr(reg0: param->a1, reg1: param->a2);
842 tee_shm_free(shm);
843 break;
844 case OPTEE_SMC_RPC_FUNC_FOREIGN_INTR:
845 /*
846 * A foreign interrupt was raised while secure world was
847 * executing, since they are handled in Linux a dummy RPC is
848 * performed to let Linux take the interrupt through the normal
849 * vector.
850 */
851 break;
852 case OPTEE_SMC_RPC_FUNC_CMD:
853 if (rpc_arg) {
854 arg = rpc_arg;
855 } else {
856 shm = reg_pair_to_ptr(reg0: param->a1, reg1: param->a2);
857 arg = tee_shm_get_va(shm, offs: 0);
858 if (IS_ERR(ptr: arg)) {
859 pr_err("%s: tee_shm_get_va %p failed\n",
860 __func__, shm);
861 break;
862 }
863 }
864
865 handle_rpc_func_cmd(ctx, optee, arg, call_ctx);
866 break;
867 default:
868 pr_warn("Unknown RPC func 0x%x\n",
869 (u32)OPTEE_SMC_RETURN_GET_RPC_FUNC(param->a0));
870 break;
871 }
872
873 param->a0 = OPTEE_SMC_CALL_RETURN_FROM_RPC;
874}
875
876/**
877 * optee_smc_do_call_with_arg() - Do an SMC to OP-TEE in secure world
878 * @ctx: calling context
879 * @shm: shared memory holding the message to pass to secure world
880 * @offs: offset of the message in @shm
881 *
882 * Does and SMC to OP-TEE in secure world and handles eventual resulting
883 * Remote Procedure Calls (RPC) from OP-TEE.
884 *
885 * Returns return code from secure world, 0 is OK
886 */
887static int optee_smc_do_call_with_arg(struct tee_context *ctx,
888 struct tee_shm *shm, u_int offs)
889{
890 struct optee *optee = tee_get_drvdata(teedev: ctx->teedev);
891 struct optee_call_waiter w;
892 struct optee_rpc_param param = { };
893 struct optee_call_ctx call_ctx = { };
894 struct optee_msg_arg *rpc_arg = NULL;
895 int rc;
896
897 if (optee->rpc_param_count) {
898 struct optee_msg_arg *arg;
899 unsigned int rpc_arg_offs;
900
901 arg = tee_shm_get_va(shm, offs);
902 if (IS_ERR(ptr: arg))
903 return PTR_ERR(ptr: arg);
904
905 rpc_arg_offs = OPTEE_MSG_GET_ARG_SIZE(arg->num_params);
906 rpc_arg = tee_shm_get_va(shm, offs: offs + rpc_arg_offs);
907 if (IS_ERR(ptr: rpc_arg))
908 return PTR_ERR(ptr: rpc_arg);
909 }
910
911 if (rpc_arg && tee_shm_is_dynamic(shm)) {
912 param.a0 = OPTEE_SMC_CALL_WITH_REGD_ARG;
913 reg_pair_from_64(reg0: &param.a1, reg1: &param.a2, val: (u_long)shm);
914 param.a3 = offs;
915 } else {
916 phys_addr_t parg;
917
918 rc = tee_shm_get_pa(shm, offs, pa: &parg);
919 if (rc)
920 return rc;
921
922 if (rpc_arg)
923 param.a0 = OPTEE_SMC_CALL_WITH_RPC_ARG;
924 else
925 param.a0 = OPTEE_SMC_CALL_WITH_ARG;
926 reg_pair_from_64(reg0: &param.a1, reg1: &param.a2, val: parg);
927 }
928 /* Initialize waiter */
929 optee_cq_wait_init(cq: &optee->call_queue, w: &w);
930 while (true) {
931 struct arm_smccc_res res;
932
933 trace_optee_invoke_fn_begin(param: &param);
934 optee->smc.invoke_fn(param.a0, param.a1, param.a2, param.a3,
935 param.a4, param.a5, param.a6, param.a7,
936 &res);
937 trace_optee_invoke_fn_end(param: &param, res: &res);
938
939 if (res.a0 == OPTEE_SMC_RETURN_ETHREAD_LIMIT) {
940 /*
941 * Out of threads in secure world, wait for a thread
942 * become available.
943 */
944 optee_cq_wait_for_completion(cq: &optee->call_queue, w: &w);
945 } else if (OPTEE_SMC_RETURN_IS_RPC(res.a0)) {
946 cond_resched();
947 param.a0 = res.a0;
948 param.a1 = res.a1;
949 param.a2 = res.a2;
950 param.a3 = res.a3;
951 optee_handle_rpc(ctx, rpc_arg, param: &param, call_ctx: &call_ctx);
952 } else {
953 rc = res.a0;
954 break;
955 }
956 }
957
958 optee_rpc_finalize_call(call_ctx: &call_ctx);
959 /*
960 * We're done with our thread in secure world, if there's any
961 * thread waiters wake up one.
