1// SPDX-License-Identifier: GPL-2.0
2/*
3 * xHCI host controller driver
4 *
5 * Copyright (C) 2008 Intel Corp.
6 *
7 * Author: Sarah Sharp
8 * Some code borrowed from the Linux EHCI driver.
9 */
10
11#include <linux/usb.h>
12#include <linux/overflow.h>
13#include <linux/pci.h>
14#include <linux/slab.h>
15#include <linux/dmapool.h>
16#include <linux/dma-mapping.h>
17
18#include "xhci.h"
19#include "xhci-trace.h"
20#include "xhci-debugfs.h"
21
22/*
23 * Allocates a generic ring segment from the ring pool, sets the dma address,
24 * initializes the segment to zero, and sets the private next pointer to NULL.
25 *
26 * Section 4.11.1.1:
27 * "All components of all Command and Transfer TRBs shall be initialized to '0'"
28 */
29static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci,
30 unsigned int cycle_state,
31 unsigned int max_packet,
32 unsigned int num,
33 gfp_t flags)
34{
35 struct xhci_segment *seg;
36 dma_addr_t dma;
37 int i;
38 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
39
40 seg = kzalloc_node(size: sizeof(*seg), flags, node: dev_to_node(dev));
41 if (!seg)
42 return NULL;
43
44 seg->trbs = dma_pool_zalloc(pool: xhci->segment_pool, mem_flags: flags, handle: &dma);
45 if (!seg->trbs) {
46 kfree(objp: seg);
47 return NULL;
48 }
49
50 if (max_packet) {
51 seg->bounce_buf = kzalloc_node(size: max_packet, flags,
52 node: dev_to_node(dev));
53 if (!seg->bounce_buf) {
54 dma_pool_free(pool: xhci->segment_pool, vaddr: seg->trbs, addr: dma);
55 kfree(objp: seg);
56 return NULL;
57 }
58 }
59 /* If the cycle state is 0, set the cycle bit to 1 for all the TRBs */
60 if (cycle_state == 0) {
61 for (i = 0; i < TRBS_PER_SEGMENT; i++)
62 seg->trbs[i].link.control = cpu_to_le32(TRB_CYCLE);
63 }
64 seg->num = num;
65 seg->dma = dma;
66 seg->next = NULL;
67
68 return seg;
69}
70
71static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
72{
73 if (seg->trbs) {
74 dma_pool_free(pool: xhci->segment_pool, vaddr: seg->trbs, addr: seg->dma);
75 seg->trbs = NULL;
76 }
77 kfree(objp: seg->bounce_buf);
78 kfree(objp: seg);
79}
80
81static void xhci_free_segments_for_ring(struct xhci_hcd *xhci,
82 struct xhci_segment *first)
83{
84 struct xhci_segment *seg;
85
86 seg = first->next;
87 while (seg != first) {
88 struct xhci_segment *next = seg->next;
89 xhci_segment_free(xhci, seg);
90 seg = next;
91 }
92 xhci_segment_free(xhci, seg: first);
93}
94
95/*
96 * Make the prev segment point to the next segment.
97 *
98 * Change the last TRB in the prev segment to be a Link TRB which points to the
99 * DMA address of the next segment. The caller needs to set any Link TRB
100 * related flags, such as End TRB, Toggle Cycle, and no snoop.
101 */
102static void xhci_link_segments(struct xhci_segment *prev,
103 struct xhci_segment *next,
104 enum xhci_ring_type type, bool chain_links)
105{
106 u32 val;
107
108 if (!prev || !next)
109 return;
110 prev->next = next;
111 if (type != TYPE_EVENT) {
112 prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr =
113 cpu_to_le64(next->dma);
114
115 /* Set the last TRB in the segment to have a TRB type ID of Link TRB */
116 val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control);
117 val &= ~TRB_TYPE_BITMASK;
118 val |= TRB_TYPE(TRB_LINK);
119 if (chain_links)
120 val |= TRB_CHAIN;
121 prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val);
122 }
123}
124
125/*
126 * Link the ring to the new segments.
127 * Set Toggle Cycle for the new ring if needed.
128 */
129static void xhci_link_rings(struct xhci_hcd *xhci, struct xhci_ring *ring,
130 struct xhci_segment *first, struct xhci_segment *last,
131 unsigned int num_segs)
132{
133 struct xhci_segment *next, *seg;
134 bool chain_links;
135
136 if (!ring || !first || !last)
137 return;
138
139 /* Set chain bit for 0.95 hosts, and for isoc rings on AMD 0.96 host */
140 chain_links = !!(xhci_link_trb_quirk(xhci) ||
141 (ring->type == TYPE_ISOC &&
142 (xhci->quirks & XHCI_AMD_0x96_HOST)));
143
144 next = ring->enq_seg->next;
145 xhci_link_segments(prev: ring->enq_seg, next: first, type: ring->type, chain_links);
146 xhci_link_segments(prev: last, next, type: ring->type, chain_links);
147 ring->num_segs += num_segs;
148
149 if (ring->enq_seg == ring->last_seg) {
150 if (ring->type != TYPE_EVENT) {
151 ring->last_seg->trbs[TRBS_PER_SEGMENT-1].link.control
152 &= ~cpu_to_le32(LINK_TOGGLE);
153 last->trbs[TRBS_PER_SEGMENT-1].link.control
154 |= cpu_to_le32(LINK_TOGGLE);
155 }
156 ring->last_seg = last;
157 }
158
159 for (seg = last; seg != ring->last_seg; seg = seg->next)
160 seg->next->num = seg->num + 1;
161}
162
163/*
164 * We need a radix tree for mapping physical addresses of TRBs to which stream
165 * ID they belong to. We need to do this because the host controller won't tell
166 * us which stream ring the TRB came from. We could store the stream ID in an
167 * event data TRB, but that doesn't help us for the cancellation case, since the
168 * endpoint may stop before it reaches that event data TRB.
169 *
170 * The radix tree maps the upper portion of the TRB DMA address to a ring
171 * segment that has the same upper portion of DMA addresses. For example, say I
172 * have segments of size 1KB, that are always 1KB aligned. A segment may
173 * start at 0x10c91000 and end at 0x10c913f0. If I use the upper 10 bits, the
174 * key to the stream ID is 0x43244. I can use the DMA address of the TRB to
175 * pass the radix tree a key to get the right stream ID:
176 *
177 * 0x10c90fff >> 10 = 0x43243
178 * 0x10c912c0 >> 10 = 0x43244
179 * 0x10c91400 >> 10 = 0x43245
180 *
181 * Obviously, only those TRBs with DMA addresses that are within the segment
182 * will make the radix tree return the stream ID for that ring.
183 *
184 * Caveats for the radix tree:
185 *
186 * The radix tree uses an unsigned long as a key pair. On 32-bit systems, an
187 * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be
188 * 64-bits. Since we only request 32-bit DMA addresses, we can use that as the
189 * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit
190 * PCI DMA addresses on a 64-bit system). There might be a problem on 32-bit
191 * extended systems (where the DMA address can be bigger than 32-bits),
192 * if we allow the PCI dma mask to be bigger than 32-bits. So don't do that.
193 */
194static int xhci_insert_segment_mapping(struct radix_tree_root *trb_address_map,
195 struct xhci_ring *ring,
196 struct xhci_segment *seg,
197 gfp_t mem_flags)
198{
199 unsigned long key;
200 int ret;
201
202 key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
203 /* Skip any segments that were already added. */
204 if (radix_tree_lookup(trb_address_map, key))
205 return 0;
206
207 ret = radix_tree_maybe_preload(gfp_mask: mem_flags);
208 if (ret)
209 return ret;
210 ret = radix_tree_insert(trb_address_map,
211 index: key, ring);
212 radix_tree_preload_end();
213 return ret;
214}
215
216static void xhci_remove_segment_mapping(struct radix_tree_root *trb_address_map,
217 struct xhci_segment *seg)
218{
219 unsigned long key;
220
221 key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
222 if (radix_tree_lookup(trb_address_map, key))
223 radix_tree_delete(trb_address_map, key);
224}
225
226static int xhci_update_stream_segment_mapping(
227 struct radix_tree_root *trb_address_map,
228 struct xhci_ring *ring,
229 struct xhci_segment *first_seg,
230 struct xhci_segment *last_seg,
231 gfp_t mem_flags)
232{
233 struct xhci_segment *seg;
234 struct xhci_segment *failed_seg;
235 int ret;
236
237 if (WARN_ON_ONCE(trb_address_map == NULL))
238 return 0;
239
240 seg = first_seg;
241 do {
242 ret = xhci_insert_segment_mapping(trb_address_map,
243 ring, seg, mem_flags);
244 if (ret)
245 goto remove_streams;
246 if (seg == last_seg)
247 return 0;
248 seg = seg->next;
249 } while (seg != first_seg);
250
251 return 0;
252
253remove_streams:
254 failed_seg = seg;
255 seg = first_seg;
256 do {
257 xhci_remove_segment_mapping(trb_address_map, seg);
258 if (seg == failed_seg)
259 return ret;
260 seg = seg->next;
261 } while (seg != first_seg);
262
263 return ret;
264}
265
266static void xhci_remove_stream_mapping(struct xhci_ring *ring)
267{
268 struct xhci_segment *seg;
269
270 if (WARN_ON_ONCE(ring->trb_address_map == NULL))
271 return;
272
273 seg = ring->first_seg;
274 do {
275 xhci_remove_segment_mapping(trb_address_map: ring->trb_address_map, seg);
276 seg = seg->next;
277 } while (seg != ring->first_seg);
278}
279
280static int xhci_update_stream_mapping(struct xhci_ring *ring, gfp_t mem_flags)
281{
282 return xhci_update_stream_segment_mapping(trb_address_map: ring->trb_address_map, ring,
283 first_seg: ring->first_seg, last_seg: ring->last_seg, mem_flags);
284}
285
286/* XXX: Do we need the hcd structure in all these functions? */
287void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
288{
289 if (!ring)
290 return;
291
292 trace_xhci_ring_free(ring);
293
294 if (ring->first_seg) {
295 if (ring->type == TYPE_STREAM)
296 xhci_remove_stream_mapping(ring);
297 xhci_free_segments_for_ring(xhci, first: ring->first_seg);
298 }
299
300 kfree(objp: ring);
301}
302
303void xhci_initialize_ring_info(struct xhci_ring *ring,
304 unsigned int cycle_state)
305{
306 /* The ring is empty, so the enqueue pointer == dequeue pointer */
307 ring->enqueue = ring->first_seg->trbs;
308 ring->enq_seg = ring->first_seg;
309 ring->dequeue = ring->enqueue;
310 ring->deq_seg = ring->first_seg;
311 /* The ring is initialized to 0. The producer must write 1 to the cycle
312 * bit to handover ownership of the TRB, so PCS = 1. The consumer must
313 * compare CCS to the cycle bit to check ownership, so CCS = 1.
314 *
315 * New rings are initialized with cycle state equal to 1; if we are
316 * handling ring expansion, set the cycle state equal to the old ring.
317 */
318 ring->cycle_state = cycle_state;
319
320 /*
321 * Each segment has a link TRB, and leave an extra TRB for SW
322 * accounting purpose
323 */
324 ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
325}
326
327/* Allocate segments and link them for a ring */
328static int xhci_alloc_segments_for_ring(struct xhci_hcd *xhci,
329 struct xhci_segment **first, struct xhci_segment **last,
330 unsigned int num_segs, unsigned int num,
331 unsigned int cycle_state, enum xhci_ring_type type,
332 unsigned int max_packet, gfp_t flags)
333{
334 struct xhci_segment *prev;
335 bool chain_links;
336
337 /* Set chain bit for 0.95 hosts, and for isoc rings on AMD 0.96 host */
338 chain_links = !!(xhci_link_trb_quirk(xhci) ||
339 (type == TYPE_ISOC &&
340 (xhci->quirks & XHCI_AMD_0x96_HOST)));
341
342 prev = xhci_segment_alloc(xhci, cycle_state, max_packet, num, flags);
343 if (!prev)
344 return -ENOMEM;
345 num++;
346
347 *first = prev;
348 while (num < num_segs) {
349 struct xhci_segment *next;
350
351 next = xhci_segment_alloc(xhci, cycle_state, max_packet, num,
352 flags);
353 if (!next) {
354 prev = *first;
355 while (prev) {
356 next = prev->next;
357 xhci_segment_free(xhci, seg: prev);
358 prev = next;
359 }
360 return -ENOMEM;
361 }
362 xhci_link_segments(prev, next, type, chain_links);
363
364 prev = next;
365 num++;
366 }
367 xhci_link_segments(prev, next: *first, type, chain_links);
368 *last = prev;
369
370 return 0;
371}
372
373/*
374 * Create a new ring with zero or more segments.
