1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * USB Gadget driver for LPC32xx
4 *
5 * Authors:
6 * Kevin Wells <kevin.wells@nxp.com>
7 * Mike James
8 * Roland Stigge <stigge@antcom.de>
9 *
10 * Copyright (C) 2006 Philips Semiconductors
11 * Copyright (C) 2009 NXP Semiconductors
12 * Copyright (C) 2012 Roland Stigge
13 *
14 * Note: This driver is based on original work done by Mike James for
15 * the LPC3180.
16 */
17
18#include <linux/clk.h>
19#include <linux/delay.h>
20#include <linux/dma-mapping.h>
21#include <linux/dmapool.h>
22#include <linux/i2c.h>
23#include <linux/interrupt.h>
24#include <linux/module.h>
25#include <linux/of.h>
26#include <linux/platform_device.h>
27#include <linux/prefetch.h>
28#include <linux/proc_fs.h>
29#include <linux/slab.h>
30#include <linux/usb/ch9.h>
31#include <linux/usb/gadget.h>
32#include <linux/usb/isp1301.h>
33
34#ifdef CONFIG_USB_GADGET_DEBUG_FILES
35#include <linux/debugfs.h>
36#include <linux/seq_file.h>
37#endif
38
39/*
40 * USB device configuration structure
41 */
42typedef void (*usc_chg_event)(int);
43struct lpc32xx_usbd_cfg {
44 int vbus_drv_pol; /* 0=active low drive for VBUS via ISP1301 */
45 usc_chg_event conn_chgb; /* Connection change event (optional) */
46 usc_chg_event susp_chgb; /* Suspend/resume event (optional) */
47 usc_chg_event rmwk_chgb; /* Enable/disable remote wakeup */
48};
49
50/*
51 * controller driver data structures
52 */
53
54/* 16 endpoints (not to be confused with 32 hardware endpoints) */
55#define NUM_ENDPOINTS 16
56
57/*
58 * IRQ indices make reading the code a little easier
59 */
60#define IRQ_USB_LP 0
61#define IRQ_USB_HP 1
62#define IRQ_USB_DEVDMA 2
63#define IRQ_USB_ATX 3
64
65#define EP_OUT 0 /* RX (from host) */
66#define EP_IN 1 /* TX (to host) */
67
68/* Returns the interrupt mask for the selected hardware endpoint */
69#define EP_MASK_SEL(ep, dir) (1 << (((ep) * 2) + dir))
70
71#define EP_INT_TYPE 0
72#define EP_ISO_TYPE 1
73#define EP_BLK_TYPE 2
74#define EP_CTL_TYPE 3
75
76/* EP0 states */
77#define WAIT_FOR_SETUP 0 /* Wait for setup packet */
78#define DATA_IN 1 /* Expect dev->host transfer */
79#define DATA_OUT 2 /* Expect host->dev transfer */
80
81/* DD (DMA Descriptor) structure, requires word alignment, this is already
82 * defined in the LPC32XX USB device header file, but this version is slightly
83 * modified to tag some work data with each DMA descriptor. */
84struct lpc32xx_usbd_dd_gad {
85 u32 dd_next_phy;
86 u32 dd_setup;
87 u32 dd_buffer_addr;
88 u32 dd_status;
89 u32 dd_iso_ps_mem_addr;
90 u32 this_dma;
91 u32 iso_status[6]; /* 5 spare */
92 u32 dd_next_v;
93};
94
95/*
96 * Logical endpoint structure
97 */
98struct lpc32xx_ep {
99 struct usb_ep ep;
100 struct list_head queue;
101 struct lpc32xx_udc *udc;
102
103 u32 hwep_num_base; /* Physical hardware EP */
104 u32 hwep_num; /* Maps to hardware endpoint */
105 u32 maxpacket;
106 u32 lep;
107
108 bool is_in;
109 bool req_pending;
110 u32 eptype;
111
112 u32 totalints;
113
114 bool wedge;
115};
116
117enum atx_type {
118 ISP1301,
119 STOTG04,
120};
121
122/*
123 * Common UDC structure
124 */
125struct lpc32xx_udc {
126 struct usb_gadget gadget;
127 struct usb_gadget_driver *driver;
128 struct platform_device *pdev;
129 struct device *dev;
130 spinlock_t lock;
131 struct i2c_client *isp1301_i2c_client;
132
133 /* Board and device specific */
134 struct lpc32xx_usbd_cfg *board;
135 void __iomem *udp_baseaddr;
136 int udp_irq[4];
137 struct clk *usb_slv_clk;
138
139 /* DMA support */
140 u32 *udca_v_base;
141 u32 udca_p_base;
142 struct dma_pool *dd_cache;
143
144 /* Common EP and control data */
145 u32 enabled_devints;
146 u32 enabled_hwepints;
147 u32 dev_status;
148 u32 realized_eps;
149
150 /* VBUS detection, pullup, and power flags */
151 u8 vbus;
152 u8 last_vbus;
153 int pullup;
154 int poweron;
155 enum atx_type atx;
156
157 /* Work queues related to I2C support */
158 struct work_struct pullup_job;
159 struct work_struct power_job;
160
161 /* USB device peripheral - various */
162 struct lpc32xx_ep ep[NUM_ENDPOINTS];
163 bool enabled;
164 bool clocked;
165 bool suspended;
166 int ep0state;
167 atomic_t enabled_ep_cnt;
168 wait_queue_head_t ep_disable_wait_queue;
169};
170
171/*
172 * Endpoint request
173 */
174struct lpc32xx_request {
175 struct usb_request req;
176 struct list_head queue;
177 struct lpc32xx_usbd_dd_gad *dd_desc_ptr;
178 bool mapped;
179 bool send_zlp;
180};
181
182static inline struct lpc32xx_udc *to_udc(struct usb_gadget *g)
183{
184 return container_of(g, struct lpc32xx_udc, gadget);
185}
186
187#define ep_dbg(epp, fmt, arg...) \
188 dev_dbg(epp->udc->dev, "%s: " fmt, __func__, ## arg)
189#define ep_err(epp, fmt, arg...) \
190 dev_err(epp->udc->dev, "%s: " fmt, __func__, ## arg)
191#define ep_info(epp, fmt, arg...) \
192 dev_info(epp->udc->dev, "%s: " fmt, __func__, ## arg)
193#define ep_warn(epp, fmt, arg...) \
194 dev_warn(epp->udc->dev, "%s:" fmt, __func__, ## arg)
195
196#define UDCA_BUFF_SIZE (128)
197
198/**********************************************************************
199 * USB device controller register offsets
200 **********************************************************************/
201
202#define USBD_DEVINTST(x) ((x) + 0x200)
203#define USBD_DEVINTEN(x) ((x) + 0x204)
204#define USBD_DEVINTCLR(x) ((x) + 0x208)
205#define USBD_DEVINTSET(x) ((x) + 0x20C)
206#define USBD_CMDCODE(x) ((x) + 0x210)
207#define USBD_CMDDATA(x) ((x) + 0x214)
208#define USBD_RXDATA(x) ((x) + 0x218)
209#define USBD_TXDATA(x) ((x) + 0x21C)
210#define USBD_RXPLEN(x) ((x) + 0x220)
211#define USBD_TXPLEN(x) ((x) + 0x224)
212#define USBD_CTRL(x) ((x) + 0x228)
213#define USBD_DEVINTPRI(x) ((x) + 0x22C)
214#define USBD_EPINTST(x) ((x) + 0x230)
215#define USBD_EPINTEN(x) ((x) + 0x234)
216#define USBD_EPINTCLR(x) ((x) + 0x238)
217#define USBD_EPINTSET(x) ((x) + 0x23C)
218#define USBD_EPINTPRI(x) ((x) + 0x240)
219#define USBD_REEP(x) ((x) + 0x244)
220#define USBD_EPIND(x) ((x) + 0x248)
221#define USBD_EPMAXPSIZE(x) ((x) + 0x24C)
222/* DMA support registers only below */
223/* Set, clear, or get enabled state of the DMA request status. If
224 * enabled, an IN or OUT token will start a DMA transfer for the EP */
225#define USBD_DMARST(x) ((x) + 0x250)
226#define USBD_DMARCLR(x) ((x) + 0x254)
227#define USBD_DMARSET(x) ((x) + 0x258)
228/* DMA UDCA head pointer */
229#define USBD_UDCAH(x) ((x) + 0x280)
230/* EP DMA status, enable, and disable. This is used to specifically
231 * enabled or disable DMA for a specific EP */
232#define USBD_EPDMAST(x) ((x) + 0x284)
233#define USBD_EPDMAEN(x) ((x) + 0x288)
234#define USBD_EPDMADIS(x) ((x) + 0x28C)
235/* DMA master interrupts enable and pending interrupts */
236#define USBD_DMAINTST(x) ((x) + 0x290)
237#define USBD_DMAINTEN(x) ((x) + 0x294)
238/* DMA end of transfer interrupt enable, disable, status */
239#define USBD_EOTINTST(x) ((x) + 0x2A0)
240#define USBD_EOTINTCLR(x) ((x) + 0x2A4)
241#define USBD_EOTINTSET(x) ((x) + 0x2A8)
242/* New DD request interrupt enable, disable, status */
243#define USBD_NDDRTINTST(x) ((x) + 0x2AC)
244#define USBD_NDDRTINTCLR(x) ((x) + 0x2B0)
245#define USBD_NDDRTINTSET(x) ((x) + 0x2B4)
246/* DMA error interrupt enable, disable, status */
247#define USBD_SYSERRTINTST(x) ((x) + 0x2B8)
248#define USBD_SYSERRTINTCLR(x) ((x) + 0x2BC)
249#define USBD_SYSERRTINTSET(x) ((x) + 0x2C0)
250
251/**********************************************************************
252 * USBD_DEVINTST/USBD_DEVINTEN/USBD_DEVINTCLR/USBD_DEVINTSET/
253 * USBD_DEVINTPRI register definitions
254 **********************************************************************/
255#define USBD_ERR_INT (1 << 9)
256#define USBD_EP_RLZED (1 << 8)
257#define USBD_TXENDPKT (1 << 7)
258#define USBD_RXENDPKT (1 << 6)
259#define USBD_CDFULL (1 << 5)
260#define USBD_CCEMPTY (1 << 4)
261#define USBD_DEV_STAT (1 << 3)
262#define USBD_EP_SLOW (1 << 2)
263#define USBD_EP_FAST (1 << 1)
264#define USBD_FRAME (1 << 0)
265
266/**********************************************************************
267 * USBD_EPINTST/USBD_EPINTEN/USBD_EPINTCLR/USBD_EPINTSET/
268 * USBD_EPINTPRI register definitions
269 **********************************************************************/
270/* End point selection macro (RX) */
271#define USBD_RX_EP_SEL(e) (1 << ((e) << 1))
272
273/* End point selection macro (TX) */
274#define USBD_TX_EP_SEL(e) (1 << (((e) << 1) + 1))
275
276/**********************************************************************
277 * USBD_REEP/USBD_DMARST/USBD_DMARCLR/USBD_DMARSET/USBD_EPDMAST/
278 * USBD_EPDMAEN/USBD_EPDMADIS/
279 * USBD_NDDRTINTST/USBD_NDDRTINTCLR/USBD_NDDRTINTSET/
280 * USBD_EOTINTST/USBD_EOTINTCLR/USBD_EOTINTSET/
281 * USBD_SYSERRTINTST/USBD_SYSERRTINTCLR/USBD_SYSERRTINTSET
282 * register definitions
283 **********************************************************************/
284/* Endpoint selection macro */
285#define USBD_EP_SEL(e) (1 << (e))
286
287/**********************************************************************
288 * SBD_DMAINTST/USBD_DMAINTEN
289 **********************************************************************/
290#define USBD_SYS_ERR_INT (1 << 2)
291#define USBD_NEW_DD_INT (1 << 1)
292#define USBD_EOT_INT (1 << 0)
293
294/**********************************************************************
295 * USBD_RXPLEN register definitions
296 **********************************************************************/
297#define USBD_PKT_RDY (1 << 11)
298#define USBD_DV (1 << 10)
299#define USBD_PK_LEN_MASK 0x3FF
300
301/**********************************************************************
302 * USBD_CTRL register definitions
303 **********************************************************************/
304#define USBD_LOG_ENDPOINT(e) ((e) << 2)
305#define USBD_WR_EN (1 << 1)
306#define USBD_RD_EN (1 << 0)
307
308/**********************************************************************
309 * USBD_CMDCODE register definitions
310 **********************************************************************/
311#define USBD_CMD_CODE(c) ((c) << 16)
312#define USBD_CMD_PHASE(p) ((p) << 8)
313
314/**********************************************************************
315 * USBD_DMARST/USBD_DMARCLR/USBD_DMARSET register definitions
316 **********************************************************************/
317#define USBD_DMAEP(e) (1 << (e))
318
319/* DD (DMA Descriptor) structure, requires word alignment */
320struct lpc32xx_usbd_dd {
321 u32 *dd_next;
322 u32 dd_setup;
323 u32 dd_buffer_addr;
324 u32 dd_status;
325 u32 dd_iso_ps_mem_addr;
326};
327
328/* dd_setup bit defines */
329#define DD_SETUP_ATLE_DMA_MODE 0x01
330#define DD_SETUP_NEXT_DD_VALID 0x04
331#define DD_SETUP_ISO_EP 0x10
332#define DD_SETUP_PACKETLEN(n) (((n) & 0x7FF) << 5)
333#define DD_SETUP_DMALENBYTES(n) (((n) & 0xFFFF) << 16)
334
335/* dd_status bit defines */
336#define DD_STATUS_DD_RETIRED 0x01
337#define DD_STATUS_STS_MASK 0x1E
338#define DD_STATUS_STS_NS 0x00 /* Not serviced */
339#define DD_STATUS_STS_BS 0x02 /* Being serviced */
340#define DD_STATUS_STS_NC 0x04 /* Normal completion */
341#define DD_STATUS_STS_DUR 0x06 /* Data underrun (short packet) */
342#define DD_STATUS_STS_DOR 0x08 /* Data overrun */
343#define DD_STATUS_STS_SE 0x12 /* System error */
344#define DD_STATUS_PKT_VAL 0x20 /* Packet valid */
345#define DD_STATUS_LSB_EX 0x40 /* LS byte extracted (ATLE) */
346#define DD_STATUS_MSB_EX 0x80 /* MS byte extracted (ATLE) */
347#define DD_STATUS_MLEN(n) (((n) >> 8) & 0x3F)
348#define DD_STATUS_CURDMACNT(n) (((n) >> 16) & 0xFFFF)
349
350/*
351 *
352 * Protocol engine bits below
353 *
354 */
355/* Device Interrupt Bit Definitions */
356#define FRAME_INT 0x00000001
357#define EP_FAST_INT 0x00000002
358#define EP_SLOW_INT 0x00000004
359#define DEV_STAT_INT 0x00000008
360#define CCEMTY_INT 0x00000010
361#define CDFULL_INT 0x00000020
362#define RxENDPKT_INT 0x00000040
363#define TxENDPKT_INT 0x00000080
364#define EP_RLZED_INT 0x00000100
365#define ERR_INT 0x00000200
366
367/* Rx & Tx Packet Length Definitions */
368#define PKT_LNGTH_MASK 0x000003FF
369#define PKT_DV 0x00000400
370#define PKT_RDY 0x00000800
371
372/* USB Control Definitions */
373#define CTRL_RD_EN 0x00000001
374#define CTRL_WR_EN 0x00000002
375
376/* Command Codes */
377#define CMD_SET_ADDR 0x00D00500
378#define CMD_CFG_DEV 0x00D80500
379#define CMD_SET_MODE 0x00F30500
380#define CMD_RD_FRAME 0x00F50500
381#define DAT_RD_FRAME 0x00F50200
382#define CMD_RD_TEST 0x00FD0500
383#define DAT_RD_TEST 0x00FD0200
384#define CMD_SET_DEV_STAT 0x00FE0500
385#define CMD_GET_DEV_STAT 0x00FE0500
386#define DAT_GET_DEV_STAT 0x00FE0200
387#define CMD_GET_ERR_CODE 0x00FF0500
388#define DAT_GET_ERR_CODE 0x00FF0200
389#define CMD_RD_ERR_STAT 0x00FB0500
390#define DAT_RD_ERR_STAT 0x00FB0200
391#define DAT_WR_BYTE(x) (0x00000100 | ((x) << 16))
392#define CMD_SEL_EP(x) (0x00000500 | ((x) << 16))
393#define DAT_SEL_EP(x) (0x00000200 | ((x) << 16))
394#define CMD_SEL_EP_CLRI(x) (0x00400500 | ((x) << 16))
395#define DAT_SEL_EP_CLRI(x) (0x00400200 | ((x) << 16))
396#define CMD_SET_EP_STAT(x) (0x00400500 | ((x) << 16))