962 */
963 optee_cq_wait_final(cq: &optee->call_queue, w: &w);
964
965 return rc;
966}
967
968static int simple_call_with_arg(struct tee_context *ctx, u32 cmd)
969{
970 struct optee_shm_arg_entry *entry;
971 struct optee_msg_arg *msg_arg;
972 struct tee_shm *shm;
973 u_int offs;
974
975 msg_arg = optee_get_msg_arg(ctx, num_params: 0, entry: &entry, shm_ret: &shm, offs: &offs);
976 if (IS_ERR(ptr: msg_arg))
977 return PTR_ERR(ptr: msg_arg);
978
979 msg_arg->cmd = cmd;
980 optee_smc_do_call_with_arg(ctx, shm, offs);
981
982 optee_free_msg_arg(ctx, entry, offs);
983 return 0;
984}
985
986static int optee_smc_do_bottom_half(struct tee_context *ctx)
987{
988 return simple_call_with_arg(ctx, OPTEE_MSG_CMD_DO_BOTTOM_HALF);
989}
990
991static int optee_smc_stop_async_notif(struct tee_context *ctx)
992{
993 return simple_call_with_arg(ctx, OPTEE_MSG_CMD_STOP_ASYNC_NOTIF);
994}
995
996/*
997 * 5. Asynchronous notification
998 */
999
1000static u32 get_async_notif_value(optee_invoke_fn *invoke_fn, bool *value_valid,
1001 bool *value_pending)
1002{
1003 struct arm_smccc_res res;
1004
1005 invoke_fn(OPTEE_SMC_GET_ASYNC_NOTIF_VALUE, 0, 0, 0, 0, 0, 0, 0, &res);
1006
1007 if (res.a0) {
1008 *value_valid = false;
1009 return 0;
1010 }
1011 *value_valid = (res.a2 & OPTEE_SMC_ASYNC_NOTIF_VALUE_VALID);
1012 *value_pending = (res.a2 & OPTEE_SMC_ASYNC_NOTIF_VALUE_PENDING);
1013 return res.a1;
1014}
1015
1016static irqreturn_t irq_handler(struct optee *optee)
1017{
1018 bool do_bottom_half = false;
1019 bool value_valid;
1020 bool value_pending;
1021 u32 value;
1022
1023 do {
1024 value = get_async_notif_value(invoke_fn: optee->smc.invoke_fn,
1025 value_valid: &value_valid, value_pending: &value_pending);
1026 if (!value_valid)
1027 break;
1028
1029 if (value == OPTEE_SMC_ASYNC_NOTIF_VALUE_DO_BOTTOM_HALF)
1030 do_bottom_half = true;
1031 else
1032 optee_notif_send(optee, key: value);
1033 } while (value_pending);
1034
1035 if (do_bottom_half)
1036 return IRQ_WAKE_THREAD;
1037 return IRQ_HANDLED;
1038}
1039
1040static irqreturn_t notif_irq_handler(int irq, void *dev_id)
1041{
1042 struct optee *optee = dev_id;
1043
1044 return irq_handler(optee);
1045}
1046
1047static irqreturn_t notif_irq_thread_fn(int irq, void *dev_id)
1048{
1049 struct optee *optee = dev_id;
1050
1051 optee_smc_do_bottom_half(ctx: optee->ctx);
1052
1053 return IRQ_HANDLED;
1054}
1055
1056static int init_irq(struct optee *optee, u_int irq)
1057{
1058 int rc;
1059
1060 rc = request_threaded_irq(irq, handler: notif_irq_handler,
1061 thread_fn: notif_irq_thread_fn,
1062 flags: 0, name: "optee_notification", dev: optee);
1063 if (rc)
1064 return rc;
1065
1066 optee->smc.notif_irq = irq;
1067
1068 return 0;
1069}
1070
1071static irqreturn_t notif_pcpu_irq_handler(int irq, void *dev_id)
1072{
1073 struct optee_pcpu *pcpu = dev_id;
1074 struct optee *optee = pcpu->optee;
1075
1076 if (irq_handler(optee) == IRQ_WAKE_THREAD)
1077 queue_work(wq: optee->smc.notif_pcpu_wq,
1078 work: &optee->smc.notif_pcpu_work);
1079
1080 return IRQ_HANDLED;
1081}
1082
1083static void notif_pcpu_irq_work_fn(struct work_struct *work)
1084{
1085 struct optee_smc *optee_smc = container_of(work, struct optee_smc,
1086 notif_pcpu_work);
1087 struct optee *optee = container_of(optee_smc, struct optee, smc);
1088
1089 optee_smc_do_bottom_half(ctx: optee->ctx);
1090}
1091
1092static int init_pcpu_irq(struct optee *optee, u_int irq)
1093{
1094 struct optee_pcpu __percpu *optee_pcpu;
1095 int cpu, rc;
1096
1097 optee_pcpu = alloc_percpu(struct optee_pcpu);
1098 if (!optee_pcpu)
