1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * Xilinx USB peripheral controller driver
4 *
5 * Copyright (C) 2004 by Thomas Rathbone
6 * Copyright (C) 2005 by HP Labs
7 * Copyright (C) 2005 by David Brownell
8 * Copyright (C) 2010 - 2014 Xilinx, Inc.
9 *
10 * Some parts of this driver code is based on the driver for at91-series
11 * USB peripheral controller (at91_udc.c).
12 */
13
14#include <linux/clk.h>
15#include <linux/delay.h>
16#include <linux/device.h>
17#include <linux/dma-mapping.h>
18#include <linux/interrupt.h>
19#include <linux/io.h>
20#include <linux/module.h>
21#include <linux/of.h>
22#include <linux/platform_device.h>
23#include <linux/prefetch.h>
24#include <linux/usb/ch9.h>
25#include <linux/usb/gadget.h>
26
27/* Register offsets for the USB device.*/
28#define XUSB_EP0_CONFIG_OFFSET 0x0000 /* EP0 Config Reg Offset */
29#define XUSB_SETUP_PKT_ADDR_OFFSET 0x0080 /* Setup Packet Address */
30#define XUSB_ADDRESS_OFFSET 0x0100 /* Address Register */
31#define XUSB_CONTROL_OFFSET 0x0104 /* Control Register */
32#define XUSB_STATUS_OFFSET 0x0108 /* Status Register */
33#define XUSB_FRAMENUM_OFFSET 0x010C /* Frame Number Register */
34#define XUSB_IER_OFFSET 0x0110 /* Interrupt Enable Register */
35#define XUSB_BUFFREADY_OFFSET 0x0114 /* Buffer Ready Register */
36#define XUSB_TESTMODE_OFFSET 0x0118 /* Test Mode Register */
37#define XUSB_DMA_RESET_OFFSET 0x0200 /* DMA Soft Reset Register */
38#define XUSB_DMA_CONTROL_OFFSET 0x0204 /* DMA Control Register */
39#define XUSB_DMA_DSAR_ADDR_OFFSET 0x0208 /* DMA source Address Reg */
40#define XUSB_DMA_DDAR_ADDR_OFFSET 0x020C /* DMA destination Addr Reg */
41#define XUSB_DMA_LENGTH_OFFSET 0x0210 /* DMA Length Register */
42#define XUSB_DMA_STATUS_OFFSET 0x0214 /* DMA Status Register */
43
44/* Endpoint Configuration Space offsets */
45#define XUSB_EP_CFGSTATUS_OFFSET 0x00 /* Endpoint Config Status */
46#define XUSB_EP_BUF0COUNT_OFFSET 0x08 /* Buffer 0 Count */
47#define XUSB_EP_BUF1COUNT_OFFSET 0x0C /* Buffer 1 Count */
48
49#define XUSB_CONTROL_USB_READY_MASK 0x80000000 /* USB ready Mask */
50#define XUSB_CONTROL_USB_RMTWAKE_MASK 0x40000000 /* Remote wake up mask */
51
52/* Interrupt register related masks.*/
53#define XUSB_STATUS_GLOBAL_INTR_MASK 0x80000000 /* Global Intr Enable */
54#define XUSB_STATUS_DMADONE_MASK 0x04000000 /* DMA done Mask */
55#define XUSB_STATUS_DMAERR_MASK 0x02000000 /* DMA Error Mask */
56#define XUSB_STATUS_DMABUSY_MASK 0x80000000 /* DMA Error Mask */
57#define XUSB_STATUS_RESUME_MASK 0x01000000 /* USB Resume Mask */
58#define XUSB_STATUS_RESET_MASK 0x00800000 /* USB Reset Mask */
59#define XUSB_STATUS_SUSPEND_MASK 0x00400000 /* USB Suspend Mask */
60#define XUSB_STATUS_DISCONNECT_MASK 0x00200000 /* USB Disconnect Mask */
61#define XUSB_STATUS_FIFO_BUFF_RDY_MASK 0x00100000 /* FIFO Buff Ready Mask */
62#define XUSB_STATUS_FIFO_BUFF_FREE_MASK 0x00080000 /* FIFO Buff Free Mask */
63#define XUSB_STATUS_SETUP_PACKET_MASK 0x00040000 /* Setup packet received */
64#define XUSB_STATUS_EP1_BUFF2_COMP_MASK 0x00000200 /* EP 1 Buff 2 Processed */
65#define XUSB_STATUS_EP1_BUFF1_COMP_MASK 0x00000002 /* EP 1 Buff 1 Processed */
66#define XUSB_STATUS_EP0_BUFF2_COMP_MASK 0x00000100 /* EP 0 Buff 2 Processed */
67#define XUSB_STATUS_EP0_BUFF1_COMP_MASK 0x00000001 /* EP 0 Buff 1 Processed */
68#define XUSB_STATUS_HIGH_SPEED_MASK 0x00010000 /* USB Speed Mask */
69/* Suspend,Reset,Suspend and Disconnect Mask */
70#define XUSB_STATUS_INTR_EVENT_MASK 0x01E00000
71/* Buffers completion Mask */
72#define XUSB_STATUS_INTR_BUFF_COMP_ALL_MASK 0x0000FEFF
73/* Mask for buffer 0 and buffer 1 completion for all Endpoints */
74#define XUSB_STATUS_INTR_BUFF_COMP_SHIFT_MASK 0x00000101
75#define XUSB_STATUS_EP_BUFF2_SHIFT 8 /* EP buffer offset */
76
77/* Endpoint Configuration Status Register */
78#define XUSB_EP_CFG_VALID_MASK 0x80000000 /* Endpoint Valid bit */
79#define XUSB_EP_CFG_STALL_MASK 0x40000000 /* Endpoint Stall bit */
80#define XUSB_EP_CFG_DATA_TOGGLE_MASK 0x08000000 /* Endpoint Data toggle */
81
82/* USB device specific global configuration constants.*/
83#define XUSB_MAX_ENDPOINTS 8 /* Maximum End Points */
84#define XUSB_EP_NUMBER_ZERO 0 /* End point Zero */
85/* DPRAM is the source address for DMA transfer */
86#define XUSB_DMA_READ_FROM_DPRAM 0x80000000
87#define XUSB_DMA_DMASR_BUSY 0x80000000 /* DMA busy */
88#define XUSB_DMA_DMASR_ERROR 0x40000000 /* DMA Error */
89/*
90 * When this bit is set, the DMA buffer ready bit is set by hardware upon
91 * DMA transfer completion.
92 */
93#define XUSB_DMA_BRR_CTRL 0x40000000 /* DMA bufready ctrl bit */
94/* Phase States */
95#define SETUP_PHASE 0x0000 /* Setup Phase */
96#define DATA_PHASE 0x0001 /* Data Phase */
97#define STATUS_PHASE 0x0002 /* Status Phase */
98
99#define EP0_MAX_PACKET 64 /* Endpoint 0 maximum packet length */
100#define STATUSBUFF_SIZE 2 /* Buffer size for GET_STATUS command */
101#define EPNAME_SIZE 4 /* Buffer size for endpoint name */
102
103/* container_of helper macros */
104#define to_udc(g) container_of((g), struct xusb_udc, gadget)
105#define to_xusb_ep(ep) container_of((ep), struct xusb_ep, ep_usb)
106#define to_xusb_req(req) container_of((req), struct xusb_req, usb_req)
107
108/**
109 * struct xusb_req - Xilinx USB device request structure
110 * @usb_req: Linux usb request structure
111 * @queue: usb device request queue
112 * @ep: pointer to xusb_endpoint structure
113 */
114struct xusb_req {
115 struct usb_request usb_req;
116 struct list_head queue;
117 struct xusb_ep *ep;
118};
119
120/**
121 * struct xusb_ep - USB end point structure.
122 * @ep_usb: usb endpoint instance
123 * @queue: endpoint message queue
124 * @udc: xilinx usb peripheral driver instance pointer
125 * @desc: pointer to the usb endpoint descriptor
126 * @rambase: the endpoint buffer address
127 * @offset: the endpoint register offset value
128 * @name: name of the endpoint
129 * @epnumber: endpoint number
130 * @maxpacket: maximum packet size the endpoint can store
131 * @buffer0count: the size of the packet recieved in the first buffer
132 * @buffer1count: the size of the packet received in the second buffer
133 * @curbufnum: current buffer of endpoint that will be processed next
134 * @buffer0ready: the busy state of first buffer
135 * @buffer1ready: the busy state of second buffer
136 * @is_in: endpoint direction (IN or OUT)
137 * @is_iso: endpoint type(isochronous or non isochronous)
138 */
139struct xusb_ep {
140 struct usb_ep ep_usb;
141 struct list_head queue;
142 struct xusb_udc *udc;
143 const struct usb_endpoint_descriptor *desc;
144 u32 rambase;
145 u32 offset;
146 char name[4];
147 u16 epnumber;
148 u16 maxpacket;
149 u16 buffer0count;
150 u16 buffer1count;
151 u8 curbufnum;
152 bool buffer0ready;
153 bool buffer1ready;
154 bool is_in;
155 bool is_iso;
156};
157
158/**
159 * struct xusb_udc - USB peripheral driver structure
160 * @gadget: USB gadget driver instance
161 * @ep: an array of endpoint structures
162 * @driver: pointer to the usb gadget driver instance
163 * @setup: usb_ctrlrequest structure for control requests
164 * @req: pointer to dummy request for get status command
165 * @dev: pointer to device structure in gadget
166 * @usb_state: device in suspended state or not
167 * @remote_wkp: remote wakeup enabled by host
168 * @setupseqtx: tx status
169 * @setupseqrx: rx status
170 * @addr: the usb device base address
171 * @lock: instance of spinlock
172 * @dma_enabled: flag indicating whether the dma is included in the system
173 * @clk: pointer to struct clk
174 * @read_fn: function pointer to read device registers
175 * @write_fn: function pointer to write to device registers
176 */
177struct xusb_udc {
178 struct usb_gadget gadget;
179 struct xusb_ep ep[8];
180 struct usb_gadget_driver *driver;
181 struct usb_ctrlrequest setup;
182 struct xusb_req *req;
183 struct device *dev;
184 u32 usb_state;
185 u32 remote_wkp;
186 u32 setupseqtx;
187 u32 setupseqrx;
188 void __iomem *addr;
189 spinlock_t lock;
190 bool dma_enabled;
191 struct clk *clk;
192
193 unsigned int (*read_fn)(void __iomem *reg);
194 void (*write_fn)(void __iomem *, u32, u32);
195};
196
197/* Endpoint buffer start addresses in the core */
198static u32 rambase[8] = { 0x22, 0x1000, 0x1100, 0x1200, 0x1300, 0x1400, 0x1500,
199 0x1600 };
200
201static const char driver_name[] = "xilinx-udc";
202static const char ep0name[] = "ep0";
203
204/* Control endpoint configuration.*/
205static const struct usb_endpoint_descriptor config_bulk_out_desc = {
206 .bLength = USB_DT_ENDPOINT_SIZE,
207 .bDescriptorType = USB_DT_ENDPOINT,
208 .bEndpointAddress = USB_DIR_OUT,
209 .bmAttributes = USB_ENDPOINT_XFER_BULK,
210 .wMaxPacketSize = cpu_to_le16(EP0_MAX_PACKET),
211};
212
213/**
214 * xudc_write32 - little endian write to device registers
215 * @addr: base addr of device registers
216 * @offset: register offset
217 * @val: data to be written
218 */
219static void xudc_write32(void __iomem *addr, u32 offset, u32 val)
220{
221 iowrite32(val, addr + offset);
222}
223
224/**
225 * xudc_read32 - little endian read from device registers
226 * @addr: addr of device register
227 * Return: value at addr
228 */
229static unsigned int xudc_read32(void __iomem *addr)
230{
231 return ioread32(addr);
232}
233
234/**
235 * xudc_write32_be - big endian write to device registers
236 * @addr: base addr of device registers
237 * @offset: register offset
238 * @val: data to be written
239 */
240static void xudc_write32_be(void __iomem *addr, u32 offset, u32 val)
241{
242 iowrite32be(val, addr + offset);
243}
244
245/**
246 * xudc_read32_be - big endian read from device registers
247 * @addr: addr of device register
248 * Return: value at addr
249 */
250static unsigned int xudc_read32_be(void __iomem *addr)
251{
252 return ioread32be(addr);
253}
254
255/**
256 * xudc_wrstatus - Sets up the usb device status stages.