375 *
376 * Link each segment together into a ring.
377 * Set the end flag and the cycle toggle bit on the last segment.
378 * See section 4.9.1 and figures 15 and 16.
379 */
380struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci,
381 unsigned int num_segs, unsigned int cycle_state,
382 enum xhci_ring_type type, unsigned int max_packet, gfp_t flags)
383{
384 struct xhci_ring *ring;
385 int ret;
386 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
387
388 ring = kzalloc_node(size: sizeof(*ring), flags, node: dev_to_node(dev));
389 if (!ring)
390 return NULL;
391
392 ring->num_segs = num_segs;
393 ring->bounce_buf_len = max_packet;
394 INIT_LIST_HEAD(list: &ring->td_list);
395 ring->type = type;
396 if (num_segs == 0)
397 return ring;
398
399 ret = xhci_alloc_segments_for_ring(xhci, first: &ring->first_seg,
400 last: &ring->last_seg, num_segs, num: 0, cycle_state, type,
401 max_packet, flags);
402 if (ret)
403 goto fail;
404
405 /* Only event ring does not use link TRB */
406 if (type != TYPE_EVENT) {
407 /* See section 4.9.2.1 and 6.4.4.1 */
408 ring->last_seg->trbs[TRBS_PER_SEGMENT - 1].link.control |=
409 cpu_to_le32(LINK_TOGGLE);
410 }
411 xhci_initialize_ring_info(ring, cycle_state);
412 trace_xhci_ring_alloc(ring);
413 return ring;
414
415fail:
416 kfree(objp: ring);
417 return NULL;
418}
419
420void xhci_free_endpoint_ring(struct xhci_hcd *xhci,
421 struct xhci_virt_device *virt_dev,
422 unsigned int ep_index)
423{
424 xhci_ring_free(xhci, ring: virt_dev->eps[ep_index].ring);
425 virt_dev->eps[ep_index].ring = NULL;
426}
427
428/*
429 * Expand an existing ring.
430 * Allocate a new ring which has same segment numbers and link the two rings.
431 */
432int xhci_ring_expansion(struct xhci_hcd *xhci, struct xhci_ring *ring,
433 unsigned int num_new_segs, gfp_t flags)
434{
435 struct xhci_segment *first;
436 struct xhci_segment *last;
437 int ret;
438
439 ret = xhci_alloc_segments_for_ring(xhci, first: &first, last: &last,
440 num_segs: num_new_segs, num: ring->enq_seg->num + 1,
441 cycle_state: ring->cycle_state, type: ring->type,
442 max_packet: ring->bounce_buf_len, flags);
443 if (ret)
444 return -ENOMEM;
445
446 if (ring->type == TYPE_STREAM)
447 ret = xhci_update_stream_segment_mapping(trb_address_map: ring->trb_address_map,
448 ring, first_seg: first, last_seg: last, mem_flags: flags);
449 if (ret) {
450 struct xhci_segment *next;
451 do {
452 next = first->next;
453 xhci_segment_free(xhci, seg: first);
454 if (first == last)
455 break;
456 first = next;
457 } while (true);
458 return ret;
459 }
460
461 xhci_link_rings(xhci, ring, first, last, num_segs: num_new_segs);
462 trace_xhci_ring_expansion(ring);
463 xhci_dbg_trace(xhci, trace: trace_xhci_dbg_ring_expansion,
464 fmt: "ring expansion succeed, now has %d segments",
465 ring->num_segs);
466
467 return 0;
468}
469
470struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci,
471 int type, gfp_t flags)
472{
473 struct xhci_container_ctx *ctx;
474 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
475
476 if ((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT))
477 return NULL;
478
479 ctx = kzalloc_node(size: sizeof(*ctx), flags, node: dev_to_node(dev));
480 if (!ctx)
481 return NULL;
482
483 ctx->type = type;
484 ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024;
485 if (type == XHCI_CTX_TYPE_INPUT)
486 ctx->size += CTX_SIZE(xhci->hcc_params);
487
488 ctx->bytes = dma_pool_zalloc(pool: xhci->device_pool, mem_flags: flags, handle: &ctx->dma);
489 if (!ctx->bytes) {
490 kfree(objp: ctx);
491 return NULL;
492 }
493 return ctx;
494}
495
496void xhci_free_container_ctx(struct xhci_hcd *xhci,
497 struct xhci_container_ctx *ctx)
498{
499 if (!ctx)
500 return;
501 dma_pool_free(pool: xhci->device_pool, vaddr: ctx->bytes, addr: ctx->dma);
502 kfree(objp: ctx);
503}
504
505struct xhci_input_control_ctx *xhci_get_input_control_ctx(
506 struct xhci_container_ctx *ctx)
507{
508 if (ctx->type != XHCI_CTX_TYPE_INPUT)
509 return NULL;
510
511 return (struct xhci_input_control_ctx *)ctx->bytes;
512}
513
514struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci,
515 struct xhci_container_ctx *ctx)
516{
517 if (ctx->type == XHCI_CTX_TYPE_DEVICE)
518 return (struct xhci_slot_ctx *)ctx->bytes;
519
520 return (struct xhci_slot_ctx *)
521 (ctx->bytes + CTX_SIZE(xhci->hcc_params));
522}
523
524struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci,
525 struct xhci_container_ctx *ctx,
526 unsigned int ep_index)
527{
528 /* increment ep index by offset of start of ep ctx array */
529 ep_index++;
530 if (ctx->type == XHCI_CTX_TYPE_INPUT)
531 ep_index++;
532
533 return (struct xhci_ep_ctx *)
534 (ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params)));
535}
536EXPORT_SYMBOL_GPL(xhci_get_ep_ctx);
537
538/***************** Streams structures manipulation *************************/
539
540static void xhci_free_stream_ctx(struct xhci_hcd *xhci,
541 unsigned int num_stream_ctxs,
542 struct xhci_stream_ctx *stream_ctx, dma_addr_t dma)
543{
544 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
545 size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs;
546
547 if (size > MEDIUM_STREAM_ARRAY_SIZE)
548 dma_free_coherent(dev, size, cpu_addr: stream_ctx, dma_handle: dma);
549 else if (size > SMALL_STREAM_ARRAY_SIZE)
550 dma_pool_free(pool: xhci->medium_streams_pool, vaddr: stream_ctx, addr: dma);
551 else
552 dma_pool_free(pool: xhci->small_streams_pool, vaddr: stream_ctx, addr: dma);
553}
554
555/*
556 * The stream context array for each endpoint with bulk streams enabled can
557 * vary in size, based on:
558 * - how many streams the endpoint supports,
559 * - the maximum primary stream array size the host controller supports,
560 * - and how many streams the device driver asks for.
561 *
562 * The stream context array must be a power of 2, and can be as small as
563 * 64 bytes or as large as 1MB.
564 */
565static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci,
566 unsigned int num_stream_ctxs, dma_addr_t *dma,
567 gfp_t mem_flags)
568{
569 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
570 size_t size = size_mul(factor1: sizeof(struct xhci_stream_ctx), factor2: num_stream_ctxs);
571
572 if (size > MEDIUM_STREAM_ARRAY_SIZE)
573 return dma_alloc_coherent(dev, size, dma_handle: dma, gfp: mem_flags);
574 if (size > SMALL_STREAM_ARRAY_SIZE)
575 return dma_pool_zalloc(pool: xhci->medium_streams_pool, mem_flags, handle: dma);
576 else
577 return dma_pool_zalloc(pool: xhci->small_streams_pool, mem_flags, handle: dma);
578}
579
580struct xhci_ring *xhci_dma_to_transfer_ring(
581 struct xhci_virt_ep *ep,
582 u64 address)
583{
584 if (ep->ep_state & EP_HAS_STREAMS)
585 return radix_tree_lookup(&ep->stream_info->trb_address_map,
586 address >> TRB_SEGMENT_SHIFT);
587 return ep->ring;
588}
589
590/*
591 * Change an endpoint's internal structure so it supports stream IDs. The
592 * number of requested streams includes stream 0, which cannot be used by device
593 * drivers.
594 *
595 * The number of stream contexts in the stream context array may be bigger than
596 * the number of streams the driver wants to use. This is because the number of
597 * stream context array entries must be a power of two.
598 */
599struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci,
600 unsigned int num_stream_ctxs,
601 unsigned int num_streams,
602 unsigned int max_packet, gfp_t mem_flags)
603{
604 struct xhci_stream_info *stream_info;
605 u32 cur_stream;
606 struct xhci_ring *cur_ring;
607 u64 addr;
608 int ret;
609 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
610
611 xhci_dbg(xhci, "Allocating %u streams and %u stream context array entries.\n",
612 num_streams, num_stream_ctxs);
613 if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) {
614 xhci_dbg(xhci, "Command ring has no reserved TRBs available\n");
615 return NULL;
616 }
617 xhci->cmd_ring_reserved_trbs++;
618
619 stream_info = kzalloc_node(size: sizeof(*stream_info), flags: mem_flags,
620 node: dev_to_node(dev));
621 if (!stream_info)
622 goto cleanup_trbs;
623
624 stream_info->num_streams = num_streams;
625 stream_info->num_stream_ctxs = num_stream_ctxs;
626
627 /* Initialize the array of virtual pointers to stream rings. */
628 stream_info->stream_rings = kcalloc_node(
629 n: num_streams, size: sizeof(struct xhci_ring *), flags: mem_flags,
630 node: dev_to_node(dev));
631 if (!stream_info->stream_rings)
632 goto cleanup_info;
633
634 /* Initialize the array of DMA addresses for stream rings for the HW. */
635 stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci,
636 num_stream_ctxs, dma: &stream_info->ctx_array_dma,
637 mem_flags);
638 if (!stream_info->stream_ctx_array)
639 goto cleanup_ring_array;
640
641 /* Allocate everything needed to free the stream rings later */
642 stream_info->free_streams_command =
643 xhci_alloc_command_with_ctx(xhci, allocate_completion: true, mem_flags);
644 if (!stream_info->free_streams_command)
645 goto cleanup_ctx;
646
647 INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC);
648
649 /* Allocate rings for all the streams that the driver will use,
650 * and add their segment DMA addresses to the radix tree.
651 * Stream 0 is reserved.
652 */
653
654 for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
655 stream_info->stream_rings[cur_stream] =
656 xhci_ring_alloc(xhci, num_segs: 2, cycle_state: 1, type: TYPE_STREAM, max_packet,
657 flags: mem_flags);
658 cur_ring = stream_info->stream_rings[cur_stream];
659 if (!cur_ring)
660 goto cleanup_rings;
661 cur_ring->stream_id = cur_stream;
662 cur_ring->trb_address_map = &stream_info->trb_address_map;
663 /* Set deq ptr, cycle bit, and stream context type */
664 addr = cur_ring->first_seg->dma |
665 SCT_FOR_CTX(SCT_PRI_TR) |
666 cur_ring->cycle_state;
667 stream_info->stream_ctx_array[cur_stream].stream_ring =
668 cpu_to_le64(addr);
669 xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n", cur_stream, addr);
670
671 ret = xhci_update_stream_mapping(ring: cur_ring, mem_flags);
672 if (ret) {
673 xhci_ring_free(xhci, ring: cur_ring);
674 stream_info->stream_rings[cur_stream] = NULL;
675 goto cleanup_rings;
676 }
677 }
678 /* Leave the other unused stream ring pointers in the stream context
679 * array initialized to zero. This will cause the xHC to give us an
680 * error if the device asks for a stream ID we don't have setup (if it
681 * was any other way, the host controller would assume the ring is
682 * "empty" and wait forever for data to be queued to that stream ID).
683 */
684
685 return stream_info;
686
687cleanup_rings:
688 for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
689 cur_ring = stream_info->stream_rings[cur_stream];
690 if (cur_ring) {
691 xhci_ring_free(xhci, ring: cur_ring);
692 stream_info->stream_rings[cur_stream] = NULL;
693 }
694 }
695 xhci_free_command(xhci, command: stream_info->free_streams_command);
696cleanup_ctx:
697 xhci_free_stream_ctx(xhci,
698 num_stream_ctxs: stream_info->num_stream_ctxs,
699 stream_ctx: stream_info->stream_ctx_array,
700 dma: stream_info->ctx_array_dma);
701cleanup_ring_array:
702 kfree(objp: stream_info->stream_rings);
703cleanup_info:
704 kfree(objp: stream_info);
705cleanup_trbs:
706 xhci->cmd_ring_reserved_trbs--;
707 return NULL;
708}
709/*
710 * Sets the MaxPStreams field and the Linear Stream Array field.