1099 return -ENOMEM;
1100
1101 for_each_present_cpu(cpu)
1102 per_cpu_ptr(optee_pcpu, cpu)->optee = optee;
1103
1104 rc = request_percpu_irq(irq, handler: notif_pcpu_irq_handler,
1105 devname: "optee_pcpu_notification", percpu_dev_id: optee_pcpu);
1106 if (rc)
1107 goto err_free_pcpu;
1108
1109 INIT_WORK(&optee->smc.notif_pcpu_work, notif_pcpu_irq_work_fn);
1110 optee->smc.notif_pcpu_wq = create_workqueue("optee_pcpu_notification");
1111 if (!optee->smc.notif_pcpu_wq) {
1112 rc = -EINVAL;
1113 goto err_free_pcpu_irq;
1114 }
1115
1116 optee->smc.optee_pcpu = optee_pcpu;
1117 optee->smc.notif_irq = irq;
1118
1119 pcpu_irq_num = irq;
1120 rc = cpuhp_setup_state(state: CPUHP_AP_ONLINE_DYN, name: "optee/pcpu-notif:starting",
1121 startup: optee_cpuhp_enable_pcpu_irq,
1122 teardown: optee_cpuhp_disable_pcpu_irq);
1123 if (!rc)
1124 rc = -EINVAL;
1125 if (rc < 0)
1126 goto err_free_pcpu_irq;
1127
1128 optee->smc.notif_cpuhp_state = rc;
1129
1130 return 0;
1131
1132err_free_pcpu_irq:
1133 free_percpu_irq(irq, optee_pcpu);
1134err_free_pcpu:
1135 free_percpu(pdata: optee_pcpu);
1136
1137 return rc;
1138}
1139
1140static int optee_smc_notif_init_irq(struct optee *optee, u_int irq)
1141{
1142 if (irq_is_percpu_devid(irq))
1143 return init_pcpu_irq(optee, irq);
1144 else
1145 return init_irq(optee, irq);
1146}
1147
1148static void uninit_pcpu_irq(struct optee *optee)
1149{
1150 cpuhp_remove_state(state: optee->smc.notif_cpuhp_state);
1151
1152 destroy_workqueue(wq: optee->smc.notif_pcpu_wq);
1153
1154 free_percpu_irq(optee->smc.notif_irq, optee->smc.optee_pcpu);
1155 free_percpu(pdata: optee->smc.optee_pcpu);
1156}
1157
1158static void optee_smc_notif_uninit_irq(struct optee *optee)
1159{
1160 if (optee->smc.sec_caps & OPTEE_SMC_SEC_CAP_ASYNC_NOTIF) {
1161 optee_smc_stop_async_notif(ctx: optee->ctx);
1162 if (optee->smc.notif_irq) {
1163 if (irq_is_percpu_devid(irq: optee->smc.notif_irq))
1164 uninit_pcpu_irq(optee);
1165 else
1166 free_irq(optee->smc.notif_irq, optee);
1167
1168 irq_dispose_mapping(virq: optee->smc.notif_irq);
1169 }
1170 }
1171}
1172
1173/*
1174 * 6. Driver initialization
1175 *
1176 * During driver initialization is secure world probed to find out which
1177 * features it supports so the driver can be initialized with a matching
1178 * configuration. This involves for instance support for dynamic shared
1179 * memory instead of a static memory carvout.
1180 */
1181
1182static void optee_get_version(struct tee_device *teedev,
1183 struct tee_ioctl_version_data *vers)
1184{
1185 struct tee_ioctl_version_data v = {
1186 .impl_id = TEE_IMPL_ID_OPTEE,
1187 .impl_caps = TEE_OPTEE_CAP_TZ,
1188 .gen_caps = TEE_GEN_CAP_GP,
1189 };
1190 struct optee *optee = tee_get_drvdata(teedev);
1191
1192 if (optee->smc.sec_caps & OPTEE_SMC_SEC_CAP_DYNAMIC_SHM)
1193 v.gen_caps |= TEE_GEN_CAP_REG_MEM;
1194 if (optee->smc.sec_caps & OPTEE_SMC_SEC_CAP_MEMREF_NULL)
1195 v.gen_caps |= TEE_GEN_CAP_MEMREF_NULL;
1196 *vers = v;
1197}
1198
1199static int optee_smc_open(struct tee_context *ctx)
1200{
1201 struct optee *optee = tee_get_drvdata(teedev: ctx->teedev);
1202 u32 sec_caps = optee->smc.sec_caps;
1203
1204 return optee_open(ctx, cap_memref_null: sec_caps & OPTEE_SMC_SEC_CAP_MEMREF_NULL);
1205}
1206
1207static const struct tee_driver_ops optee_clnt_ops = {
1208 .get_version = optee_get_version,
1209 .open = optee_smc_open,
1210 .release = optee_release,
1211 .open_session = optee_open_session,
1212 .close_session = optee_close_session,
1213 .invoke_func = optee_invoke_func,
1214 .cancel_req = optee_cancel_req,
