1/*
2 * Freescale Hypervisor Management Driver
3
4 * Copyright (C) 2008-2011 Freescale Semiconductor, Inc.
5 * Author: Timur Tabi <timur@freescale.com>
6 *
7 * This file is licensed under the terms of the GNU General Public License
8 * version 2. This program is licensed "as is" without any warranty of any
9 * kind, whether express or implied.
10 *
11 * The Freescale hypervisor management driver provides several services to
12 * drivers and applications related to the Freescale hypervisor:
13 *
14 * 1. An ioctl interface for querying and managing partitions.
15 *
16 * 2. A file interface to reading incoming doorbells.
17 *
18 * 3. An interrupt handler for shutting down the partition upon receiving the
19 * shutdown doorbell from a manager partition.
20 *
21 * 4. A kernel interface for receiving callbacks when a managed partition
22 * shuts down.
23 */
24
25#include <linux/kernel.h>
26#include <linux/module.h>
27#include <linux/init.h>
28#include <linux/types.h>
29#include <linux/err.h>
30#include <linux/fs.h>
31#include <linux/miscdevice.h>
32#include <linux/mm.h>
33#include <linux/pagemap.h>
34#include <linux/slab.h>
35#include <linux/poll.h>
36#include <linux/of.h>
37#include <linux/of_irq.h>
38#include <linux/reboot.h>
39#include <linux/uaccess.h>
40#include <linux/notifier.h>
41#include <linux/interrupt.h>
42
43#include <linux/io.h>
44#include <asm/fsl_hcalls.h>
45
46#include <linux/fsl_hypervisor.h>
47
48static BLOCKING_NOTIFIER_HEAD(failover_subscribers);
49
50/*
51 * Ioctl interface for FSL_HV_IOCTL_PARTITION_RESTART
52 *
53 * Restart a running partition
54 */
55static long ioctl_restart(struct fsl_hv_ioctl_restart __user *p)
56{
57 struct fsl_hv_ioctl_restart param;
58
59 /* Get the parameters from the user */
60 if (copy_from_user(to: &param, from: p, n: sizeof(struct fsl_hv_ioctl_restart)))
61 return -EFAULT;
62
63 param.ret = fh_partition_restart(param.partition);
64
65 if (copy_to_user(to: &p->ret, from: &param.ret, n: sizeof(__u32)))
66 return -EFAULT;
67
68 return 0;
69}
70
71/*
72 * Ioctl interface for FSL_HV_IOCTL_PARTITION_STATUS
73 *
74 * Query the status of a partition
75 */
76static long ioctl_status(struct fsl_hv_ioctl_status __user *p)
77{
78 struct fsl_hv_ioctl_status param;
79 u32 status;
80
81 /* Get the parameters from the user */
82 if (copy_from_user(to: &param, from: p, n: sizeof(struct fsl_hv_ioctl_status)))
83 return -EFAULT;
84
85 param.ret = fh_partition_get_status(param.partition, &status);
86 if (!param.ret)
87 param.status = status;
88
89 if (copy_to_user(to: p, from: &param, n: sizeof(struct fsl_hv_ioctl_status)))
90 return -EFAULT;
91
92 return 0;
93}
94
95/*
96 * Ioctl interface for FSL_HV_IOCTL_PARTITION_START
97 *
98 * Start a stopped partition.
99 */
100static long ioctl_start(struct fsl_hv_ioctl_start __user *p)
101{
102 struct fsl_hv_ioctl_start param;
103
104 /* Get the parameters from the user */
105 if (copy_from_user(to: &param, from: p, n: sizeof(struct fsl_hv_ioctl_start)))
106 return -EFAULT;
107
108 param.ret = fh_partition_start(param.partition, param.entry_point,
109 param.load);
110
111 if (copy_to_user(to: &p->ret, from: &param.ret, n: sizeof(__u32)))
112 return -EFAULT;
113
114 return 0;
115}
116
117/*
118 * Ioctl interface for FSL_HV_IOCTL_PARTITION_STOP
119 *
120 * Stop a running partition
121 */
122static long ioctl_stop(struct fsl_hv_ioctl_stop __user *p)
123{
124 struct fsl_hv_ioctl_stop param;
125
126 /* Get the parameters from the user */
127 if (copy_from_user(to: &param, from: p, n: sizeof(struct fsl_hv_ioctl_stop)))
128 return -EFAULT;
129
130 param.ret = fh_partition_stop(param.partition);
131
132 if (copy_to_user(to: &p->ret, from: &param.ret, n: sizeof(__u32)))
133 return -EFAULT;
134
135 return 0;
136}
137
138/*
139 * Ioctl interface for FSL_HV_IOCTL_MEMCPY
140 *
141 * The FH_MEMCPY hypercall takes an array of address/address/size structures
142 * to represent the data being copied. As a convenience to the user, this
143 * ioctl takes a user-create buffer and a pointer to a guest physically
144 * contiguous buffer in the remote partition, and creates the
145 * address/address/size array for the hypercall.