397#define CMD_CLR_BUF 0x00F20500
398#define DAT_CLR_BUF 0x00F20200
399#define CMD_VALID_BUF 0x00FA0500
400
401/* Device Address Register Definitions */
402#define DEV_ADDR_MASK 0x7F
403#define DEV_EN 0x80
404
405/* Device Configure Register Definitions */
406#define CONF_DVICE 0x01
407
408/* Device Mode Register Definitions */
409#define AP_CLK 0x01
410#define INAK_CI 0x02
411#define INAK_CO 0x04
412#define INAK_II 0x08
413#define INAK_IO 0x10
414#define INAK_BI 0x20
415#define INAK_BO 0x40
416
417/* Device Status Register Definitions */
418#define DEV_CON 0x01
419#define DEV_CON_CH 0x02
420#define DEV_SUS 0x04
421#define DEV_SUS_CH 0x08
422#define DEV_RST 0x10
423
424/* Error Code Register Definitions */
425#define ERR_EC_MASK 0x0F
426#define ERR_EA 0x10
427
428/* Error Status Register Definitions */
429#define ERR_PID 0x01
430#define ERR_UEPKT 0x02
431#define ERR_DCRC 0x04
432#define ERR_TIMOUT 0x08
433#define ERR_EOP 0x10
434#define ERR_B_OVRN 0x20
435#define ERR_BTSTF 0x40
436#define ERR_TGL 0x80
437
438/* Endpoint Select Register Definitions */
439#define EP_SEL_F 0x01
440#define EP_SEL_ST 0x02
441#define EP_SEL_STP 0x04
442#define EP_SEL_PO 0x08
443#define EP_SEL_EPN 0x10
444#define EP_SEL_B_1_FULL 0x20
445#define EP_SEL_B_2_FULL 0x40
446
447/* Endpoint Status Register Definitions */
448#define EP_STAT_ST 0x01
449#define EP_STAT_DA 0x20
450#define EP_STAT_RF_MO 0x40
451#define EP_STAT_CND_ST 0x80
452
453/* Clear Buffer Register Definitions */
454#define CLR_BUF_PO 0x01
455
456/* DMA Interrupt Bit Definitions */
457#define EOT_INT 0x01
458#define NDD_REQ_INT 0x02
459#define SYS_ERR_INT 0x04
460
461#define DRIVER_VERSION "1.03"
462static const char driver_name[] = "lpc32xx_udc";
463
464/*
465 *
466 * proc interface support
467 *
468 */
469#ifdef CONFIG_USB_GADGET_DEBUG_FILES
470static char *epnames[] = {"INT", "ISO", "BULK", "CTRL"};
471static const char debug_filename[] = "driver/udc";
472
473static void proc_ep_show(struct seq_file *s, struct lpc32xx_ep *ep)
474{
475 struct lpc32xx_request *req;
476
477 seq_printf(m: s, fmt: "\n");
478 seq_printf(m: s, fmt: "%12s, maxpacket %4d %3s",
479 ep->ep.name, ep->ep.maxpacket,
480 ep->is_in ? "in" : "out");
481 seq_printf(m: s, fmt: " type %4s", epnames[ep->eptype]);
482 seq_printf(m: s, fmt: " ints: %12d", ep->totalints);
483
484 if (list_empty(head: &ep->queue))
485 seq_printf(m: s, fmt: "\t(queue empty)\n");
486 else {
487 list_for_each_entry(req, &ep->queue, queue) {
488 u32 length = req->req.actual;
489
490 seq_printf(m: s, fmt: "\treq %p len %d/%d buf %p\n",
491 &req->req, length,
492 req->req.length, req->req.buf);
493 }
494 }
495}
496
497static int udc_show(struct seq_file *s, void *unused)
498{
499 struct lpc32xx_udc *udc = s->private;
500 struct lpc32xx_ep *ep;
501 unsigned long flags;
502
503 seq_printf(m: s, fmt: "%s: version %s\n", driver_name, DRIVER_VERSION);
504
505 spin_lock_irqsave(&udc->lock, flags);
506
507 seq_printf(m: s, fmt: "vbus %s, pullup %s, %s powered%s, gadget %s\n\n",
508 udc->vbus ? "present" : "off",
509 udc->enabled ? (udc->vbus ? "active" : "enabled") :
510 "disabled",
511 udc->gadget.is_selfpowered ? "self" : "VBUS",
512 udc->suspended ? ", suspended" : "",
513 udc->driver ? udc->driver->driver.name : "(none)");
514
515 if (udc->enabled && udc->vbus) {
516 proc_ep_show(s, ep: &udc->ep[0]);
517 list_for_each_entry(ep, &udc->gadget.ep_list, ep.ep_list)
518 proc_ep_show(s, ep);
519 }
520
521 spin_unlock_irqrestore(lock: &udc->lock, flags);
522
523 return 0;
524}
525
526DEFINE_SHOW_ATTRIBUTE(udc);
527
528static void create_debug_file(struct lpc32xx_udc *udc)
529{
530 debugfs_create_file(name: debug_filename, mode: 0, NULL, data: udc, fops: &udc_fops);
531}
532
533static void remove_debug_file(struct lpc32xx_udc *udc)
534{
535 debugfs_lookup_and_remove(name: debug_filename, NULL);
536}
537
538#else
539static inline void create_debug_file(struct lpc32xx_udc *udc) {}
540static inline void remove_debug_file(struct lpc32xx_udc *udc) {}
541#endif
542
543/* Primary initialization sequence for the ISP1301 transceiver */
544static void isp1301_udc_configure(struct lpc32xx_udc *udc)
545{
546 u8 value;
547 s32 vendor, product;
548
549 vendor = i2c_smbus_read_word_data(client: udc->isp1301_i2c_client, command: 0x00);
550 product = i2c_smbus_read_word_data(client: udc->isp1301_i2c_client, command: 0x02);
551
552 if (vendor == 0x0483 && product == 0xa0c4)
553 udc->atx = STOTG04;
554
555 /* LPC32XX only supports DAT_SE0 USB mode */
556 /* This sequence is important */
557
558 /* Disable transparent UART mode first */
559 i2c_smbus_write_byte_data(client: udc->isp1301_i2c_client,
560 command: (ISP1301_I2C_MODE_CONTROL_1 | ISP1301_I2C_REG_CLEAR_ADDR),
561 MC1_UART_EN);
562
563 /* Set full speed and SE0 mode */
564 i2c_smbus_write_byte_data(client: udc->isp1301_i2c_client,
565 command: (ISP1301_I2C_MODE_CONTROL_1 | ISP1301_I2C_REG_CLEAR_ADDR), value: ~0);
566 i2c_smbus_write_byte_data(client: udc->isp1301_i2c_client,
567 ISP1301_I2C_MODE_CONTROL_1, value: (MC1_SPEED_REG | MC1_DAT_SE0));
568
569 /*
570 * The PSW_OE enable bit state is reversed in the ISP1301 User's Guide
571 */
572 i2c_smbus_write_byte_data(client: udc->isp1301_i2c_client,
573 command: (ISP1301_I2C_MODE_CONTROL_2 | ISP1301_I2C_REG_CLEAR_ADDR), value: ~0);
574
575 value = MC2_BI_DI;
576 if (udc->atx != STOTG04)
577 value |= MC2_SPD_SUSP_CTRL;
578 i2c_smbus_write_byte_data(client: udc->isp1301_i2c_client,
579 ISP1301_I2C_MODE_CONTROL_2, value);
580
581 /* Driver VBUS_DRV high or low depending on board setup */
582 if (udc->board->vbus_drv_pol != 0)
583 i2c_smbus_write_byte_data(client: udc->isp1301_i2c_client,
584 ISP1301_I2C_OTG_CONTROL_1, OTG1_VBUS_DRV);
585 else
586 i2c_smbus_write_byte_data(client: udc->isp1301_i2c_client,
587 ISP1301_I2C_OTG_CONTROL_1 | ISP1301_I2C_REG_CLEAR_ADDR,
588 OTG1_VBUS_DRV);
589
590 /* Bi-directional mode with suspend control
591 * Enable both pulldowns for now - the pullup will be enable when VBUS
592 * is detected */
593 i2c_smbus_write_byte_data(client: udc->isp1301_i2c_client,
594 command: (ISP1301_I2C_OTG_CONTROL_1 | ISP1301_I2C_REG_CLEAR_ADDR), value: ~0);
595 i2c_smbus_write_byte_data(client: udc->isp1301_i2c_client,
596 ISP1301_I2C_OTG_CONTROL_1,
597 value: (0 | OTG1_DM_PULLDOWN | OTG1_DP_PULLDOWN));
598
599 /* Discharge VBUS (just in case) */
600 i2c_smbus_write_byte_data(client: udc->isp1301_i2c_client,
601 ISP1301_I2C_OTG_CONTROL_1, OTG1_VBUS_DISCHRG);
602 msleep(msecs: 1);
603 i2c_smbus_write_byte_data(client: udc->isp1301_i2c_client,
604 command: (ISP1301_I2C_OTG_CONTROL_1 | ISP1301_I2C_REG_CLEAR_ADDR),
605 OTG1_VBUS_DISCHRG);
606
607 i2c_smbus_write_byte_data(client: udc->isp1301_i2c_client,
608 ISP1301_I2C_INTERRUPT_LATCH | ISP1301_I2C_REG_CLEAR_ADDR, value: ~0);
609
610 i2c_smbus_write_byte_data(client: udc->isp1301_i2c_client,
611 ISP1301_I2C_INTERRUPT_FALLING | ISP1301_I2C_REG_CLEAR_ADDR, value: ~0);
612 i2c_smbus_write_byte_data(client: udc->isp1301_i2c_client,
613 ISP1301_I2C_INTERRUPT_RISING | ISP1301_I2C_REG_CLEAR_ADDR, value: ~0);
614
615 dev_info(udc->dev, "ISP1301 Vendor ID : 0x%04x\n", vendor);
616 dev_info(udc->dev, "ISP1301 Product ID : 0x%04x\n", product);
617 dev_info(udc->dev, "ISP1301 Version ID : 0x%04x\n",
618 i2c_smbus_read_word_data(udc->isp1301_i2c_client, 0x14));
619
620}
621
622/* Enables or disables the USB device pullup via the ISP1301 transceiver */
623static void isp1301_pullup_set(struct lpc32xx_udc *udc)
624{
625 if (udc->pullup)
626 /* Enable pullup for bus signalling */
627 i2c_smbus_write_byte_data(client: udc->isp1301_i2c_client,
628 ISP1301_I2C_OTG_CONTROL_1, OTG1_DP_PULLUP);
629 else
630 /* Enable pullup for bus signalling */
631 i2c_smbus_write_byte_data(client: udc->isp1301_i2c_client,
632 ISP1301_I2C_OTG_CONTROL_1 | ISP1301_I2C_REG_CLEAR_ADDR,
633 OTG1_DP_PULLUP);
634}
635
636static void pullup_work(struct work_struct *work)
637{
638 struct lpc32xx_udc *udc =
639 container_of(work, struct lpc32xx_udc, pullup_job);
640
641 isp1301_pullup_set(udc);
642}
643
644static void isp1301_pullup_enable(struct lpc32xx_udc *udc, int en_pullup,
645 int block)
646{
647 if (en_pullup == udc->pullup)
648 return;
649
650 udc->pullup = en_pullup;
651 if (block)
652 isp1301_pullup_set(udc);
653 else
654 /* defer slow i2c pull up setting */
655 schedule_work(work: &udc->pullup_job);
656}
657
658#ifdef CONFIG_PM
659/* Powers up or down the ISP1301 transceiver */
660static void isp1301_set_powerstate(struct lpc32xx_udc *udc, int enable)
661{
662 /* There is no "global power down" register for stotg04 */
663 if (udc->atx == STOTG04)
664 return;
665
666 if (enable != 0)
667 /* Power up ISP1301 - this ISP1301 will automatically wakeup
668 when VBUS is detected */
669 i2c_smbus_write_byte_data(client: udc->isp1301_i2c_client,
670 ISP1301_I2C_MODE_CONTROL_2 | ISP1301_I2C_REG_CLEAR_ADDR,
671 MC2_GLOBAL_PWR_DN);
672 else
673 /* Power down ISP1301 */
674 i2c_smbus_write_byte_data(client: udc->isp1301_i2c_client,
675 ISP1301_I2C_MODE_CONTROL_2, MC2_GLOBAL_PWR_DN);
676}
677
678static void power_work(struct work_struct *work)
679{
680 struct lpc32xx_udc *udc =
681 container_of(work, struct lpc32xx_udc, power_job);
682
683 isp1301_set_powerstate(udc, enable: udc->poweron);
684}
685#endif
686
687/*
688 *
689 * USB protocol engine command/data read/write helper functions
690 *
691 */
692/* Issues a single command to the USB device state machine */
693static void udc_protocol_cmd_w(struct lpc32xx_udc *udc, u32 cmd)
694{
695 u32 pass = 0;
696 int to;
697
698 /* EP may lock on CLRI if this read isn't done */
699 u32 tmp = readl(USBD_DEVINTST(udc->udp_baseaddr));
700 (void) tmp;
701
702 while (pass == 0) {
703 writel(USBD_CCEMPTY, USBD_DEVINTCLR(udc->udp_baseaddr));
704
705 /* Write command code */
706 writel(val: cmd, USBD_CMDCODE(udc->udp_baseaddr));
707 to = 10000;
708 while (((readl(USBD_DEVINTST(udc->udp_baseaddr)) &
709 USBD_CCEMPTY) == 0) && (to > 0)) {
710 to--;
711 }
712
713 if (to > 0)
714 pass = 1;
715
716 cpu_relax();
717 }
718}
719
720/* Issues 2 commands (or command and data) to the USB device state machine */
721static inline void udc_protocol_cmd_data_w(struct lpc32xx_udc *udc, u32 cmd,
722 u32 data)
723{
724 udc_protocol_cmd_w(udc, cmd);
725 udc_protocol_cmd_w(udc, cmd: data);
726}
727
728/* Issues a single command to the USB device state machine and reads
729 * response data */
730static u32 udc_protocol_cmd_r(struct lpc32xx_udc *udc, u32 cmd)
731{
732 int to = 1000;
733
734 /* Write a command and read data from the protocol engine */
735 writel(val: (USBD_CDFULL | USBD_CCEMPTY),
736 USBD_DEVINTCLR(udc->udp_baseaddr));
737
738 /* Write command code */
739 udc_protocol_cmd_w(udc, cmd);
740
741 while ((!(readl(USBD_DEVINTST(udc->udp_baseaddr)) & USBD_CDFULL))
742 && (to > 0))
743 to--;
744 if (!to)
745 dev_dbg(udc->dev,
746 "Protocol engine didn't receive response (CDFULL)\n");
747
748 return readl(USBD_CMDDATA(udc->udp_baseaddr));
749}
750
751/*
752 *
753 * USB device interrupt mask support functions
754 *
755 */
756/* Enable one or more USB device interrupts */
757static inline void uda_enable_devint(struct lpc32xx_udc *udc, u32 devmask)
758{
759 udc->enabled_devints |= devmask;
760 writel(val: udc->enabled_devints, USBD_DEVINTEN(udc->udp_baseaddr));
761}
762
763/* Disable one or more USB device interrupts */
764static inline void uda_disable_devint(struct lpc32xx_udc *udc, u32 mask)
765{
766 udc->enabled_devints &= ~mask;
767 writel(val: udc->enabled_devints, USBD_DEVINTEN(udc->udp_baseaddr));
768}
769
770/* Clear one or more USB device interrupts */
771static inline void uda_clear_devint(struct lpc32xx_udc *udc, u32 mask)
772{
773 writel(val: mask, USBD_DEVINTCLR(udc->udp_baseaddr));
774}
775
776/*
777 *
778 * Endpoint interrupt disable/enable functions
779 *
780 */
781/* Enable one or more USB endpoint interrupts */
782static void uda_enable_hwepint(struct lpc32xx_udc *udc, u32 hwep)
783{
784 udc->enabled_hwepints |= (1 << hwep);
785 writel(val: udc->enabled_hwepints, USBD_EPINTEN(udc->udp_baseaddr));
786}
787
788/* Disable one or more USB endpoint interrupts */
789static void uda_disable_hwepint(struct lpc32xx_udc *udc, u32 hwep)
790{
791 udc->enabled_hwepints &= ~(1 << hwep);
792 writel(val: udc->enabled_hwepints, USBD_EPINTEN(udc->udp_baseaddr));
793}
794
795/* Clear one or more USB endpoint interrupts */
796static inline void uda_clear_hwepint(struct lpc32xx_udc *udc, u32 hwep)
797{
798 writel(val: (1 << hwep), USBD_EPINTCLR(udc->udp_baseaddr));
799}
800
801/* Enable DMA for the HW channel */
802static inline void udc_ep_dma_enable(struct lpc32xx_udc *udc, u32 hwep)
803{
804 writel(val: (1 << hwep), USBD_EPDMAEN(udc->udp_baseaddr));
805}
806
807/* Disable DMA for the HW channel */
808static inline void udc_ep_dma_disable(struct lpc32xx_udc *udc, u32 hwep)
809{
810 writel(val: (1 << hwep), USBD_EPDMADIS(udc->udp_baseaddr));
811}
812
813/*
814 *
815 * Endpoint realize/unrealize functions
816 *
817 */
818/* Before an endpoint can be used, it needs to be realized
819 * in the USB protocol engine - this realizes the endpoint.