257 * @udc: pointer to the usb device controller structure.
258 */
259static void xudc_wrstatus(struct xusb_udc *udc)
260{
261 struct xusb_ep *ep0 = &udc->ep[XUSB_EP_NUMBER_ZERO];
262 u32 epcfgreg;
263
264 epcfgreg = udc->read_fn(udc->addr + ep0->offset)|
265 XUSB_EP_CFG_DATA_TOGGLE_MASK;
266 udc->write_fn(udc->addr, ep0->offset, epcfgreg);
267 udc->write_fn(udc->addr, ep0->offset + XUSB_EP_BUF0COUNT_OFFSET, 0);
268 udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET, 1);
269}
270
271/**
272 * xudc_epconfig - Configures the given endpoint.
273 * @ep: pointer to the usb device endpoint structure.
274 * @udc: pointer to the usb peripheral controller structure.
275 *
276 * This function configures a specific endpoint with the given configuration
277 * data.
278 */
279static void xudc_epconfig(struct xusb_ep *ep, struct xusb_udc *udc)
280{
281 u32 epcfgreg;
282
283 /*
284 * Configure the end point direction, type, Max Packet Size and the
285 * EP buffer location.
286 */
287 epcfgreg = ((ep->is_in << 29) | (ep->is_iso << 28) |
288 (ep->ep_usb.maxpacket << 15) | (ep->rambase));
289 udc->write_fn(udc->addr, ep->offset, epcfgreg);
290
291 /* Set the Buffer count and the Buffer ready bits.*/
292 udc->write_fn(udc->addr, ep->offset + XUSB_EP_BUF0COUNT_OFFSET,
293 ep->buffer0count);
294 udc->write_fn(udc->addr, ep->offset + XUSB_EP_BUF1COUNT_OFFSET,
295 ep->buffer1count);
296 if (ep->buffer0ready)
297 udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET,
298 1 << ep->epnumber);
299 if (ep->buffer1ready)
300 udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET,
301 1 << (ep->epnumber + XUSB_STATUS_EP_BUFF2_SHIFT));
302}
303
304/**
305 * xudc_start_dma - Starts DMA transfer.
306 * @ep: pointer to the usb device endpoint structure.
307 * @src: DMA source address.
308 * @dst: DMA destination address.
309 * @length: number of bytes to transfer.
310 *
311 * Return: 0 on success, error code on failure
312 *
313 * This function starts DMA transfer by writing to DMA source,
314 * destination and lenth registers.
315 */
316static int xudc_start_dma(struct xusb_ep *ep, dma_addr_t src,
317 dma_addr_t dst, u32 length)
318{
319 struct xusb_udc *udc = ep->udc;
320 int rc = 0;
321 u32 timeout = 500;
322 u32 reg;
323
324 /*
325 * Set the addresses in the DMA source and
326 * destination registers and then set the length
327 * into the DMA length register.
328 */
329 udc->write_fn(udc->addr, XUSB_DMA_DSAR_ADDR_OFFSET, src);
330 udc->write_fn(udc->addr, XUSB_DMA_DDAR_ADDR_OFFSET, dst);
331 udc->write_fn(udc->addr, XUSB_DMA_LENGTH_OFFSET, length);
332
333 /*
334 * Wait till DMA transaction is complete and
335 * check whether the DMA transaction was
336 * successful.
337 */
338 do {
339 reg = udc->read_fn(udc->addr + XUSB_DMA_STATUS_OFFSET);
340 if (!(reg & XUSB_DMA_DMASR_BUSY))
341 break;
342
343 /*
344 * We can't sleep here, because it's also called from
345 * interrupt context.
346 */
347 timeout--;
348 if (!timeout) {
349 dev_err(udc->dev, "DMA timeout\n");
350 return -ETIMEDOUT;
351 }
352 udelay(1);
353 } while (1);
354
355 if ((udc->read_fn(udc->addr + XUSB_DMA_STATUS_OFFSET) &
356 XUSB_DMA_DMASR_ERROR) == XUSB_DMA_DMASR_ERROR){
357 dev_err(udc->dev, "DMA Error\n");
358 rc = -EINVAL;
359 }
360
361 return rc;
362}
363
364/**
365 * xudc_dma_send - Sends IN data using DMA.
366 * @ep: pointer to the usb device endpoint structure.
367 * @req: pointer to the usb request structure.
368 * @buffer: pointer to data to be sent.
369 * @length: number of bytes to send.
370 *
371 * Return: 0 on success, -EAGAIN if no buffer is free and error
372 * code on failure.
373 *
374 * This function sends data using DMA.
375 */
376static int xudc_dma_send(struct xusb_ep *ep, struct xusb_req *req,
377 u8 *buffer, u32 length)
378{
379 u32 *eprambase;
380 dma_addr_t src;
381 dma_addr_t dst;
382 struct xusb_udc *udc = ep->udc;
383
384 src = req->usb_req.dma + req->usb_req.actual;
385 if (req->usb_req.length)
386 dma_sync_single_for_device(dev: udc->dev, addr: src,
387 size: length, dir: DMA_TO_DEVICE);
388 if (!ep->curbufnum && !ep->buffer0ready) {
389 /* Get the Buffer address and copy the transmit data.*/
390 eprambase = (u32 __force *)(udc->addr + ep->rambase);
391 dst = virt_to_phys(address: eprambase);
392 udc->write_fn(udc->addr, ep->offset +
393 XUSB_EP_BUF0COUNT_OFFSET, length);
394 udc->write_fn(udc->addr, XUSB_DMA_CONTROL_OFFSET,
395 XUSB_DMA_BRR_CTRL | (1 << ep->epnumber));
396 ep->buffer0ready = 1;
397 ep->curbufnum = 1;
398 } else if (ep->curbufnum && !ep->buffer1ready) {
399 /* Get the Buffer address and copy the transmit data.*/
400 eprambase = (u32 __force *)(udc->addr + ep->rambase +
401 ep->ep_usb.maxpacket);
402 dst = virt_to_phys(address: eprambase);
403 udc->write_fn(udc->addr, ep->offset +
404 XUSB_EP_BUF1COUNT_OFFSET, length);
405 udc->write_fn(udc->addr, XUSB_DMA_CONTROL_OFFSET,
406 XUSB_DMA_BRR_CTRL | (1 << (ep->epnumber +
407 XUSB_STATUS_EP_BUFF2_SHIFT)));
408 ep->buffer1ready = 1;
409 ep->curbufnum = 0;
410 } else {
411 /* None of ping pong buffers are ready currently .*/
412 return -EAGAIN;
413 }
414
415 return xudc_start_dma(ep, src, dst, length);
416}
417
418/**
419 * xudc_dma_receive - Receives OUT data using DMA.
420 * @ep: pointer to the usb device endpoint structure.
421 * @req: pointer to the usb request structure.
422 * @buffer: pointer to storage buffer of received data.
423 * @length: number of bytes to receive.
424 *
425 * Return: 0 on success, -EAGAIN if no buffer is free and error
426 * code on failure.
427 *
428 * This function receives data using DMA.
429 */
430static int xudc_dma_receive(struct xusb_ep *ep, struct xusb_req *req,
431 u8 *buffer, u32 length)
432{
433 u32 *eprambase;
434 dma_addr_t src;
435 dma_addr_t dst;
436 struct xusb_udc *udc = ep->udc;
437
438 dst = req->usb_req.dma + req->usb_req.actual;
439 if (!ep->curbufnum && !ep->buffer0ready) {
440 /* Get the Buffer address and copy the transmit data */
441 eprambase = (u32 __force *)(udc->addr + ep->rambase);
442 src = virt_to_phys(address: eprambase);
443 udc->write_fn(udc->addr, XUSB_DMA_CONTROL_OFFSET,
444 XUSB_DMA_BRR_CTRL | XUSB_DMA_READ_FROM_DPRAM |
445 (1 << ep->epnumber));
446 ep->buffer0ready = 1;
447 ep->curbufnum = 1;
448 } else if (ep->curbufnum && !ep->buffer1ready) {
449 /* Get the Buffer address and copy the transmit data */
450 eprambase = (u32 __force *)(udc->addr +
451 ep->rambase + ep->ep_usb.maxpacket);
452 src = virt_to_phys(address: eprambase);
453 udc->write_fn(udc->addr, XUSB_DMA_CONTROL_OFFSET,
454 XUSB_DMA_BRR_CTRL | XUSB_DMA_READ_FROM_DPRAM |
455 (1 << (ep->epnumber +
456 XUSB_STATUS_EP_BUFF2_SHIFT)));
457 ep->buffer1ready = 1;
458 ep->curbufnum = 0;
459 } else {
460 /* None of the ping-pong buffers are ready currently */
461 return -EAGAIN;
462 }
463
464 return xudc_start_dma(ep, src, dst, length);
465}
466
467/**
468 * xudc_eptxrx - Transmits or receives data to or from an endpoint.
469 * @ep: pointer to the usb endpoint configuration structure.
470 * @req: pointer to the usb request structure.
471 * @bufferptr: pointer to buffer containing the data to be sent.
472 * @bufferlen: The number of data bytes to be sent.
473 *
474 * Return: 0 on success, -EAGAIN if no buffer is free.
475 *
476 * This function copies the transmit/receive data to/from the end point buffer
477 * and enables the buffer for transmission/reception.
478 */
479static int xudc_eptxrx(struct xusb_ep *ep, struct xusb_req *req,
480 u8 *bufferptr, u32 bufferlen)
481{
482 u32 *eprambase;
483 u32 bytestosend;
484 int rc = 0;
485 struct xusb_udc *udc = ep->udc;
486
487 bytestosend = bufferlen;
488 if (udc->dma_enabled) {
489 if (ep->is_in)
490 rc = xudc_dma_send(ep, req, buffer: bufferptr, length: bufferlen);
491 else
492 rc = xudc_dma_receive(ep, req, buffer: bufferptr, length: bufferlen);
493 return rc;
494 }
495 /* Put the transmit buffer into the correct ping-pong buffer.*/
496 if (!ep->curbufnum && !ep->buffer0ready) {
497 /* Get the Buffer address and copy the transmit data.*/
498 eprambase = (u32 __force *)(udc->addr + ep->rambase);
499 if (ep->is_in) {
500 memcpy_toio((void __iomem *)eprambase, bufferptr,
501 bytestosend);
502 udc->write_fn(udc->addr, ep->offset +
503 XUSB_EP_BUF0COUNT_OFFSET, bufferlen);
504 } else {
505 memcpy_toio((void __iomem *)bufferptr, eprambase,
506 bytestosend);
507 }
508 /*
509 * Enable the buffer for transmission.