711 * Sets the dequeue pointer to the stream context array.
712 */
713void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci,
714 struct xhci_ep_ctx *ep_ctx,
715 struct xhci_stream_info *stream_info)
716{
717 u32 max_primary_streams;
718 /* MaxPStreams is the number of stream context array entries, not the
719 * number we're actually using. Must be in 2^(MaxPstreams + 1) format.
720 * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
721 */
722 max_primary_streams = fls(x: stream_info->num_stream_ctxs) - 2;
723 xhci_dbg_trace(xhci, trace: trace_xhci_dbg_context_change,
724 fmt: "Setting number of stream ctx array entries to %u",
725 1 << (max_primary_streams + 1));
726 ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK);
727 ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams)
728 | EP_HAS_LSA);
729 ep_ctx->deq = cpu_to_le64(stream_info->ctx_array_dma);
730}
731
732/*
733 * Sets the MaxPStreams field and the Linear Stream Array field to 0.
734 * Reinstalls the "normal" endpoint ring (at its previous dequeue mark,
735 * not at the beginning of the ring).
736 */
737void xhci_setup_no_streams_ep_input_ctx(struct xhci_ep_ctx *ep_ctx,
738 struct xhci_virt_ep *ep)
739{
740 dma_addr_t addr;
741 ep_ctx->ep_info &= cpu_to_le32(~(EP_MAXPSTREAMS_MASK | EP_HAS_LSA));
742 addr = xhci_trb_virt_to_dma(seg: ep->ring->deq_seg, trb: ep->ring->dequeue);
743 ep_ctx->deq = cpu_to_le64(addr | ep->ring->cycle_state);
744}
745
746/* Frees all stream contexts associated with the endpoint,
747 *
748 * Caller should fix the endpoint context streams fields.
749 */
750void xhci_free_stream_info(struct xhci_hcd *xhci,
751 struct xhci_stream_info *stream_info)
752{
753 int cur_stream;
754 struct xhci_ring *cur_ring;
755
756 if (!stream_info)
757 return;
758
759 for (cur_stream = 1; cur_stream < stream_info->num_streams;
760 cur_stream++) {
761 cur_ring = stream_info->stream_rings[cur_stream];
762 if (cur_ring) {
763 xhci_ring_free(xhci, ring: cur_ring);
764 stream_info->stream_rings[cur_stream] = NULL;
765 }
766 }
767 xhci_free_command(xhci, command: stream_info->free_streams_command);
768 xhci->cmd_ring_reserved_trbs--;
769 if (stream_info->stream_ctx_array)
770 xhci_free_stream_ctx(xhci,
771 num_stream_ctxs: stream_info->num_stream_ctxs,
772 stream_ctx: stream_info->stream_ctx_array,
773 dma: stream_info->ctx_array_dma);
774
775 kfree(objp: stream_info->stream_rings);
776 kfree(objp: stream_info);
777}
778
779
780/***************** Device context manipulation *************************/
781
782static void xhci_free_tt_info(struct xhci_hcd *xhci,
783 struct xhci_virt_device *virt_dev,
784 int slot_id)
785{
786 struct list_head *tt_list_head;
787 struct xhci_tt_bw_info *tt_info, *next;
788 bool slot_found = false;
789
790 /* If the device never made it past the Set Address stage,
791 * it may not have the real_port set correctly.
792 */
793 if (virt_dev->real_port == 0 ||
794 virt_dev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
795 xhci_dbg(xhci, "Bad real port.\n");
796 return;
797 }
798
799 tt_list_head = &(xhci->rh_bw[virt_dev->real_port - 1].tts);
800 list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
801 /* Multi-TT hubs will have more than one entry */
802 if (tt_info->slot_id == slot_id) {
803 slot_found = true;
804 list_del(entry: &tt_info->tt_list);
805 kfree(objp: tt_info);
806 } else if (slot_found) {
807 break;
808 }
809 }
810}
811
812int xhci_alloc_tt_info(struct xhci_hcd *xhci,
813 struct xhci_virt_device *virt_dev,
814 struct usb_device *hdev,
815 struct usb_tt *tt, gfp_t mem_flags)
816{
817 struct xhci_tt_bw_info *tt_info;
818 unsigned int num_ports;
819 int i, j;
820 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
821
822 if (!tt->multi)
823 num_ports = 1;
824 else
825 num_ports = hdev->maxchild;
826
827 for (i = 0; i < num_ports; i++, tt_info++) {
828 struct xhci_interval_bw_table *bw_table;
829
830 tt_info = kzalloc_node(size: sizeof(*tt_info), flags: mem_flags,
831 node: dev_to_node(dev));
832 if (!tt_info)
833 goto free_tts;
834 INIT_LIST_HEAD(list: &tt_info->tt_list);
835 list_add(new: &tt_info->tt_list,
836 head: &xhci->rh_bw[virt_dev->real_port - 1].tts);
837 tt_info->slot_id = virt_dev->udev->slot_id;
838 if (tt->multi)
839 tt_info->ttport = i+1;
840 bw_table = &tt_info->bw_table;
841 for (j = 0; j < XHCI_MAX_INTERVAL; j++)
842 INIT_LIST_HEAD(list: &bw_table->interval_bw[j].endpoints);
843 }
844 return 0;
845
846free_tts:
847 xhci_free_tt_info(xhci, virt_dev, slot_id: virt_dev->udev->slot_id);
848 return -ENOMEM;
849}
850
851
852/* All the xhci_tds in the ring's TD list should be freed at this point.
853 * Should be called with xhci->lock held if there is any chance the TT lists
854 * will be manipulated by the configure endpoint, allocate device, or update
855 * hub functions while this function is removing the TT entries from the list.
856 */
857void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
858{
859 struct xhci_virt_device *dev;
860 int i;
861 int old_active_eps = 0;
862
863 /* Slot ID 0 is reserved */
864 if (slot_id == 0 || !xhci->devs[slot_id])
865 return;
866
867 dev = xhci->devs[slot_id];
868
869 xhci->dcbaa->dev_context_ptrs[slot_id] = 0;
870 if (!dev)
871 return;
872
873 trace_xhci_free_virt_device(vdev: dev);
874
875 if (dev->tt_info)
876 old_active_eps = dev->tt_info->active_eps;
877
878 for (i = 0; i < 31; i++) {
879 if (dev->eps[i].ring)
880 xhci_ring_free(xhci, ring: dev->eps[i].ring);
881 if (dev->eps[i].stream_info)
882 xhci_free_stream_info(xhci,
883 stream_info: dev->eps[i].stream_info);
884 /*
885 * Endpoints are normally deleted from the bandwidth list when
886 * endpoints are dropped, before device is freed.
887 * If host is dying or being removed then endpoints aren't
888 * dropped cleanly, so delete the endpoint from list here.
889 * Only applicable for hosts with software bandwidth checking.
890 */
891
892 if (!list_empty(head: &dev->eps[i].bw_endpoint_list)) {
893 list_del_init(entry: &dev->eps[i].bw_endpoint_list);
894 xhci_dbg(xhci, "Slot %u endpoint %u not removed from BW list!\n",
895 slot_id, i);
896 }
897 }
898 /* If this is a hub, free the TT(s) from the TT list */
899 xhci_free_tt_info(xhci, virt_dev: dev, slot_id);
900 /* If necessary, update the number of active TTs on this root port */
901 xhci_update_tt_active_eps(xhci, virt_dev: dev, old_active_eps);
902
903 if (dev->in_ctx)
904 xhci_free_container_ctx(xhci, ctx: dev->in_ctx);
905 if (dev->out_ctx)
906 xhci_free_container_ctx(xhci, ctx: dev->out_ctx);
907
908 if (dev->udev && dev->udev->slot_id)
909 dev->udev->slot_id = 0;
910 kfree(objp: xhci->devs[slot_id]);
911 xhci->devs[slot_id] = NULL;
912}
913
914/*
915 * Free a virt_device structure.
916 * If the virt_device added a tt_info (a hub) and has children pointing to
917 * that tt_info, then free the child first. Recursive.
918 * We can't rely on udev at this point to find child-parent relationships.
919 */
920static void xhci_free_virt_devices_depth_first(struct xhci_hcd *xhci, int slot_id)
921{
922 struct xhci_virt_device *vdev;
923 struct list_head *tt_list_head;
924 struct xhci_tt_bw_info *tt_info, *next;
925 int i;
926
927 vdev = xhci->devs[slot_id];
928 if (!vdev)
929 return;
930
931 if (vdev->real_port == 0 ||
932 vdev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
933 xhci_dbg(xhci, "Bad vdev->real_port.\n");
934 goto out;
935 }
936
937 tt_list_head = &(xhci->rh_bw[vdev->real_port - 1].tts);
938 list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
939 /* is this a hub device that added a tt_info to the tts list */
940 if (tt_info->slot_id == slot_id) {
941 /* are any devices using this tt_info? */
942 for (i = 1; i < HCS_MAX_SLOTS(xhci->hcs_params1); i++) {
943 vdev = xhci->devs[i];
944 if (vdev && (vdev->tt_info == tt_info))
945 xhci_free_virt_devices_depth_first(
946 xhci, slot_id: i);
947 }
948 }
949 }
950out:
951 /* we are now at a leaf device */
952 xhci_debugfs_remove_slot(xhci, slot_id);
953 xhci_free_virt_device(xhci, slot_id);
954}
955
956int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
957 struct usb_device *udev, gfp_t flags)
958{
959 struct xhci_virt_device *dev;
960 int i;
961
962 /* Slot ID 0 is reserved */
963 if (slot_id == 0 || xhci->devs[slot_id]) {
964 xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
965 return 0;
966 }
967
968 dev = kzalloc(size: sizeof(*dev), flags);
969 if (!dev)
970 return 0;
971
972 dev->slot_id = slot_id;
973
974 /* Allocate the (output) device context that will be used in the HC. */
975 dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags);
976 if (!dev->out_ctx)
977 goto fail;
978
979 xhci_dbg(xhci, "Slot %d output ctx = 0x%pad (dma)\n", slot_id, &dev->out_ctx->dma);
980
981 /* Allocate the (input) device context for address device command */
982 dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags);
983 if (!dev->in_ctx)
984 goto fail;
985
986 xhci_dbg(xhci, "Slot %d input ctx = 0x%pad (dma)\n", slot_id, &dev->in_ctx->dma);
987
988 /* Initialize the cancellation and bandwidth list for each ep */
989 for (i = 0; i < 31; i++) {
990 dev->eps[i].ep_index = i;
991 dev->eps[i].vdev = dev;
992 dev->eps[i].xhci = xhci;
993 INIT_LIST_HEAD(list: &dev->eps[i].cancelled_td_list);
994 INIT_LIST_HEAD(list: &dev->eps[i].bw_endpoint_list);
995 }
996
997 /* Allocate endpoint 0 ring */
998 dev->eps[0].ring = xhci_ring_alloc(xhci, num_segs: 2, cycle_state: 1, type: TYPE_CTRL, max_packet: 0, flags);
999 if (!dev->eps[0].ring)
1000 goto fail;
1001
1002 dev->udev = udev;
1003
1004 /* Point to output device context in dcbaa. */
1005 xhci->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(dev->out_ctx->dma);
1006 xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
1007 slot_id,
1008 &xhci->dcbaa->dev_context_ptrs[slot_id],
1009 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[slot_id]));
1010
1011 trace_xhci_alloc_virt_device(vdev: dev);
1012
1013 xhci->devs[slot_id] = dev;
1014
1015 return 1;
1016fail:
1017
1018 if (dev->in_ctx)
1019 xhci_free_container_ctx(xhci, ctx: dev->in_ctx);
1020 if (dev->out_ctx)
1021 xhci_free_container_ctx(xhci, ctx: dev->out_ctx);
1022 kfree(objp: dev);
1023
1024 return 0;
1025}
1026
1027void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci,
1028 struct usb_device *udev)
1029{
1030 struct xhci_virt_device *virt_dev;
1031 struct xhci_ep_ctx *ep0_ctx;
1032 struct xhci_ring *ep_ring;
1033
1034 virt_dev = xhci->devs[udev->slot_id];
1035 ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0);
1036 ep_ring = virt_dev->eps[0].ring;
1037 /*
1038 * FIXME we don't keep track of the dequeue pointer very well after a
1039 * Set TR dequeue pointer, so we're setting the dequeue pointer of the
1040 * host to our enqueue pointer. This should only be called after a
1041 * configured device has reset, so all control transfers should have
1042 * been completed or cancelled before the reset.