820 * The interrupt (FIFO or DMA) is not enabled with this function */
821static void udc_realize_hwep(struct lpc32xx_udc *udc, u32 hwep,
822 u32 maxpacket)
823{
824 int to = 1000;
825
826 writel(USBD_EP_RLZED, USBD_DEVINTCLR(udc->udp_baseaddr));
827 writel(val: hwep, USBD_EPIND(udc->udp_baseaddr));
828 udc->realized_eps |= (1 << hwep);
829 writel(val: udc->realized_eps, USBD_REEP(udc->udp_baseaddr));
830 writel(val: maxpacket, USBD_EPMAXPSIZE(udc->udp_baseaddr));
831
832 /* Wait until endpoint is realized in hardware */
833 while ((!(readl(USBD_DEVINTST(udc->udp_baseaddr)) &
834 USBD_EP_RLZED)) && (to > 0))
835 to--;
836 if (!to)
837 dev_dbg(udc->dev, "EP not correctly realized in hardware\n");
838
839 writel(USBD_EP_RLZED, USBD_DEVINTCLR(udc->udp_baseaddr));
840}
841
842/* Unrealize an EP */
843static void udc_unrealize_hwep(struct lpc32xx_udc *udc, u32 hwep)
844{
845 udc->realized_eps &= ~(1 << hwep);
846 writel(val: udc->realized_eps, USBD_REEP(udc->udp_baseaddr));
847}
848
849/*
850 *
851 * Endpoint support functions
852 *
853 */
854/* Select and clear endpoint interrupt */
855static u32 udc_selep_clrint(struct lpc32xx_udc *udc, u32 hwep)
856{
857 udc_protocol_cmd_w(udc, CMD_SEL_EP_CLRI(hwep));
858 return udc_protocol_cmd_r(udc, DAT_SEL_EP_CLRI(hwep));
859}
860
861/* Disables the endpoint in the USB protocol engine */
862static void udc_disable_hwep(struct lpc32xx_udc *udc, u32 hwep)
863{
864 udc_protocol_cmd_data_w(udc, CMD_SET_EP_STAT(hwep),
865 DAT_WR_BYTE(EP_STAT_DA));
866}
867
868/* Stalls the endpoint - endpoint will return STALL */
869static void udc_stall_hwep(struct lpc32xx_udc *udc, u32 hwep)
870{
871 udc_protocol_cmd_data_w(udc, CMD_SET_EP_STAT(hwep),
872 DAT_WR_BYTE(EP_STAT_ST));
873}
874
875/* Clear stall or reset endpoint */
876static void udc_clrstall_hwep(struct lpc32xx_udc *udc, u32 hwep)
877{
878 udc_protocol_cmd_data_w(udc, CMD_SET_EP_STAT(hwep),
879 DAT_WR_BYTE(0));
880}
881
882/* Select an endpoint for endpoint status, clear, validate */
883static void udc_select_hwep(struct lpc32xx_udc *udc, u32 hwep)
884{
885 udc_protocol_cmd_w(udc, CMD_SEL_EP(hwep));
886}
887
888/*
889 *
890 * Endpoint buffer management functions
891 *
892 */
893/* Clear the current endpoint's buffer */
894static void udc_clr_buffer_hwep(struct lpc32xx_udc *udc, u32 hwep)
895{
896 udc_select_hwep(udc, hwep);
897 udc_protocol_cmd_w(udc, CMD_CLR_BUF);
898}
899
900/* Validate the current endpoint's buffer */
901static void udc_val_buffer_hwep(struct lpc32xx_udc *udc, u32 hwep)
902{
903 udc_select_hwep(udc, hwep);
904 udc_protocol_cmd_w(udc, CMD_VALID_BUF);
905}
906
907static inline u32 udc_clearep_getsts(struct lpc32xx_udc *udc, u32 hwep)
908{
909 /* Clear EP interrupt */
910 uda_clear_hwepint(udc, hwep);
911 return udc_selep_clrint(udc, hwep);
912}
913
914/*
915 *
916 * USB EP DMA support
917 *
918 */
919/* Allocate a DMA Descriptor */
920static struct lpc32xx_usbd_dd_gad *udc_dd_alloc(struct lpc32xx_udc *udc)
921{
922 dma_addr_t dma;
923 struct lpc32xx_usbd_dd_gad *dd;
924
925 dd = dma_pool_alloc(pool: udc->dd_cache, GFP_ATOMIC | GFP_DMA, handle: &dma);
926 if (dd)
927 dd->this_dma = dma;
928
929 return dd;
930}
931
932/* Free a DMA Descriptor */
933static void udc_dd_free(struct lpc32xx_udc *udc, struct lpc32xx_usbd_dd_gad *dd)
934{
935 dma_pool_free(pool: udc->dd_cache, vaddr: dd, addr: dd->this_dma);
936}
937
938/*
939 *
940 * USB setup and shutdown functions
941 *
942 */
943/* Enables or disables most of the USB system clocks when low power mode is
944 * needed. Clocks are typically started on a connection event, and disabled
945 * when a cable is disconnected */
946static void udc_clk_set(struct lpc32xx_udc *udc, int enable)
947{
948 if (enable != 0) {
949 if (udc->clocked)
950 return;
951
952 udc->clocked = 1;
953 clk_prepare_enable(clk: udc->usb_slv_clk);
954 } else {
955 if (!udc->clocked)
956 return;
957
958 udc->clocked = 0;
959 clk_disable_unprepare(clk: udc->usb_slv_clk);
960 }
961}
962
963/* Set/reset USB device address */
964static void udc_set_address(struct lpc32xx_udc *udc, u32 addr)
965{
966 /* Address will be latched at the end of the status phase, or
967 latched immediately if function is called twice */
968 udc_protocol_cmd_data_w(udc, CMD_SET_ADDR,
969 DAT_WR_BYTE(DEV_EN | addr));
970}
971
972/* Setup up a IN request for DMA transfer - this consists of determining the
973 * list of DMA addresses for the transfer, allocating DMA Descriptors,
974 * installing the DD into the UDCA, and then enabling the DMA for that EP */
975static int udc_ep_in_req_dma(struct lpc32xx_udc *udc, struct lpc32xx_ep *ep)
976{
977 struct lpc32xx_request *req;
978 u32 hwep = ep->hwep_num;
979
980 ep->req_pending = 1;
981
982 /* There will always be a request waiting here */
983 req = list_entry(ep->queue.next, struct lpc32xx_request, queue);
984
985 /* Place the DD Descriptor into the UDCA */
986 udc->udca_v_base[hwep] = req->dd_desc_ptr->this_dma;
987
988 /* Enable DMA and interrupt for the HW EP */
989 udc_ep_dma_enable(udc, hwep);
990
991 /* Clear ZLP if last packet is not of MAXP size */
992 if (req->req.length % ep->ep.maxpacket)
993 req->send_zlp = 0;
994
995 return 0;
996}
997
998/* Setup up a OUT request for DMA transfer - this consists of determining the
999 * list of DMA addresses for the transfer, allocating DMA Descriptors,
1000 * installing the DD into the UDCA, and then enabling the DMA for that EP */
1001static int udc_ep_out_req_dma(struct lpc32xx_udc *udc, struct lpc32xx_ep *ep)
1002{
1003 struct lpc32xx_request *req;
1004 u32 hwep = ep->hwep_num;
1005
1006 ep->req_pending = 1;
1007
1008 /* There will always be a request waiting here */
1009 req = list_entry(ep->queue.next, struct lpc32xx_request, queue);
1010
1011 /* Place the DD Descriptor into the UDCA */
1012 udc->udca_v_base[hwep] = req->dd_desc_ptr->this_dma;
1013
1014 /* Enable DMA and interrupt for the HW EP */
1015 udc_ep_dma_enable(udc, hwep);
1016 return 0;
1017}
1018
1019static void udc_disable(struct lpc32xx_udc *udc)
1020{
1021 u32 i;
1022
1023 /* Disable device */
1024 udc_protocol_cmd_data_w(udc, CMD_CFG_DEV, DAT_WR_BYTE(0));
1025 udc_protocol_cmd_data_w(udc, CMD_SET_DEV_STAT, DAT_WR_BYTE(0));
1026
1027 /* Disable all device interrupts (including EP0) */
1028 uda_disable_devint(udc, mask: 0x3FF);
1029
1030 /* Disable and reset all endpoint interrupts */
1031 for (i = 0; i < 32; i++) {
1032 uda_disable_hwepint(udc, hwep: i);
1033 uda_clear_hwepint(udc, hwep: i);
1034 udc_disable_hwep(udc, hwep: i);
1035 udc_unrealize_hwep(udc, hwep: i);
1036 udc->udca_v_base[i] = 0;
1037
1038 /* Disable and clear all interrupts and DMA */
1039 udc_ep_dma_disable(udc, hwep: i);
1040 writel(val: (1 << i), USBD_EOTINTCLR(udc->udp_baseaddr));
1041 writel(val: (1 << i), USBD_NDDRTINTCLR(udc->udp_baseaddr));
1042 writel(val: (1 << i), USBD_SYSERRTINTCLR(udc->udp_baseaddr));
1043 writel(val: (1 << i), USBD_DMARCLR(udc->udp_baseaddr));
1044 }
1045
1046 /* Disable DMA interrupts */
1047 writel(val: 0, USBD_DMAINTEN(udc->udp_baseaddr));
1048
1049 writel(val: 0, USBD_UDCAH(udc->udp_baseaddr));
1050}
1051
1052static void udc_enable(struct lpc32xx_udc *udc)
1053{
1054 u32 i;
1055 struct lpc32xx_ep *ep = &udc->ep[0];
1056
1057 /* Start with known state */
1058 udc_disable(udc);
1059
1060 /* Enable device */
1061 udc_protocol_cmd_data_w(udc, CMD_SET_DEV_STAT, DAT_WR_BYTE(DEV_CON));
1062
1063 /* EP interrupts on high priority, FRAME interrupt on low priority */
1064 writel(USBD_EP_FAST, USBD_DEVINTPRI(udc->udp_baseaddr));
1065 writel(val: 0xFFFF, USBD_EPINTPRI(udc->udp_baseaddr));
1066
1067 /* Clear any pending device interrupts */
1068 writel(val: 0x3FF, USBD_DEVINTCLR(udc->udp_baseaddr));
1069
1070 /* Setup UDCA - not yet used (DMA) */
1071 writel(val: udc->udca_p_base, USBD_UDCAH(udc->udp_baseaddr));
1072
1073 /* Only enable EP0 in and out for now, EP0 only works in FIFO mode */
1074 for (i = 0; i <= 1; i++) {
1075 udc_realize_hwep(udc, hwep: i, maxpacket: ep->ep.maxpacket);
1076 uda_enable_hwepint(udc, hwep: i);
1077 udc_select_hwep(udc, hwep: i);
1078 udc_clrstall_hwep(udc, hwep: i);
1079 udc_clr_buffer_hwep(udc, hwep: i);
1080 }
1081
1082 /* Device interrupt setup */
1083 uda_clear_devint(udc, mask: (USBD_ERR_INT | USBD_DEV_STAT | USBD_EP_SLOW |
1084 USBD_EP_FAST));
1085 uda_enable_devint(udc, devmask: (USBD_ERR_INT | USBD_DEV_STAT | USBD_EP_SLOW |
1086 USBD_EP_FAST));
1087
1088 /* Set device address to 0 - called twice to force a latch in the USB
1089 engine without the need of a setup packet status closure */
1090 udc_set_address(udc, addr: 0);
1091 udc_set_address(udc, addr: 0);
1092
1093 /* Enable master DMA interrupts */
1094 writel(val: (USBD_SYS_ERR_INT | USBD_EOT_INT),
1095 USBD_DMAINTEN(udc->udp_baseaddr));
1096
1097 udc->dev_status = 0;
1098}
1099
1100/*
1101 *
1102 * USB device board specific events handled via callbacks
1103 *
1104 */
1105/* Connection change event - notify board function of change */
1106static void uda_power_event(struct lpc32xx_udc *udc, u32 conn)
1107{
1108 /* Just notify of a connection change event (optional) */
1109 if (udc->board->conn_chgb != NULL)
1110 udc->board->conn_chgb(conn);
1111}
1112
1113/* Suspend/resume event - notify board function of change */
1114static void uda_resm_susp_event(struct lpc32xx_udc *udc, u32 conn)
1115{
1116 /* Just notify of a Suspend/resume change event (optional) */
1117 if (udc->board->susp_chgb != NULL)
1118 udc->board->susp_chgb(conn);
1119
1120 if (conn)
1121 udc->suspended = 0;
1122 else
1123 udc->suspended = 1;
1124}
1125
1126/* Remote wakeup enable/disable - notify board function of change */
1127static void uda_remwkp_cgh(struct lpc32xx_udc *udc)
1128{
1129 if (udc->board->rmwk_chgb != NULL)
1130 udc->board->rmwk_chgb(udc->dev_status &
1131 (1 << USB_DEVICE_REMOTE_WAKEUP));
1132}
1133
1134/* Reads data from FIFO, adjusts for alignment and data size */
1135static void udc_pop_fifo(struct lpc32xx_udc *udc, u8 *data, u32 bytes)
1136{
1137 int n, i, bl;
1138 u16 *p16;
1139 u32 *p32, tmp, cbytes;
1140
1141 /* Use optimal data transfer method based on source address and size */
1142 switch (((uintptr_t) data) & 0x3) {
1143 case 0: /* 32-bit aligned */
1144 p32 = (u32 *) data;
1145 cbytes = (bytes & ~0x3);
1146
1147 /* Copy 32-bit aligned data first */
1148 for (n = 0; n < cbytes; n += 4)
1149 *p32++ = readl(USBD_RXDATA(udc->udp_baseaddr));
1150
1151 /* Handle any remaining bytes */
1152 bl = bytes - cbytes;
1153 if (bl) {
1154 tmp = readl(USBD_RXDATA(udc->udp_baseaddr));
1155 for (n = 0; n < bl; n++)
1156 data[cbytes + n] = ((tmp >> (n * 8)) & 0xFF);
1157
1158 }
1159 break;
1160
1161 case 1: /* 8-bit aligned */
1162 case 3:
1163 /* Each byte has to be handled independently */
1164 for (n = 0; n < bytes; n += 4) {
1165 tmp = readl(USBD_RXDATA(udc->udp_baseaddr));
1166
1167 bl = bytes - n;
1168 if (bl > 4)
1169 bl = 4;
1170
1171 for (i = 0; i < bl; i++)
1172 data[n + i] = (u8) ((tmp >> (i * 8)) & 0xFF);
1173 }
1174 break;
1175
1176 case 2: /* 16-bit aligned */
1177 p16 = (u16 *) data;
1178 cbytes = (bytes & ~0x3);
1179
1180 /* Copy 32-bit sized objects first with 16-bit alignment */
1181 for (n = 0; n < cbytes; n += 4) {
1182 tmp = readl(USBD_RXDATA(udc->udp_baseaddr));
1183 *p16++ = (u16)(tmp & 0xFFFF);
1184 *p16++ = (u16)((tmp >> 16) & 0xFFFF);
1185 }
1186
1187 /* Handle any remaining bytes */
1188 bl = bytes - cbytes;
1189 if (bl) {
1190 tmp = readl(USBD_RXDATA(udc->udp_baseaddr));
1191 for (n = 0; n < bl; n++)
1192 data[cbytes + n] = ((tmp >> (n * 8)) & 0xFF);
1193 }
1194 break;
1195 }
1196}
1197
1198/* Read data from the FIFO for an endpoint. This function is for endpoints (such
1199 * as EP0) that don't use DMA. This function should only be called if a packet
1200 * is known to be ready to read for the endpoint. Note that the endpoint must
1201 * be selected in the protocol engine prior to this call. */
1202static u32 udc_read_hwep(struct lpc32xx_udc *udc, u32 hwep, u32 *data,
1203 u32 bytes)
1204{
1205 u32 tmpv;
1206 int to = 1000;
1207 u32 tmp, hwrep = ((hwep & 0x1E) << 1) | CTRL_RD_EN;
1208
1209 /* Setup read of endpoint */
1210 writel(val: hwrep, USBD_CTRL(udc->udp_baseaddr));
1211
1212 /* Wait until packet is ready */
1213 while ((((tmpv = readl(USBD_RXPLEN(udc->udp_baseaddr))) &
1214 PKT_RDY) == 0) && (to > 0))