510 */
511 udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET,
512 1 << ep->epnumber);
513 ep->buffer0ready = 1;
514 ep->curbufnum = 1;
515 } else if (ep->curbufnum && !ep->buffer1ready) {
516 /* Get the Buffer address and copy the transmit data.*/
517 eprambase = (u32 __force *)(udc->addr + ep->rambase +
518 ep->ep_usb.maxpacket);
519 if (ep->is_in) {
520 memcpy_toio((void __iomem *)eprambase, bufferptr,
521 bytestosend);
522 udc->write_fn(udc->addr, ep->offset +
523 XUSB_EP_BUF1COUNT_OFFSET, bufferlen);
524 } else {
525 memcpy_toio((void __iomem *)bufferptr, eprambase,
526 bytestosend);
527 }
528 /*
529 * Enable the buffer for transmission.
530 */
531 udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET,
532 1 << (ep->epnumber + XUSB_STATUS_EP_BUFF2_SHIFT));
533 ep->buffer1ready = 1;
534 ep->curbufnum = 0;
535 } else {
536 /* None of the ping-pong buffers are ready currently */
537 return -EAGAIN;
538 }
539 return rc;
540}
541
542/**
543 * xudc_done - Exeutes the endpoint data transfer completion tasks.
544 * @ep: pointer to the usb device endpoint structure.
545 * @req: pointer to the usb request structure.
546 * @status: Status of the data transfer.
547 *
548 * Deletes the message from the queue and updates data transfer completion
549 * status.
550 */
551static void xudc_done(struct xusb_ep *ep, struct xusb_req *req, int status)
552{
553 struct xusb_udc *udc = ep->udc;
554
555 list_del_init(entry: &req->queue);
556
557 if (req->usb_req.status == -EINPROGRESS)
558 req->usb_req.status = status;
559 else
560 status = req->usb_req.status;
561
562 if (status && status != -ESHUTDOWN)
563 dev_dbg(udc->dev, "%s done %p, status %d\n",
564 ep->ep_usb.name, req, status);
565 /* unmap request if DMA is present*/
566 if (udc->dma_enabled && ep->epnumber && req->usb_req.length)
567 usb_gadget_unmap_request(gadget: &udc->gadget, req: &req->usb_req,
568 is_in: ep->is_in);
569
570 if (req->usb_req.complete) {
571 spin_unlock(lock: &udc->lock);
572 req->usb_req.complete(&ep->ep_usb, &req->usb_req);
573 spin_lock(lock: &udc->lock);
574 }
575}
576
577/**
578 * xudc_read_fifo - Reads the data from the given endpoint buffer.
579 * @ep: pointer to the usb device endpoint structure.
580 * @req: pointer to the usb request structure.
581 *
582 * Return: 0 if request is completed and -EAGAIN if not completed.
583 *
584 * Pulls OUT packet data from the endpoint buffer.
585 */
586static int xudc_read_fifo(struct xusb_ep *ep, struct xusb_req *req)
587{
588 u8 *buf;
589 u32 is_short, count, bufferspace;
590 u8 bufoffset;
591 u8 two_pkts = 0;
592 int ret;
593 int retval = -EAGAIN;
594 struct xusb_udc *udc = ep->udc;
595
596 if (ep->buffer0ready && ep->buffer1ready) {
597 dev_dbg(udc->dev, "Packet NOT ready!\n");
598 return retval;
599 }
600top:
601 if (ep->curbufnum)
602 bufoffset = XUSB_EP_BUF1COUNT_OFFSET;
603 else
604 bufoffset = XUSB_EP_BUF0COUNT_OFFSET;
605
606 count = udc->read_fn(udc->addr + ep->offset + bufoffset);
607
608 if (!ep->buffer0ready && !ep->buffer1ready)
609 two_pkts = 1;
610
611 buf = req->usb_req.buf + req->usb_req.actual;
612 prefetchw(x: buf);
613 bufferspace = req->usb_req.length - req->usb_req.actual;
614 is_short = count < ep->ep_usb.maxpacket;
615
616 if (unlikely(!bufferspace)) {
617 /*
618 * This happens when the driver's buffer
619 * is smaller than what the host sent.
620 * discard the extra data.
621 */
622 if (req->usb_req.status != -EOVERFLOW)
623 dev_dbg(udc->dev, "%s overflow %d\n",
624 ep->ep_usb.name, count);
625 req->usb_req.status = -EOVERFLOW;
626 xudc_done(ep, req, status: -EOVERFLOW);
627 return 0;
628 }
629
630 ret = xudc_eptxrx(ep, req, bufferptr: buf, bufferlen: count);
631 switch (ret) {
632 case 0:
633 req->usb_req.actual += min(count, bufferspace);
634 dev_dbg(udc->dev, "read %s, %d bytes%s req %p %d/%d\n",
635 ep->ep_usb.name, count, is_short ? "/S" : "", req,
636 req->usb_req.actual, req->usb_req.length);
637
638 /* Completion */
639 if ((req->usb_req.actual == req->usb_req.length) || is_short) {
640 if (udc->dma_enabled && req->usb_req.length)
641 dma_sync_single_for_cpu(dev: udc->dev,
642 addr: req->usb_req.dma,
643 size: req->usb_req.actual,
644 dir: DMA_FROM_DEVICE);
645 xudc_done(ep, req, status: 0);
646 return 0;
647 }
648 if (two_pkts) {
649 two_pkts = 0;
650 goto top;
651 }
652 break;
653 case -EAGAIN:
654 dev_dbg(udc->dev, "receive busy\n");
655 break;
656 case -EINVAL:
657 case -ETIMEDOUT:
658 /* DMA error, dequeue the request */
659 xudc_done(ep, req, status: -ECONNRESET);
660 retval = 0;
661 break;
662 }
663
664 return retval;
665}
666
667/**
668 * xudc_write_fifo - Writes data into the given endpoint buffer.
669 * @ep: pointer to the usb device endpoint structure.
670 * @req: pointer to the usb request structure.
671 *
672 * Return: 0 if request is completed and -EAGAIN if not completed.
673 *
674 * Loads endpoint buffer for an IN packet.
675 */
676static int xudc_write_fifo(struct xusb_ep *ep, struct xusb_req *req)
677{
678 u32 max;
679 u32 length;
680 int ret;
681 int retval = -EAGAIN;
682 struct xusb_udc *udc = ep->udc;
683 int is_last, is_short = 0;
684 u8 *buf;
685
686 max = le16_to_cpu(ep->desc->wMaxPacketSize);
687 buf = req->usb_req.buf + req->usb_req.actual;
688 prefetch(buf);
689 length = req->usb_req.length - req->usb_req.actual;
690 length = min(length, max);
691
692 ret = xudc_eptxrx(ep, req, bufferptr: buf, bufferlen: length);
693 switch (ret) {
694 case 0:
695 req->usb_req.actual += length;
696 if (unlikely(length != max)) {
697 is_last = is_short = 1;
698 } else {
699 if (likely(req->usb_req.length !=
700 req->usb_req.actual) || req->usb_req.zero)
701 is_last = 0;
702 else
703 is_last = 1;
704 }
705 dev_dbg(udc->dev, "%s: wrote %s %d bytes%s%s %d left %p\n",
706 __func__, ep->ep_usb.name, length, is_last ? "/L" : "",
707 is_short ? "/S" : "",
708 req->usb_req.length - req->usb_req.actual, req);
709 /* completion */
710 if (is_last) {
711 xudc_done(ep, req, status: 0);
712 retval = 0;
713 }
714 break;
715 case -EAGAIN:
716 dev_dbg(udc->dev, "Send busy\n");
717 break;
718 case -EINVAL:
719 case -ETIMEDOUT:
720 /* DMA error, dequeue the request */
721 xudc_done(ep, req, status: -ECONNRESET);
722 retval = 0;
723 break;
724 }
725
726 return retval;
727}
728
729/**
730 * xudc_nuke - Cleans up the data transfer message list.
731 * @ep: pointer to the usb device endpoint structure.
732 * @status: Status of the data transfer.
733 */
734static void xudc_nuke(struct xusb_ep *ep, int status)
735{
736 struct xusb_req *req;
737
738 while (!list_empty(head: &ep->queue)) {
739 req = list_first_entry(&ep->queue, struct xusb_req, queue);
740 xudc_done(ep, req, status);
741 }
742}
743
744/**
745 * xudc_ep_set_halt - Stalls/unstalls the given endpoint.
746 * @_ep: pointer to the usb device endpoint structure.
747 * @value: value to indicate stall/unstall.
748 *
749 * Return: 0 for success and error value on failure
750 */
751static int xudc_ep_set_halt(struct usb_ep *_ep, int value)
752{
753 struct xusb_ep *ep = to_xusb_ep(_ep);
754 struct xusb_udc *udc;
755 unsigned long flags;
756 u32 epcfgreg;
757
758 if (!_ep || (!ep->desc && ep->epnumber)) {
759 pr_debug("%s: bad ep or descriptor\n", __func__);
760 return -EINVAL;
761 }
762 udc = ep->udc;
763
764 if (ep->is_in && (!list_empty(head: &ep->queue)) && value) {
765 dev_dbg(udc->dev, "requests pending can't halt\n");
766 return -EAGAIN;
767 }
768
769 if (ep->buffer0ready || ep->buffer1ready) {
770 dev_dbg(udc->dev, "HW buffers busy can't halt\n");
771 return -EAGAIN;
772 }
773
774 spin_lock_irqsave(&udc->lock, flags);
775
776 if (value) {
777 /* Stall the device.*/
778 epcfgreg = udc->read_fn(udc->addr + ep->offset);
779 epcfgreg |= XUSB_EP_CFG_STALL_MASK;
780 udc->write_fn(udc->addr, ep->offset, epcfgreg);
781 } else {
782 /* Unstall the device.*/
783 epcfgreg = udc->read_fn(udc->addr + ep->offset);
784 epcfgreg &= ~XUSB_EP_CFG_STALL_MASK;
785 udc->write_fn(udc->addr, ep->offset, epcfgreg);
786 if (ep->epnumber) {
787 /* Reset the toggle bit.*/
788 epcfgreg = udc->read_fn(ep->udc->addr + ep->offset);
789 epcfgreg &= ~XUSB_EP_CFG_DATA_TOGGLE_MASK;
790 udc->write_fn(udc->addr, ep->offset, epcfgreg);
791 }
792 }
793
794 spin_unlock_irqrestore(lock: &udc->lock, flags);
795 return 0;
796}
797
798/**
799 * __xudc_ep_enable - Enables the given endpoint.
800 * @ep: pointer to the xusb endpoint structure.
801 * @desc: pointer to usb endpoint descriptor.