1043 */
1044 ep0_ctx->deq = cpu_to_le64(xhci_trb_virt_to_dma(ep_ring->enq_seg,
1045 ep_ring->enqueue)
1046 | ep_ring->cycle_state);
1047}
1048
1049/*
1050 * The xHCI roothub may have ports of differing speeds in any order in the port
1051 * status registers.
1052 *
1053 * The xHCI hardware wants to know the roothub port number that the USB device
1054 * is attached to (or the roothub port its ancestor hub is attached to). All we
1055 * know is the index of that port under either the USB 2.0 or the USB 3.0
1056 * roothub, but that doesn't give us the real index into the HW port status
1057 * registers. Call xhci_find_raw_port_number() to get real index.
1058 */
1059static u32 xhci_find_real_port_number(struct xhci_hcd *xhci,
1060 struct usb_device *udev)
1061{
1062 struct usb_device *top_dev;
1063 struct usb_hcd *hcd;
1064
1065 if (udev->speed >= USB_SPEED_SUPER)
1066 hcd = xhci_get_usb3_hcd(xhci);
1067 else
1068 hcd = xhci->main_hcd;
1069
1070 for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1071 top_dev = top_dev->parent)
1072 /* Found device below root hub */;
1073
1074 return xhci_find_raw_port_number(hcd, port1: top_dev->portnum);
1075}
1076
1077/* Setup an xHCI virtual device for a Set Address command */
1078int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
1079{
1080 struct xhci_virt_device *dev;
1081 struct xhci_ep_ctx *ep0_ctx;
1082 struct xhci_slot_ctx *slot_ctx;
1083 u32 port_num;
1084 u32 max_packets;
1085 struct usb_device *top_dev;
1086
1087 dev = xhci->devs[udev->slot_id];
1088 /* Slot ID 0 is reserved */
1089 if (udev->slot_id == 0 || !dev) {
1090 xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
1091 udev->slot_id);
1092 return -EINVAL;
1093 }
1094 ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0);
1095 slot_ctx = xhci_get_slot_ctx(xhci, ctx: dev->in_ctx);
1096
1097 /* 3) Only the control endpoint is valid - one endpoint context */
1098 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | udev->route);
1099 switch (udev->speed) {
1100 case USB_SPEED_SUPER_PLUS:
1101 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SSP);
1102 max_packets = MAX_PACKET(512);
1103 break;
1104 case USB_SPEED_SUPER:
1105 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS);
1106 max_packets = MAX_PACKET(512);
1107 break;
1108 case USB_SPEED_HIGH:
1109 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS);
1110 max_packets = MAX_PACKET(64);
1111 break;
1112 /* USB core guesses at a 64-byte max packet first for FS devices */
1113 case USB_SPEED_FULL:
1114 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS);
1115 max_packets = MAX_PACKET(64);
1116 break;
1117 case USB_SPEED_LOW:
1118 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS);
1119 max_packets = MAX_PACKET(8);
1120 break;
1121 default:
1122 /* Speed was set earlier, this shouldn't happen. */
1123 return -EINVAL;
1124 }
1125 /* Find the root hub port this device is under */
1126 port_num = xhci_find_real_port_number(xhci, udev);
1127 if (!port_num)
1128 return -EINVAL;
1129 slot_ctx->dev_info2 |= cpu_to_le32(ROOT_HUB_PORT(port_num));
1130 /* Set the port number in the virtual_device to the faked port number */
1131 for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1132 top_dev = top_dev->parent)
1133 /* Found device below root hub */;
1134 dev->fake_port = top_dev->portnum;
1135 dev->real_port = port_num;
1136 xhci_dbg(xhci, "Set root hub portnum to %d\n", port_num);
1137 xhci_dbg(xhci, "Set fake root hub portnum to %d\n", dev->fake_port);
1138
1139 /* Find the right bandwidth table that this device will be a part of.
1140 * If this is a full speed device attached directly to a root port (or a
1141 * decendent of one), it counts as a primary bandwidth domain, not a
1142 * secondary bandwidth domain under a TT. An xhci_tt_info structure
1143 * will never be created for the HS root hub.
1144 */
1145 if (!udev->tt || !udev->tt->hub->parent) {
1146 dev->bw_table = &xhci->rh_bw[port_num - 1].bw_table;
1147 } else {
1148 struct xhci_root_port_bw_info *rh_bw;
1149 struct xhci_tt_bw_info *tt_bw;
1150
1151 rh_bw = &xhci->rh_bw[port_num - 1];
1152 /* Find the right TT. */
1153 list_for_each_entry(tt_bw, &rh_bw->tts, tt_list) {
1154 if (tt_bw->slot_id != udev->tt->hub->slot_id)
1155 continue;
1156
1157 if (!dev->udev->tt->multi ||
1158 (udev->tt->multi &&
1159 tt_bw->ttport == dev->udev->ttport)) {
1160 dev->bw_table = &tt_bw->bw_table;
1161 dev->tt_info = tt_bw;
1162 break;
1163 }
1164 }
1165 if (!dev->tt_info)
1166 xhci_warn(xhci, "WARN: Didn't find a matching TT\n");
1167 }
1168
1169 /* Is this a LS/FS device under an external HS hub? */
1170 if (udev->tt && udev->tt->hub->parent) {
1171 slot_ctx->tt_info = cpu_to_le32(udev->tt->hub->slot_id |
1172 (udev->ttport << 8));
1173 if (udev->tt->multi)
1174 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
1175 }
1176 xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
1177 xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);
1178
1179 /* Step 4 - ring already allocated */
1180 /* Step 5 */
1181 ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP));
1182
1183 /* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
1184 ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3) |
1185 max_packets);
1186
1187 ep0_ctx->deq = cpu_to_le64(dev->eps[0].ring->first_seg->dma |
1188 dev->eps[0].ring->cycle_state);
1189
1190 trace_xhci_setup_addressable_virt_device(vdev: dev);
1191
1192 /* Steps 7 and 8 were done in xhci_alloc_virt_device() */
1193
1194 return 0;
1195}
1196
1197/*
1198 * Convert interval expressed as 2^(bInterval - 1) == interval into
1199 * straight exponent value 2^n == interval.
1200 *
1201 */
1202static unsigned int xhci_parse_exponent_interval(struct usb_device *udev,
1203 struct usb_host_endpoint *ep)
1204{
1205 unsigned int interval;
1206
1207 interval = clamp_val(ep->desc.bInterval, 1, 16) - 1;
1208 if (interval != ep->desc.bInterval - 1)
1209 dev_warn(&udev->dev,
1210 "ep %#x - rounding interval to %d %sframes\n",
1211 ep->desc.bEndpointAddress,
1212 1 << interval,
1213 udev->speed == USB_SPEED_FULL ? "" : "micro");
1214
1215 if (udev->speed == USB_SPEED_FULL) {
1216 /*
1217 * Full speed isoc endpoints specify interval in frames,
1218 * not microframes. We are using microframes everywhere,
1219 * so adjust accordingly.
1220 */
1221 interval += 3; /* 1 frame = 2^3 uframes */
1222 }
1223
1224 return interval;
1225}
1226
1227/*
1228 * Convert bInterval expressed in microframes (in 1-255 range) to exponent of
1229 * microframes, rounded down to nearest power of 2.
1230 */
1231static unsigned int xhci_microframes_to_exponent(struct usb_device *udev,
1232 struct usb_host_endpoint *ep, unsigned int desc_interval,
1233 unsigned int min_exponent, unsigned int max_exponent)
1234{
1235 unsigned int interval;
1236
1237 interval = fls(x: desc_interval) - 1;
1238 interval = clamp_val(interval, min_exponent, max_exponent);
1239 if ((1 << interval) != desc_interval)
1240 dev_dbg(&udev->dev,
1241 "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n",
1242 ep->desc.bEndpointAddress,
1243 1 << interval,
1244 desc_interval);
1245
1246 return interval;
1247}
1248
1249static unsigned int xhci_parse_microframe_interval(struct usb_device *udev,
1250 struct usb_host_endpoint *ep)
1251{
1252 if (ep->desc.bInterval == 0)
1253 return 0;
1254 return xhci_microframes_to_exponent(udev, ep,
1255 desc_interval: ep->desc.bInterval, min_exponent: 0, max_exponent: 15);
1256}
1257
1258
1259static unsigned int xhci_parse_frame_interval(struct usb_device *udev,
1260 struct usb_host_endpoint *ep)
1261{
1262 return xhci_microframes_to_exponent(udev, ep,
1263 desc_interval: ep->desc.bInterval * 8, min_exponent: 3, max_exponent: 10);
1264}
1265
1266/* Return the polling or NAK interval.
1267 *
1268 * The polling interval is expressed in "microframes". If xHCI's Interval field
1269 * is set to N, it will service the endpoint every 2^(Interval)*125us.
1270 *
1271 * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
1272 * is set to 0.
1273 */
1274static unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
1275 struct usb_host_endpoint *ep)
1276{
1277 unsigned int interval = 0;
1278
1279 switch (udev->speed) {
1280 case USB_SPEED_HIGH:
1281 /* Max NAK rate */
1282 if (usb_endpoint_xfer_control(epd: &ep->desc) ||
1283 usb_endpoint_xfer_bulk(epd: &ep->desc)) {
1284 interval = xhci_parse_microframe_interval(udev, ep);
1285 break;
1286 }
1287 fallthrough; /* SS and HS isoc/int have same decoding */
1288
1289 case USB_SPEED_SUPER_PLUS:
1290 case USB_SPEED_SUPER:
1291 if (usb_endpoint_xfer_int(epd: &ep->desc) ||
1292 usb_endpoint_xfer_isoc(epd: &ep->desc)) {
1293 interval = xhci_parse_exponent_interval(udev, ep);
1294 }
1295 break;
1296
1297 case USB_SPEED_FULL:
1298 if (usb_endpoint_xfer_isoc(epd: &ep->desc)) {
1299 interval = xhci_parse_exponent_interval(udev, ep);
1300 break;
1301 }
1302 /*
1303 * Fall through for interrupt endpoint interval decoding
1304 * since it uses the same rules as low speed interrupt
1305 * endpoints.
1306 */
1307 fallthrough;
1308
1309 case USB_SPEED_LOW:
1310 if (usb_endpoint_xfer_int(epd: &ep->desc) ||
1311 usb_endpoint_xfer_isoc(epd: &ep->desc)) {
1312
1313 interval = xhci_parse_frame_interval(udev, ep);
1314 }
1315 break;
1316
1317 default:
1318 BUG();
1319 }
1320 return interval;
1321}
1322
1323/* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps.
1324 * High speed endpoint descriptors can define "the number of additional
1325 * transaction opportunities per microframe", but that goes in the Max Burst
1326 * endpoint context field.
1327 */
1328static u32 xhci_get_endpoint_mult(struct usb_device *udev,
1329 struct usb_host_endpoint *ep)
1330{
1331 if (udev->speed < USB_SPEED_SUPER ||
1332 !usb_endpoint_xfer_isoc(epd: &ep->desc))
1333 return 0;
1334 return ep->ss_ep_comp.bmAttributes;
1335}
1336
1337static u32 xhci_get_endpoint_max_burst(struct usb_device *udev,
1338 struct usb_host_endpoint *ep)
1339{
1340 /* Super speed and Plus have max burst in ep companion desc */
1341 if (udev->speed >= USB_SPEED_SUPER)
1342 return ep->ss_ep_comp.bMaxBurst;
1343
1344 if (udev->speed == USB_SPEED_HIGH &&
1345 (usb_endpoint_xfer_isoc(epd: &ep->desc) ||
1346 usb_endpoint_xfer_int(epd: &ep->desc)))
1347 return usb_endpoint_maxp_mult(epd: &ep->desc) - 1;
1348
1349 return 0;
1350}
1351
1352static u32 xhci_get_endpoint_type(struct usb_host_endpoint *ep)
1353{
1354 int in;
1355
1356 in = usb_endpoint_dir_in(epd: &ep->desc);
1357
1358 switch (usb_endpoint_type(epd: &ep->desc)) {
1359 case USB_ENDPOINT_XFER_CONTROL:
1360 return CTRL_EP;
1361 case USB_ENDPOINT_XFER_BULK:
1362 return in ? BULK_IN_EP : BULK_OUT_EP;
1363 case USB_ENDPOINT_XFER_ISOC:
1364 return in ? ISOC_IN_EP : ISOC_OUT_EP;
1365 case USB_ENDPOINT_XFER_INT:
1366 return in ? INT_IN_EP : INT_OUT_EP;
1367 }
1368 return 0;
1369}
1370
1371/* Return the maximum endpoint service interval time (ESIT) payload.