1215 to--;
1216 if (!to)
1217 dev_dbg(udc->dev, "No packet ready on FIFO EP read\n");
1218
1219 /* Mask out count */
1220 tmp = tmpv & PKT_LNGTH_MASK;
1221 if (bytes < tmp)
1222 tmp = bytes;
1223
1224 if ((tmp > 0) && (data != NULL))
1225 udc_pop_fifo(udc, data: (u8 *) data, bytes: tmp);
1226
1227 writel(val: ((hwep & 0x1E) << 1), USBD_CTRL(udc->udp_baseaddr));
1228
1229 /* Clear the buffer */
1230 udc_clr_buffer_hwep(udc, hwep);
1231
1232 return tmp;
1233}
1234
1235/* Stuffs data into the FIFO, adjusts for alignment and data size */
1236static void udc_stuff_fifo(struct lpc32xx_udc *udc, u8 *data, u32 bytes)
1237{
1238 int n, i, bl;
1239 u16 *p16;
1240 u32 *p32, tmp, cbytes;
1241
1242 /* Use optimal data transfer method based on source address and size */
1243 switch (((uintptr_t) data) & 0x3) {
1244 case 0: /* 32-bit aligned */
1245 p32 = (u32 *) data;
1246 cbytes = (bytes & ~0x3);
1247
1248 /* Copy 32-bit aligned data first */
1249 for (n = 0; n < cbytes; n += 4)
1250 writel(val: *p32++, USBD_TXDATA(udc->udp_baseaddr));
1251
1252 /* Handle any remaining bytes */
1253 bl = bytes - cbytes;
1254 if (bl) {
1255 tmp = 0;
1256 for (n = 0; n < bl; n++)
1257 tmp |= data[cbytes + n] << (n * 8);
1258
1259 writel(val: tmp, USBD_TXDATA(udc->udp_baseaddr));
1260 }
1261 break;
1262
1263 case 1: /* 8-bit aligned */
1264 case 3:
1265 /* Each byte has to be handled independently */
1266 for (n = 0; n < bytes; n += 4) {
1267 bl = bytes - n;
1268 if (bl > 4)
1269 bl = 4;
1270
1271 tmp = 0;
1272 for (i = 0; i < bl; i++)
1273 tmp |= data[n + i] << (i * 8);
1274
1275 writel(val: tmp, USBD_TXDATA(udc->udp_baseaddr));
1276 }
1277 break;
1278
1279 case 2: /* 16-bit aligned */
1280 p16 = (u16 *) data;
1281 cbytes = (bytes & ~0x3);
1282
1283 /* Copy 32-bit aligned data first */
1284 for (n = 0; n < cbytes; n += 4) {
1285 tmp = *p16++ & 0xFFFF;
1286 tmp |= (*p16++ & 0xFFFF) << 16;
1287 writel(val: tmp, USBD_TXDATA(udc->udp_baseaddr));
1288 }
1289
1290 /* Handle any remaining bytes */
1291 bl = bytes - cbytes;
1292 if (bl) {
1293 tmp = 0;
1294 for (n = 0; n < bl; n++)
1295 tmp |= data[cbytes + n] << (n * 8);
1296
1297 writel(val: tmp, USBD_TXDATA(udc->udp_baseaddr));
1298 }
1299 break;
1300 }
1301}
1302
1303/* Write data to the FIFO for an endpoint. This function is for endpoints (such
1304 * as EP0) that don't use DMA. Note that the endpoint must be selected in the
1305 * protocol engine prior to this call. */
1306static void udc_write_hwep(struct lpc32xx_udc *udc, u32 hwep, u32 *data,
1307 u32 bytes)
1308{
1309 u32 hwwep = ((hwep & 0x1E) << 1) | CTRL_WR_EN;
1310
1311 if ((bytes > 0) && (data == NULL))
1312 return;
1313
1314 /* Setup write of endpoint */
1315 writel(val: hwwep, USBD_CTRL(udc->udp_baseaddr));
1316
1317 writel(val: bytes, USBD_TXPLEN(udc->udp_baseaddr));
1318
1319 /* Need at least 1 byte to trigger TX */
1320 if (bytes == 0)
1321 writel(val: 0, USBD_TXDATA(udc->udp_baseaddr));
1322 else
1323 udc_stuff_fifo(udc, data: (u8 *) data, bytes);
1324
1325 writel(val: ((hwep & 0x1E) << 1), USBD_CTRL(udc->udp_baseaddr));
1326
1327 udc_val_buffer_hwep(udc, hwep);
1328}
1329
1330/* USB device reset - resets USB to a default state with just EP0
1331 enabled */
1332static void uda_usb_reset(struct lpc32xx_udc *udc)
1333{
1334 u32 i = 0;
1335 /* Re-init device controller and EP0 */
1336 udc_enable(udc);
1337 udc->gadget.speed = USB_SPEED_FULL;
1338
1339 for (i = 1; i < NUM_ENDPOINTS; i++) {
1340 struct lpc32xx_ep *ep = &udc->ep[i];
1341 ep->req_pending = 0;
1342 }
1343}
1344
1345/* Send a ZLP on EP0 */
1346static void udc_ep0_send_zlp(struct lpc32xx_udc *udc)
1347{
1348 udc_write_hwep(udc, EP_IN, NULL, bytes: 0);
1349}
1350
1351/* Get current frame number */
1352static u16 udc_get_current_frame(struct lpc32xx_udc *udc)
1353{
1354 u16 flo, fhi;
1355
1356 udc_protocol_cmd_w(udc, CMD_RD_FRAME);
1357 flo = (u16) udc_protocol_cmd_r(udc, DAT_RD_FRAME);
1358 fhi = (u16) udc_protocol_cmd_r(udc, DAT_RD_FRAME);
1359
1360 return (fhi << 8) | flo;
1361}
1362
1363/* Set the device as configured - enables all endpoints */
1364static inline void udc_set_device_configured(struct lpc32xx_udc *udc)
1365{
1366 udc_protocol_cmd_data_w(udc, CMD_CFG_DEV, DAT_WR_BYTE(CONF_DVICE));
1367}
1368
1369/* Set the device as unconfigured - disables all endpoints */
1370static inline void udc_set_device_unconfigured(struct lpc32xx_udc *udc)
1371{
1372 udc_protocol_cmd_data_w(udc, CMD_CFG_DEV, DAT_WR_BYTE(0));
1373}
1374
1375/* reinit == restore initial software state */
1376static void udc_reinit(struct lpc32xx_udc *udc)
1377{
1378 u32 i;
1379
1380 INIT_LIST_HEAD(list: &udc->gadget.ep_list);
1381 INIT_LIST_HEAD(list: &udc->gadget.ep0->ep_list);
1382
1383 for (i = 0; i < NUM_ENDPOINTS; i++) {
1384 struct lpc32xx_ep *ep = &udc->ep[i];
1385
1386 if (i != 0)
1387 list_add_tail(new: &ep->ep.ep_list, head: &udc->gadget.ep_list);
1388 usb_ep_set_maxpacket_limit(ep: &ep->ep, maxpacket_limit: ep->maxpacket);
1389 INIT_LIST_HEAD(list: &ep->queue);
1390 ep->req_pending = 0;
1391 }
1392
1393 udc->ep0state = WAIT_FOR_SETUP;
1394}
1395
1396/* Must be called with lock */
1397static void done(struct lpc32xx_ep *ep, struct lpc32xx_request *req, int status)
1398{
1399 struct lpc32xx_udc *udc = ep->udc;
1400
1401 list_del_init(entry: &req->queue);
1402 if (req->req.status == -EINPROGRESS)
1403 req->req.status = status;
1404 else
1405 status = req->req.status;
1406
1407 if (ep->lep) {
1408 usb_gadget_unmap_request(gadget: &udc->gadget, req: &req->req, is_in: ep->is_in);
1409
1410 /* Free DDs */
1411 udc_dd_free(udc, dd: req->dd_desc_ptr);
1412 }
1413
1414 if (status && status != -ESHUTDOWN)
1415 ep_dbg(ep, "%s done %p, status %d\n", ep->ep.name, req, status);
1416
1417 ep->req_pending = 0;
1418 spin_unlock(lock: &udc->lock);
1419 usb_gadget_giveback_request(ep: &ep->ep, req: &req->req);
1420 spin_lock(lock: &udc->lock);
1421}
1422
1423/* Must be called with lock */
1424static void nuke(struct lpc32xx_ep *ep, int status)
1425{
1426 struct lpc32xx_request *req;
1427
1428 while (!list_empty(head: &ep->queue)) {
1429 req = list_entry(ep->queue.next, struct lpc32xx_request, queue);
1430 done(ep, req, status);
1431 }
1432
1433 if (status == -ESHUTDOWN) {
1434 uda_disable_hwepint(udc: ep->udc, hwep: ep->hwep_num);
1435 udc_disable_hwep(udc: ep->udc, hwep: ep->hwep_num);
1436 }
1437}
1438
1439/* IN endpoint 0 transfer */
1440static int udc_ep0_in_req(struct lpc32xx_udc *udc)
1441{
1442 struct lpc32xx_request *req;
1443 struct lpc32xx_ep *ep0 = &udc->ep[0];
1444 u32 tsend, ts = 0;
1445
1446 if (list_empty(head: &ep0->queue))
1447 /* Nothing to send */
1448 return 0;
1449 else
1450 req = list_entry(ep0->queue.next, struct lpc32xx_request,
1451 queue);
1452
1453 tsend = ts = req->req.length - req->req.actual;
1454 if (ts == 0) {
1455 /* Send a ZLP */
1456 udc_ep0_send_zlp(udc);
1457 done(ep: ep0, req, status: 0);
1458 return 1;
1459 } else if (ts > ep0->ep.maxpacket)
1460 ts = ep0->ep.maxpacket; /* Just send what we can */
1461
1462 /* Write data to the EP0 FIFO and start transfer */
1463 udc_write_hwep(udc, EP_IN, data: (req->req.buf + req->req.actual), bytes: ts);
1464
1465 /* Increment data pointer */
1466 req->req.actual += ts;
1467
1468 if (tsend >= ep0->ep.maxpacket)
1469 return 0; /* Stay in data transfer state */
1470
1471 /* Transfer request is complete */
1472 udc->ep0state = WAIT_FOR_SETUP;
1473 done(ep: ep0, req, status: 0);
1474 return 1;
1475}
1476
1477/* OUT endpoint 0 transfer */
1478static int udc_ep0_out_req(struct lpc32xx_udc *udc)
1479{
1480 struct lpc32xx_request *req;
1481 struct lpc32xx_ep *ep0 = &udc->ep[0];
1482 u32 tr, bufferspace;
1483
1484 if (list_empty(head: &ep0->queue))
1485 return 0;
1486 else
1487 req = list_entry(ep0->queue.next, struct lpc32xx_request,
1488 queue);
1489
1490 if (req) {
1491 if (req->req.length == 0) {
1492 /* Just dequeue request */
1493 done(ep: ep0, req, status: 0);
1494 udc->ep0state = WAIT_FOR_SETUP;
1495 return 1;
1496 }
1497
1498 /* Get data from FIFO */
1499 bufferspace = req->req.length - req->req.actual;
1500 if (bufferspace > ep0->ep.maxpacket)
1501 bufferspace = ep0->ep.maxpacket;
1502
1503 /* Copy data to buffer */
1504 prefetchw(x: req->req.buf + req->req.actual);
1505 tr = udc_read_hwep(udc, EP_OUT, data: req->req.buf + req->req.actual,
1506 bytes: bufferspace);
1507 req->req.actual += bufferspace;
1508
1509 if (tr < ep0->ep.maxpacket) {
1510 /* This is the last packet */
1511 done(ep: ep0, req, status: 0);
1512 udc->ep0state = WAIT_FOR_SETUP;
1513 return 1;
1514 }
1515 }
1516
1517 return 0;
1518}
1519
1520/* Must be called with lock */
1521static void stop_activity(struct lpc32xx_udc *udc)
1522{
1523 struct usb_gadget_driver *driver = udc->driver;
1524 int i;
1525
1526 if (udc->gadget.speed == USB_SPEED_UNKNOWN)
1527 driver = NULL;
1528
1529 udc->gadget.speed = USB_SPEED_UNKNOWN;
1530 udc->suspended = 0;
1531
1532 for (i = 0; i < NUM_ENDPOINTS; i++) {
1533 struct lpc32xx_ep *ep = &udc->ep[i];
1534 nuke(ep, status: -ESHUTDOWN);
1535 }
1536 if (driver) {
1537 spin_unlock(lock: &udc->lock);
1538 driver->disconnect(&udc->gadget);
1539 spin_lock(lock: &udc->lock);
1540 }
1541
1542 isp1301_pullup_enable(udc, en_pullup: 0, block: 0);
1543 udc_disable(udc);
1544 udc_reinit(udc);
1545}
1546
1547/*
1548 * Activate or kill host pullup
1549 * Can be called with or without lock
1550 */
1551static void pullup(struct lpc32xx_udc *udc, int is_on)
1552{
1553 if (!udc->clocked)
1554 return;
1555
1556 if (!udc->enabled || !udc->vbus)
1557 is_on = 0;
1558
1559 if (is_on != udc->pullup)
1560 isp1301_pullup_enable(udc, en_pullup: is_on, block: 0);
1561}
1562
1563/* Must be called without lock */
1564static int lpc32xx_ep_disable(struct usb_ep *_ep)
1565{
1566 struct lpc32xx_ep *ep = container_of(_ep, struct lpc32xx_ep, ep);
1567 struct lpc32xx_udc *udc = ep->udc;
1568 unsigned long flags;
1569
1570 if ((ep->hwep_num_base == 0) || (ep->hwep_num == 0))
1571 return -EINVAL;
1572 spin_lock_irqsave(&udc->lock, flags);
1573
1574 nuke(ep, status: -ESHUTDOWN);
1575
1576 /* Clear all DMA statuses for this EP */
1577 udc_ep_dma_disable(udc, hwep: ep->hwep_num);
1578 writel(val: 1 << ep->hwep_num, USBD_EOTINTCLR(udc->udp_baseaddr));
1579 writel(val: 1 << ep->hwep_num, USBD_NDDRTINTCLR(udc->udp_baseaddr));
1580 writel(val: 1 << ep->hwep_num, USBD_SYSERRTINTCLR(udc->udp_baseaddr));
1581 writel(val: 1 << ep->hwep_num, USBD_DMARCLR(udc->udp_baseaddr));
1582
1583 /* Remove the DD pointer in the UDCA */
1584 udc->udca_v_base[ep->hwep_num] = 0;
1585
1586 /* Disable and reset endpoint and interrupt */
1587 uda_clear_hwepint(udc, hwep: ep->hwep_num);
1588 udc_unrealize_hwep(udc, hwep: ep->hwep_num);
1589
1590 ep->hwep_num = 0;
1591
1592 spin_unlock_irqrestore(lock: &udc->lock, flags);
1593
1594 atomic_dec(v: &udc->enabled_ep_cnt);
1595 wake_up(&udc->ep_disable_wait_queue);
1596
1597 return 0;
1598}
1599
1600/* Must be called without lock */
1601static int lpc32xx_ep_enable(struct usb_ep *_ep,
1602 const struct usb_endpoint_descriptor *desc)
1603{
1604 struct lpc32xx_ep *ep = container_of(_ep, struct lpc32xx_ep, ep);
1605 struct lpc32xx_udc *udc;
1606 u16 maxpacket;
1607 u32 tmp;
1608 unsigned long flags;
1609
1610 /* Verify EP data */
1611 if ((!_ep) || (!ep) || (!desc) ||
1612 (desc->bDescriptorType != USB_DT_ENDPOINT))
1613 return -EINVAL;
1614
1615 udc = ep->udc;
1616 maxpacket = usb_endpoint_maxp(epd: desc);
1617 if ((maxpacket == 0) || (maxpacket > ep->maxpacket)) {
1618 dev_dbg(udc->dev, "bad ep descriptor's packet size\n");
1619 return -EINVAL;
1620 }
1621
1622 /* Don't touch EP0 */
1623 if (ep->hwep_num_base == 0) {
1624 dev_dbg(udc->dev, "Can't re-enable EP0!!!\n");
1625 return -EINVAL;
1626 }
1627
1628 /* Is driver ready? */
1629 if ((!udc->driver) || (udc->gadget.speed == USB_SPEED_UNKNOWN)) {
1630 dev_dbg(udc->dev, "bogus device state\n");
1631 return -ESHUTDOWN;
1632 }
1633
1634 tmp = desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK;
1635 switch (tmp) {
1636 case USB_ENDPOINT_XFER_CONTROL:
1637 return -EINVAL;
1638
1639 case USB_ENDPOINT_XFER_INT:
1640 if (maxpacket > ep->maxpacket) {
1641 dev_dbg(udc->dev,
1642 "Bad INT endpoint maxpacket %d\n", maxpacket);
1643 return -EINVAL;
1644 }
1645 break;
1646
1647 case USB_ENDPOINT_XFER_BULK:
1648 switch (maxpacket) {
1649 case 8:
1650 case 16:
1651 case 32:
1652 case 64:
1653 break;
1654
1655 default:
1656 dev_dbg(udc->dev,
1657 "Bad BULK endpoint maxpacket %d\n", maxpacket);
1658 return -EINVAL;
1659 }
1660 break;
1661
1662 case USB_ENDPOINT_XFER_ISOC:
1663 break;
1664 }
1665 spin_lock_irqsave(&udc->lock, flags);
1666
1667 /* Initialize endpoint to match the selected descriptor */
1668 ep->is_in = (desc->bEndpointAddress & USB_DIR_IN) != 0;
1669 ep->ep.maxpacket = maxpacket;
1670
1671 /* Map hardware endpoint from base and direction */
1672 if (ep->is_in)
1673 /* IN endpoints are offset 1 from the OUT endpoint */
1674 ep->hwep_num = ep->hwep_num_base + EP_IN;
1675 else
1676 ep->hwep_num = ep->hwep_num_base;
1677
1678 ep_dbg(ep, "EP enabled: %s, HW:%d, MP:%d IN:%d\n", ep->ep.name,
1679 ep->hwep_num, maxpacket, (ep->is_in == 1));
1680
1681 /* Realize the endpoint, interrupt is enabled later when
1682 * buffers are queued, IN EPs will NAK until buffers are ready */
1683 udc_realize_hwep(udc, hwep: ep->hwep_num, maxpacket: ep->ep.maxpacket);
1684 udc_clr_buffer_hwep(udc, hwep: ep->hwep_num);
1685 uda_disable_hwepint(udc, hwep: ep->hwep_num);
1686 udc_clrstall_hwep(udc, hwep: ep->hwep_num);
1687
1688 /* Clear all DMA statuses for this EP */
1689 udc_ep_dma_disable(udc, hwep: ep->hwep_num);
1690 writel(val: 1 << ep->hwep_num, USBD_EOTINTCLR(udc->udp_baseaddr));
1691 writel(val: 1 << ep->hwep_num, USBD_NDDRTINTCLR(udc->udp_baseaddr));
1692 writel(val: 1 << ep->hwep_num, USBD_SYSERRTINTCLR(udc->udp_baseaddr));
1693 writel(val: 1 << ep->hwep_num, USBD_DMARCLR(udc->udp_baseaddr));
1694
1695 spin_unlock_irqrestore(lock: &udc->lock, flags);
1696
1697 atomic_inc(v: &udc->enabled_ep_cnt);
1698 return 0;
1699}
1700
1701/*
1702 * Allocate a USB request list
1703 * Can be called with or without lock
1704 */
1705static struct usb_request *lpc32xx_ep_alloc_request(struct usb_ep *_ep,
1706 gfp_t gfp_flags)
1707{
1708 struct lpc32xx_request *req;
1709
1710 req = kzalloc(size: sizeof(struct lpc32xx_request), flags: gfp_flags);
1711 if (!req)
1712 return NULL;
1713
1714 INIT_LIST_HEAD(list: &req->queue);
1715 return &req->req;
1716}
1717
1718/*
1719 * De-allocate a USB request list
1720 * Can be called with or without lock
1721 */
1722static void lpc32xx_ep_free_request(struct usb_ep *_ep,
1723 struct usb_request *_req)
1724{
1725 struct lpc32xx_request *req;
1726
1727 req = container_of(_req, struct lpc32xx_request, req);
1728 BUG_ON(!list_empty(&req->queue));
1729 kfree(objp: req);
1730}
1731
1732/* Must be called without lock */
1733static int lpc32xx_ep_queue(struct usb_ep *_ep,
1734 struct usb_request *_req, gfp_t gfp_flags)
1735{
1736 struct lpc32xx_request *req;
1737 struct lpc32xx_ep *ep;
1738 struct lpc32xx_udc *udc;
1739 unsigned long flags;
1740 int status = 0;
1741
1742 req = container_of(_req, struct lpc32xx_request, req);
1743 ep = container_of(_ep, struct lpc32xx_ep, ep);
1744
1745 if (!_ep || !_req || !_req->complete || !_req->buf ||
1746 !list_empty(head: &req->queue))
1747 return -EINVAL;
1748
1749 udc = ep->udc;
1750
1751 if (udc->gadget.speed == USB_SPEED_UNKNOWN)
1752 return -EPIPE;
1753
1754 if (ep->lep) {
1755 struct lpc32xx_usbd_dd_gad *dd;
1756
1757 status = usb_gadget_map_request(gadget: &udc->gadget, req: _req, is_in: ep->is_in);
1758 if (status)
1759 return status;
1760
1761 /* For the request, build a list of DDs */
1762 dd = udc_dd_alloc(udc);
1763 if (!dd) {
1764 /* Error allocating DD */
1765 return -ENOMEM;
1766 }
1767 req->dd_desc_ptr = dd;
1768
1769 /* Setup the DMA descriptor */
1770 dd->dd_next_phy = dd->dd_next_v = 0;
1771 dd->dd_buffer_addr = req->req.dma;
1772 dd->dd_status = 0;
1773
1774 /* Special handling for ISO EPs */
1775 if (ep->eptype == EP_ISO_TYPE) {
1776 dd->dd_setup = DD_SETUP_ISO_EP |
1777 DD_SETUP_PACKETLEN(0) |
1778 DD_SETUP_DMALENBYTES(1);
1779 dd->dd_iso_ps_mem_addr = dd->this_dma + 24;
1780 if (ep->is_in)
1781 dd->iso_status[0] = req->req.length;
1782 else
1783 dd->iso_status[0] = 0;
1784 } else
1785 dd->dd_setup = DD_SETUP_PACKETLEN(ep->ep.maxpacket) |
1786 DD_SETUP_DMALENBYTES(req->req.length);
1787 }
1788
1789 ep_dbg(ep, "%s queue req %p len %d buf %p (in=%d) z=%d\n", _ep->name,
1790 _req, _req->length, _req->buf, ep->is_in, _req->zero);
1791
1792 spin_lock_irqsave(&udc->lock, flags);
1793
1794 _req->status = -EINPROGRESS;
1795 _req->actual = 0;
1796 req->send_zlp = _req->zero;
1797
1798 /* Kickstart empty queues */
1799 if (list_empty(head: &ep->queue)) {
1800 list_add_tail(new: &req->queue, head: &ep->queue);
1801
1802 if (ep->hwep_num_base == 0) {
1803 /* Handle expected data direction */
1804 if (ep->is_in) {
1805 /* IN packet to host */
1806 udc->ep0state = DATA_IN;
1807 status = udc_ep0_in_req(udc);
1808 } else {
1809 /* OUT packet from host */
1810 udc->ep0state = DATA_OUT;
1811 status = udc_ep0_out_req(udc);
1812 }
1813 } else if (ep->is_in) {
1814 /* IN packet to host and kick off transfer */
1815 if (!ep->req_pending)
1816 udc_ep_in_req_dma(udc, ep);
1817 } else
1818 /* OUT packet from host and kick off list */
1819 if (!ep->req_pending)
1820 udc_ep_out_req_dma(udc, ep);
1821 } else
1822 list_add_tail(new: &req->queue, head: &ep->queue);
1823
1824 spin_unlock_irqrestore(lock: &udc->lock, flags);
1825
1826 return (status < 0) ? status : 0;
1827}
1828
1829/* Must be called without lock */
1830static int lpc32xx_ep_dequeue(struct usb_ep *_ep, struct usb_request *_req)
1831{
1832 struct lpc32xx_ep *ep;
1833 struct lpc32xx_request *req = NULL, *iter;
1834 unsigned long flags;
1835
1836 ep = container_of(_ep, struct lpc32xx_ep, ep);
1837 if (!_ep || ep->hwep_num_base == 0)
1838 return -EINVAL;
1839
1840 spin_lock_irqsave(&ep->udc->lock, flags);
1841
1842 /* make sure it's actually queued on this endpoint */
1843 list_for_each_entry(iter, &ep->queue, queue) {
1844 if (&iter->req != _req)
1845 continue;
1846 req = iter;
1847 break;
1848 }
1849 if (!req) {
1850 spin_unlock_irqrestore(lock: &ep->udc->lock, flags);
1851 return -EINVAL;
1852 }
1853
1854 done(ep, req, status: -ECONNRESET);
1855
1856 spin_unlock_irqrestore(lock: &ep->udc->lock, flags);
1857
1858 return 0;
1859}
1860
1861/* Must be called without lock */
1862static int lpc32xx_ep_set_halt(struct usb_ep *_ep, int value)
1863{
1864 struct lpc32xx_ep *ep = container_of(_ep, struct lpc32xx_ep, ep);
1865 struct lpc32xx_udc *udc;
1866 unsigned long flags;
1867
1868 if ((!ep) || (ep->hwep_num <= 1))
1869 return -EINVAL;
1870
1871 /* Don't halt an IN EP */
1872 if (ep->is_in)
1873 return -EAGAIN;
1874
1875 udc = ep->udc;
1876 spin_lock_irqsave(&udc->lock, flags);
1877
1878 if (value == 1) {
1879 /* stall */
1880 udc_protocol_cmd_data_w(udc, CMD_SET_EP_STAT(ep->hwep_num),
1881 DAT_WR_BYTE(EP_STAT_ST));
1882 } else {
1883 /* End stall */
1884 ep->wedge = 0;
1885 udc_protocol_cmd_data_w(udc, CMD_SET_EP_STAT(ep->hwep_num),
1886 DAT_WR_BYTE(0));
1887 }
1888
1889 spin_unlock_irqrestore(lock: &udc->lock, flags);
1890
1891 return 0;
1892}
1893
1894/* set the halt feature and ignores clear requests */
1895static int lpc32xx_ep_set_wedge(struct usb_ep *_ep)
1896{
1897 struct lpc32xx_ep *ep = container_of(_ep, struct lpc32xx_ep, ep);
1898
1899 if (!_ep || !ep->udc)
1900 return -EINVAL;
1901
1902 ep->wedge = 1;
1903
1904 return usb_ep_set_halt(ep: _ep);
1905}
1906
1907static const struct usb_ep_ops lpc32xx_ep_ops = {
1908 .enable = lpc32xx_ep_enable,
1909 .disable = lpc32xx_ep_disable,
1910 .alloc_request = lpc32xx_ep_alloc_request,
1911 .free_request = lpc32xx_ep_free_request,
1912 .queue = lpc32xx_ep_queue,
1913 .dequeue = lpc32xx_ep_dequeue,
1914 .set_halt = lpc32xx_ep_set_halt,
1915 .set_wedge = lpc32xx_ep_set_wedge,
1916};
1917
1918/* Send a ZLP on a non-0 IN EP */
1919static void udc_send_in_zlp(struct lpc32xx_udc *udc, struct lpc32xx_ep *ep)
1920{
1921 /* Clear EP status */
1922 udc_clearep_getsts(udc, hwep: ep->hwep_num);
1923
1924 /* Send ZLP via FIFO mechanism */
1925 udc_write_hwep(udc, hwep: ep->hwep_num, NULL, bytes: 0);
1926}
1927
1928/*
1929 * Handle EP completion for ZLP
1930 * This function will only be called when a delayed ZLP needs to be sent out
1931 * after a DMA transfer has filled both buffers.
1932 */
1933static void udc_handle_eps(struct lpc32xx_udc *udc, struct lpc32xx_ep *ep)
1934{
1935 u32 epstatus;
1936 struct lpc32xx_request *req;
1937
1938 if (ep->hwep_num <= 0)
1939 return;
1940
1941 uda_clear_hwepint(udc, hwep: ep->hwep_num);
1942
1943 /* If this interrupt isn't enabled, return now */
1944 if (!(udc->enabled_hwepints & (1 << ep->hwep_num)))
1945 return;
1946
1947 /* Get endpoint status */
1948 epstatus = udc_clearep_getsts(udc, hwep: ep->hwep_num);
1949
1950 /*
1951 * This should never happen, but protect against writing to the
1952 * buffer when full.
1953 */
1954 if (epstatus & EP_SEL_F)
1955 return;
1956
1957 if (ep->is_in) {
1958 udc_send_in_zlp(udc, ep);
1959 uda_disable_hwepint(udc, hwep: ep->hwep_num);
1960 } else
1961 return;
1962
1963 /* If there isn't a request waiting, something went wrong */
1964 req = list_entry(ep->queue.next, struct lpc32xx_request, queue);
1965 if (req) {
1966 done(ep, req, status: 0);
1967
1968 /* Start another request if ready */
1969 if (!list_empty(head: &ep->queue)) {
1970 if (ep->is_in)
1971 udc_ep_in_req_dma(udc, ep);
1972 else
1973 udc_ep_out_req_dma(udc, ep);
1974 } else
1975 ep->req_pending = 0;
1976 }
1977}
1978
1979
1980/* DMA end of transfer completion */
1981static void udc_handle_dma_ep(struct lpc32xx_udc *udc, struct lpc32xx_ep *ep)
1982{
1983 u32 status;
1984 struct lpc32xx_request *req;
1985 struct lpc32xx_usbd_dd_gad *dd;
1986
1987#ifdef CONFIG_USB_GADGET_DEBUG_FILES
1988 ep->totalints++;
1989#endif
1990
1991 req = list_entry(ep->queue.next, struct lpc32xx_request, queue);
1992 if (!req) {
1993 ep_err(ep, "DMA interrupt on no req!\n");
1994 return;
1995 }
1996 dd = req->dd_desc_ptr;
1997
1998 /* DMA descriptor should always be retired for this call */
1999 if (!(dd->dd_status & DD_STATUS_DD_RETIRED))
2000 ep_warn(ep, "DMA descriptor did not retire\n");
2001
2002 /* Disable DMA */
2003 udc_ep_dma_disable(udc, hwep: ep->hwep_num);
2004 writel(val: (1 << ep->hwep_num), USBD_EOTINTCLR(udc->udp_baseaddr));
2005 writel(val: (1 << ep->hwep_num), USBD_NDDRTINTCLR(udc->udp_baseaddr));
2006
2007 /* System error? */
2008 if (readl(USBD_SYSERRTINTST(udc->udp_baseaddr)) &
2009 (1 << ep->hwep_num)) {
2010 writel(val: (1 << ep->hwep_num),
2011 USBD_SYSERRTINTCLR(udc->udp_baseaddr));
2012 ep_err(ep, "AHB critical error!\n");
2013 ep->req_pending = 0;
2014
2015 /* The error could have occurred on a packet of a multipacket
2016 * transfer, so recovering the transfer is not possible. Close
2017 * the request with an error */
2018 done(ep, req, status: -ECONNABORTED);
2019 return;
2020 }
2021
2022 /* Handle the current DD's status */
2023 status = dd->dd_status;
2024 switch (status & DD_STATUS_STS_MASK) {
2025 case DD_STATUS_STS_NS:
2026 /* DD not serviced? This shouldn't happen! */
2027 ep->req_pending = 0;
2028 ep_err(ep, "DMA critical EP error: DD not serviced (0x%x)!\n",
2029 status);
2030
2031 done(ep, req, status: -ECONNABORTED);
2032 return;
2033
2034 case DD_STATUS_STS_BS:
2035 /* Interrupt only fires on EOT - This shouldn't happen! */
2036 ep->req_pending = 0;
2037 ep_err(ep, "DMA critical EP error: EOT prior to service completion (0x%x)!\n",
2038 status);
2039 done(ep, req, status: -ECONNABORTED);
2040 return;
2041
2042 case DD_STATUS_STS_NC:
2043 case DD_STATUS_STS_DUR:
2044 /* Really just a short packet, not an underrun */
2045 /* This is a good status and what we expect */
2046 break;
2047
2048 default:
2049 /* Data overrun, system error, or unknown */
2050 ep->req_pending = 0;
2051 ep_err(ep, "DMA critical EP error: System error (0x%x)!\n",
2052 status);
2053 done(ep, req, status: -ECONNABORTED);
2054 return;
2055 }
2056
2057 /* ISO endpoints are handled differently */
2058 if (ep->eptype == EP_ISO_TYPE) {
2059 if (ep->is_in)
2060 req->req.actual = req->req.length;
2061 else
2062 req->req.actual = dd->iso_status[0] & 0xFFFF;
2063 } else
2064 req->req.actual += DD_STATUS_CURDMACNT(status);
2065
2066 /* Send a ZLP if necessary. This will be done for non-int
2067 * packets which have a size that is a divisor of MAXP */
2068 if (req->send_zlp) {
2069 /*
2070 * If at least 1 buffer is available, send the ZLP now.