802 *
803 * Return: 0 for success and error value on failure
804 */
805static int __xudc_ep_enable(struct xusb_ep *ep,
806 const struct usb_endpoint_descriptor *desc)
807{
808 struct xusb_udc *udc = ep->udc;
809 u32 tmp;
810 u32 epcfg;
811 u32 ier;
812 u16 maxpacket;
813
814 ep->is_in = ((desc->bEndpointAddress & USB_DIR_IN) != 0);
815 /* Bit 3...0:endpoint number */
816 ep->epnumber = (desc->bEndpointAddress & 0x0f);
817 ep->desc = desc;
818 ep->ep_usb.desc = desc;
819 tmp = desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK;
820 ep->ep_usb.maxpacket = maxpacket = le16_to_cpu(desc->wMaxPacketSize);
821
822 switch (tmp) {
823 case USB_ENDPOINT_XFER_CONTROL:
824 dev_dbg(udc->dev, "only one control endpoint\n");
825 /* NON- ISO */
826 ep->is_iso = 0;
827 return -EINVAL;
828 case USB_ENDPOINT_XFER_INT:
829 /* NON- ISO */
830 ep->is_iso = 0;
831 if (maxpacket > 64) {
832 dev_dbg(udc->dev, "bogus maxpacket %d\n", maxpacket);
833 return -EINVAL;
834 }
835 break;
836 case USB_ENDPOINT_XFER_BULK:
837 /* NON- ISO */
838 ep->is_iso = 0;
839 if (!(is_power_of_2(n: maxpacket) && maxpacket >= 8 &&
840 maxpacket <= 512)) {
841 dev_dbg(udc->dev, "bogus maxpacket %d\n", maxpacket);
842 return -EINVAL;
843 }
844 break;
845 case USB_ENDPOINT_XFER_ISOC:
846 /* ISO */
847 ep->is_iso = 1;
848 break;
849 }
850
851 ep->buffer0ready = false;
852 ep->buffer1ready = false;
853 ep->curbufnum = 0;
854 ep->rambase = rambase[ep->epnumber];
855 xudc_epconfig(ep, udc);
856
857 dev_dbg(udc->dev, "Enable Endpoint %d max pkt is %d\n",
858 ep->epnumber, maxpacket);
859
860 /* Enable the End point.*/
861 epcfg = udc->read_fn(udc->addr + ep->offset);
862 epcfg |= XUSB_EP_CFG_VALID_MASK;
863 udc->write_fn(udc->addr, ep->offset, epcfg);
864 if (ep->epnumber)
865 ep->rambase <<= 2;
866
867 /* Enable buffer completion interrupts for endpoint */
868 ier = udc->read_fn(udc->addr + XUSB_IER_OFFSET);
869 ier |= (XUSB_STATUS_INTR_BUFF_COMP_SHIFT_MASK << ep->epnumber);
870 udc->write_fn(udc->addr, XUSB_IER_OFFSET, ier);
871
872 /* for OUT endpoint set buffers ready to receive */
873 if (ep->epnumber && !ep->is_in) {
874 udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET,
875 1 << ep->epnumber);
876 ep->buffer0ready = true;
877 udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET,
878 (1 << (ep->epnumber +
879 XUSB_STATUS_EP_BUFF2_SHIFT)));
880 ep->buffer1ready = true;
881 }
882
883 return 0;
884}
885
886/**
887 * xudc_ep_enable - Enables the given endpoint.
888 * @_ep: pointer to the usb endpoint structure.
889 * @desc: pointer to usb endpoint descriptor.
890 *
891 * Return: 0 for success and error value on failure
892 */
893static int xudc_ep_enable(struct usb_ep *_ep,
894 const struct usb_endpoint_descriptor *desc)
895{
896 struct xusb_ep *ep;
897 struct xusb_udc *udc;
898 unsigned long flags;
899 int ret;
900
901 if (!_ep || !desc || desc->bDescriptorType != USB_DT_ENDPOINT) {
902 pr_debug("%s: bad ep or descriptor\n", __func__);
903 return -EINVAL;
904 }
905
906 ep = to_xusb_ep(_ep);
907 udc = ep->udc;
908
909 if (!udc->driver || udc->gadget.speed == USB_SPEED_UNKNOWN) {
910 dev_dbg(udc->dev, "bogus device state\n");
911 return -ESHUTDOWN;
912 }
913
914 spin_lock_irqsave(&udc->lock, flags);
915 ret = __xudc_ep_enable(ep, desc);
916 spin_unlock_irqrestore(lock: &udc->lock, flags);
917
918 return ret;
919}
920
921/**
922 * xudc_ep_disable - Disables the given endpoint.
923 * @_ep: pointer to the usb endpoint structure.
924 *
925 * Return: 0 for success and error value on failure
926 */
927static int xudc_ep_disable(struct usb_ep *_ep)
928{
929 struct xusb_ep *ep;
930 unsigned long flags;
931 u32 epcfg;
932 struct xusb_udc *udc;
933
934 if (!_ep) {
935 pr_debug("%s: invalid ep\n", __func__);
936 return -EINVAL;
937 }
938
939 ep = to_xusb_ep(_ep);
940 udc = ep->udc;
941
942 spin_lock_irqsave(&udc->lock, flags);
943
944 xudc_nuke(ep, status: -ESHUTDOWN);
945
946 /* Restore the endpoint's pristine config */
947 ep->desc = NULL;
948 ep->ep_usb.desc = NULL;
949
950 dev_dbg(udc->dev, "USB Ep %d disable\n ", ep->epnumber);
951 /* Disable the endpoint.*/
952 epcfg = udc->read_fn(udc->addr + ep->offset);
953 epcfg &= ~XUSB_EP_CFG_VALID_MASK;
954 udc->write_fn(udc->addr, ep->offset, epcfg);
955
956 spin_unlock_irqrestore(lock: &udc->lock, flags);
957 return 0;
958}
959
960/**
961 * xudc_ep_alloc_request - Initializes the request queue.
962 * @_ep: pointer to the usb endpoint structure.
963 * @gfp_flags: Flags related to the request call.
964 *
965 * Return: pointer to request structure on success and a NULL on failure.
966 */
967static struct usb_request *xudc_ep_alloc_request(struct usb_ep *_ep,
968 gfp_t gfp_flags)
969{
970 struct xusb_ep *ep = to_xusb_ep(_ep);
971 struct xusb_req *req;
972
973 req = kzalloc(size: sizeof(*req), flags: gfp_flags);
974 if (!req)
975 return NULL;
976
977 req->ep = ep;
978 INIT_LIST_HEAD(list: &req->queue);
979 return &req->usb_req;
980}
981
982/**
983 * xudc_free_request - Releases the request from queue.
984 * @_ep: pointer to the usb device endpoint structure.
985 * @_req: pointer to the usb request structure.
986 */
987static void xudc_free_request(struct usb_ep *_ep, struct usb_request *_req)
988{
989 struct xusb_req *req = to_xusb_req(_req);
990
991 kfree(objp: req);
992}
993
994/**
995 * __xudc_ep0_queue - Adds the request to endpoint 0 queue.
996 * @ep0: pointer to the xusb endpoint 0 structure.
997 * @req: pointer to the xusb request structure.
998 *
999 * Return: 0 for success and error value on failure
1000 */
1001static int __xudc_ep0_queue(struct xusb_ep *ep0, struct xusb_req *req)
1002{
1003 struct xusb_udc *udc = ep0->udc;
1004 u32 length;
1005 u8 *corebuf;
1006
1007 if (!udc->driver || udc->gadget.speed == USB_SPEED_UNKNOWN) {
1008 dev_dbg(udc->dev, "%s, bogus device state\n", __func__);
1009 return -EINVAL;
1010 }
1011 if (!list_empty(head: &ep0->queue)) {
1012 dev_dbg(udc->dev, "%s:ep0 busy\n", __func__);
1013 return -EBUSY;
1014 }
1015
1016 req->usb_req.status = -EINPROGRESS;
1017 req->usb_req.actual = 0;
1018
1019 list_add_tail(new: &req->queue, head: &ep0->queue);
1020
1021 if (udc->setup.bRequestType & USB_DIR_IN) {
1022 prefetch(req->usb_req.buf);
1023 length = req->usb_req.length;
1024 corebuf = (void __force *) ((ep0->rambase << 2) +
1025 udc->addr);
1026 length = req->usb_req.actual = min_t(u32, length,
1027 EP0_MAX_PACKET);
1028 memcpy_toio((void __iomem *)corebuf, req->usb_req.buf, length);
1029 udc->write_fn(udc->addr, XUSB_EP_BUF0COUNT_OFFSET, length);
1030 udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET, 1);
1031 } else {
1032 if (udc->setup.wLength) {
1033 /* Enable EP0 buffer to receive data */
1034 udc->write_fn(udc->addr, XUSB_EP_BUF0COUNT_OFFSET, 0);
1035 udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET, 1);
1036 } else {
1037 xudc_wrstatus(udc);
1038 }
1039 }
1040
1041 return 0;
1042}
1043
1044/**
1045 * xudc_ep0_queue - Adds the request to endpoint 0 queue.
1046 * @_ep: pointer to the usb endpoint 0 structure.
1047 * @_req: pointer to the usb request structure.
1048 * @gfp_flags: Flags related to the request call.
1049 *
1050 * Return: 0 for success and error value on failure
1051 */
1052static int xudc_ep0_queue(struct usb_ep *_ep, struct usb_request *_req,
1053 gfp_t gfp_flags)
1054{
1055 struct xusb_req *req = to_xusb_req(_req);
1056 struct xusb_ep *ep0 = to_xusb_ep(_ep);
1057 struct xusb_udc *udc = ep0->udc;
1058 unsigned long flags;
1059 int ret;
1060
1061 spin_lock_irqsave(&udc->lock, flags);
1062 ret = __xudc_ep0_queue(ep0, req);
1063 spin_unlock_irqrestore(lock: &udc->lock, flags);
1064
1065 return ret;
1066}
1067
1068/**
1069 * xudc_ep_queue - Adds the request to endpoint queue.
1070 * @_ep: pointer to the usb endpoint structure.
1071 * @_req: pointer to the usb request structure.
1072 * @gfp_flags: Flags related to the request call.
1073 *
1074 * Return: 0 for success and error value on failure
1075 */
1076static int xudc_ep_queue(struct usb_ep *_ep, struct usb_request *_req,
1077 gfp_t gfp_flags)
1078{
1079 struct xusb_req *req = to_xusb_req(_req);
1080 struct xusb_ep *ep = to_xusb_ep(_ep);
1081 struct xusb_udc *udc = ep->udc;
1082 int ret;
1083 unsigned long flags;
1084
1085 if (!ep->desc) {
1086 dev_dbg(udc->dev, "%s: queuing request to disabled %s\n",
1087 __func__, ep->name);
1088 return -ESHUTDOWN;
1089 }
1090
1091 if (!udc->driver || udc->gadget.speed == USB_SPEED_UNKNOWN) {
1092 dev_dbg(udc->dev, "%s, bogus device state\n", __func__);
1093 return -EINVAL;
1094 }
1095
1096 spin_lock_irqsave(&udc->lock, flags);
1097
1098 _req->status = -EINPROGRESS;
1099 _req->actual = 0;
1100
1101 if (udc->dma_enabled) {
1102 ret = usb_gadget_map_request(gadget: &udc->gadget, req: &req->usb_req,
1103 is_in: ep->is_in);
1104 if (ret) {
1105 dev_dbg(udc->dev, "gadget_map failed ep%d\n",
1106 ep->epnumber);
1107 spin_unlock_irqrestore(lock: &udc->lock, flags);
1108 return -EAGAIN;
1109 }
1110 }
1111
1112 if (list_empty(head: &ep->queue)) {
1113 if (ep->is_in) {
1114 dev_dbg(udc->dev, "xudc_write_fifo from ep_queue\n");
1115 if (!xudc_write_fifo(ep, req))
1116 req = NULL;
1117 } else {
1118 dev_dbg(udc->dev, "xudc_read_fifo from ep_queue\n");
1119 if (!xudc_read_fifo(ep, req))
1120 req = NULL;
1121 }
1122 }
1123
1124 if (req != NULL)
1125 list_add_tail(new: &req->queue, head: &ep->queue);
1126
1127 spin_unlock_irqrestore(lock: &udc->lock, flags);
1128 return 0;
1129}
1130
1131/**
1132 * xudc_ep_dequeue - Removes the request from the queue.