1215 .shm_register = optee_shm_register,
1216 .shm_unregister = optee_shm_unregister,
1217};
1218
1219static const struct tee_desc optee_clnt_desc = {
1220 .name = DRIVER_NAME "-clnt",
1221 .ops = &optee_clnt_ops,
1222 .owner = THIS_MODULE,
1223};
1224
1225static const struct tee_driver_ops optee_supp_ops = {
1226 .get_version = optee_get_version,
1227 .open = optee_smc_open,
1228 .release = optee_release_supp,
1229 .supp_recv = optee_supp_recv,
1230 .supp_send = optee_supp_send,
1231 .shm_register = optee_shm_register_supp,
1232 .shm_unregister = optee_shm_unregister_supp,
1233};
1234
1235static const struct tee_desc optee_supp_desc = {
1236 .name = DRIVER_NAME "-supp",
1237 .ops = &optee_supp_ops,
1238 .owner = THIS_MODULE,
1239 .flags = TEE_DESC_PRIVILEGED,
1240};
1241
1242static const struct optee_ops optee_ops = {
1243 .do_call_with_arg = optee_smc_do_call_with_arg,
1244 .to_msg_param = optee_to_msg_param,
1245 .from_msg_param = optee_from_msg_param,
1246};
1247
1248static int enable_async_notif(optee_invoke_fn *invoke_fn)
1249{
1250 struct arm_smccc_res res;
1251
1252 invoke_fn(OPTEE_SMC_ENABLE_ASYNC_NOTIF, 0, 0, 0, 0, 0, 0, 0, &res);
1253
1254 if (res.a0)
1255 return -EINVAL;
1256 return 0;
1257}
1258
1259static bool optee_msg_api_uid_is_optee_api(optee_invoke_fn *invoke_fn)
1260{
1261 struct arm_smccc_res res;
1262
1263 invoke_fn(OPTEE_SMC_CALLS_UID, 0, 0, 0, 0, 0, 0, 0, &res);
1264
1265 if (res.a0 == OPTEE_MSG_UID_0 && res.a1 == OPTEE_MSG_UID_1 &&
1266 res.a2 == OPTEE_MSG_UID_2 && res.a3 == OPTEE_MSG_UID_3)
1267 return true;
1268 return false;
1269}
1270
1271#ifdef CONFIG_OPTEE_INSECURE_LOAD_IMAGE
1272static bool optee_msg_api_uid_is_optee_image_load(optee_invoke_fn *invoke_fn)
1273{
1274 struct arm_smccc_res res;
1275
1276 invoke_fn(OPTEE_SMC_CALLS_UID, 0, 0, 0, 0, 0, 0, 0, &res);
1277
1278 if (res.a0 == OPTEE_MSG_IMAGE_LOAD_UID_0 &&
1279 res.a1 == OPTEE_MSG_IMAGE_LOAD_UID_1 &&
1280 res.a2 == OPTEE_MSG_IMAGE_LOAD_UID_2 &&
1281 res.a3 == OPTEE_MSG_IMAGE_LOAD_UID_3)
1282 return true;
1283 return false;
1284}
1285#endif
1286
1287static void optee_msg_get_os_revision(optee_invoke_fn *invoke_fn)
1288{
1289 union {
1290 struct arm_smccc_res smccc;
1291 struct optee_smc_call_get_os_revision_result result;
1292 } res = {
1293 .result = {
1294 .build_id = 0
1295 }
1296 };
1297
1298 invoke_fn(OPTEE_SMC_CALL_GET_OS_REVISION, 0, 0, 0, 0, 0, 0, 0,
1299 &res.smccc);
1300
1301 if (res.result.build_id)
1302 pr_info("revision %lu.%lu (%08lx)", res.result.major,
1303 res.result.minor, res.result.build_id);
1304 else
1305 pr_info("revision %lu.%lu", res.result.major, res.result.minor);
1306}
1307
1308static bool optee_msg_api_revision_is_compatible(optee_invoke_fn *invoke_fn)
1309{
1310 union {
1311 struct arm_smccc_res smccc;
1312 struct optee_smc_calls_revision_result result;
1313 } res;
1314
1315 invoke_fn(OPTEE_SMC_CALLS_REVISION, 0, 0, 0, 0, 0, 0, 0, &res.smccc);
1316
1317 if (res.result.major == OPTEE_MSG_REVISION_MAJOR &&
1318 (int)res.result.minor >= OPTEE_MSG_REVISION_MINOR)
1319 return true;
1320 return false;
1321}
1322
1323static bool optee_msg_exchange_capabilities(optee_invoke_fn *invoke_fn,
1324 u32 *sec_caps, u32 *max_notif_value,
1325 unsigned int *rpc_param_count)
1326{
1327 union {
1328 struct arm_smccc_res smccc;
1329 struct optee_smc_exchange_capabilities_result result;
1330 } res;
1331 u32 a1 = 0;
1332
1333 /*
1334 * TODO This isn't enough to tell if it's UP system (from kernel
1335 * point of view) or not, is_smp() returns the information
1336 * needed, but can't be called directly from here.