2071 * Otherwise, the ZLP send needs to be deferred until a
2072 * buffer is available.
2073 */
2074 if (udc_clearep_getsts(udc, hwep: ep->hwep_num) & EP_SEL_F) {
2075 udc_clearep_getsts(udc, hwep: ep->hwep_num);
2076 uda_enable_hwepint(udc, hwep: ep->hwep_num);
2077 udc_clearep_getsts(udc, hwep: ep->hwep_num);
2078
2079 /* Let the EP interrupt handle the ZLP */
2080 return;
2081 } else
2082 udc_send_in_zlp(udc, ep);
2083 }
2084
2085 /* Transfer request is complete */
2086 done(ep, req, status: 0);
2087
2088 /* Start another request if ready */
2089 udc_clearep_getsts(udc, hwep: ep->hwep_num);
2090 if (!list_empty(head: (&ep->queue))) {
2091 if (ep->is_in)
2092 udc_ep_in_req_dma(udc, ep);
2093 else
2094 udc_ep_out_req_dma(udc, ep);
2095 } else
2096 ep->req_pending = 0;
2097
2098}
2099
2100/*
2101 *
2102 * Endpoint 0 functions
2103 *
2104 */
2105static void udc_handle_dev(struct lpc32xx_udc *udc)
2106{
2107 u32 tmp;
2108
2109 udc_protocol_cmd_w(udc, CMD_GET_DEV_STAT);
2110 tmp = udc_protocol_cmd_r(udc, DAT_GET_DEV_STAT);
2111
2112 if (tmp & DEV_RST)
2113 uda_usb_reset(udc);
2114 else if (tmp & DEV_CON_CH)
2115 uda_power_event(udc, conn: (tmp & DEV_CON));
2116 else if (tmp & DEV_SUS_CH) {
2117 if (tmp & DEV_SUS) {
2118 if (udc->vbus == 0)
2119 stop_activity(udc);
2120 else if ((udc->gadget.speed != USB_SPEED_UNKNOWN) &&
2121 udc->driver) {
2122 /* Power down transceiver */
2123 udc->poweron = 0;
2124 schedule_work(work: &udc->pullup_job);
2125 uda_resm_susp_event(udc, conn: 1);
2126 }
2127 } else if ((udc->gadget.speed != USB_SPEED_UNKNOWN) &&
2128 udc->driver && udc->vbus) {
2129 uda_resm_susp_event(udc, conn: 0);
2130 /* Power up transceiver */
2131 udc->poweron = 1;
2132 schedule_work(work: &udc->pullup_job);
2133 }
2134 }
2135}
2136
2137static int udc_get_status(struct lpc32xx_udc *udc, u16 reqtype, u16 wIndex)
2138{
2139 struct lpc32xx_ep *ep;
2140 u32 ep0buff = 0, tmp;
2141
2142 switch (reqtype & USB_RECIP_MASK) {
2143 case USB_RECIP_INTERFACE:
2144 break; /* Not supported */
2145
2146 case USB_RECIP_DEVICE:
2147 ep0buff = udc->gadget.is_selfpowered;
2148 if (udc->dev_status & (1 << USB_DEVICE_REMOTE_WAKEUP))
2149 ep0buff |= (1 << USB_DEVICE_REMOTE_WAKEUP);
2150 break;
2151
2152 case USB_RECIP_ENDPOINT:
2153 tmp = wIndex & USB_ENDPOINT_NUMBER_MASK;
2154 ep = &udc->ep[tmp];
2155 if ((tmp == 0) || (tmp >= NUM_ENDPOINTS))
2156 return -EOPNOTSUPP;
2157
2158 if (wIndex & USB_DIR_IN) {
2159 if (!ep->is_in)
2160 return -EOPNOTSUPP; /* Something's wrong */
2161 } else if (ep->is_in)
2162 return -EOPNOTSUPP; /* Not an IN endpoint */
2163
2164 /* Get status of the endpoint */
2165 udc_protocol_cmd_w(udc, CMD_SEL_EP(ep->hwep_num));
2166 tmp = udc_protocol_cmd_r(udc, DAT_SEL_EP(ep->hwep_num));
2167
2168 if (tmp & EP_SEL_ST)
2169 ep0buff = (1 << USB_ENDPOINT_HALT);
2170 else
2171 ep0buff = 0;
2172 break;
2173
2174 default:
2175 break;
2176 }
2177
2178 /* Return data */
2179 udc_write_hwep(udc, EP_IN, data: &ep0buff, bytes: 2);
2180
2181 return 0;
2182}
2183
2184static void udc_handle_ep0_setup(struct lpc32xx_udc *udc)
2185{
2186 struct lpc32xx_ep *ep, *ep0 = &udc->ep[0];
2187 struct usb_ctrlrequest ctrlpkt;
2188 int i, bytes;
2189 u16 wIndex, wValue, reqtype, req, tmp;
2190
2191 /* Nuke previous transfers */
2192 nuke(ep: ep0, status: -EPROTO);
2193
2194 /* Get setup packet */
2195 bytes = udc_read_hwep(udc, EP_OUT, data: (u32 *) &ctrlpkt, bytes: 8);
2196 if (bytes != 8) {
2197 ep_warn(ep0, "Incorrectly sized setup packet (s/b 8, is %d)!\n",
2198 bytes);
2199 return;
2200 }
2201
2202 /* Native endianness */
2203 wIndex = le16_to_cpu(ctrlpkt.wIndex);
2204 wValue = le16_to_cpu(ctrlpkt.wValue);
2205 reqtype = le16_to_cpu(ctrlpkt.bRequestType);
2206
2207 /* Set direction of EP0 */
2208 if (likely(reqtype & USB_DIR_IN))
2209 ep0->is_in = 1;
2210 else
2211 ep0->is_in = 0;
2212
2213 /* Handle SETUP packet */
2214 req = le16_to_cpu(ctrlpkt.bRequest);
2215 switch (req) {
2216 case USB_REQ_CLEAR_FEATURE:
2217 case USB_REQ_SET_FEATURE:
2218 switch (reqtype) {
2219 case (USB_TYPE_STANDARD | USB_RECIP_DEVICE):
2220 if (wValue != USB_DEVICE_REMOTE_WAKEUP)
2221 goto stall; /* Nothing else handled */
2222
2223 /* Tell board about event */
2224 if (req == USB_REQ_CLEAR_FEATURE)
2225 udc->dev_status &=
2226 ~(1 << USB_DEVICE_REMOTE_WAKEUP);
2227 else
2228 udc->dev_status |=
2229 (1 << USB_DEVICE_REMOTE_WAKEUP);
2230 uda_remwkp_cgh(udc);
2231 goto zlp_send;
2232
2233 case (USB_TYPE_STANDARD | USB_RECIP_ENDPOINT):
2234 tmp = wIndex & USB_ENDPOINT_NUMBER_MASK;
2235 if ((wValue != USB_ENDPOINT_HALT) ||
2236 (tmp >= NUM_ENDPOINTS))
2237 break;
2238
2239 /* Find hardware endpoint from logical endpoint */
2240 ep = &udc->ep[tmp];
2241 tmp = ep->hwep_num;
2242 if (tmp == 0)
2243 break;
2244
2245 if (req == USB_REQ_SET_FEATURE)
2246 udc_stall_hwep(udc, hwep: tmp);
2247 else if (!ep->wedge)
2248 udc_clrstall_hwep(udc, hwep: tmp);
2249
2250 goto zlp_send;
2251
2252 default:
2253 break;
2254 }
2255 break;
2256
2257 case USB_REQ_SET_ADDRESS:
2258 if (reqtype == (USB_TYPE_STANDARD | USB_RECIP_DEVICE)) {
2259 udc_set_address(udc, addr: wValue);
2260 goto zlp_send;
2261 }
2262 break;
2263
2264 case USB_REQ_GET_STATUS:
2265 udc_get_status(udc, reqtype, wIndex);
2266 return;
2267
2268 default:
2269 break; /* Let GadgetFS handle the descriptor instead */
2270 }
2271
2272 if (likely(udc->driver)) {
2273 /* device-2-host (IN) or no data setup command, process
2274 * immediately */
2275 spin_unlock(lock: &udc->lock);
2276 i = udc->driver->setup(&udc->gadget, &ctrlpkt);
2277
2278 spin_lock(lock: &udc->lock);
2279 if (req == USB_REQ_SET_CONFIGURATION) {
2280 /* Configuration is set after endpoints are realized */
2281 if (wValue) {
2282 /* Set configuration */
2283 udc_set_device_configured(udc);
2284
2285 udc_protocol_cmd_data_w(udc, CMD_SET_MODE,
2286 DAT_WR_BYTE(AP_CLK |
2287 INAK_BI | INAK_II));
2288 } else {
2289 /* Clear configuration */
2290 udc_set_device_unconfigured(udc);
2291
2292 /* Disable NAK interrupts */
2293 udc_protocol_cmd_data_w(udc, CMD_SET_MODE,
2294 DAT_WR_BYTE(AP_CLK));
2295 }
2296 }
2297
2298 if (i < 0) {
2299 /* setup processing failed, force stall */
2300 dev_dbg(udc->dev,
2301 "req %02x.%02x protocol STALL; stat %d\n",
2302 reqtype, req, i);
2303 udc->ep0state = WAIT_FOR_SETUP;
2304 goto stall;
2305 }
2306 }
2307
2308 if (!ep0->is_in)
2309 udc_ep0_send_zlp(udc); /* ZLP IN packet on data phase */
2310
2311 return;
2312
2313stall:
2314 udc_stall_hwep(udc, EP_IN);
2315 return;
2316
2317zlp_send:
2318 udc_ep0_send_zlp(udc);
2319 return;
2320}
2321
2322/* IN endpoint 0 transfer */
2323static void udc_handle_ep0_in(struct lpc32xx_udc *udc)
2324{
2325 struct lpc32xx_ep *ep0 = &udc->ep[0];
2326 u32 epstatus;
2327
2328 /* Clear EP interrupt */
2329 epstatus = udc_clearep_getsts(udc, EP_IN);
2330
2331#ifdef CONFIG_USB_GADGET_DEBUG_FILES
2332 ep0->totalints++;
2333#endif
2334
2335 /* Stalled? Clear stall and reset buffers */
2336 if (epstatus & EP_SEL_ST) {
2337 udc_clrstall_hwep(udc, EP_IN);
2338 nuke(ep: ep0, status: -ECONNABORTED);
2339 udc->ep0state = WAIT_FOR_SETUP;
2340 return;
2341 }
2342
2343 /* Is a buffer available? */
2344 if (!(epstatus & EP_SEL_F)) {
2345 /* Handle based on current state */
2346 if (udc->ep0state == DATA_IN)
2347 udc_ep0_in_req(udc);
2348 else {
2349 /* Unknown state for EP0 oe end of DATA IN phase */
2350 nuke(ep: ep0, status: -ECONNABORTED);
2351 udc->ep0state = WAIT_FOR_SETUP;
2352 }
2353 }
2354}
2355
2356/* OUT endpoint 0 transfer */
2357static void udc_handle_ep0_out(struct lpc32xx_udc *udc)
2358{
2359 struct lpc32xx_ep *ep0 = &udc->ep[0];
2360 u32 epstatus;
2361
2362 /* Clear EP interrupt */
2363 epstatus = udc_clearep_getsts(udc, EP_OUT);
2364
2365
2366#ifdef CONFIG_USB_GADGET_DEBUG_FILES
2367 ep0->totalints++;
2368#endif
2369
2370 /* Stalled? */
2371 if (epstatus & EP_SEL_ST) {
2372 udc_clrstall_hwep(udc, EP_OUT);
2373 nuke(ep: ep0, status: -ECONNABORTED);
2374 udc->ep0state = WAIT_FOR_SETUP;
2375 return;
2376 }
2377
2378 /* A NAK may occur if a packet couldn't be received yet */
2379 if (epstatus & EP_SEL_EPN)
2380 return;
2381 /* Setup packet incoming? */
2382 if (epstatus & EP_SEL_STP) {
2383 nuke(ep: ep0, status: 0);
2384 udc->ep0state = WAIT_FOR_SETUP;
2385 }
2386
2387 /* Data available? */
2388 if (epstatus & EP_SEL_F)
2389 /* Handle based on current state */
2390 switch (udc->ep0state) {
2391 case WAIT_FOR_SETUP:
2392 udc_handle_ep0_setup(udc);
2393 break;
2394
2395 case DATA_OUT:
2396 udc_ep0_out_req(udc);
2397 break;
2398
2399 default:
2400 /* Unknown state for EP0 */
2401 nuke(ep: ep0, status: -ECONNABORTED);
2402 udc->ep0state = WAIT_FOR_SETUP;
2403 }
2404}
2405
2406/* Must be called without lock */
2407static int lpc32xx_get_frame(struct usb_gadget *gadget)
2408{
2409 int frame;
2410 unsigned long flags;
2411 struct lpc32xx_udc *udc = to_udc(g: gadget);
2412
2413 if (!udc->clocked)
2414 return -EINVAL;
2415
2416 spin_lock_irqsave(&udc->lock, flags);
2417
2418 frame = (int) udc_get_current_frame(udc);
2419
2420 spin_unlock_irqrestore(lock: &udc->lock, flags);
2421
2422 return frame;
2423}
2424
2425static int lpc32xx_wakeup(struct usb_gadget *gadget)
2426{
2427 return -ENOTSUPP;
2428}
2429
2430static int lpc32xx_set_selfpowered(struct usb_gadget *gadget, int is_on)
2431{
2432 gadget->is_selfpowered = (is_on != 0);
2433
2434 return 0;
2435}
2436
2437/*
2438 * vbus is here! turn everything on that's ready
2439 * Must be called without lock
2440 */
2441static int lpc32xx_vbus_session(struct usb_gadget *gadget, int is_active)
2442{
2443 unsigned long flags;
2444 struct lpc32xx_udc *udc = to_udc(g: gadget);
2445
2446 spin_lock_irqsave(&udc->lock, flags);
2447
2448 /* Doesn't need lock */
2449 if (udc->driver) {
2450 udc_clk_set(udc, enable: 1);
2451 udc_enable(udc);
2452 pullup(udc, is_on: is_active);
2453 } else {
2454 stop_activity(udc);
2455 pullup(udc, is_on: 0);
2456
2457 spin_unlock_irqrestore(lock: &udc->lock, flags);
2458 /*
2459 * Wait for all the endpoints to disable,
2460 * before disabling clocks. Don't wait if
2461 * endpoints are not enabled.