1133 * @_ep: pointer to the usb device endpoint structure.
1134 * @_req: pointer to the usb request structure.
1135 *
1136 * Return: 0 for success and error value on failure
1137 */
1138static int xudc_ep_dequeue(struct usb_ep *_ep, struct usb_request *_req)
1139{
1140 struct xusb_ep *ep = to_xusb_ep(_ep);
1141 struct xusb_req *req = NULL;
1142 struct xusb_req *iter;
1143 struct xusb_udc *udc = ep->udc;
1144 unsigned long flags;
1145
1146 spin_lock_irqsave(&udc->lock, flags);
1147 /* Make sure it's actually queued on this endpoint */
1148 list_for_each_entry(iter, &ep->queue, queue) {
1149 if (&iter->usb_req != _req)
1150 continue;
1151 req = iter;
1152 break;
1153 }
1154 if (!req) {
1155 spin_unlock_irqrestore(lock: &udc->lock, flags);
1156 return -EINVAL;
1157 }
1158 xudc_done(ep, req, status: -ECONNRESET);
1159 spin_unlock_irqrestore(lock: &udc->lock, flags);
1160
1161 return 0;
1162}
1163
1164/**
1165 * xudc_ep0_enable - Enables the given endpoint.
1166 * @ep: pointer to the usb endpoint structure.
1167 * @desc: pointer to usb endpoint descriptor.
1168 *
1169 * Return: error always.
1170 *
1171 * endpoint 0 enable should not be called by gadget layer.
1172 */
1173static int xudc_ep0_enable(struct usb_ep *ep,
1174 const struct usb_endpoint_descriptor *desc)
1175{
1176 return -EINVAL;
1177}
1178
1179/**
1180 * xudc_ep0_disable - Disables the given endpoint.
1181 * @ep: pointer to the usb endpoint structure.
1182 *
1183 * Return: error always.
1184 *
1185 * endpoint 0 disable should not be called by gadget layer.
1186 */
1187static int xudc_ep0_disable(struct usb_ep *ep)
1188{
1189 return -EINVAL;
1190}
1191
1192static const struct usb_ep_ops xusb_ep0_ops = {
1193 .enable = xudc_ep0_enable,
1194 .disable = xudc_ep0_disable,
1195 .alloc_request = xudc_ep_alloc_request,
1196 .free_request = xudc_free_request,
1197 .queue = xudc_ep0_queue,
1198 .dequeue = xudc_ep_dequeue,
1199 .set_halt = xudc_ep_set_halt,
1200};
1201
1202static const struct usb_ep_ops xusb_ep_ops = {
1203 .enable = xudc_ep_enable,
1204 .disable = xudc_ep_disable,
1205 .alloc_request = xudc_ep_alloc_request,
1206 .free_request = xudc_free_request,
1207 .queue = xudc_ep_queue,
1208 .dequeue = xudc_ep_dequeue,
1209 .set_halt = xudc_ep_set_halt,
1210};
1211
1212/**
1213 * xudc_get_frame - Reads the current usb frame number.
1214 * @gadget: pointer to the usb gadget structure.
1215 *
1216 * Return: current frame number for success and error value on failure.
1217 */
1218static int xudc_get_frame(struct usb_gadget *gadget)
1219{
1220 struct xusb_udc *udc;
1221 int frame;
1222
1223 if (!gadget)
1224 return -ENODEV;
1225
1226 udc = to_udc(gadget);
1227 frame = udc->read_fn(udc->addr + XUSB_FRAMENUM_OFFSET);
1228 return frame;
1229}
1230
1231/**
1232 * xudc_wakeup - Send remote wakeup signal to host
1233 * @gadget: pointer to the usb gadget structure.
1234 *
1235 * Return: 0 on success and error on failure
1236 */
1237static int xudc_wakeup(struct usb_gadget *gadget)
1238{
1239 struct xusb_udc *udc = to_udc(gadget);
1240 u32 crtlreg;
1241 int status = -EINVAL;
1242 unsigned long flags;
1243
1244 spin_lock_irqsave(&udc->lock, flags);
1245
1246 /* Remote wake up not enabled by host */
1247 if (!udc->remote_wkp)
1248 goto done;
1249
1250 crtlreg = udc->read_fn(udc->addr + XUSB_CONTROL_OFFSET);
1251 crtlreg |= XUSB_CONTROL_USB_RMTWAKE_MASK;
1252 /* set remote wake up bit */
1253 udc->write_fn(udc->addr, XUSB_CONTROL_OFFSET, crtlreg);
1254 /*
1255 * wait for a while and reset remote wake up bit since this bit
1256 * is not cleared by HW after sending remote wakeup to host.
1257 */
1258 mdelay(2);
1259
1260 crtlreg &= ~XUSB_CONTROL_USB_RMTWAKE_MASK;
1261 udc->write_fn(udc->addr, XUSB_CONTROL_OFFSET, crtlreg);
1262 status = 0;
1263done:
1264 spin_unlock_irqrestore(lock: &udc->lock, flags);
1265 return status;
1266}
1267
1268/**
1269 * xudc_pullup - start/stop USB traffic
1270 * @gadget: pointer to the usb gadget structure.
1271 * @is_on: flag to start or stop
1272 *
1273 * Return: 0 always
1274 *
1275 * This function starts/stops SIE engine of IP based on is_on.
1276 */
1277static int xudc_pullup(struct usb_gadget *gadget, int is_on)
1278{
1279 struct xusb_udc *udc = to_udc(gadget);
1280 unsigned long flags;
1281 u32 crtlreg;
1282
1283 spin_lock_irqsave(&udc->lock, flags);
1284
1285 crtlreg = udc->read_fn(udc->addr + XUSB_CONTROL_OFFSET);
1286 if (is_on)
1287 crtlreg |= XUSB_CONTROL_USB_READY_MASK;
1288 else
1289 crtlreg &= ~XUSB_CONTROL_USB_READY_MASK;
1290
1291 udc->write_fn(udc->addr, XUSB_CONTROL_OFFSET, crtlreg);
1292
1293 spin_unlock_irqrestore(lock: &udc->lock, flags);
1294
1295 return 0;
1296}
1297
1298/**
1299 * xudc_eps_init - initialize endpoints.
1300 * @udc: pointer to the usb device controller structure.
1301 */
1302static void xudc_eps_init(struct xusb_udc *udc)
1303{
1304 u32 ep_number;
1305
1306 INIT_LIST_HEAD(list: &udc->gadget.ep_list);
1307
1308 for (ep_number = 0; ep_number < XUSB_MAX_ENDPOINTS; ep_number++) {
1309 struct xusb_ep *ep = &udc->ep[ep_number];
1310
1311 if (ep_number) {
1312 list_add_tail(new: &ep->ep_usb.ep_list,
1313 head: &udc->gadget.ep_list);
1314 usb_ep_set_maxpacket_limit(ep: &ep->ep_usb,
1315 maxpacket_limit: (unsigned short) ~0);
1316 snprintf(buf: ep->name, EPNAME_SIZE, fmt: "ep%d", ep_number);
1317 ep->ep_usb.name = ep->name;
1318 ep->ep_usb.ops = &xusb_ep_ops;
1319
1320 ep->ep_usb.caps.type_iso = true;
1321 ep->ep_usb.caps.type_bulk = true;
1322 ep->ep_usb.caps.type_int = true;
1323 } else {
1324 ep->ep_usb.name = ep0name;
1325 usb_ep_set_maxpacket_limit(ep: &ep->ep_usb, EP0_MAX_PACKET);
1326 ep->ep_usb.ops = &xusb_ep0_ops;
1327
1328 ep->ep_usb.caps.type_control = true;
1329 }
1330
1331 ep->ep_usb.caps.dir_in = true;
1332 ep->ep_usb.caps.dir_out = true;
1333
1334 ep->udc = udc;
1335 ep->epnumber = ep_number;
1336 ep->desc = NULL;
1337 /*
1338 * The configuration register address offset between
1339 * each endpoint is 0x10.
1340 */
1341 ep->offset = XUSB_EP0_CONFIG_OFFSET + (ep_number * 0x10);
1342 ep->is_in = 0;
1343 ep->is_iso = 0;
1344 ep->maxpacket = 0;
1345 xudc_epconfig(ep, udc);
1346
1347 /* Initialize one queue per endpoint */
1348 INIT_LIST_HEAD(list: &ep->queue);
1349 }
1350}
1351
1352/**
1353 * xudc_stop_activity - Stops any further activity on the device.
1354 * @udc: pointer to the usb device controller structure.
1355 */
1356static void xudc_stop_activity(struct xusb_udc *udc)
1357{
1358 int i;
1359 struct xusb_ep *ep;
1360
1361 for (i = 0; i < XUSB_MAX_ENDPOINTS; i++) {
1362 ep = &udc->ep[i];
1363 xudc_nuke(ep, status: -ESHUTDOWN);
1364 }
1365}
1366
1367/**
1368 * xudc_start - Starts the device.
1369 * @gadget: pointer to the usb gadget structure
1370 * @driver: pointer to gadget driver structure
1371 *
1372 * Return: zero on success and error on failure
1373 */
1374static int xudc_start(struct usb_gadget *gadget,
1375 struct usb_gadget_driver *driver)
1376{
1377 struct xusb_udc *udc = to_udc(gadget);
1378 struct xusb_ep *ep0 = &udc->ep[XUSB_EP_NUMBER_ZERO];
1379 const struct usb_endpoint_descriptor *desc = &config_bulk_out_desc;
1380 unsigned long flags;
1381 int ret = 0;
1382
1383 spin_lock_irqsave(&udc->lock, flags);
1384
1385 if (udc->driver) {
1386 dev_err(udc->dev, "%s is already bound to %s\n",
1387 udc->gadget.name, udc->driver->driver.name);
1388 ret = -EBUSY;
1389 goto err;
1390 }
1391
1392 /* hook up the driver */
1393 udc->driver = driver;
1394 udc->gadget.speed = driver->max_speed;
1395
1396 /* Enable the control endpoint. */
1397 ret = __xudc_ep_enable(ep: ep0, desc);
1398
1399 /* Set device address and remote wakeup to 0 */
1400 udc->write_fn(udc->addr, XUSB_ADDRESS_OFFSET, 0);
1401 udc->remote_wkp = 0;
1402err:
1403 spin_unlock_irqrestore(lock: &udc->lock, flags);
1404 return ret;
1405}
1406
1407/**
1408 * xudc_stop - stops the device.
1409 * @gadget: pointer to the usb gadget structure
1410 *
1411 * Return: zero always
1412 */
1413static int xudc_stop(struct usb_gadget *gadget)
1414{
1415 struct xusb_udc *udc = to_udc(gadget);
1416 unsigned long flags;
1417
1418 spin_lock_irqsave(&udc->lock, flags);
1419
1420 udc->gadget.speed = USB_SPEED_UNKNOWN;
1421 udc->driver = NULL;
1422
1423 /* Set device address and remote wakeup to 0 */
1424 udc->write_fn(udc->addr, XUSB_ADDRESS_OFFSET, 0);
1425 udc->remote_wkp = 0;
1426
1427 xudc_stop_activity(udc);
1428
1429 spin_unlock_irqrestore(lock: &udc->lock, flags);
1430
1431 return 0;
1432}
1433
1434static const struct usb_gadget_ops xusb_udc_ops = {
1435 .get_frame = xudc_get_frame,
1436 .wakeup = xudc_wakeup,
1437 .pullup = xudc_pullup,
1438 .udc_start = xudc_start,
1439 .udc_stop = xudc_stop,
1440};
1441
1442/**
1443 * xudc_clear_stall_all_ep - clears stall of every endpoint.