1337 */
1338 if (!IS_ENABLED(CONFIG_SMP) || nr_cpu_ids == 1)
1339 a1 |= OPTEE_SMC_NSEC_CAP_UNIPROCESSOR;
1340
1341 invoke_fn(OPTEE_SMC_EXCHANGE_CAPABILITIES, a1, 0, 0, 0, 0, 0, 0,
1342 &res.smccc);
1343
1344 if (res.result.status != OPTEE_SMC_RETURN_OK)
1345 return false;
1346
1347 *sec_caps = res.result.capabilities;
1348 if (*sec_caps & OPTEE_SMC_SEC_CAP_ASYNC_NOTIF)
1349 *max_notif_value = res.result.max_notif_value;
1350 else
1351 *max_notif_value = OPTEE_DEFAULT_MAX_NOTIF_VALUE;
1352 if (*sec_caps & OPTEE_SMC_SEC_CAP_RPC_ARG)
1353 *rpc_param_count = (u8)res.result.data;
1354 else
1355 *rpc_param_count = 0;
1356
1357 return true;
1358}
1359
1360static struct tee_shm_pool *
1361optee_config_shm_memremap(optee_invoke_fn *invoke_fn, void **memremaped_shm)
1362{
1363 union {
1364 struct arm_smccc_res smccc;
1365 struct optee_smc_get_shm_config_result result;
1366 } res;
1367 unsigned long vaddr;
1368 phys_addr_t paddr;
1369 size_t size;
1370 phys_addr_t begin;
1371 phys_addr_t end;
1372 void *va;
1373 void *rc;
1374
1375 invoke_fn(OPTEE_SMC_GET_SHM_CONFIG, 0, 0, 0, 0, 0, 0, 0, &res.smccc);
1376 if (res.result.status != OPTEE_SMC_RETURN_OK) {
1377 pr_err("static shm service not available\n");
1378 return ERR_PTR(error: -ENOENT);
1379 }
1380
1381 if (res.result.settings != OPTEE_SMC_SHM_CACHED) {
1382 pr_err("only normal cached shared memory supported\n");
1383 return ERR_PTR(error: -EINVAL);
1384 }
1385
1386 begin = roundup(res.result.start, PAGE_SIZE);
1387 end = rounddown(res.result.start + res.result.size, PAGE_SIZE);
1388 paddr = begin;
1389 size = end - begin;
1390
1391 va = memremap(offset: paddr, size, flags: MEMREMAP_WB);
1392 if (!va) {
1393 pr_err("shared memory ioremap failed\n");
1394 return ERR_PTR(error: -EINVAL);
1395 }
1396 vaddr = (unsigned long)va;
1397
1398 rc = tee_shm_pool_alloc_res_mem(vaddr, paddr, size,
1399 OPTEE_MIN_STATIC_POOL_ALIGN);
1400 if (IS_ERR(ptr: rc))
1401 memunmap(addr: va);
1402 else
1403 *memremaped_shm = va;
1404
1405 return rc;
1406}
1407
1408/* Simple wrapper functions to be able to use a function pointer */
1409static void optee_smccc_smc(unsigned long a0, unsigned long a1,
1410 unsigned long a2, unsigned long a3,
1411 unsigned long a4, unsigned long a5,
1412 unsigned long a6, unsigned long a7,
1413 struct arm_smccc_res *res)
1414{
1415 arm_smccc_smc(a0, a1, a2, a3, a4, a5, a6, a7, res);
1416}
1417
1418static void optee_smccc_hvc(unsigned long a0, unsigned long a1,
1419 unsigned long a2, unsigned long a3,
1420 unsigned long a4, unsigned long a5,
1421 unsigned long a6, unsigned long a7,
1422 struct arm_smccc_res *res)
1423{
1424 arm_smccc_hvc(a0, a1, a2, a3, a4, a5, a6, a7, res);
1425}
1426
1427static optee_invoke_fn *get_invoke_func(struct device *dev)
1428{
1429 const char *method;
1430
1431 pr_info("probing for conduit method.\n");
1432
1433 if (device_property_read_string(dev, propname: "method", val: &method)) {
1434 pr_warn("missing \"method\" property\n");
1435 return ERR_PTR(error: -ENXIO);
1436 }
1437
1438 if (!strcmp("hvc", method))
1439 return optee_smccc_hvc;
1440 else if (!strcmp("smc", method))
1441 return optee_smccc_smc;
1442
1443 pr_warn("invalid \"method\" property: %s\n", method);
1444 return ERR_PTR(error: -EINVAL);
1445}
1446
1447/* optee_remove - Device Removal Routine
1448 * @pdev: platform device information struct
1449 *
1450 * optee_remove is called by platform subsystem to alert the driver
1451 * that it should release the device
1452 */
1453static int optee_smc_remove(struct platform_device *pdev)
1454{
1455 struct optee *optee = platform_get_drvdata(pdev);
1456
1457 /*
1458 * Ask OP-TEE to free all cached shared memory objects to decrease
1459 * reference counters and also avoid wild pointers in secure world
1460 * into the old shared memory range.