1372 * Basically, this is the maxpacket size, multiplied by the burst size
1373 * and mult size.
1374 */
1375static u32 xhci_get_max_esit_payload(struct usb_device *udev,
1376 struct usb_host_endpoint *ep)
1377{
1378 int max_burst;
1379 int max_packet;
1380
1381 /* Only applies for interrupt or isochronous endpoints */
1382 if (usb_endpoint_xfer_control(epd: &ep->desc) ||
1383 usb_endpoint_xfer_bulk(epd: &ep->desc))
1384 return 0;
1385
1386 /* SuperSpeedPlus Isoc ep sending over 48k per esit */
1387 if ((udev->speed >= USB_SPEED_SUPER_PLUS) &&
1388 USB_SS_SSP_ISOC_COMP(ep->ss_ep_comp.bmAttributes))
1389 return le32_to_cpu(ep->ssp_isoc_ep_comp.dwBytesPerInterval);
1390
1391 /* SuperSpeed or SuperSpeedPlus Isoc ep with less than 48k per esit */
1392 if (udev->speed >= USB_SPEED_SUPER)
1393 return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval);
1394
1395 max_packet = usb_endpoint_maxp(epd: &ep->desc);
1396 max_burst = usb_endpoint_maxp_mult(epd: &ep->desc);
1397 /* A 0 in max burst means 1 transfer per ESIT */
1398 return max_packet * max_burst;
1399}
1400
1401/* Set up an endpoint with one ring segment. Do not allocate stream rings.
1402 * Drivers will have to call usb_alloc_streams() to do that.
1403 */
1404int xhci_endpoint_init(struct xhci_hcd *xhci,
1405 struct xhci_virt_device *virt_dev,
1406 struct usb_device *udev,
1407 struct usb_host_endpoint *ep,
1408 gfp_t mem_flags)
1409{
1410 unsigned int ep_index;
1411 struct xhci_ep_ctx *ep_ctx;
1412 struct xhci_ring *ep_ring;
1413 unsigned int max_packet;
1414 enum xhci_ring_type ring_type;
1415 u32 max_esit_payload;
1416 u32 endpoint_type;
1417 unsigned int max_burst;
1418 unsigned int interval;
1419 unsigned int mult;
1420 unsigned int avg_trb_len;
1421 unsigned int err_count = 0;
1422
1423 ep_index = xhci_get_endpoint_index(desc: &ep->desc);
1424 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1425
1426 endpoint_type = xhci_get_endpoint_type(ep);
1427 if (!endpoint_type)
1428 return -EINVAL;
1429
1430 ring_type = usb_endpoint_type(epd: &ep->desc);
1431
1432 /*
1433 * Get values to fill the endpoint context, mostly from ep descriptor.
1434 * The average TRB buffer lengt for bulk endpoints is unclear as we
1435 * have no clue on scatter gather list entry size. For Isoc and Int,
1436 * set it to max available. See xHCI 1.1 spec 4.14.1.1 for details.
1437 */
1438 max_esit_payload = xhci_get_max_esit_payload(udev, ep);
1439 interval = xhci_get_endpoint_interval(udev, ep);
1440
1441 /* Periodic endpoint bInterval limit quirk */
1442 if (usb_endpoint_xfer_int(epd: &ep->desc) ||
1443 usb_endpoint_xfer_isoc(epd: &ep->desc)) {
1444 if ((xhci->quirks & XHCI_LIMIT_ENDPOINT_INTERVAL_7) &&
1445 udev->speed >= USB_SPEED_HIGH &&
1446 interval >= 7) {
1447 interval = 6;
1448 }
1449 }
1450
1451 mult = xhci_get_endpoint_mult(udev, ep);
1452 max_packet = usb_endpoint_maxp(epd: &ep->desc);
1453 max_burst = xhci_get_endpoint_max_burst(udev, ep);
1454 avg_trb_len = max_esit_payload;
1455
1456 /* FIXME dig Mult and streams info out of ep companion desc */
1457
1458 /* Allow 3 retries for everything but isoc, set CErr = 3 */
1459 if (!usb_endpoint_xfer_isoc(epd: &ep->desc))
1460 err_count = 3;
1461 /* HS bulk max packet should be 512, FS bulk supports 8, 16, 32 or 64 */
1462 if (usb_endpoint_xfer_bulk(epd: &ep->desc)) {
1463 if (udev->speed == USB_SPEED_HIGH)
1464 max_packet = 512;
1465 if (udev->speed == USB_SPEED_FULL) {
1466 max_packet = rounddown_pow_of_two(max_packet);
1467 max_packet = clamp_val(max_packet, 8, 64);
1468 }
1469 }
1470 /* xHCI 1.0 and 1.1 indicates that ctrl ep avg TRB Length should be 8 */
1471 if (usb_endpoint_xfer_control(epd: &ep->desc) && xhci->hci_version >= 0x100)
1472 avg_trb_len = 8;
1473 /* xhci 1.1 with LEC support doesn't use mult field, use RsvdZ */
1474 if ((xhci->hci_version > 0x100) && HCC2_LEC(xhci->hcc_params2))
1475 mult = 0;
1476
1477 /* Set up the endpoint ring */
1478 virt_dev->eps[ep_index].new_ring =
1479 xhci_ring_alloc(xhci, num_segs: 2, cycle_state: 1, type: ring_type, max_packet, flags: mem_flags);
1480 if (!virt_dev->eps[ep_index].new_ring)
1481 return -ENOMEM;
1482
1483 virt_dev->eps[ep_index].skip = false;
1484 ep_ring = virt_dev->eps[ep_index].new_ring;
1485
1486 /* Fill the endpoint context */
1487 ep_ctx->ep_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_HI(max_esit_payload) |
1488 EP_INTERVAL(interval) |
1489 EP_MULT(mult));
1490 ep_ctx->ep_info2 = cpu_to_le32(EP_TYPE(endpoint_type) |
1491 MAX_PACKET(max_packet) |
1492 MAX_BURST(max_burst) |
1493 ERROR_COUNT(err_count));
1494 ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma |
1495 ep_ring->cycle_state);
1496
1497 ep_ctx->tx_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_LO(max_esit_payload) |
1498 EP_AVG_TRB_LENGTH(avg_trb_len));
1499
1500 return 0;
1501}
1502
1503void xhci_endpoint_zero(struct xhci_hcd *xhci,
1504 struct xhci_virt_device *virt_dev,
1505 struct usb_host_endpoint *ep)
1506{
1507 unsigned int ep_index;
1508 struct xhci_ep_ctx *ep_ctx;
1509
1510 ep_index = xhci_get_endpoint_index(desc: &ep->desc);
1511 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1512
1513 ep_ctx->ep_info = 0;
1514 ep_ctx->ep_info2 = 0;
1515 ep_ctx->deq = 0;
1516 ep_ctx->tx_info = 0;
1517 /* Don't free the endpoint ring until the set interface or configuration
1518 * request succeeds.
1519 */
1520}
1521
1522void xhci_clear_endpoint_bw_info(struct xhci_bw_info *bw_info)
1523{
1524 bw_info->ep_interval = 0;
1525 bw_info->mult = 0;
1526 bw_info->num_packets = 0;
1527 bw_info->max_packet_size = 0;
1528 bw_info->type = 0;
1529 bw_info->max_esit_payload = 0;
1530}
1531
1532void xhci_update_bw_info(struct xhci_hcd *xhci,
1533 struct xhci_container_ctx *in_ctx,
1534 struct xhci_input_control_ctx *ctrl_ctx,
1535 struct xhci_virt_device *virt_dev)
1536{
1537 struct xhci_bw_info *bw_info;
1538 struct xhci_ep_ctx *ep_ctx;
1539 unsigned int ep_type;
1540 int i;
1541
1542 for (i = 1; i < 31; i++) {
1543 bw_info = &virt_dev->eps[i].bw_info;
1544
1545 /* We can't tell what endpoint type is being dropped, but
1546 * unconditionally clearing the bandwidth info for non-periodic
1547 * endpoints should be harmless because the info will never be
1548 * set in the first place.
1549 */
1550 if (!EP_IS_ADDED(ctrl_ctx, i) && EP_IS_DROPPED(ctrl_ctx, i)) {
1551 /* Dropped endpoint */
1552 xhci_clear_endpoint_bw_info(bw_info);
1553 continue;
1554 }
1555
1556 if (EP_IS_ADDED(ctrl_ctx, i)) {
1557 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, i);
1558 ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2));
1559
1560 /* Ignore non-periodic endpoints */
1561 if (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
1562 ep_type != ISOC_IN_EP &&
1563 ep_type != INT_IN_EP)
1564 continue;
1565
1566 /* Added or changed endpoint */
1567 bw_info->ep_interval = CTX_TO_EP_INTERVAL(
1568 le32_to_cpu(ep_ctx->ep_info));
1569 /* Number of packets and mult are zero-based in the
1570 * input context, but we want one-based for the
1571 * interval table.
1572 */
1573 bw_info->mult = CTX_TO_EP_MULT(
1574 le32_to_cpu(ep_ctx->ep_info)) + 1;
1575 bw_info->num_packets = CTX_TO_MAX_BURST(
1576 le32_to_cpu(ep_ctx->ep_info2)) + 1;
1577 bw_info->max_packet_size = MAX_PACKET_DECODED(
1578 le32_to_cpu(ep_ctx->ep_info2));
1579 bw_info->type = ep_type;
1580 bw_info->max_esit_payload = CTX_TO_MAX_ESIT_PAYLOAD(
1581 le32_to_cpu(ep_ctx->tx_info));
1582 }
1583 }
1584}
1585
1586/* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
1587 * Useful when you want to change one particular aspect of the endpoint and then
1588 * issue a configure endpoint command.
1589 */
1590void xhci_endpoint_copy(struct xhci_hcd *xhci,
1591 struct xhci_container_ctx *in_ctx,
1592 struct xhci_container_ctx *out_ctx,
1593 unsigned int ep_index)
1594{
1595 struct xhci_ep_ctx *out_ep_ctx;
1596 struct xhci_ep_ctx *in_ep_ctx;
1597
1598 out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1599 in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1600
1601 in_ep_ctx->ep_info = out_ep_ctx->ep_info;
1602 in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
1603 in_ep_ctx->deq = out_ep_ctx->deq;
1604 in_ep_ctx->tx_info = out_ep_ctx->tx_info;
1605 if (xhci->quirks & XHCI_MTK_HOST) {
1606 in_ep_ctx->reserved[0] = out_ep_ctx->reserved[0];
1607 in_ep_ctx->reserved[1] = out_ep_ctx->reserved[1];
1608 }
1609}
1610
1611/* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
1612 * Useful when you want to change one particular aspect of the endpoint and then
1613 * issue a configure endpoint command. Only the context entries field matters,
1614 * but we'll copy the whole thing anyway.