1444 * @udc: pointer to the udc structure.
1445 */
1446static void xudc_clear_stall_all_ep(struct xusb_udc *udc)
1447{
1448 struct xusb_ep *ep;
1449 u32 epcfgreg;
1450 int i;
1451
1452 for (i = 0; i < XUSB_MAX_ENDPOINTS; i++) {
1453 ep = &udc->ep[i];
1454 epcfgreg = udc->read_fn(udc->addr + ep->offset);
1455 epcfgreg &= ~XUSB_EP_CFG_STALL_MASK;
1456 udc->write_fn(udc->addr, ep->offset, epcfgreg);
1457 if (ep->epnumber) {
1458 /* Reset the toggle bit.*/
1459 epcfgreg = udc->read_fn(udc->addr + ep->offset);
1460 epcfgreg &= ~XUSB_EP_CFG_DATA_TOGGLE_MASK;
1461 udc->write_fn(udc->addr, ep->offset, epcfgreg);
1462 }
1463 }
1464}
1465
1466/**
1467 * xudc_startup_handler - The usb device controller interrupt handler.
1468 * @udc: pointer to the udc structure.
1469 * @intrstatus: The mask value containing the interrupt sources.
1470 *
1471 * This function handles the RESET,SUSPEND,RESUME and DISCONNECT interrupts.
1472 */
1473static void xudc_startup_handler(struct xusb_udc *udc, u32 intrstatus)
1474{
1475 u32 intrreg;
1476
1477 if (intrstatus & XUSB_STATUS_RESET_MASK) {
1478
1479 dev_dbg(udc->dev, "Reset\n");
1480
1481 if (intrstatus & XUSB_STATUS_HIGH_SPEED_MASK)
1482 udc->gadget.speed = USB_SPEED_HIGH;
1483 else
1484 udc->gadget.speed = USB_SPEED_FULL;
1485
1486 xudc_stop_activity(udc);
1487 xudc_clear_stall_all_ep(udc);
1488 udc->write_fn(udc->addr, XUSB_TESTMODE_OFFSET, 0);
1489
1490 /* Set device address and remote wakeup to 0 */
1491 udc->write_fn(udc->addr, XUSB_ADDRESS_OFFSET, 0);
1492 udc->remote_wkp = 0;
1493
1494 /* Enable the suspend, resume and disconnect */
1495 intrreg = udc->read_fn(udc->addr + XUSB_IER_OFFSET);
1496 intrreg |= XUSB_STATUS_SUSPEND_MASK | XUSB_STATUS_RESUME_MASK |
1497 XUSB_STATUS_DISCONNECT_MASK;
1498 udc->write_fn(udc->addr, XUSB_IER_OFFSET, intrreg);
1499 }
1500 if (intrstatus & XUSB_STATUS_SUSPEND_MASK) {
1501
1502 dev_dbg(udc->dev, "Suspend\n");
1503
1504 /* Enable the reset, resume and disconnect */
1505 intrreg = udc->read_fn(udc->addr + XUSB_IER_OFFSET);
1506 intrreg |= XUSB_STATUS_RESET_MASK | XUSB_STATUS_RESUME_MASK |
1507 XUSB_STATUS_DISCONNECT_MASK;
1508 udc->write_fn(udc->addr, XUSB_IER_OFFSET, intrreg);
1509
1510 udc->usb_state = USB_STATE_SUSPENDED;
1511
1512 if (udc->driver->suspend) {
1513 spin_unlock(lock: &udc->lock);
1514 udc->driver->suspend(&udc->gadget);
1515 spin_lock(lock: &udc->lock);
1516 }
1517 }
1518 if (intrstatus & XUSB_STATUS_RESUME_MASK) {
1519 bool condition = (udc->usb_state != USB_STATE_SUSPENDED);
1520
1521 dev_WARN_ONCE(udc->dev, condition,
1522 "Resume IRQ while not suspended\n");
1523
1524 dev_dbg(udc->dev, "Resume\n");
1525
1526 /* Enable the reset, suspend and disconnect */
1527 intrreg = udc->read_fn(udc->addr + XUSB_IER_OFFSET);
1528 intrreg |= XUSB_STATUS_RESET_MASK | XUSB_STATUS_SUSPEND_MASK |
1529 XUSB_STATUS_DISCONNECT_MASK;
1530 udc->write_fn(udc->addr, XUSB_IER_OFFSET, intrreg);
1531
1532 udc->usb_state = 0;
1533
1534 if (udc->driver->resume) {
1535 spin_unlock(lock: &udc->lock);
1536 udc->driver->resume(&udc->gadget);
1537 spin_lock(lock: &udc->lock);
1538 }
1539 }
1540 if (intrstatus & XUSB_STATUS_DISCONNECT_MASK) {
1541
1542 dev_dbg(udc->dev, "Disconnect\n");
1543
1544 /* Enable the reset, resume and suspend */
1545 intrreg = udc->read_fn(udc->addr + XUSB_IER_OFFSET);
1546 intrreg |= XUSB_STATUS_RESET_MASK | XUSB_STATUS_RESUME_MASK |
1547 XUSB_STATUS_SUSPEND_MASK;
1548 udc->write_fn(udc->addr, XUSB_IER_OFFSET, intrreg);
1549
1550 if (udc->driver && udc->driver->disconnect) {
1551 spin_unlock(lock: &udc->lock);
1552 udc->driver->disconnect(&udc->gadget);
1553 spin_lock(lock: &udc->lock);
1554 }
1555 }
1556}
1557
1558/**
1559 * xudc_ep0_stall - Stall endpoint zero.
1560 * @udc: pointer to the udc structure.
1561 *
1562 * This function stalls endpoint zero.
1563 */
1564static void xudc_ep0_stall(struct xusb_udc *udc)
1565{
1566 u32 epcfgreg;
1567 struct xusb_ep *ep0 = &udc->ep[XUSB_EP_NUMBER_ZERO];
1568
1569 epcfgreg = udc->read_fn(udc->addr + ep0->offset);
1570 epcfgreg |= XUSB_EP_CFG_STALL_MASK;
1571 udc->write_fn(udc->addr, ep0->offset, epcfgreg);
1572}
1573
1574/**
1575 * xudc_setaddress - executes SET_ADDRESS command
1576 * @udc: pointer to the udc structure.
1577 *
1578 * This function executes USB SET_ADDRESS command
1579 */
1580static void xudc_setaddress(struct xusb_udc *udc)
1581{
1582 struct xusb_ep *ep0 = &udc->ep[0];
1583 struct xusb_req *req = udc->req;
1584 int ret;
1585
1586 req->usb_req.length = 0;
1587 ret = __xudc_ep0_queue(ep0, req);
1588 if (ret == 0)
1589 return;
1590
1591 dev_err(udc->dev, "Can't respond to SET ADDRESS request\n");
1592 xudc_ep0_stall(udc);
1593}
1594
1595/**
1596 * xudc_getstatus - executes GET_STATUS command
1597 * @udc: pointer to the udc structure.
1598 *
1599 * This function executes USB GET_STATUS command
1600 */
1601static void xudc_getstatus(struct xusb_udc *udc)
1602{
1603 struct xusb_ep *ep0 = &udc->ep[0];
1604 struct xusb_req *req = udc->req;
1605 struct xusb_ep *target_ep;
1606 u16 status = 0;
1607 u32 epcfgreg;
1608 int epnum;
1609 u32 halt;
1610 int ret;
1611
1612 switch (udc->setup.bRequestType & USB_RECIP_MASK) {
1613 case USB_RECIP_DEVICE:
1614 /* Get device status */
1615 status = 1 << USB_DEVICE_SELF_POWERED;
1616 if (udc->remote_wkp)
1617 status |= (1 << USB_DEVICE_REMOTE_WAKEUP);
1618 break;
1619 case USB_RECIP_INTERFACE:
1620 break;
1621 case USB_RECIP_ENDPOINT:
1622 epnum = le16_to_cpu(udc->setup.wIndex) & USB_ENDPOINT_NUMBER_MASK;
1623 if (epnum >= XUSB_MAX_ENDPOINTS)
1624 goto stall;
1625 target_ep = &udc->ep[epnum];
1626 epcfgreg = udc->read_fn(udc->addr + target_ep->offset);
1627 halt = epcfgreg & XUSB_EP_CFG_STALL_MASK;
1628 if (le16_to_cpu(udc->setup.wIndex) & USB_DIR_IN) {
1629 if (!target_ep->is_in)
1630 goto stall;
1631 } else {
1632 if (target_ep->is_in)
1633 goto stall;
1634 }
1635 if (halt)
1636 status = 1 << USB_ENDPOINT_HALT;
1637 break;
1638 default:
1639 goto stall;
1640 }
1641
1642 req->usb_req.length = 2;
1643 *(__le16 *)req->usb_req.buf = cpu_to_le16(status);
1644 ret = __xudc_ep0_queue(ep0, req);
1645 if (ret == 0)
1646 return;
1647stall:
1648 dev_err(udc->dev, "Can't respond to getstatus request\n");
1649 xudc_ep0_stall(udc);
1650}
1651
1652/**
1653 * xudc_set_clear_feature - Executes the set feature and clear feature commands.
1654 * @udc: pointer to the usb device controller structure.
1655 *
1656 * Processes the SET_FEATURE and CLEAR_FEATURE commands.
1657 */
1658static void xudc_set_clear_feature(struct xusb_udc *udc)
1659{
1660 struct xusb_ep *ep0 = &udc->ep[0];
1661 struct xusb_req *req = udc->req;
1662 struct xusb_ep *target_ep;
1663 u8 endpoint;
1664 u8 outinbit;
1665 u32 epcfgreg;
1666 int flag = (udc->setup.bRequest == USB_REQ_SET_FEATURE ? 1 : 0);
1667 int ret;
1668
1669 switch (udc->setup.bRequestType) {
1670 case USB_RECIP_DEVICE:
1671 switch (le16_to_cpu(udc->setup.wValue)) {
1672 case USB_DEVICE_TEST_MODE:
1673 /*
1674 * The Test Mode will be executed
1675 * after the status phase.
1676 */
1677 break;
1678 case USB_DEVICE_REMOTE_WAKEUP:
1679 if (flag)
1680 udc->remote_wkp = 1;
1681 else
1682 udc->remote_wkp = 0;
1683 break;
1684 default:
1685 xudc_ep0_stall(udc);
1686 break;
1687 }
1688 break;
1689 case USB_RECIP_ENDPOINT:
1690 if (!udc->setup.wValue) {
1691 endpoint = le16_to_cpu(udc->setup.wIndex) &
1692 USB_ENDPOINT_NUMBER_MASK;
1693 if (endpoint >= XUSB_MAX_ENDPOINTS) {
1694 xudc_ep0_stall(udc);
1695 return;
1696 }
1697 target_ep = &udc->ep[endpoint];
1698 outinbit = le16_to_cpu(udc->setup.wIndex) &
1699 USB_ENDPOINT_DIR_MASK;
1700 outinbit = outinbit >> 7;
1701
1702 /* Make sure direction matches.*/
1703 if (outinbit != target_ep->is_in) {
1704 xudc_ep0_stall(udc);
1705 return;
1706 }
1707 epcfgreg = udc->read_fn(udc->addr + target_ep->offset);
1708 if (!endpoint) {
1709 /* Clear the stall.*/
1710 epcfgreg &= ~XUSB_EP_CFG_STALL_MASK;
1711 udc->write_fn(udc->addr,
1712 target_ep->offset, epcfgreg);
1713 } else {
1714 if (flag) {
1715 epcfgreg |= XUSB_EP_CFG_STALL_MASK;
1716 udc->write_fn(udc->addr,
1717 target_ep->offset,
1718 epcfgreg);
1719 } else {
1720 /* Unstall the endpoint.*/
1721 epcfgreg &= ~(XUSB_EP_CFG_STALL_MASK |
1722 XUSB_EP_CFG_DATA_TOGGLE_MASK);
1723 udc->write_fn(udc->addr,
1724 target_ep->offset,
1725 epcfgreg);
1726 }
1727 }
1728 }
1729 break;
1730 default:
1731 xudc_ep0_stall(udc);
1732 return;
1733 }
1734
1735 req->usb_req.length = 0;
1736 ret = __xudc_ep0_queue(ep0, req);
1737 if (ret == 0)
1738 return;
1739
1740 dev_err(udc->dev, "Can't respond to SET/CLEAR FEATURE\n");
1741 xudc_ep0_stall(udc);
1742}
1743
1744/**
1745 * xudc_handle_setup - Processes the setup packet.