1461 */
1462 if (!optee->rpc_param_count)
1463 optee_disable_shm_cache(optee);
1464
1465 optee_smc_notif_uninit_irq(optee);
1466
1467 optee_remove_common(optee);
1468
1469 if (optee->smc.memremaped_shm)
1470 memunmap(addr: optee->smc.memremaped_shm);
1471
1472 kfree(objp: optee);
1473
1474 return 0;
1475}
1476
1477/* optee_shutdown - Device Removal Routine
1478 * @pdev: platform device information struct
1479 *
1480 * platform_shutdown is called by the platform subsystem to alert
1481 * the driver that a shutdown, reboot, or kexec is happening and
1482 * device must be disabled.
1483 */
1484static void optee_shutdown(struct platform_device *pdev)
1485{
1486 struct optee *optee = platform_get_drvdata(pdev);
1487
1488 if (!optee->rpc_param_count)
1489 optee_disable_shm_cache(optee);
1490}
1491
1492#ifdef CONFIG_OPTEE_INSECURE_LOAD_IMAGE
1493
1494#define OPTEE_FW_IMAGE "optee/tee.bin"
1495
1496static optee_invoke_fn *cpuhp_invoke_fn;
1497
1498static int optee_cpuhp_probe(unsigned int cpu)
1499{
1500 /*
1501 * Invoking a call on a CPU will cause OP-TEE to perform the required
1502 * setup for that CPU. Just invoke the call to get the UID since that
1503 * has no side effects.
1504 */
1505 if (optee_msg_api_uid_is_optee_api(cpuhp_invoke_fn))
1506 return 0;
1507 else
1508 return -EINVAL;
1509}
1510
1511static int optee_load_fw(struct platform_device *pdev,
1512 optee_invoke_fn *invoke_fn)
1513{
1514 const struct firmware *fw = NULL;
1515 struct arm_smccc_res res;
1516 phys_addr_t data_pa;
1517 u8 *data_buf = NULL;
1518 u64 data_size;
1519 u32 data_pa_high, data_pa_low;
1520 u32 data_size_high, data_size_low;
1521 int rc;
1522 int hp_state;
1523
1524 if (!optee_msg_api_uid_is_optee_image_load(invoke_fn))
1525 return 0;
1526
1527 rc = request_firmware(&fw, OPTEE_FW_IMAGE, &pdev->dev);
1528 if (rc) {
1529 /*
1530 * The firmware in the rootfs will not be accessible until we
1531 * are in the SYSTEM_RUNNING state, so return EPROBE_DEFER until
1532 * that point.
1533 */
1534 if (system_state < SYSTEM_RUNNING)
1535 return -EPROBE_DEFER;
1536 goto fw_err;
1537 }
1538
1539 data_size = fw->size;
1540 /*
1541 * This uses the GFP_DMA flag to ensure we are allocated memory in the
1542 * 32-bit space since TF-A cannot map memory beyond the 32-bit boundary.
1543 */
1544 data_buf = kmemdup(fw->data, fw->size, GFP_KERNEL | GFP_DMA);
1545 if (!data_buf) {
1546 rc = -ENOMEM;
1547 goto fw_err;
1548 }
1549 data_pa = virt_to_phys(data_buf);
1550 reg_pair_from_64(&data_pa_high, &data_pa_low, data_pa);
1551 reg_pair_from_64(&data_size_high, &data_size_low, data_size);
1552 goto fw_load;
1553
1554fw_err:
1555 pr_warn("image loading failed\n");
1556 data_pa_high = 0;
1557 data_pa_low = 0;
1558 data_size_high = 0;
1559 data_size_low = 0;
1560
1561fw_load:
1562 /*
1563 * Always invoke the SMC, even if loading the image fails, to indicate
1564 * to EL3 that we have passed the point where it should allow invoking
1565 * this SMC.
1566 */
1567 pr_warn("OP-TEE image loaded from kernel, this can be insecure");
1568 invoke_fn(OPTEE_SMC_CALL_LOAD_IMAGE, data_size_high, data_size_low,
1569 data_pa_high, data_pa_low, 0, 0, 0, &res);
1570 if (!rc)
1571 rc = res.a0;
1572 if (fw)
1573 release_firmware(fw);
1574 kfree(data_buf);
1575
1576 if (!rc) {
1577 /*
1578 * We need to initialize OP-TEE on all other running cores as
1579 * well. Any cores that aren't running yet will get initialized
1580 * when they are brought up by the power management functions in
1581 * TF-A which are registered by the OP-TEE SPD. Due to that we
1582 * can un-register the callback right after registering it.