2462 */
2463 if (atomic_read(v: &udc->enabled_ep_cnt))
2464 wait_event_interruptible(udc->ep_disable_wait_queue,
2465 (atomic_read(&udc->enabled_ep_cnt) == 0));
2466
2467 spin_lock_irqsave(&udc->lock, flags);
2468
2469 udc_clk_set(udc, enable: 0);
2470 }
2471
2472 spin_unlock_irqrestore(lock: &udc->lock, flags);
2473
2474 return 0;
2475}
2476
2477/* Can be called with or without lock */
2478static int lpc32xx_pullup(struct usb_gadget *gadget, int is_on)
2479{
2480 struct lpc32xx_udc *udc = to_udc(g: gadget);
2481
2482 /* Doesn't need lock */
2483 pullup(udc, is_on);
2484
2485 return 0;
2486}
2487
2488static int lpc32xx_start(struct usb_gadget *, struct usb_gadget_driver *);
2489static int lpc32xx_stop(struct usb_gadget *);
2490
2491static const struct usb_gadget_ops lpc32xx_udc_ops = {
2492 .get_frame = lpc32xx_get_frame,
2493 .wakeup = lpc32xx_wakeup,
2494 .set_selfpowered = lpc32xx_set_selfpowered,
2495 .vbus_session = lpc32xx_vbus_session,
2496 .pullup = lpc32xx_pullup,
2497 .udc_start = lpc32xx_start,
2498 .udc_stop = lpc32xx_stop,
2499};
2500
2501static void nop_release(struct device *dev)
2502{
2503 /* nothing to free */
2504}
2505
2506static const struct lpc32xx_udc controller_template = {
2507 .gadget = {
2508 .ops = &lpc32xx_udc_ops,
2509 .name = driver_name,
2510 .dev = {
2511 .init_name = "gadget",
2512 .release = nop_release,
2513 }
2514 },
2515 .ep[0] = {
2516 .ep = {
2517 .name = "ep0",
2518 .ops = &lpc32xx_ep_ops,
2519 .caps = USB_EP_CAPS(USB_EP_CAPS_TYPE_CONTROL,
2520 USB_EP_CAPS_DIR_ALL),
2521 },
2522 .maxpacket = 64,
2523 .hwep_num_base = 0,
2524 .hwep_num = 0, /* Can be 0 or 1, has special handling */
2525 .lep = 0,
2526 .eptype = EP_CTL_TYPE,
2527 },
2528 .ep[1] = {
2529 .ep = {
2530 .name = "ep1-int",
2531 .ops = &lpc32xx_ep_ops,
2532 .caps = USB_EP_CAPS(USB_EP_CAPS_TYPE_INT,
2533 USB_EP_CAPS_DIR_ALL),
2534 },
2535 .maxpacket = 64,
2536 .hwep_num_base = 2,
2537 .hwep_num = 0, /* 2 or 3, will be set later */
2538 .lep = 1,
2539 .eptype = EP_INT_TYPE,
2540 },
2541 .ep[2] = {
2542 .ep = {
2543 .name = "ep2-bulk",
2544 .ops = &lpc32xx_ep_ops,
2545 .caps = USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK,
2546 USB_EP_CAPS_DIR_ALL),
2547 },
2548 .maxpacket = 64,
2549 .hwep_num_base = 4,
2550 .hwep_num = 0, /* 4 or 5, will be set later */
2551 .lep = 2,
2552 .eptype = EP_BLK_TYPE,
2553 },
2554 .ep[3] = {
2555 .ep = {
2556 .name = "ep3-iso",
2557 .ops = &lpc32xx_ep_ops,
2558 .caps = USB_EP_CAPS(USB_EP_CAPS_TYPE_ISO,
2559 USB_EP_CAPS_DIR_ALL),
2560 },
2561 .maxpacket = 1023,
2562 .hwep_num_base = 6,
2563 .hwep_num = 0, /* 6 or 7, will be set later */
2564 .lep = 3,
2565 .eptype = EP_ISO_TYPE,
2566 },
2567 .ep[4] = {
2568 .ep = {
2569 .name = "ep4-int",
2570 .ops = &lpc32xx_ep_ops,
2571 .caps = USB_EP_CAPS(USB_EP_CAPS_TYPE_INT,
2572 USB_EP_CAPS_DIR_ALL),
2573 },
2574 .maxpacket = 64,
2575 .hwep_num_base = 8,
2576 .hwep_num = 0, /* 8 or 9, will be set later */
2577 .lep = 4,
2578 .eptype = EP_INT_TYPE,
2579 },
2580 .ep[5] = {
2581 .ep = {
2582 .name = "ep5-bulk",
2583 .ops = &lpc32xx_ep_ops,
2584 .caps = USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK,
2585 USB_EP_CAPS_DIR_ALL),
2586 },
2587 .maxpacket = 64,
2588 .hwep_num_base = 10,
2589 .hwep_num = 0, /* 10 or 11, will be set later */
2590 .lep = 5,
2591 .eptype = EP_BLK_TYPE,
2592 },
2593 .ep[6] = {
2594 .ep = {
2595 .name = "ep6-iso",
2596 .ops = &lpc32xx_ep_ops,
2597 .caps = USB_EP_CAPS(USB_EP_CAPS_TYPE_ISO,
2598 USB_EP_CAPS_DIR_ALL),
2599 },
2600 .maxpacket = 1023,
2601 .hwep_num_base = 12,
2602 .hwep_num = 0, /* 12 or 13, will be set later */
2603 .lep = 6,
2604 .eptype = EP_ISO_TYPE,
2605 },
2606 .ep[7] = {
2607 .ep = {
2608 .name = "ep7-int",
2609 .ops = &lpc32xx_ep_ops,
2610 .caps = USB_EP_CAPS(USB_EP_CAPS_TYPE_INT,
2611 USB_EP_CAPS_DIR_ALL),
2612 },
2613 .maxpacket = 64,
2614 .hwep_num_base = 14,
2615 .hwep_num = 0,
2616 .lep = 7,
2617 .eptype = EP_INT_TYPE,
2618 },
2619 .ep[8] = {
2620 .ep = {
2621 .name = "ep8-bulk",
2622 .ops = &lpc32xx_ep_ops,
2623 .caps = USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK,
2624 USB_EP_CAPS_DIR_ALL),
2625 },
2626 .maxpacket = 64,
2627 .hwep_num_base = 16,
2628 .hwep_num = 0,
2629 .lep = 8,
2630 .eptype = EP_BLK_TYPE,
2631 },
2632 .ep[9] = {
2633 .ep = {
2634 .name = "ep9-iso",
2635 .ops = &lpc32xx_ep_ops,
2636 .caps = USB_EP_CAPS(USB_EP_CAPS_TYPE_ISO,
2637 USB_EP_CAPS_DIR_ALL),
2638 },
2639 .maxpacket = 1023,
2640 .hwep_num_base = 18,
2641 .hwep_num = 0,
2642 .lep = 9,
2643 .eptype = EP_ISO_TYPE,
2644 },
2645 .ep[10] = {
2646 .ep = {
2647 .name = "ep10-int",
2648 .ops = &lpc32xx_ep_ops,
2649 .caps = USB_EP_CAPS(USB_EP_CAPS_TYPE_INT,
2650 USB_EP_CAPS_DIR_ALL),
2651 },
2652 .maxpacket = 64,
2653 .hwep_num_base = 20,
2654 .hwep_num = 0,
2655 .lep = 10,
2656 .eptype = EP_INT_TYPE,
2657 },
2658 .ep[11] = {
2659 .ep = {
2660 .name = "ep11-bulk",
2661 .ops = &lpc32xx_ep_ops,
2662 .caps = USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK,
2663 USB_EP_CAPS_DIR_ALL),
2664 },
2665 .maxpacket = 64,
2666 .hwep_num_base = 22,
2667 .hwep_num = 0,
2668 .lep = 11,
2669 .eptype = EP_BLK_TYPE,
2670 },
2671 .ep[12] = {
2672 .ep = {
2673 .name = "ep12-iso",
2674 .ops = &lpc32xx_ep_ops,
2675 .caps = USB_EP_CAPS(USB_EP_CAPS_TYPE_ISO,
2676 USB_EP_CAPS_DIR_ALL),
2677 },
2678 .maxpacket = 1023,
2679 .hwep_num_base = 24,
2680 .hwep_num = 0,
2681 .lep = 12,
2682 .eptype = EP_ISO_TYPE,
2683 },
2684 .ep[13] = {
2685 .ep = {
2686 .name = "ep13-int",
2687 .ops = &lpc32xx_ep_ops,
2688 .caps = USB_EP_CAPS(USB_EP_CAPS_TYPE_INT,
2689 USB_EP_CAPS_DIR_ALL),
2690 },
2691 .maxpacket = 64,
2692 .hwep_num_base = 26,
2693 .hwep_num = 0,
2694 .lep = 13,
2695 .eptype = EP_INT_TYPE,
2696 },
2697 .ep[14] = {
2698 .ep = {
2699 .name = "ep14-bulk",
2700 .ops = &lpc32xx_ep_ops,
2701 .caps = USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK,
2702 USB_EP_CAPS_DIR_ALL),
2703 },
2704 .maxpacket = 64,
2705 .hwep_num_base = 28,
2706 .hwep_num = 0,
2707 .lep = 14,
2708 .eptype = EP_BLK_TYPE,
2709 },
2710 .ep[15] = {
2711 .ep = {
2712 .name = "ep15-bulk",
2713 .ops = &lpc32xx_ep_ops,
2714 .caps = USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK,
2715 USB_EP_CAPS_DIR_ALL),
2716 },
2717 .maxpacket = 1023,
2718 .hwep_num_base = 30,
2719 .hwep_num = 0,
2720 .lep = 15,
2721 .eptype = EP_BLK_TYPE,
2722 },
2723};
2724
2725/* ISO and status interrupts */
2726static irqreturn_t lpc32xx_usb_lp_irq(int irq, void *_udc)
2727{
2728 u32 tmp, devstat;
2729 struct lpc32xx_udc *udc = _udc;
2730
2731 spin_lock(lock: &udc->lock);
2732
2733 /* Read the device status register */
2734 devstat = readl(USBD_DEVINTST(udc->udp_baseaddr));
2735
2736 devstat &= ~USBD_EP_FAST;
2737 writel(val: devstat, USBD_DEVINTCLR(udc->udp_baseaddr));
2738 devstat = devstat & udc->enabled_devints;
2739
2740 /* Device specific handling needed? */
2741 if (devstat & USBD_DEV_STAT)
2742 udc_handle_dev(udc);
2743
2744 /* Start of frame? (devstat & FRAME_INT):
2745 * The frame interrupt isn't really needed for ISO support,
2746 * as the driver will queue the necessary packets */
2747
2748 /* Error? */
2749 if (devstat & ERR_INT) {
2750 /* All types of errors, from cable removal during transfer to
2751 * misc protocol and bit errors. These are mostly for just info,
2752 * as the USB hardware will work around these. If these errors
2753 * happen alot, something is wrong. */
2754 udc_protocol_cmd_w(udc, CMD_RD_ERR_STAT);
2755 tmp = udc_protocol_cmd_r(udc, DAT_RD_ERR_STAT);
2756 dev_dbg(udc->dev, "Device error (0x%x)!\n", tmp);
2757 }
2758
2759 spin_unlock(lock: &udc->lock);
2760
2761 return IRQ_HANDLED;
2762}
2763
2764/* EP interrupts */
2765static irqreturn_t lpc32xx_usb_hp_irq(int irq, void *_udc)
2766{
2767 u32 tmp;
2768 struct lpc32xx_udc *udc = _udc;
2769
2770 spin_lock(lock: &udc->lock);
2771
2772 /* Read the device status register */
2773 writel(USBD_EP_FAST, USBD_DEVINTCLR(udc->udp_baseaddr));
2774
2775 /* Endpoints */
2776 tmp = readl(USBD_EPINTST(udc->udp_baseaddr));
2777
2778 /* Special handling for EP0 */
2779 if (tmp & (EP_MASK_SEL(0, EP_OUT) | EP_MASK_SEL(0, EP_IN))) {
2780 /* Handle EP0 IN */
2781 if (tmp & (EP_MASK_SEL(0, EP_IN)))
2782 udc_handle_ep0_in(udc);
2783
2784 /* Handle EP0 OUT */
2785 if (tmp & (EP_MASK_SEL(0, EP_OUT)))
2786 udc_handle_ep0_out(udc);
2787 }
2788
2789 /* All other EPs */
2790 if (tmp & ~(EP_MASK_SEL(0, EP_OUT) | EP_MASK_SEL(0, EP_IN))) {
2791 int i;
2792
2793 /* Handle other EP interrupts */
2794 for (i = 1; i < NUM_ENDPOINTS; i++) {
2795 if (tmp & (1 << udc->ep[i].hwep_num))
2796 udc_handle_eps(udc, ep: &udc->ep[i]);
2797 }
2798 }
2799
2800 spin_unlock(lock: &udc->lock);
2801
2802 return IRQ_HANDLED;
2803}
2804
2805static irqreturn_t lpc32xx_usb_devdma_irq(int irq, void *_udc)
2806{
2807 struct lpc32xx_udc *udc = _udc;
2808
2809 int i;
2810 u32 tmp;
2811
2812 spin_lock(lock: &udc->lock);
2813
2814 /* Handle EP DMA EOT interrupts */
2815 tmp = readl(USBD_EOTINTST(udc->udp_baseaddr)) |
2816 (readl(USBD_EPDMAST(udc->udp_baseaddr)) &
2817 readl(USBD_NDDRTINTST(udc->udp_baseaddr))) |
2818 readl(USBD_SYSERRTINTST(udc->udp_baseaddr));
2819 for (i = 1; i < NUM_ENDPOINTS; i++) {
2820 if (tmp & (1 << udc->ep[i].hwep_num))
2821 udc_handle_dma_ep(udc, ep: &udc->ep[i]);
2822 }
2823
2824 spin_unlock(lock: &udc->lock);
2825
2826 return IRQ_HANDLED;
2827}
2828
2829/*
2830 *
2831 * VBUS detection, pullup handler, and Gadget cable state notification
2832 *
2833 */
2834static void vbus_work(struct lpc32xx_udc *udc)
2835{
2836 u8 value;
2837
2838 if (udc->enabled != 0) {
2839 /* Discharge VBUS real quick */
2840 i2c_smbus_write_byte_data(client: udc->isp1301_i2c_client,
2841 ISP1301_I2C_OTG_CONTROL_1, OTG1_VBUS_DISCHRG);
2842
2843 /* Give VBUS some time (100mS) to discharge */
2844 msleep(msecs: 100);
2845
2846 /* Disable VBUS discharge resistor */
2847 i2c_smbus_write_byte_data(client: udc->isp1301_i2c_client,
2848 ISP1301_I2C_OTG_CONTROL_1 | ISP1301_I2C_REG_CLEAR_ADDR,
2849 OTG1_VBUS_DISCHRG);
2850
2851 /* Clear interrupt */
2852 i2c_smbus_write_byte_data(client: udc->isp1301_i2c_client,
2853 ISP1301_I2C_INTERRUPT_LATCH |
2854 ISP1301_I2C_REG_CLEAR_ADDR, value: ~0);
2855
2856 /* Get the VBUS status from the transceiver */
2857 value = i2c_smbus_read_byte_data(client: udc->isp1301_i2c_client,
2858 ISP1301_I2C_INTERRUPT_SOURCE);
2859
2860 /* VBUS on or off? */
2861 if (value & INT_SESS_VLD)
2862 udc->vbus = 1;
2863 else
2864 udc->vbus = 0;
2865
2866 /* VBUS changed? */
2867 if (udc->last_vbus != udc->vbus) {
2868 udc->last_vbus = udc->vbus;
2869 lpc32xx_vbus_session(gadget: &udc->gadget, is_active: udc->vbus);
2870 }
2871 }
2872}
2873
2874static irqreturn_t lpc32xx_usb_vbus_irq(int irq, void *_udc)
2875{
2876 struct lpc32xx_udc *udc = _udc;
2877
2878 vbus_work(udc);
2879
2880 return IRQ_HANDLED;
2881}
2882
2883static int lpc32xx_start(struct usb_gadget *gadget,
2884 struct usb_gadget_driver *driver)
2885{
2886 struct lpc32xx_udc *udc = to_udc(g: gadget);
2887
2888 if (!driver || driver->max_speed < USB_SPEED_FULL || !driver->setup) {
2889 dev_err(udc->dev, "bad parameter.\n");
2890 return -EINVAL;
2891 }
2892
2893 if (udc->driver) {
2894 dev_err(udc->dev, "UDC already has a gadget driver\n");
2895 return -EBUSY;
2896 }
2897
2898 udc->driver = driver;
2899 udc->gadget.dev.of_node = udc->dev->of_node;
2900 udc->enabled = 1;
2901 udc->gadget.is_selfpowered = 1;
2902 udc->vbus = 0;
2903
2904 /* Force VBUS process once to check for cable insertion */
2905 udc->last_vbus = udc->vbus = 0;
2906 vbus_work(udc);
2907
2908 /* enable interrupts */
2909 i2c_smbus_write_byte_data(client: udc->isp1301_i2c_client,
2910 ISP1301_I2C_INTERRUPT_FALLING, INT_SESS_VLD | INT_VBUS_VLD);
2911 i2c_smbus_write_byte_data(client: udc->isp1301_i2c_client,
2912 ISP1301_I2C_INTERRUPT_RISING, INT_SESS_VLD | INT_VBUS_VLD);
2913
2914 return 0;
2915}
2916
2917static int lpc32xx_stop(struct usb_gadget *gadget)
2918{
2919 struct lpc32xx_udc *udc = to_udc(g: gadget);
2920
2921 i2c_smbus_write_byte_data(client: udc->isp1301_i2c_client,
2922 ISP1301_I2C_INTERRUPT_FALLING | ISP1301_I2C_REG_CLEAR_ADDR, value: ~0);
2923 i2c_smbus_write_byte_data(client: udc->isp1301_i2c_client,
2924 ISP1301_I2C_INTERRUPT_RISING | ISP1301_I2C_REG_CLEAR_ADDR, value: ~0);
2925
2926 if (udc->clocked) {
2927 spin_lock(lock: &udc->lock);
2928 stop_activity(udc);
2929 spin_unlock(lock: &udc->lock);
2930
2931 /*
2932 * Wait for all the endpoints to disable,
2933 * before disabling clocks. Don't wait if
2934 * endpoints are not enabled.