1615 */
1616void xhci_slot_copy(struct xhci_hcd *xhci,
1617 struct xhci_container_ctx *in_ctx,
1618 struct xhci_container_ctx *out_ctx)
1619{
1620 struct xhci_slot_ctx *in_slot_ctx;
1621 struct xhci_slot_ctx *out_slot_ctx;
1622
1623 in_slot_ctx = xhci_get_slot_ctx(xhci, ctx: in_ctx);
1624 out_slot_ctx = xhci_get_slot_ctx(xhci, ctx: out_ctx);
1625
1626 in_slot_ctx->dev_info = out_slot_ctx->dev_info;
1627 in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
1628 in_slot_ctx->tt_info = out_slot_ctx->tt_info;
1629 in_slot_ctx->dev_state = out_slot_ctx->dev_state;
1630}
1631
1632/* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
1633static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags)
1634{
1635 int i;
1636 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1637 int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1638
1639 xhci_dbg_trace(xhci, trace: trace_xhci_dbg_init,
1640 fmt: "Allocating %d scratchpad buffers", num_sp);
1641
1642 if (!num_sp)
1643 return 0;
1644
1645 xhci->scratchpad = kzalloc_node(size: sizeof(*xhci->scratchpad), flags,
1646 node: dev_to_node(dev));
1647 if (!xhci->scratchpad)
1648 goto fail_sp;
1649
1650 xhci->scratchpad->sp_array = dma_alloc_coherent(dev,
1651 size: size_mul(factor1: sizeof(u64), factor2: num_sp),
1652 dma_handle: &xhci->scratchpad->sp_dma, gfp: flags);
1653 if (!xhci->scratchpad->sp_array)
1654 goto fail_sp2;
1655
1656 xhci->scratchpad->sp_buffers = kcalloc_node(n: num_sp, size: sizeof(void *),
1657 flags, node: dev_to_node(dev));
1658 if (!xhci->scratchpad->sp_buffers)
1659 goto fail_sp3;
1660
1661 xhci->dcbaa->dev_context_ptrs[0] = cpu_to_le64(xhci->scratchpad->sp_dma);
1662 for (i = 0; i < num_sp; i++) {
1663 dma_addr_t dma;
1664 void *buf = dma_alloc_coherent(dev, size: xhci->page_size, dma_handle: &dma,
1665 gfp: flags);
1666 if (!buf)
1667 goto fail_sp4;
1668
1669 xhci->scratchpad->sp_array[i] = dma;
1670 xhci->scratchpad->sp_buffers[i] = buf;
1671 }
1672
1673 return 0;
1674
1675 fail_sp4:
1676 while (i--)
1677 dma_free_coherent(dev, size: xhci->page_size,
1678 cpu_addr: xhci->scratchpad->sp_buffers[i],
1679 dma_handle: xhci->scratchpad->sp_array[i]);
1680
1681 kfree(objp: xhci->scratchpad->sp_buffers);
1682
1683 fail_sp3:
1684 dma_free_coherent(dev, size: num_sp * sizeof(u64),
1685 cpu_addr: xhci->scratchpad->sp_array,
1686 dma_handle: xhci->scratchpad->sp_dma);
1687
1688 fail_sp2:
1689 kfree(objp: xhci->scratchpad);
1690 xhci->scratchpad = NULL;
1691
1692 fail_sp:
1693 return -ENOMEM;
1694}
1695
1696static void scratchpad_free(struct xhci_hcd *xhci)
1697{
1698 int num_sp;
1699 int i;
1700 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1701
1702 if (!xhci->scratchpad)
1703 return;
1704
1705 num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1706
1707 for (i = 0; i < num_sp; i++) {
1708 dma_free_coherent(dev, size: xhci->page_size,
1709 cpu_addr: xhci->scratchpad->sp_buffers[i],
1710 dma_handle: xhci->scratchpad->sp_array[i]);
1711 }
1712 kfree(objp: xhci->scratchpad->sp_buffers);
1713 dma_free_coherent(dev, size: num_sp * sizeof(u64),
1714 cpu_addr: xhci->scratchpad->sp_array,
1715 dma_handle: xhci->scratchpad->sp_dma);
1716 kfree(objp: xhci->scratchpad);
1717 xhci->scratchpad = NULL;
1718}
1719
1720struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci,
1721 bool allocate_completion, gfp_t mem_flags)
1722{
1723 struct xhci_command *command;
1724 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1725
1726 command = kzalloc_node(size: sizeof(*command), flags: mem_flags, node: dev_to_node(dev));
1727 if (!command)
1728 return NULL;
1729
1730 if (allocate_completion) {
1731 command->completion =
1732 kzalloc_node(size: sizeof(struct completion), flags: mem_flags,
1733 node: dev_to_node(dev));
1734 if (!command->completion) {
1735 kfree(objp: command);
1736 return NULL;
1737 }
1738 init_completion(x: command->completion);
1739 }
1740
1741 command->status = 0;
1742 INIT_LIST_HEAD(list: &command->cmd_list);
1743 return command;
1744}
1745
1746struct xhci_command *xhci_alloc_command_with_ctx(struct xhci_hcd *xhci,
1747 bool allocate_completion, gfp_t mem_flags)
1748{
1749 struct xhci_command *command;
1750
1751 command = xhci_alloc_command(xhci, allocate_completion, mem_flags);
1752 if (!command)
1753 return NULL;
1754
1755 command->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT,
1756 flags: mem_flags);
1757 if (!command->in_ctx) {
1758 kfree(objp: command->completion);
1759 kfree(objp: command);
1760 return NULL;
1761 }
1762 return command;
1763}
1764
1765void xhci_urb_free_priv(struct urb_priv *urb_priv)
1766{
1767 kfree(objp: urb_priv);
1768}
1769
1770void xhci_free_command(struct xhci_hcd *xhci,
1771 struct xhci_command *command)
1772{
1773 xhci_free_container_ctx(xhci,
1774 ctx: command->in_ctx);
1775 kfree(objp: command->completion);
1776 kfree(objp: command);
1777}
1778
1779static int xhci_alloc_erst(struct xhci_hcd *xhci,
1780 struct xhci_ring *evt_ring,
1781 struct xhci_erst *erst,
1782 gfp_t flags)
1783{
1784 size_t size;
1785 unsigned int val;
1786 struct xhci_segment *seg;
1787 struct xhci_erst_entry *entry;
1788
1789 size = size_mul(factor1: sizeof(struct xhci_erst_entry), factor2: evt_ring->num_segs);
1790 erst->entries = dma_alloc_coherent(dev: xhci_to_hcd(xhci)->self.sysdev,
1791 size, dma_handle: &erst->erst_dma_addr, gfp: flags);
1792 if (!erst->entries)
1793 return -ENOMEM;
1794
1795 erst->num_entries = evt_ring->num_segs;
1796
1797 seg = evt_ring->first_seg;
1798 for (val = 0; val < evt_ring->num_segs; val++) {
1799 entry = &erst->entries[val];
1800 entry->seg_addr = cpu_to_le64(seg->dma);
1801 entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT);
1802 entry->rsvd = 0;
1803 seg = seg->next;
1804 }
1805
1806 return 0;
1807}
1808
1809static void
1810xhci_remove_interrupter(struct xhci_hcd *xhci, struct xhci_interrupter *ir)
1811{
1812 u32 tmp;
1813
1814 if (!ir)
1815 return;
1816
1817 /*
1818 * Clean out interrupter registers except ERSTBA. Clearing either the
1819 * low or high 32 bits of ERSTBA immediately causes the controller to
1820 * dereference the partially cleared 64 bit address, causing IOMMU error.
1821 */
1822 if (ir->ir_set) {
1823 tmp = readl(addr: &ir->ir_set->erst_size);
1824 tmp &= ERST_SIZE_MASK;
1825 writel(val: tmp, addr: &ir->ir_set->erst_size);
1826
1827 xhci_write_64(xhci, ERST_EHB, regs: &ir->ir_set->erst_dequeue);
1828 }
1829}
1830
1831static void
1832xhci_free_interrupter(struct xhci_hcd *xhci, struct xhci_interrupter *ir)
1833{
1834 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1835 size_t erst_size;
1836
1837 if (!ir)
1838 return;
1839
1840 erst_size = sizeof(struct xhci_erst_entry) * ir->erst.num_entries;
1841 if (ir->erst.entries)
1842 dma_free_coherent(dev, size: erst_size,
1843 cpu_addr: ir->erst.entries,
1844 dma_handle: ir->erst.erst_dma_addr);
1845 ir->erst.entries = NULL;
1846
1847 /* free interrupter event ring */
1848 if (ir->event_ring)
1849 xhci_ring_free(xhci, ring: ir->event_ring);
1850
1851 ir->event_ring = NULL;
1852
1853 kfree(objp: ir);
1854}
1855
1856void xhci_mem_cleanup(struct xhci_hcd *xhci)
1857{
1858 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1859 int i, j, num_ports;
1860
1861 cancel_delayed_work_sync(dwork: &xhci->cmd_timer);
1862
1863 xhci_remove_interrupter(xhci, ir: xhci->interrupter);
1864 xhci_free_interrupter(xhci, ir: xhci->interrupter);
1865 xhci->interrupter = NULL;
1866 xhci_dbg_trace(xhci, trace: trace_xhci_dbg_init, fmt: "Freed primary event ring");
1867
1868 if (xhci->cmd_ring)
1869 xhci_ring_free(xhci, ring: xhci->cmd_ring);
1870 xhci->cmd_ring = NULL;
1871 xhci_dbg_trace(xhci, trace: trace_xhci_dbg_init, fmt: "Freed command ring");
1872 xhci_cleanup_command_queue(xhci);
1873
1874 num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1875 for (i = 0; i < num_ports && xhci->rh_bw; i++) {
1876 struct xhci_interval_bw_table *bwt = &xhci->rh_bw[i].bw_table;
1877 for (j = 0; j < XHCI_MAX_INTERVAL; j++) {
1878 struct list_head *ep = &bwt->interval_bw[j].endpoints;
1879 while (!list_empty(head: ep))
1880 list_del_init(entry: ep->next);
1881 }
1882 }
1883
1884 for (i = HCS_MAX_SLOTS(xhci->hcs_params1); i > 0; i--)
1885 xhci_free_virt_devices_depth_first(xhci, slot_id: i);
1886
1887 dma_pool_destroy(pool: xhci->segment_pool);
1888 xhci->segment_pool = NULL;
1889 xhci_dbg_trace(xhci, trace: trace_xhci_dbg_init, fmt: "Freed segment pool");
1890
1891 dma_pool_destroy(pool: xhci->device_pool);
1892 xhci->device_pool = NULL;
1893 xhci_dbg_trace(xhci, trace: trace_xhci_dbg_init, fmt: "Freed device context pool");
1894
1895 dma_pool_destroy(pool: xhci->small_streams_pool);
1896 xhci->small_streams_pool = NULL;
1897 xhci_dbg_trace(xhci, trace: trace_xhci_dbg_init,
1898 fmt: "Freed small stream array pool");
1899
1900 dma_pool_destroy(pool: xhci->medium_streams_pool);
1901 xhci->medium_streams_pool = NULL;
1902 xhci_dbg_trace(xhci, trace: trace_xhci_dbg_init,
1903 fmt: "Freed medium stream array pool");
1904
1905 if (xhci->dcbaa)
1906 dma_free_coherent(dev, size: sizeof(*xhci->dcbaa),
1907 cpu_addr: xhci->dcbaa, dma_handle: xhci->dcbaa->dma);
1908 xhci->dcbaa = NULL;
1909
1910 scratchpad_free(xhci);
1911
1912 if (!xhci->rh_bw)
1913 goto no_bw;
1914
1915 for (i = 0; i < num_ports; i++) {
1916 struct xhci_tt_bw_info *tt, *n;
1917 list_for_each_entry_safe(tt, n, &xhci->rh_bw[i].tts, tt_list) {
1918 list_del(entry: &tt->tt_list);
1919 kfree(objp: tt);
1920 }
1921 }
1922
1923no_bw:
1924 xhci->cmd_ring_reserved_trbs = 0;
1925 xhci->usb2_rhub.num_ports = 0;
1926 xhci->usb3_rhub.num_ports = 0;
1927 xhci->num_active_eps = 0;
1928 kfree(objp: xhci->usb2_rhub.ports);
1929 kfree(objp: xhci->usb3_rhub.ports);
1930 kfree(objp: xhci->hw_ports);
1931 kfree(objp: xhci->rh_bw);
1932 kfree(objp: xhci->ext_caps);
1933 for (i = 0; i < xhci->num_port_caps; i++)
1934 kfree(objp: xhci->port_caps[i].psi);
1935 kfree(objp: xhci->port_caps);
1936 xhci->num_port_caps = 0;
1937
1938 xhci->usb2_rhub.ports = NULL;
1939 xhci->usb3_rhub.ports = NULL;
1940 xhci->hw_ports = NULL;
1941 xhci->rh_bw = NULL;
1942 xhci->ext_caps = NULL;
1943 xhci->port_caps = NULL;
1944
1945 xhci->page_size = 0;
1946 xhci->page_shift = 0;
1947 xhci->usb2_rhub.bus_state.bus_suspended = 0;
1948 xhci->usb3_rhub.bus_state.bus_suspended = 0;
1949}
1950
1951static void xhci_set_hc_event_deq(struct xhci_hcd *xhci, struct xhci_interrupter *ir)
1952{
1953 dma_addr_t deq;
1954
1955 deq = xhci_trb_virt_to_dma(seg: ir->event_ring->deq_seg,
1956 trb: ir->event_ring->dequeue);
1957 if (!deq)
1958 xhci_warn(xhci, "WARN something wrong with SW event ring dequeue ptr.\n");
1959 /* Update HC event ring dequeue pointer */
1960 /* Don't clear the EHB bit (which is RW1C) because
1961 * there might be more events to service.