1583 */
1584 cpuhp_invoke_fn = invoke_fn;
1585 hp_state = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "optee:probe",
1586 optee_cpuhp_probe, NULL);
1587 if (hp_state < 0) {
1588 pr_warn("Failed with CPU hotplug setup for OP-TEE");
1589 return -EINVAL;
1590 }
1591 cpuhp_remove_state(hp_state);
1592 cpuhp_invoke_fn = NULL;
1593 }
1594
1595 return rc;
1596}
1597#else
1598static inline int optee_load_fw(struct platform_device *pdev,
1599 optee_invoke_fn *invoke_fn)
1600{
1601 return 0;
1602}
1603#endif
1604
1605static int optee_probe(struct platform_device *pdev)
1606{
1607 optee_invoke_fn *invoke_fn;
1608 struct tee_shm_pool *pool = ERR_PTR(error: -EINVAL);
1609 struct optee *optee = NULL;
1610 void *memremaped_shm = NULL;
1611 unsigned int rpc_param_count;
1612 struct tee_device *teedev;
1613 struct tee_context *ctx;
1614 u32 max_notif_value;
1615 u32 arg_cache_flags;
1616 u32 sec_caps;
1617 int rc;
1618
1619 invoke_fn = get_invoke_func(dev: &pdev->dev);
1620 if (IS_ERR(ptr: invoke_fn))
1621 return PTR_ERR(ptr: invoke_fn);
1622
1623 rc = optee_load_fw(pdev, invoke_fn);
1624 if (rc)
1625 return rc;
1626
1627 if (!optee_msg_api_uid_is_optee_api(invoke_fn)) {
1628 pr_warn("api uid mismatch\n");
1629 return -EINVAL;
1630 }
1631
1632 optee_msg_get_os_revision(invoke_fn);
1633
1634 if (!optee_msg_api_revision_is_compatible(invoke_fn)) {
1635 pr_warn("api revision mismatch\n");
1636 return -EINVAL;
1637 }
1638
1639 if (!optee_msg_exchange_capabilities(invoke_fn, sec_caps: &sec_caps,
1640 max_notif_value: &max_notif_value,
1641 rpc_param_count: &rpc_param_count)) {
1642 pr_warn("capabilities mismatch\n");
1643 return -EINVAL;
1644 }
1645
1646 /*
1647 * Try to use dynamic shared memory if possible
1648 */
1649 if (sec_caps & OPTEE_SMC_SEC_CAP_DYNAMIC_SHM) {
1650 /*
1651 * If we have OPTEE_SMC_SEC_CAP_RPC_ARG we can ask
1652 * optee_get_msg_arg() to pre-register (by having
1653 * OPTEE_SHM_ARG_ALLOC_PRIV cleared) the page used to pass
1654 * an argument struct.
1655 *
1656 * With the page is pre-registered we can use a non-zero
1657 * offset for argument struct, this is indicated with
1658 * OPTEE_SHM_ARG_SHARED.
1659 *
1660 * This means that optee_smc_do_call_with_arg() will use
1661 * OPTEE_SMC_CALL_WITH_REGD_ARG for pre-registered pages.
1662 */
1663 if (sec_caps & OPTEE_SMC_SEC_CAP_RPC_ARG)
1664 arg_cache_flags = OPTEE_SHM_ARG_SHARED;
1665 else
1666 arg_cache_flags = OPTEE_SHM_ARG_ALLOC_PRIV;
1667
1668 pool = optee_shm_pool_alloc_pages();
1669 }
1670
1671 /*
1672 * If dynamic shared memory is not available or failed - try static one
1673 */
1674 if (IS_ERR(ptr: pool) && (sec_caps & OPTEE_SMC_SEC_CAP_HAVE_RESERVED_SHM)) {
1675 /*
1676 * The static memory pool can use non-zero page offsets so
1677 * let optee_get_msg_arg() know that with OPTEE_SHM_ARG_SHARED.
1678 *
1679 * optee_get_msg_arg() should not pre-register the
1680 * allocated page used to pass an argument struct, this is
1681 * indicated with OPTEE_SHM_ARG_ALLOC_PRIV.
1682 *
1683 * This means that optee_smc_do_call_with_arg() will use
1684 * OPTEE_SMC_CALL_WITH_ARG if rpc_param_count is 0, else
1685 * OPTEE_SMC_CALL_WITH_RPC_ARG.