2935 */
2936 if (atomic_read(v: &udc->enabled_ep_cnt))
2937 wait_event_interruptible(udc->ep_disable_wait_queue,
2938 (atomic_read(&udc->enabled_ep_cnt) == 0));
2939
2940 spin_lock(lock: &udc->lock);
2941 udc_clk_set(udc, enable: 0);
2942 spin_unlock(lock: &udc->lock);
2943 }
2944
2945 udc->enabled = 0;
2946 udc->driver = NULL;
2947
2948 return 0;
2949}
2950
2951static void lpc32xx_udc_shutdown(struct platform_device *dev)
2952{
2953 /* Force disconnect on reboot */
2954 struct lpc32xx_udc *udc = platform_get_drvdata(pdev: dev);
2955
2956 pullup(udc, is_on: 0);
2957}
2958
2959/*
2960 * Callbacks to be overridden by options passed via OF (TODO)
2961 */
2962
2963static void lpc32xx_usbd_conn_chg(int conn)
2964{
2965 /* Do nothing, it might be nice to enable an LED
2966 * based on conn state being !0 */
2967}
2968
2969static void lpc32xx_usbd_susp_chg(int susp)
2970{
2971 /* Device suspend if susp != 0 */
2972}
2973
2974static void lpc32xx_rmwkup_chg(int remote_wakup_enable)
2975{
2976 /* Enable or disable USB remote wakeup */
2977}
2978
2979static struct lpc32xx_usbd_cfg lpc32xx_usbddata = {
2980 .vbus_drv_pol = 0,
2981 .conn_chgb = &lpc32xx_usbd_conn_chg,
2982 .susp_chgb = &lpc32xx_usbd_susp_chg,
2983 .rmwk_chgb = &lpc32xx_rmwkup_chg,
2984};
2985
2986
2987static u64 lpc32xx_usbd_dmamask = ~(u32) 0x7F;
2988
2989static int lpc32xx_udc_probe(struct platform_device *pdev)
2990{
2991 struct device *dev = &pdev->dev;
2992 struct lpc32xx_udc *udc;
2993 int retval, i;
2994 dma_addr_t dma_handle;
2995 struct device_node *isp1301_node;
2996
2997 udc = devm_kmemdup(dev, src: &controller_template, len: sizeof(*udc), GFP_KERNEL);
2998 if (!udc)
2999 return -ENOMEM;
3000
3001 for (i = 0; i <= 15; i++)
3002 udc->ep[i].udc = udc;
3003 udc->gadget.ep0 = &udc->ep[0].ep;
3004
3005 /* init software state */
3006 udc->gadget.dev.parent = dev;
3007 udc->pdev = pdev;
3008 udc->dev = &pdev->dev;
3009 udc->enabled = 0;
3010
3011 if (pdev->dev.of_node) {
3012 isp1301_node = of_parse_phandle(np: pdev->dev.of_node,
3013 phandle_name: "transceiver", index: 0);
3014 } else {
3015 isp1301_node = NULL;
3016 }
3017
3018 udc->isp1301_i2c_client = isp1301_get_client(node: isp1301_node);
3019 of_node_put(node: isp1301_node);
3020 if (!udc->isp1301_i2c_client) {
3021 return -EPROBE_DEFER;
3022 }
3023
3024 dev_info(udc->dev, "ISP1301 I2C device at address 0x%x\n",
3025 udc->isp1301_i2c_client->addr);
3026
3027 pdev->dev.dma_mask = &lpc32xx_usbd_dmamask;
3028 retval = dma_set_coherent_mask(dev: &pdev->dev, DMA_BIT_MASK(32));
3029 if (retval)
3030 return retval;
3031
3032 udc->board = &lpc32xx_usbddata;
3033
3034 /*
3035 * Resources are mapped as follows:
3036 * IORESOURCE_MEM, base address and size of USB space
3037 * IORESOURCE_IRQ, USB device low priority interrupt number
3038 * IORESOURCE_IRQ, USB device high priority interrupt number
3039 * IORESOURCE_IRQ, USB device interrupt number
3040 * IORESOURCE_IRQ, USB transceiver interrupt number
3041 */
3042
3043 spin_lock_init(&udc->lock);
3044
3045 /* Get IRQs */
3046 for (i = 0; i < 4; i++) {
3047 udc->udp_irq[i] = platform_get_irq(pdev, i);
3048 if (udc->udp_irq[i] < 0)
3049 return udc->udp_irq[i];
3050 }
3051
3052 udc->udp_baseaddr = devm_platform_ioremap_resource(pdev, index: 0);
3053 if (IS_ERR(ptr: udc->udp_baseaddr)) {
3054 dev_err(udc->dev, "IO map failure\n");
3055 return PTR_ERR(ptr: udc->udp_baseaddr);
3056 }
3057
3058 /* Get USB device clock */
3059 udc->usb_slv_clk = devm_clk_get(dev: &pdev->dev, NULL);
3060 if (IS_ERR(ptr: udc->usb_slv_clk)) {
3061 dev_err(udc->dev, "failed to acquire USB device clock\n");
3062 return PTR_ERR(ptr: udc->usb_slv_clk);
3063 }
3064
3065 /* Enable USB device clock */
3066 retval = clk_prepare_enable(clk: udc->usb_slv_clk);
3067 if (retval < 0) {
3068 dev_err(udc->dev, "failed to start USB device clock\n");
3069 return retval;
3070 }
3071
3072 /* Setup deferred workqueue data */
3073 udc->poweron = udc->pullup = 0;
3074 INIT_WORK(&udc->pullup_job, pullup_work);
3075#ifdef CONFIG_PM
3076 INIT_WORK(&udc->power_job, power_work);
3077#endif
3078
3079 /* All clocks are now on */
3080 udc->clocked = 1;
3081
3082 isp1301_udc_configure(udc);
3083 /* Allocate memory for the UDCA */
3084 udc->udca_v_base = dma_alloc_coherent(dev: &pdev->dev, UDCA_BUFF_SIZE,
3085 dma_handle: &dma_handle,
3086 gfp: (GFP_KERNEL | GFP_DMA));
3087 if (!udc->udca_v_base) {
3088 dev_err(udc->dev, "error getting UDCA region\n");
3089 retval = -ENOMEM;
3090 goto i2c_fail;
3091 }
3092 udc->udca_p_base = dma_handle;
3093 dev_dbg(udc->dev, "DMA buffer(0x%x bytes), P:0x%08x, V:0x%p\n",
3094 UDCA_BUFF_SIZE, udc->udca_p_base, udc->udca_v_base);
3095
3096 /* Setup the DD DMA memory pool */
3097 udc->dd_cache = dma_pool_create(name: "udc_dd", dev: udc->dev,
3098 size: sizeof(struct lpc32xx_usbd_dd_gad),
3099 align: sizeof(u32), allocation: 0);
3100 if (!udc->dd_cache) {
3101 dev_err(udc->dev, "error getting DD DMA region\n");
3102 retval = -ENOMEM;
3103 goto dma_alloc_fail;
3104 }
3105
3106 /* Clear USB peripheral and initialize gadget endpoints */
3107 udc_disable(udc);
3108 udc_reinit(udc);
3109
3110 /* Request IRQs - low and high priority USB device IRQs are routed to
3111 * the same handler, while the DMA interrupt is routed elsewhere */
3112 retval = devm_request_irq(dev, irq: udc->udp_irq[IRQ_USB_LP],
3113 handler: lpc32xx_usb_lp_irq, irqflags: 0, devname: "udc_lp", dev_id: udc);
3114 if (retval < 0) {
3115 dev_err(udc->dev, "LP request irq %d failed\n",
3116 udc->udp_irq[IRQ_USB_LP]);
3117 goto irq_req_fail;
3118 }
3119 retval = devm_request_irq(dev, irq: udc->udp_irq[IRQ_USB_HP],
3120 handler: lpc32xx_usb_hp_irq, irqflags: 0, devname: "udc_hp", dev_id: udc);
3121 if (retval < 0) {
3122 dev_err(udc->dev, "HP request irq %d failed\n",
3123 udc->udp_irq[IRQ_USB_HP]);
3124 goto irq_req_fail;
3125 }
3126
3127 retval = devm_request_irq(dev, irq: udc->udp_irq[IRQ_USB_DEVDMA],
3128 handler: lpc32xx_usb_devdma_irq, irqflags: 0, devname: "udc_dma", dev_id: udc);
3129 if (retval < 0) {
3130 dev_err(udc->dev, "DEV request irq %d failed\n",
3131 udc->udp_irq[IRQ_USB_DEVDMA]);
3132 goto irq_req_fail;
3133 }
3134
3135 /* The transceiver interrupt is used for VBUS detection and will
3136 kick off the VBUS handler function */
3137 retval = devm_request_threaded_irq(dev, irq: udc->udp_irq[IRQ_USB_ATX], NULL,
3138 thread_fn: lpc32xx_usb_vbus_irq, IRQF_ONESHOT,
3139 devname: "udc_otg", dev_id: udc);
3140 if (retval < 0) {
3141 dev_err(udc->dev, "VBUS request irq %d failed\n",
3142 udc->udp_irq[IRQ_USB_ATX]);
3143 goto irq_req_fail;
3144 }
3145
3146 /* Initialize wait queue */
3147 init_waitqueue_head(&udc->ep_disable_wait_queue);
3148 atomic_set(v: &udc->enabled_ep_cnt, i: 0);
3149
3150 retval = usb_add_gadget_udc(parent: dev, gadget: &udc->gadget);
3151 if (retval < 0)
3152 goto add_gadget_fail;
3153
3154 dev_set_drvdata(dev, data: udc);
3155 device_init_wakeup(dev, enable: 1);
3156 create_debug_file(udc);
3157
3158 /* Disable clocks for now */
3159 udc_clk_set(udc, enable: 0);
3160
3161 dev_info(udc->dev, "%s version %s\n", driver_name, DRIVER_VERSION);
3162 return 0;
3163
3164add_gadget_fail:
3165irq_req_fail:
3166 dma_pool_destroy(pool: udc->dd_cache);
3167dma_alloc_fail:
3168 dma_free_coherent(dev: &pdev->dev, UDCA_BUFF_SIZE,
3169 cpu_addr: udc->udca_v_base, dma_handle: udc->udca_p_base);
3170i2c_fail:
3171 clk_disable_unprepare(clk: udc->usb_slv_clk);
3172 dev_err(udc->dev, "%s probe failed, %d\n", driver_name, retval);
3173
3174 return retval;
3175}
3176
3177static void lpc32xx_udc_remove(struct platform_device *pdev)
3178{
3179 struct lpc32xx_udc *udc = platform_get_drvdata(pdev);
3180
3181 usb_del_gadget_udc(gadget: &udc->gadget);
3182 if (udc->driver) {
3183 dev_err(&pdev->dev,
3184 "Driver still in use but removing anyhow\n");
3185 return;
3186 }
3187
3188 udc_clk_set(udc, enable: 1);
3189 udc_disable(udc);
3190 pullup(udc, is_on: 0);
3191
3192 device_init_wakeup(dev: &pdev->dev, enable: 0);
3193 remove_debug_file(udc);
3194
3195 dma_pool_destroy(pool: udc->dd_cache);
3196 dma_free_coherent(dev: &pdev->dev, UDCA_BUFF_SIZE,
3197 cpu_addr: udc->udca_v_base, dma_handle: udc->udca_p_base);
3198
3199 clk_disable_unprepare(clk: udc->usb_slv_clk);
3200}
3201
3202#ifdef CONFIG_PM
3203static int lpc32xx_udc_suspend(struct platform_device *pdev, pm_message_t mesg)
3204{
3205 struct lpc32xx_udc *udc = platform_get_drvdata(pdev);
3206
3207 if (udc->clocked) {
3208 /* Power down ISP */
3209 udc->poweron = 0;
3210 isp1301_set_powerstate(udc, enable: 0);
3211
3212 /* Disable clocking */
3213 udc_clk_set(udc, enable: 0);
3214
3215 /* Keep clock flag on, so we know to re-enable clocks
3216 on resume */
3217 udc->clocked = 1;
3218
3219 /* Kill global USB clock */
3220 clk_disable_unprepare(clk: udc->usb_slv_clk);
3221 }
3222
3223 return 0;
3224}
3225
3226static int lpc32xx_udc_resume(struct platform_device *pdev)
3227{
3228 struct lpc32xx_udc *udc = platform_get_drvdata(pdev);
3229
3230 if (udc->clocked) {
3231 /* Enable global USB clock */
3232 clk_prepare_enable(clk: udc->usb_slv_clk);
3233
3234 /* Enable clocking */
3235 udc_clk_set(udc, enable: 1);
3236
3237 /* ISP back to normal power mode */
3238 udc->poweron = 1;
3239 isp1301_set_powerstate(udc, enable: 1);
3240 }
3241
3242 return 0;
3243}
3244#else
3245#define lpc32xx_udc_suspend NULL
3246#define lpc32xx_udc_resume NULL
3247#endif
3248
3249#ifdef CONFIG_OF
3250static const struct of_device_id lpc32xx_udc_of_match[] = {
3251 { .compatible = "nxp,lpc3220-udc", },
3252 { },
3253};
3254MODULE_DEVICE_TABLE(of, lpc32xx_udc_of_match);
3255#endif
3256
3257static struct platform_driver lpc32xx_udc_driver = {
3258 .probe = lpc32xx_udc_probe,
3259 .remove_new = lpc32xx_udc_remove,
3260 .shutdown = lpc32xx_udc_shutdown,
3261 .suspend = lpc32xx_udc_suspend,
3262 .resume = lpc32xx_udc_resume,
3263 .driver = {
3264 .name = driver_name,
3265 .of_match_table = of_match_ptr(lpc32xx_udc_of_match),
3266 },
3267};
3268
3269module_platform_driver(lpc32xx_udc_driver);
3270
3271MODULE_DESCRIPTION("LPC32XX udc driver");
3272MODULE_AUTHOR("Kevin Wells <kevin.wells@nxp.com>");
3273MODULE_AUTHOR("Roland Stigge <stigge@antcom.de>");
3274MODULE_LICENSE("GPL");
3275MODULE_ALIAS("platform:lpc32xx_udc");
3276

source code of linux/drivers/usb/gadget/udc/lpc32xx_udc.c