1962 */
1963 xhci_dbg_trace(xhci, trace: trace_xhci_dbg_init,
1964 fmt: "// Write event ring dequeue pointer, preserving EHB bit");
1965 xhci_write_64(xhci, val: deq & ERST_PTR_MASK, regs: &ir->ir_set->erst_dequeue);
1966}
1967
1968static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports,
1969 __le32 __iomem *addr, int max_caps)
1970{
1971 u32 temp, port_offset, port_count;
1972 int i;
1973 u8 major_revision, minor_revision, tmp_minor_revision;
1974 struct xhci_hub *rhub;
1975 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1976 struct xhci_port_cap *port_cap;
1977
1978 temp = readl(addr);
1979 major_revision = XHCI_EXT_PORT_MAJOR(temp);
1980 minor_revision = XHCI_EXT_PORT_MINOR(temp);
1981
1982 if (major_revision == 0x03) {
1983 rhub = &xhci->usb3_rhub;
1984 /*
1985 * Some hosts incorrectly use sub-minor version for minor
1986 * version (i.e. 0x02 instead of 0x20 for bcdUSB 0x320 and 0x01
1987 * for bcdUSB 0x310). Since there is no USB release with sub
1988 * minor version 0x301 to 0x309, we can assume that they are
1989 * incorrect and fix it here.
1990 */
1991 if (minor_revision > 0x00 && minor_revision < 0x10)
1992 minor_revision <<= 4;
1993 /*
1994 * Some zhaoxin's xHCI controller that follow usb3.1 spec
1995 * but only support Gen1.
1996 */
1997 if (xhci->quirks & XHCI_ZHAOXIN_HOST) {
1998 tmp_minor_revision = minor_revision;
1999 minor_revision = 0;
2000 }
2001
2002 } else if (major_revision <= 0x02) {
2003 rhub = &xhci->usb2_rhub;
2004 } else {
2005 xhci_warn(xhci, "Ignoring unknown port speed, Ext Cap %p, revision = 0x%x\n",
2006 addr, major_revision);
2007 /* Ignoring port protocol we can't understand. FIXME */
2008 return;
2009 }
2010
2011 /* Port offset and count in the third dword, see section 7.2 */
2012 temp = readl(addr: addr + 2);
2013 port_offset = XHCI_EXT_PORT_OFF(temp);
2014 port_count = XHCI_EXT_PORT_COUNT(temp);
2015 xhci_dbg_trace(xhci, trace: trace_xhci_dbg_init,
2016 fmt: "Ext Cap %p, port offset = %u, count = %u, revision = 0x%x",
2017 addr, port_offset, port_count, major_revision);
2018 /* Port count includes the current port offset */
2019 if (port_offset == 0 || (port_offset + port_count - 1) > num_ports)
2020 /* WTF? "Valid values are ‘1’ to MaxPorts" */
2021 return;
2022
2023 port_cap = &xhci->port_caps[xhci->num_port_caps++];
2024 if (xhci->num_port_caps > max_caps)
2025 return;
2026
2027 port_cap->psi_count = XHCI_EXT_PORT_PSIC(temp);
2028
2029 if (port_cap->psi_count) {
2030 port_cap->psi = kcalloc_node(n: port_cap->psi_count,
2031 size: sizeof(*port_cap->psi),
2032 GFP_KERNEL, node: dev_to_node(dev));
2033 if (!port_cap->psi)
2034 port_cap->psi_count = 0;
2035
2036 port_cap->psi_uid_count++;
2037 for (i = 0; i < port_cap->psi_count; i++) {
2038 port_cap->psi[i] = readl(addr: addr + 4 + i);
2039
2040 /* count unique ID values, two consecutive entries can
2041 * have the same ID if link is assymetric
2042 */
2043 if (i && (XHCI_EXT_PORT_PSIV(port_cap->psi[i]) !=
2044 XHCI_EXT_PORT_PSIV(port_cap->psi[i - 1])))
2045 port_cap->psi_uid_count++;
2046
2047 if (xhci->quirks & XHCI_ZHAOXIN_HOST &&
2048 major_revision == 0x03 &&
2049 XHCI_EXT_PORT_PSIV(port_cap->psi[i]) >= 5)
2050 minor_revision = tmp_minor_revision;
2051
2052 xhci_dbg(xhci, "PSIV:%d PSIE:%d PLT:%d PFD:%d LP:%d PSIM:%d\n",
2053 XHCI_EXT_PORT_PSIV(port_cap->psi[i]),
2054 XHCI_EXT_PORT_PSIE(port_cap->psi[i]),
2055 XHCI_EXT_PORT_PLT(port_cap->psi[i]),
2056 XHCI_EXT_PORT_PFD(port_cap->psi[i]),
2057 XHCI_EXT_PORT_LP(port_cap->psi[i]),
2058 XHCI_EXT_PORT_PSIM(port_cap->psi[i]));
2059 }
2060 }
2061
2062 rhub->maj_rev = major_revision;
2063
2064 if (rhub->min_rev < minor_revision)
2065 rhub->min_rev = minor_revision;
2066
2067 port_cap->maj_rev = major_revision;
2068 port_cap->min_rev = minor_revision;
2069
2070 /* cache usb2 port capabilities */
2071 if (major_revision < 0x03 && xhci->num_ext_caps < max_caps)
2072 xhci->ext_caps[xhci->num_ext_caps++] = temp;
2073
2074 if ((xhci->hci_version >= 0x100) && (major_revision != 0x03) &&
2075 (temp & XHCI_HLC)) {
2076 xhci_dbg_trace(xhci, trace: trace_xhci_dbg_init,
2077 fmt: "xHCI 1.0: support USB2 hardware lpm");
2078 xhci->hw_lpm_support = 1;
2079 }
2080
2081 port_offset--;
2082 for (i = port_offset; i < (port_offset + port_count); i++) {
2083 struct xhci_port *hw_port = &xhci->hw_ports[i];
2084 /* Duplicate entry. Ignore the port if the revisions differ. */
2085 if (hw_port->rhub) {
2086 xhci_warn(xhci, "Duplicate port entry, Ext Cap %p, port %u\n", addr, i);
2087 xhci_warn(xhci, "Port was marked as USB %u, duplicated as USB %u\n",
2088 hw_port->rhub->maj_rev, major_revision);
2089 /* Only adjust the roothub port counts if we haven't
2090 * found a similar duplicate.
2091 */
2092 if (hw_port->rhub != rhub &&
2093 hw_port->hcd_portnum != DUPLICATE_ENTRY) {
2094 hw_port->rhub->num_ports--;
2095 hw_port->hcd_portnum = DUPLICATE_ENTRY;
2096 }
2097 continue;
2098 }
2099 hw_port->rhub = rhub;
2100 hw_port->port_cap = port_cap;
2101 rhub->num_ports++;
2102 }
2103 /* FIXME: Should we disable ports not in the Extended Capabilities? */
2104}
2105
2106static void xhci_create_rhub_port_array(struct xhci_hcd *xhci,
2107 struct xhci_hub *rhub, gfp_t flags)
2108{
2109 int port_index = 0;
2110 int i;
2111 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2112
2113 if (!rhub->num_ports)
2114 return;
2115 rhub->ports = kcalloc_node(n: rhub->num_ports, size: sizeof(*rhub->ports),
2116 flags, node: dev_to_node(dev));
2117 if (!rhub->ports)
2118 return;
2119
2120 for (i = 0; i < HCS_MAX_PORTS(xhci->hcs_params1); i++) {
2121 if (xhci->hw_ports[i].rhub != rhub ||
2122 xhci->hw_ports[i].hcd_portnum == DUPLICATE_ENTRY)
2123 continue;
2124 xhci->hw_ports[i].hcd_portnum = port_index;
2125 rhub->ports[port_index] = &xhci->hw_ports[i];
2126 port_index++;
2127 if (port_index == rhub->num_ports)
2128 break;
2129 }
2130}
2131
2132/*
2133 * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that
2134 * specify what speeds each port is supposed to be. We can't count on the port
2135 * speed bits in the PORTSC register being correct until a device is connected,
2136 * but we need to set up the two fake roothubs with the correct number of USB
2137 * 3.0 and USB 2.0 ports at host controller initialization time.
2138 */
2139static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags)
2140{
2141 void __iomem *base;
2142 u32 offset;
2143 unsigned int num_ports;
2144 int i, j;
2145 int cap_count = 0;
2146 u32 cap_start;
2147 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2148
2149 num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
2150 xhci->hw_ports = kcalloc_node(n: num_ports, size: sizeof(*xhci->hw_ports),
2151 flags, node: dev_to_node(dev));
2152 if (!xhci->hw_ports)
2153 return -ENOMEM;
2154
2155 for (i = 0; i < num_ports; i++) {
2156 xhci->hw_ports[i].addr = &xhci->op_regs->port_status_base +
2157 NUM_PORT_REGS * i;
2158 xhci->hw_ports[i].hw_portnum = i;
2159
2160 init_completion(x: &xhci->hw_ports[i].rexit_done);
2161 init_completion(x: &xhci->hw_ports[i].u3exit_done);
2162 }
2163
2164 xhci->rh_bw = kcalloc_node(n: num_ports, size: sizeof(*xhci->rh_bw), flags,
2165 node: dev_to_node(dev));
2166 if (!xhci->rh_bw)
2167 return -ENOMEM;
2168 for (i = 0; i < num_ports; i++) {
2169 struct xhci_interval_bw_table *bw_table;
2170
2171 INIT_LIST_HEAD(list: &xhci->rh_bw[i].tts);
2172 bw_table = &xhci->rh_bw[i].bw_table;
2173 for (j = 0; j < XHCI_MAX_INTERVAL; j++)
2174 INIT_LIST_HEAD(list: &bw_table->interval_bw[j].endpoints);
2175 }
2176 base = &xhci->cap_regs->hc_capbase;
2177
2178 cap_start = xhci_find_next_ext_cap(base, start: 0, XHCI_EXT_CAPS_PROTOCOL);
2179 if (!cap_start) {
2180 xhci_err(xhci, "No Extended Capability registers, unable to set up roothub\n");
2181 return -ENODEV;
2182 }
2183
2184 offset = cap_start;
2185 /* count extended protocol capability entries for later caching */
2186 while (offset) {
2187 cap_count++;
2188 offset = xhci_find_next_ext_cap(base, start: offset,
2189 XHCI_EXT_CAPS_PROTOCOL);
2190 }
2191
2192 xhci->ext_caps = kcalloc_node(n: cap_count, size: sizeof(*xhci->ext_caps),
2193 flags, node: dev_to_node(dev));
2194 if (!xhci->ext_caps)
2195 return -ENOMEM;
2196
2197 xhci->port_caps = kcalloc_node(n: cap_count, size: sizeof(*xhci->port_caps),
2198 flags, node: dev_to_node(dev));
2199 if (!xhci->port_caps)
2200 return -ENOMEM;
2201
2202 offset = cap_start;
2203
2204 while (offset) {
2205 xhci_add_in_port(xhci, num_ports, addr: base + offset, max_caps: cap_count);
2206 if (xhci->usb2_rhub.num_ports + xhci->usb3_rhub.num_ports ==
2207 num_ports)
2208 break;
2209 offset = xhci_find_next_ext_cap(base, start: offset,
2210 XHCI_EXT_CAPS_PROTOCOL);
2211 }
2212 if (xhci->usb2_rhub.num_ports == 0 && xhci->usb3_rhub.num_ports == 0) {
2213 xhci_warn(xhci, "No ports on the roothubs?\n");
2214 return -ENODEV;
2215 }
2216 xhci_dbg_trace(xhci, trace: trace_xhci_dbg_init,
2217 fmt: "Found %u USB 2.0 ports and %u USB 3.0 ports.",
2218 xhci->usb2_rhub.num_ports, xhci->usb3_rhub.num_ports);
2219
2220 /* Place limits on the number of roothub ports so that the hub
2221 * descriptors aren't longer than the USB core will allocate.