1686 */
1687 arg_cache_flags = OPTEE_SHM_ARG_SHARED |
1688 OPTEE_SHM_ARG_ALLOC_PRIV;
1689 pool = optee_config_shm_memremap(invoke_fn, memremaped_shm: &memremaped_shm);
1690 }
1691
1692 if (IS_ERR(ptr: pool))
1693 return PTR_ERR(ptr: pool);
1694
1695 optee = kzalloc(size: sizeof(*optee), GFP_KERNEL);
1696 if (!optee) {
1697 rc = -ENOMEM;
1698 goto err_free_pool;
1699 }
1700
1701 optee->ops = &optee_ops;
1702 optee->smc.invoke_fn = invoke_fn;
1703 optee->smc.sec_caps = sec_caps;
1704 optee->rpc_param_count = rpc_param_count;
1705
1706 teedev = tee_device_alloc(teedesc: &optee_clnt_desc, NULL, pool, driver_data: optee);
1707 if (IS_ERR(ptr: teedev)) {
1708 rc = PTR_ERR(ptr: teedev);
1709 goto err_free_optee;
1710 }
1711 optee->teedev = teedev;
1712
1713 teedev = tee_device_alloc(teedesc: &optee_supp_desc, NULL, pool, driver_data: optee);
1714 if (IS_ERR(ptr: teedev)) {
1715 rc = PTR_ERR(ptr: teedev);
1716 goto err_unreg_teedev;
1717 }
1718 optee->supp_teedev = teedev;
1719
1720 rc = tee_device_register(teedev: optee->teedev);
1721 if (rc)
1722 goto err_unreg_supp_teedev;
1723
1724 rc = tee_device_register(teedev: optee->supp_teedev);
1725 if (rc)
1726 goto err_unreg_supp_teedev;
1727
1728 mutex_init(&optee->call_queue.mutex);
1729 INIT_LIST_HEAD(list: &optee->call_queue.waiters);
1730 optee_supp_init(supp: &optee->supp);
1731 optee->smc.memremaped_shm = memremaped_shm;
1732 optee->pool = pool;
1733 optee_shm_arg_cache_init(optee, flags: arg_cache_flags);
1734
1735 platform_set_drvdata(pdev, data: optee);
1736 ctx = teedev_open(teedev: optee->teedev);
1737 if (IS_ERR(ptr: ctx)) {
1738 rc = PTR_ERR(ptr: ctx);
1739 goto err_supp_uninit;
1740 }
1741 optee->ctx = ctx;
1742 rc = optee_notif_init(optee, max_key: max_notif_value);
1743 if (rc)
1744 goto err_close_ctx;
1745
1746 if (sec_caps & OPTEE_SMC_SEC_CAP_ASYNC_NOTIF) {
1747 unsigned int irq;
1748
1749 rc = platform_get_irq(pdev, 0);
1750 if (rc < 0) {
1751 pr_err("platform_get_irq: ret %d\n", rc);
1752 goto err_notif_uninit;
1753 }
1754 irq = rc;
1755
1756 rc = optee_smc_notif_init_irq(optee, irq);
1757 if (rc) {
1758 irq_dispose_mapping(virq: irq);
1759 goto err_notif_uninit;
1760 }
1761 enable_async_notif(invoke_fn: optee->smc.invoke_fn);
1762 pr_info("Asynchronous notifications enabled\n");
1763 }
1764
1765 /*
1766 * Ensure that there are no pre-existing shm objects before enabling
1767 * the shm cache so that there's no chance of receiving an invalid
1768 * address during shutdown. This could occur, for example, if we're
1769 * kexec booting from an older kernel that did not properly cleanup the
1770 * shm cache.
1771 */
1772 optee_disable_unmapped_shm_cache(optee);
1773
1774 /*
1775 * Only enable the shm cache in case we're not able to pass the RPC
1776 * arg struct right after the normal arg struct.
1777 */
1778 if (!optee->rpc_param_count)
1779 optee_enable_shm_cache(optee);
1780
1781 if (optee->smc.sec_caps & OPTEE_SMC_SEC_CAP_DYNAMIC_SHM)
1782 pr_info("dynamic shared memory is enabled\n");
1783
1784 rc = optee_enumerate_devices(PTA_CMD_GET_DEVICES);
1785 if (rc)
1786 goto err_disable_shm_cache;
1787
1788 pr_info("initialized driver\n");
1789 return 0;
1790
1791err_disable_shm_cache:
1792 if (!optee->rpc_param_count)
1793 optee_disable_shm_cache(optee);
1794 optee_smc_notif_uninit_irq(optee);
1795 optee_unregister_devices();
1796err_notif_uninit:
1797 optee_notif_uninit(optee);
1798err_close_ctx:
1799 teedev_close_context(ctx);
1800err_supp_uninit:
1801 optee_shm_arg_cache_uninit(optee);
1802 optee_supp_uninit(supp: &optee->supp);
1803 mutex_destroy(lock: &optee->call_queue.mutex);
1804err_unreg_supp_teedev:
1805 tee_device_unregister(teedev: optee->supp_teedev);
1806err_unreg_teedev:
1807 tee_device_unregister(teedev: optee->teedev);
1808err_free_optee:
1809 kfree(objp: optee);
1810err_free_pool:
1811 tee_shm_pool_free(pool);
1812 if (memremaped_shm)
1813 memunmap(addr: memremaped_shm);
1814 return rc;
1815}
1816
1817static const struct of_device_id optee_dt_match[] = {
1818 { .compatible = "linaro,optee-tz" },
1819 {},
1820};
1821MODULE_DEVICE_TABLE(of, optee_dt_match);
1822
1823static struct platform_driver optee_driver = {
1824 .probe = optee_probe,
1825 .remove = optee_smc_remove,
1826 .shutdown = optee_shutdown,
1827 .driver = {
1828 .name = "optee",
1829 .of_match_table = optee_dt_match,
1830 },
1831};
1832
1833int optee_smc_abi_register(void)
1834{
1835 return platform_driver_register(&optee_driver);
1836}
1837
1838void optee_smc_abi_unregister(void)
1839{
1840 platform_driver_unregister(&optee_driver);
1841}
1842

source code of linux/drivers/tee/optee/smc_abi.c