1746 * @udc: pointer to the usb device controller structure.
1747 *
1748 * Process setup packet and delegate to gadget layer.
1749 */
1750static void xudc_handle_setup(struct xusb_udc *udc)
1751 __must_hold(&udc->lock)
1752{
1753 struct xusb_ep *ep0 = &udc->ep[0];
1754 struct usb_ctrlrequest setup;
1755 u32 *ep0rambase;
1756
1757 /* Load up the chapter 9 command buffer.*/
1758 ep0rambase = (u32 __force *) (udc->addr + XUSB_SETUP_PKT_ADDR_OFFSET);
1759 memcpy_toio((void __iomem *)&setup, ep0rambase, 8);
1760
1761 udc->setup = setup;
1762 udc->setup.wValue = cpu_to_le16((u16 __force)setup.wValue);
1763 udc->setup.wIndex = cpu_to_le16((u16 __force)setup.wIndex);
1764 udc->setup.wLength = cpu_to_le16((u16 __force)setup.wLength);
1765
1766 /* Clear previous requests */
1767 xudc_nuke(ep: ep0, status: -ECONNRESET);
1768
1769 if (udc->setup.bRequestType & USB_DIR_IN) {
1770 /* Execute the get command.*/
1771 udc->setupseqrx = STATUS_PHASE;
1772 udc->setupseqtx = DATA_PHASE;
1773 } else {
1774 /* Execute the put command.*/
1775 udc->setupseqrx = DATA_PHASE;
1776 udc->setupseqtx = STATUS_PHASE;
1777 }
1778
1779 switch (udc->setup.bRequest) {
1780 case USB_REQ_GET_STATUS:
1781 /* Data+Status phase form udc */
1782 if ((udc->setup.bRequestType &
1783 (USB_DIR_IN | USB_TYPE_MASK)) !=
1784 (USB_DIR_IN | USB_TYPE_STANDARD))
1785 break;
1786 xudc_getstatus(udc);
1787 return;
1788 case USB_REQ_SET_ADDRESS:
1789 /* Status phase from udc */
1790 if (udc->setup.bRequestType != (USB_DIR_OUT |
1791 USB_TYPE_STANDARD | USB_RECIP_DEVICE))
1792 break;
1793 xudc_setaddress(udc);
1794 return;
1795 case USB_REQ_CLEAR_FEATURE:
1796 case USB_REQ_SET_FEATURE:
1797 /* Requests with no data phase, status phase from udc */
1798 if ((udc->setup.bRequestType & USB_TYPE_MASK)
1799 != USB_TYPE_STANDARD)
1800 break;
1801 xudc_set_clear_feature(udc);
1802 return;
1803 default:
1804 break;
1805 }
1806
1807 spin_unlock(lock: &udc->lock);
1808 if (udc->driver->setup(&udc->gadget, &setup) < 0)
1809 xudc_ep0_stall(udc);
1810 spin_lock(lock: &udc->lock);
1811}
1812
1813/**
1814 * xudc_ep0_out - Processes the endpoint 0 OUT token.
1815 * @udc: pointer to the usb device controller structure.
1816 */
1817static void xudc_ep0_out(struct xusb_udc *udc)
1818{
1819 struct xusb_ep *ep0 = &udc->ep[0];
1820 struct xusb_req *req;
1821 u8 *ep0rambase;
1822 unsigned int bytes_to_rx;
1823 void *buffer;
1824
1825 req = list_first_entry(&ep0->queue, struct xusb_req, queue);
1826
1827 switch (udc->setupseqrx) {
1828 case STATUS_PHASE:
1829 /*
1830 * This resets both state machines for the next
1831 * Setup packet.
1832 */
1833 udc->setupseqrx = SETUP_PHASE;
1834 udc->setupseqtx = SETUP_PHASE;
1835 req->usb_req.actual = req->usb_req.length;
1836 xudc_done(ep: ep0, req, status: 0);
1837 break;
1838 case DATA_PHASE:
1839 bytes_to_rx = udc->read_fn(udc->addr +
1840 XUSB_EP_BUF0COUNT_OFFSET);
1841 /* Copy the data to be received from the DPRAM. */
1842 ep0rambase = (u8 __force *) (udc->addr +
1843 (ep0->rambase << 2));
1844 buffer = req->usb_req.buf + req->usb_req.actual;
1845 req->usb_req.actual = req->usb_req.actual + bytes_to_rx;
1846 memcpy_toio((void __iomem *)buffer, ep0rambase, bytes_to_rx);
1847
1848 if (req->usb_req.length == req->usb_req.actual) {
1849 /* Data transfer completed get ready for Status stage */
1850 xudc_wrstatus(udc);
1851 } else {
1852 /* Enable EP0 buffer to receive data */
1853 udc->write_fn(udc->addr, XUSB_EP_BUF0COUNT_OFFSET, 0);
1854 udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET, 1);
1855 }
1856 break;
1857 default:
1858 break;
1859 }
1860}
1861
1862/**
1863 * xudc_ep0_in - Processes the endpoint 0 IN token.
1864 * @udc: pointer to the usb device controller structure.
1865 */
1866static void xudc_ep0_in(struct xusb_udc *udc)
1867{
1868 struct xusb_ep *ep0 = &udc->ep[0];
1869 struct xusb_req *req;
1870 unsigned int bytes_to_tx;
1871 void *buffer;
1872 u32 epcfgreg;
1873 u16 count = 0;
1874 u16 length;
1875 u8 *ep0rambase;
1876 u8 test_mode = le16_to_cpu(udc->setup.wIndex) >> 8;
1877
1878 req = list_first_entry(&ep0->queue, struct xusb_req, queue);
1879 bytes_to_tx = req->usb_req.length - req->usb_req.actual;
1880
1881 switch (udc->setupseqtx) {
1882 case STATUS_PHASE:
1883 switch (udc->setup.bRequest) {
1884 case USB_REQ_SET_ADDRESS:
1885 /* Set the address of the device.*/
1886 udc->write_fn(udc->addr, XUSB_ADDRESS_OFFSET,
1887 le16_to_cpu(udc->setup.wValue));
1888 break;
1889 case USB_REQ_SET_FEATURE:
1890 if (udc->setup.bRequestType ==
1891 USB_RECIP_DEVICE) {
1892 if (le16_to_cpu(udc->setup.wValue) ==
1893 USB_DEVICE_TEST_MODE)
1894 udc->write_fn(udc->addr,
1895 XUSB_TESTMODE_OFFSET,
1896 test_mode);
1897 }
1898 break;
1899 }
1900 req->usb_req.actual = req->usb_req.length;
1901 xudc_done(ep: ep0, req, status: 0);
1902 break;
1903 case DATA_PHASE:
1904 if (!bytes_to_tx) {
1905 /*
1906 * We're done with data transfer, next
1907 * will be zero length OUT with data toggle of
1908 * 1. Setup data_toggle.
1909 */
1910 epcfgreg = udc->read_fn(udc->addr + ep0->offset);
1911 epcfgreg |= XUSB_EP_CFG_DATA_TOGGLE_MASK;
1912 udc->write_fn(udc->addr, ep0->offset, epcfgreg);
1913 udc->setupseqtx = STATUS_PHASE;
1914 } else {
1915 length = count = min_t(u32, bytes_to_tx,
1916 EP0_MAX_PACKET);
1917 /* Copy the data to be transmitted into the DPRAM. */
1918 ep0rambase = (u8 __force *) (udc->addr +
1919 (ep0->rambase << 2));
1920 buffer = req->usb_req.buf + req->usb_req.actual;
1921 req->usb_req.actual = req->usb_req.actual + length;
1922 memcpy_toio((void __iomem *)ep0rambase, buffer, length);
1923 }
1924 udc->write_fn(udc->addr, XUSB_EP_BUF0COUNT_OFFSET, count);
1925 udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET, 1);
1926 break;
1927 default:
1928 break;
1929 }
1930}
1931
1932/**
1933 * xudc_ctrl_ep_handler - Endpoint 0 interrupt handler.
1934 * @udc: pointer to the udc structure.
1935 * @intrstatus: It's the mask value for the interrupt sources on endpoint 0.
1936 *
1937 * Processes the commands received during enumeration phase.
1938 */
1939static void xudc_ctrl_ep_handler(struct xusb_udc *udc, u32 intrstatus)
1940{
1941
1942 if (intrstatus & XUSB_STATUS_SETUP_PACKET_MASK) {
1943 xudc_handle_setup(udc);
1944 } else {
1945 if (intrstatus & XUSB_STATUS_FIFO_BUFF_RDY_MASK)
1946 xudc_ep0_out(udc);
1947 else if (intrstatus & XUSB_STATUS_FIFO_BUFF_FREE_MASK)
1948 xudc_ep0_in(udc);
1949 }
1950}
1951
1952/**
1953 * xudc_nonctrl_ep_handler - Non control endpoint interrupt handler.
1954 * @udc: pointer to the udc structure.
1955 * @epnum: End point number for which the interrupt is to be processed
1956 * @intrstatus: mask value for interrupt sources of endpoints other
1957 * than endpoint 0.
1958 *
1959 * Processes the buffer completion interrupts.
1960 */
1961static void xudc_nonctrl_ep_handler(struct xusb_udc *udc, u8 epnum,
1962 u32 intrstatus)
1963{
1964
1965 struct xusb_req *req;
1966 struct xusb_ep *ep;
1967
1968 ep = &udc->ep[epnum];
1969 /* Process the End point interrupts.*/
1970 if (intrstatus & (XUSB_STATUS_EP0_BUFF1_COMP_MASK << epnum))
1971 ep->buffer0ready = 0;
1972 if (intrstatus & (XUSB_STATUS_EP0_BUFF2_COMP_MASK << epnum))
1973 ep->buffer1ready = false;
1974
1975 if (list_empty(head: &ep->queue))
1976 return;
1977
1978 req = list_first_entry(&ep->queue, struct xusb_req, queue);
1979
1980 if (ep->is_in)
1981 xudc_write_fifo(ep, req);
1982 else
1983 xudc_read_fifo(ep, req);
1984}
1985
1986/**
1987 * xudc_irq - The main interrupt handler.
1988 * @irq: The interrupt number.
1989 * @_udc: pointer to the usb device controller structure.
1990 *
1991 * Return: IRQ_HANDLED after the interrupt is handled.