2222 */
2223 if (xhci->usb3_rhub.num_ports > USB_SS_MAXPORTS) {
2224 xhci_dbg_trace(xhci, trace: trace_xhci_dbg_init,
2225 fmt: "Limiting USB 3.0 roothub ports to %u.",
2226 USB_SS_MAXPORTS);
2227 xhci->usb3_rhub.num_ports = USB_SS_MAXPORTS;
2228 }
2229 if (xhci->usb2_rhub.num_ports > USB_MAXCHILDREN) {
2230 xhci_dbg_trace(xhci, trace: trace_xhci_dbg_init,
2231 fmt: "Limiting USB 2.0 roothub ports to %u.",
2232 USB_MAXCHILDREN);
2233 xhci->usb2_rhub.num_ports = USB_MAXCHILDREN;
2234 }
2235
2236 if (!xhci->usb2_rhub.num_ports)
2237 xhci_info(xhci, "USB2 root hub has no ports\n");
2238
2239 if (!xhci->usb3_rhub.num_ports)
2240 xhci_info(xhci, "USB3 root hub has no ports\n");
2241
2242 xhci_create_rhub_port_array(xhci, rhub: &xhci->usb2_rhub, flags);
2243 xhci_create_rhub_port_array(xhci, rhub: &xhci->usb3_rhub, flags);
2244
2245 return 0;
2246}
2247
2248static struct xhci_interrupter *
2249xhci_alloc_interrupter(struct xhci_hcd *xhci, gfp_t flags)
2250{
2251 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2252 struct xhci_interrupter *ir;
2253 unsigned int num_segs;
2254 int ret;
2255
2256 ir = kzalloc_node(size: sizeof(*ir), flags, node: dev_to_node(dev));
2257 if (!ir)
2258 return NULL;
2259
2260 num_segs = min_t(unsigned int, 1 << HCS_ERST_MAX(xhci->hcs_params2),
2261 ERST_MAX_SEGS);
2262
2263 ir->event_ring = xhci_ring_alloc(xhci, num_segs, cycle_state: 1, type: TYPE_EVENT, max_packet: 0,
2264 flags);
2265 if (!ir->event_ring) {
2266 xhci_warn(xhci, "Failed to allocate interrupter event ring\n");
2267 kfree(objp: ir);
2268 return NULL;
2269 }
2270
2271 ret = xhci_alloc_erst(xhci, evt_ring: ir->event_ring, erst: &ir->erst, flags);
2272 if (ret) {
2273 xhci_warn(xhci, "Failed to allocate interrupter erst\n");
2274 xhci_ring_free(xhci, ring: ir->event_ring);
2275 kfree(objp: ir);
2276 return NULL;
2277 }
2278
2279 return ir;
2280}
2281
2282static int
2283xhci_add_interrupter(struct xhci_hcd *xhci, struct xhci_interrupter *ir,
2284 unsigned int intr_num)
2285{
2286 u64 erst_base;
2287 u32 erst_size;
2288
2289 if (intr_num > xhci->max_interrupters) {
2290 xhci_warn(xhci, "Can't add interrupter %d, max interrupters %d\n",
2291 intr_num, xhci->max_interrupters);
2292 return -EINVAL;
2293 }
2294
2295 ir->ir_set = &xhci->run_regs->ir_set[intr_num];
2296
2297 /* set ERST count with the number of entries in the segment table */
2298 erst_size = readl(addr: &ir->ir_set->erst_size);
2299 erst_size &= ERST_SIZE_MASK;
2300 erst_size |= ir->event_ring->num_segs;
2301 writel(val: erst_size, addr: &ir->ir_set->erst_size);
2302
2303 erst_base = xhci_read_64(xhci, regs: &ir->ir_set->erst_base);
2304 erst_base &= ERST_BASE_RSVDP;
2305 erst_base |= ir->erst.erst_dma_addr & ~ERST_BASE_RSVDP;
2306 xhci_write_64(xhci, val: erst_base, regs: &ir->ir_set->erst_base);
2307
2308 /* Set the event ring dequeue address of this interrupter */
2309 xhci_set_hc_event_deq(xhci, ir);
2310
2311 return 0;
2312}
2313
2314int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
2315{
2316 dma_addr_t dma;
2317 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2318 unsigned int val, val2;
2319 u64 val_64;
2320 u32 page_size, temp;
2321 int i;
2322
2323 INIT_LIST_HEAD(list: &xhci->cmd_list);
2324
2325 /* init command timeout work */
2326 INIT_DELAYED_WORK(&xhci->cmd_timer, xhci_handle_command_timeout);
2327 init_completion(x: &xhci->cmd_ring_stop_completion);
2328
2329 page_size = readl(addr: &xhci->op_regs->page_size);
2330 xhci_dbg_trace(xhci, trace: trace_xhci_dbg_init,
2331 fmt: "Supported page size register = 0x%x", page_size);
2332 i = ffs(page_size);
2333 if (i < 16)
2334 xhci_dbg_trace(xhci, trace: trace_xhci_dbg_init,
2335 fmt: "Supported page size of %iK", (1 << (i+12)) / 1024);
2336 else
2337 xhci_warn(xhci, "WARN: no supported page size\n");
2338 /* Use 4K pages, since that's common and the minimum the HC supports */
2339 xhci->page_shift = 12;
2340 xhci->page_size = 1 << xhci->page_shift;
2341 xhci_dbg_trace(xhci, trace: trace_xhci_dbg_init,
2342 fmt: "HCD page size set to %iK", xhci->page_size / 1024);
2343
2344 /*
2345 * Program the Number of Device Slots Enabled field in the CONFIG
2346 * register with the max value of slots the HC can handle.
2347 */
2348 val = HCS_MAX_SLOTS(readl(&xhci->cap_regs->hcs_params1));
2349 xhci_dbg_trace(xhci, trace: trace_xhci_dbg_init,
2350 fmt: "// xHC can handle at most %d device slots.", val);
2351 val2 = readl(addr: &xhci->op_regs->config_reg);
2352 val |= (val2 & ~HCS_SLOTS_MASK);
2353 xhci_dbg_trace(xhci, trace: trace_xhci_dbg_init,
2354 fmt: "// Setting Max device slots reg = 0x%x.", val);
2355 writel(val, addr: &xhci->op_regs->config_reg);
2356
2357 /*
2358 * xHCI section 5.4.6 - Device Context array must be
2359 * "physically contiguous and 64-byte (cache line) aligned".
2360 */
2361 xhci->dcbaa = dma_alloc_coherent(dev, size: sizeof(*xhci->dcbaa), dma_handle: &dma,
2362 gfp: flags);
2363 if (!xhci->dcbaa)
2364 goto fail;
2365 xhci->dcbaa->dma = dma;
2366 xhci_dbg_trace(xhci, trace: trace_xhci_dbg_init,
2367 fmt: "// Device context base array address = 0x%pad (DMA), %p (virt)",
2368 &xhci->dcbaa->dma, xhci->dcbaa);
2369 xhci_write_64(xhci, val: dma, regs: &xhci->op_regs->dcbaa_ptr);
2370
2371 /*
2372 * Initialize the ring segment pool. The ring must be a contiguous
2373 * structure comprised of TRBs. The TRBs must be 16 byte aligned,
2374 * however, the command ring segment needs 64-byte aligned segments
2375 * and our use of dma addresses in the trb_address_map radix tree needs
2376 * TRB_SEGMENT_SIZE alignment, so we pick the greater alignment need.
2377 */
2378 if (xhci->quirks & XHCI_ZHAOXIN_TRB_FETCH)
2379 xhci->segment_pool = dma_pool_create(name: "xHCI ring segments", dev,
2380 TRB_SEGMENT_SIZE * 2, TRB_SEGMENT_SIZE * 2, allocation: xhci->page_size * 2);
2381 else
2382 xhci->segment_pool = dma_pool_create(name: "xHCI ring segments", dev,
2383 TRB_SEGMENT_SIZE, TRB_SEGMENT_SIZE, allocation: xhci->page_size);
2384
2385 /* See Table 46 and Note on Figure 55 */
2386 xhci->device_pool = dma_pool_create(name: "xHCI input/output contexts", dev,
2387 size: 2112, align: 64, allocation: xhci->page_size);
2388 if (!xhci->segment_pool || !xhci->device_pool)
2389 goto fail;
2390
2391 /* Linear stream context arrays don't have any boundary restrictions,
2392 * and only need to be 16-byte aligned.
2393 */
2394 xhci->small_streams_pool =
2395 dma_pool_create(name: "xHCI 256 byte stream ctx arrays",
2396 dev, SMALL_STREAM_ARRAY_SIZE, align: 16, allocation: 0);
2397 xhci->medium_streams_pool =
2398 dma_pool_create(name: "xHCI 1KB stream ctx arrays",
2399 dev, MEDIUM_STREAM_ARRAY_SIZE, align: 16, allocation: 0);
2400 /* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE
2401 * will be allocated with dma_alloc_coherent()
2402 */
2403
2404 if (!xhci->small_streams_pool || !xhci->medium_streams_pool)
2405 goto fail;
2406
2407 /* Set up the command ring to have one segments for now. */
2408 xhci->cmd_ring = xhci_ring_alloc(xhci, num_segs: 1, cycle_state: 1, type: TYPE_COMMAND, max_packet: 0, flags);
2409 if (!xhci->cmd_ring)
2410 goto fail;
2411 xhci_dbg_trace(xhci, trace: trace_xhci_dbg_init,
2412 fmt: "Allocated command ring at %p", xhci->cmd_ring);
2413 xhci_dbg_trace(xhci, trace: trace_xhci_dbg_init, fmt: "First segment DMA is 0x%pad",
2414 &xhci->cmd_ring->first_seg->dma);
2415
2416 /* Set the address in the Command Ring Control register */
2417 val_64 = xhci_read_64(xhci, regs: &xhci->op_regs->cmd_ring);
2418 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
2419 (xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) |
2420 xhci->cmd_ring->cycle_state;
2421 xhci_dbg_trace(xhci, trace: trace_xhci_dbg_init,
2422 fmt: "// Setting command ring address to 0x%016llx", val_64);
2423 xhci_write_64(xhci, val: val_64, regs: &xhci->op_regs->cmd_ring);
2424
2425 /* Reserve one command ring TRB for disabling LPM.
2426 * Since the USB core grabs the shared usb_bus bandwidth mutex before
2427 * disabling LPM, we only need to reserve one TRB for all devices.
2428 */
2429 xhci->cmd_ring_reserved_trbs++;
2430
2431 val = readl(addr: &xhci->cap_regs->db_off);
2432 val &= DBOFF_MASK;
2433 xhci_dbg_trace(xhci, trace: trace_xhci_dbg_init,
2434 fmt: "// Doorbell array is located at offset 0x%x from cap regs base addr",
2435 val);
2436 xhci->dba = (void __iomem *) xhci->cap_regs + val;
2437
2438 /* Allocate and set up primary interrupter 0 with an event ring. */
2439 xhci_dbg_trace(xhci, trace: trace_xhci_dbg_init,
2440 fmt: "Allocating primary event ring");
2441 xhci->interrupter = xhci_alloc_interrupter(xhci, flags);
2442 if (!xhci->interrupter)
2443 goto fail;
2444
2445 if (xhci_add_interrupter(xhci, ir: xhci->interrupter, intr_num: 0))
2446 goto fail;
2447
2448 xhci->isoc_bei_interval = AVOID_BEI_INTERVAL_MAX;
2449
2450 /*
2451 * XXX: Might need to set the Interrupter Moderation Register to
2452 * something other than the default (~1ms minimum between interrupts).
2453 * See section 5.5.1.2.
2454 */
2455 for (i = 0; i < MAX_HC_SLOTS; i++)
2456 xhci->devs[i] = NULL;
2457
2458 if (scratchpad_alloc(xhci, flags))
2459 goto fail;
2460 if (xhci_setup_port_arrays(xhci, flags))
2461 goto fail;
2462
2463 /* Enable USB 3.0 device notifications for function remote wake, which
2464 * is necessary for allowing USB 3.0 devices to do remote wakeup from
2465 * U3 (device suspend).
2466 */
2467 temp = readl(addr: &xhci->op_regs->dev_notification);
2468 temp &= ~DEV_NOTE_MASK;
2469 temp |= DEV_NOTE_FWAKE;
2470 writel(val: temp, addr: &xhci->op_regs->dev_notification);
2471
2472 return 0;
2473
2474fail:
2475 xhci_halt(xhci);
2476 xhci_reset(xhci, XHCI_RESET_SHORT_USEC);
2477 xhci_mem_cleanup(xhci);
2478 return -ENOMEM;
2479}
2480

source code of linux/drivers/usb/host/xhci-mem.c