1992 */
1993static irqreturn_t xudc_irq(int irq, void *_udc)
1994{
1995 struct xusb_udc *udc = _udc;
1996 u32 intrstatus;
1997 u32 ier;
1998 u8 index;
1999 u32 bufintr;
2000 unsigned long flags;
2001
2002 spin_lock_irqsave(&udc->lock, flags);
2003
2004 /*
2005 * Event interrupts are level sensitive hence first disable
2006 * IER, read ISR and figure out active interrupts.
2007 */
2008 ier = udc->read_fn(udc->addr + XUSB_IER_OFFSET);
2009 ier &= ~XUSB_STATUS_INTR_EVENT_MASK;
2010 udc->write_fn(udc->addr, XUSB_IER_OFFSET, ier);
2011
2012 /* Read the Interrupt Status Register.*/
2013 intrstatus = udc->read_fn(udc->addr + XUSB_STATUS_OFFSET);
2014
2015 /* Call the handler for the event interrupt.*/
2016 if (intrstatus & XUSB_STATUS_INTR_EVENT_MASK) {
2017 /*
2018 * Check if there is any action to be done for :
2019 * - USB Reset received {XUSB_STATUS_RESET_MASK}
2020 * - USB Suspend received {XUSB_STATUS_SUSPEND_MASK}
2021 * - USB Resume received {XUSB_STATUS_RESUME_MASK}
2022 * - USB Disconnect received {XUSB_STATUS_DISCONNECT_MASK}
2023 */
2024 xudc_startup_handler(udc, intrstatus);
2025 }
2026
2027 /* Check the buffer completion interrupts */
2028 if (intrstatus & XUSB_STATUS_INTR_BUFF_COMP_ALL_MASK) {
2029 /* Enable Reset, Suspend, Resume and Disconnect */
2030 ier = udc->read_fn(udc->addr + XUSB_IER_OFFSET);
2031 ier |= XUSB_STATUS_INTR_EVENT_MASK;
2032 udc->write_fn(udc->addr, XUSB_IER_OFFSET, ier);
2033
2034 if (intrstatus & XUSB_STATUS_EP0_BUFF1_COMP_MASK)
2035 xudc_ctrl_ep_handler(udc, intrstatus);
2036
2037 for (index = 1; index < 8; index++) {
2038 bufintr = ((intrstatus &
2039 (XUSB_STATUS_EP1_BUFF1_COMP_MASK <<
2040 (index - 1))) || (intrstatus &
2041 (XUSB_STATUS_EP1_BUFF2_COMP_MASK <<
2042 (index - 1))));
2043 if (bufintr) {
2044 xudc_nonctrl_ep_handler(udc, epnum: index,
2045 intrstatus);
2046 }
2047 }
2048 }
2049
2050 spin_unlock_irqrestore(lock: &udc->lock, flags);
2051 return IRQ_HANDLED;
2052}
2053
2054/**
2055 * xudc_probe - The device probe function for driver initialization.
2056 * @pdev: pointer to the platform device structure.
2057 *
2058 * Return: 0 for success and error value on failure
2059 */
2060static int xudc_probe(struct platform_device *pdev)
2061{
2062 struct device_node *np = pdev->dev.of_node;
2063 struct resource *res;
2064 struct xusb_udc *udc;
2065 int irq;
2066 int ret;
2067 u32 ier;
2068 u8 *buff;
2069
2070 udc = devm_kzalloc(dev: &pdev->dev, size: sizeof(*udc), GFP_KERNEL);
2071 if (!udc)
2072 return -ENOMEM;
2073
2074 /* Create a dummy request for GET_STATUS, SET_ADDRESS */
2075 udc->req = devm_kzalloc(dev: &pdev->dev, size: sizeof(struct xusb_req),
2076 GFP_KERNEL);
2077 if (!udc->req)
2078 return -ENOMEM;
2079
2080 buff = devm_kzalloc(dev: &pdev->dev, STATUSBUFF_SIZE, GFP_KERNEL);
2081 if (!buff)
2082 return -ENOMEM;
2083
2084 udc->req->usb_req.buf = buff;
2085
2086 /* Map the registers */
2087 udc->addr = devm_platform_get_and_ioremap_resource(pdev, index: 0, res: &res);
2088 if (IS_ERR(ptr: udc->addr))
2089 return PTR_ERR(ptr: udc->addr);
2090
2091 irq = platform_get_irq(pdev, 0);
2092 if (irq < 0)
2093 return irq;
2094 ret = devm_request_irq(dev: &pdev->dev, irq, handler: xudc_irq, irqflags: 0,
2095 devname: dev_name(dev: &pdev->dev), dev_id: udc);
2096 if (ret < 0) {
2097 dev_dbg(&pdev->dev, "unable to request irq %d", irq);
2098 goto fail;
2099 }
2100
2101 udc->dma_enabled = of_property_read_bool(np, propname: "xlnx,has-builtin-dma");
2102
2103 /* Setup gadget structure */
2104 udc->gadget.ops = &xusb_udc_ops;
2105 udc->gadget.max_speed = USB_SPEED_HIGH;
2106 udc->gadget.speed = USB_SPEED_UNKNOWN;
2107 udc->gadget.ep0 = &udc->ep[XUSB_EP_NUMBER_ZERO].ep_usb;
2108 udc->gadget.name = driver_name;
2109
2110 udc->clk = devm_clk_get(dev: &pdev->dev, id: "s_axi_aclk");
2111 if (IS_ERR(ptr: udc->clk)) {
2112 if (PTR_ERR(ptr: udc->clk) != -ENOENT) {
2113 ret = PTR_ERR(ptr: udc->clk);
2114 goto fail;
2115 }
2116
2117 /*
2118 * Clock framework support is optional, continue on,
2119 * anyways if we don't find a matching clock
2120 */
2121 dev_warn(&pdev->dev, "s_axi_aclk clock property is not found\n");
2122 udc->clk = NULL;
2123 }
2124
2125 ret = clk_prepare_enable(clk: udc->clk);
2126 if (ret) {
2127 dev_err(&pdev->dev, "Unable to enable clock.\n");
2128 return ret;
2129 }
2130
2131 spin_lock_init(&udc->lock);
2132
2133 /* Check for IP endianness */
2134 udc->write_fn = xudc_write32_be;
2135 udc->read_fn = xudc_read32_be;
2136 udc->write_fn(udc->addr, XUSB_TESTMODE_OFFSET, USB_TEST_J);
2137 if ((udc->read_fn(udc->addr + XUSB_TESTMODE_OFFSET))
2138 != USB_TEST_J) {
2139 udc->write_fn = xudc_write32;
2140 udc->read_fn = xudc_read32;
2141 }
2142 udc->write_fn(udc->addr, XUSB_TESTMODE_OFFSET, 0);
2143
2144 xudc_eps_init(udc);
2145
2146 /* Set device address to 0.*/
2147 udc->write_fn(udc->addr, XUSB_ADDRESS_OFFSET, 0);
2148
2149 ret = usb_add_gadget_udc(parent: &pdev->dev, gadget: &udc->gadget);
2150 if (ret)
2151 goto err_disable_unprepare_clk;
2152
2153 udc->dev = &udc->gadget.dev;
2154
2155 /* Enable the interrupts.*/
2156 ier = XUSB_STATUS_GLOBAL_INTR_MASK | XUSB_STATUS_INTR_EVENT_MASK |
2157 XUSB_STATUS_FIFO_BUFF_RDY_MASK | XUSB_STATUS_FIFO_BUFF_FREE_MASK |
2158 XUSB_STATUS_SETUP_PACKET_MASK |
2159 XUSB_STATUS_INTR_BUFF_COMP_ALL_MASK;
2160
2161 udc->write_fn(udc->addr, XUSB_IER_OFFSET, ier);
2162
2163 platform_set_drvdata(pdev, data: udc);
2164
2165 dev_vdbg(&pdev->dev, "%s at 0x%08X mapped to %p %s\n",
2166 driver_name, (u32)res->start, udc->addr,
2167 udc->dma_enabled ? "with DMA" : "without DMA");
2168
2169 return 0;
2170
2171err_disable_unprepare_clk:
2172 clk_disable_unprepare(clk: udc->clk);
2173fail:
2174 dev_err(&pdev->dev, "probe failed, %d\n", ret);
2175 return ret;
2176}
2177
2178/**
2179 * xudc_remove - Releases the resources allocated during the initialization.
2180 * @pdev: pointer to the platform device structure.
2181 *
2182 * Return: 0 always
2183 */
2184static void xudc_remove(struct platform_device *pdev)
2185{
2186 struct xusb_udc *udc = platform_get_drvdata(pdev);
2187
2188 usb_del_gadget_udc(gadget: &udc->gadget);
2189 clk_disable_unprepare(clk: udc->clk);
2190}
2191
2192#ifdef CONFIG_PM_SLEEP
2193static int xudc_suspend(struct device *dev)
2194{
2195 struct xusb_udc *udc;
2196 u32 crtlreg;
2197 unsigned long flags;
2198
2199 udc = dev_get_drvdata(dev);
2200
2201 spin_lock_irqsave(&udc->lock, flags);
2202
2203 crtlreg = udc->read_fn(udc->addr + XUSB_CONTROL_OFFSET);
2204 crtlreg &= ~XUSB_CONTROL_USB_READY_MASK;
2205
2206 udc->write_fn(udc->addr, XUSB_CONTROL_OFFSET, crtlreg);
2207
2208 spin_unlock_irqrestore(lock: &udc->lock, flags);
2209 if (udc->driver && udc->driver->suspend)
2210 udc->driver->suspend(&udc->gadget);
2211
2212 clk_disable(clk: udc->clk);
2213
2214 return 0;
2215}
2216
2217static int xudc_resume(struct device *dev)
2218{
2219 struct xusb_udc *udc;
2220 u32 crtlreg;
2221 unsigned long flags;
2222 int ret;
2223
2224 udc = dev_get_drvdata(dev);
2225
2226 ret = clk_enable(clk: udc->clk);
2227 if (ret < 0)
2228 return ret;
2229
2230 spin_lock_irqsave(&udc->lock, flags);
2231
2232 crtlreg = udc->read_fn(udc->addr + XUSB_CONTROL_OFFSET);
2233 crtlreg |= XUSB_CONTROL_USB_READY_MASK;
2234
2235 udc->write_fn(udc->addr, XUSB_CONTROL_OFFSET, crtlreg);
2236
2237 spin_unlock_irqrestore(lock: &udc->lock, flags);
2238
2239 return 0;
2240}
2241#endif /* CONFIG_PM_SLEEP */
2242
2243static const struct dev_pm_ops xudc_pm_ops = {
2244 SET_SYSTEM_SLEEP_PM_OPS(xudc_suspend, xudc_resume)
2245};
2246
2247/* Match table for of_platform binding */
2248static const struct of_device_id usb_of_match[] = {
2249 { .compatible = "xlnx,usb2-device-4.00.a", },
2250 { /* end of list */ },
2251};
2252MODULE_DEVICE_TABLE(of, usb_of_match);
2253
2254static struct platform_driver xudc_driver = {
2255 .driver = {
2256 .name = driver_name,
2257 .of_match_table = usb_of_match,
2258 .pm = &xudc_pm_ops,
2259 },
2260 .probe = xudc_probe,
2261 .remove_new = xudc_remove,
2262};
2263
2264module_platform_driver(xudc_driver);
2265
2266MODULE_DESCRIPTION("Xilinx udc driver");
2267MODULE_AUTHOR("Xilinx, Inc");
2268MODULE_LICENSE("GPL");
2269

source code of linux/drivers/usb/gadget/udc/udc-xilinx.c