146 */
147static long ioctl_memcpy(struct fsl_hv_ioctl_memcpy __user *p)
148{
149 struct fsl_hv_ioctl_memcpy param;
150
151 struct page **pages = NULL;
152 void *sg_list_unaligned = NULL;
153 struct fh_sg_list *sg_list = NULL;
154
155 unsigned int num_pages;
156 unsigned long lb_offset; /* Offset within a page of the local buffer */
157
158 unsigned int i;
159 long ret = 0;
160 int num_pinned = 0; /* return value from get_user_pages_fast() */
161 phys_addr_t remote_paddr; /* The next address in the remote buffer */
162 uint32_t count; /* The number of bytes left to copy */
163
164 /* Get the parameters from the user */
165 if (copy_from_user(to: &param, from: p, n: sizeof(struct fsl_hv_ioctl_memcpy)))
166 return -EFAULT;
167
168 /*
169 * One partition must be local, the other must be remote. In other
170 * words, if source and target are both -1, or are both not -1, then
171 * return an error.
172 */
173 if ((param.source == -1) == (param.target == -1))
174 return -EINVAL;
175
176 /*
177 * The array of pages returned by get_user_pages_fast() covers only
178 * page-aligned memory. Since the user buffer is probably not
179 * page-aligned, we need to handle the discrepancy.
180 *
181 * We calculate the offset within a page of the S/G list, and make
182 * adjustments accordingly. This will result in a page list that looks
183 * like this:
184 *
185 * ---- <-- first page starts before the buffer
186 * | |
187 * |////|-> ----
188 * |////| | |
189 * ---- | |
190 * | |
191 * ---- | |
192 * |////| | |
193 * |////| | |
194 * |////| | |
195 * ---- | |
196 * | |
197 * ---- | |
198 * |////| | |
199 * |////| | |
200 * |////| | |
201 * ---- | |
202 * | |
203 * ---- | |
204 * |////| | |
205 * |////|-> ----
206 * | | <-- last page ends after the buffer
207 * ----
208 *
209 * The distance between the start of the first page and the start of the
210 * buffer is lb_offset. The hashed (///) areas are the parts of the
211 * page list that contain the actual buffer.
212 *
213 * The advantage of this approach is that the number of pages is
214 * equal to the number of entries in the S/G list that we give to the
215 * hypervisor.
216 */
217 lb_offset = param.local_vaddr & (PAGE_SIZE - 1);
218 if (param.count == 0 ||
219 param.count > U64_MAX - lb_offset - PAGE_SIZE + 1)
220 return -EINVAL;
221 num_pages = (param.count + lb_offset + PAGE_SIZE - 1) >> PAGE_SHIFT;
222
223 /* Allocate the buffers we need */
224
225 /*
226 * 'pages' is an array of struct page pointers that's initialized by
227 * get_user_pages_fast().
228 */
229 pages = kcalloc(n: num_pages, size: sizeof(struct page *), GFP_KERNEL);
230 if (!pages) {
231 pr_debug("fsl-hv: could not allocate page list\n");
232 return -ENOMEM;
233 }
234
235 /*
236 * sg_list is the list of fh_sg_list objects that we pass to the
237 * hypervisor.
238 */
239 sg_list_unaligned = kmalloc(num_pages * sizeof(struct fh_sg_list) +
240 sizeof(struct fh_sg_list) - 1, GFP_KERNEL);
241 if (!sg_list_unaligned) {
242 pr_debug("fsl-hv: could not allocate S/G list\n");
243 ret = -ENOMEM;
244 goto free_pages;
245 }
246 sg_list = PTR_ALIGN(sg_list_unaligned, sizeof(struct fh_sg_list));
247
248 /* Get the physical addresses of the source buffer */
249 num_pinned = get_user_pages_fast(start: param.local_vaddr - lb_offset,
250 nr_pages: num_pages, gup_flags: param.source != -1 ? FOLL_WRITE : 0, pages);
251
252 if (num_pinned != num_pages) {
253 pr_debug("fsl-hv: could not lock source buffer\n");
254 ret = (num_pinned < 0) ? num_pinned : -EFAULT;
255 goto exit;
256 }
257
258 /*
259 * Build the fh_sg_list[] array. The first page is special
260 * because it's misaligned.
261 */
262 if (param.source == -1) {
263 sg_list[0].source = page_to_phys(pages[0]) + lb_offset;
264 sg_list[0].target = param.remote_paddr;
265 } else {
266 sg_list[0].source = param.remote_paddr;
267 sg_list[0].target = page_to_phys(pages[0]) + lb_offset;
268 }
269 sg_list[0].size = min_t(uint64_t, param.count, PAGE_SIZE - lb_offset);
270
271 remote_paddr = param.remote_paddr + sg_list[0].size;
272 count = param.count - sg_list[0].size;
273
274 for (i = 1; i < num_pages; i++) {
275 if (param.source == -1) {
276 /* local to remote */
277 sg_list[i].source = page_to_phys(pages[i]);
278 sg_list[i].target = remote_paddr;
279 } else {
280 /* remote to local */
281 sg_list[i].source = remote_paddr;
282 sg_list[i].target = page_to_phys(pages[i]);
283 }
284 sg_list[i].size = min_t(uint64_t, count, PAGE_SIZE);
285
286 remote_paddr += sg_list[i].size;
287 count -= sg_list[i].size;
288 }
289
290 param.ret = fh_partition_memcpy(param.source, param.target,
291 virt_to_phys(address: sg_list), num_pages);
292
293exit:
294 if (pages && (num_pinned > 0)) {
295 for (i = 0; i < num_pinned; i++)
296 put_page(page: pages[i]);
297 }
298
299 kfree(objp: sg_list_unaligned);
300free_pages:
301 kfree(objp: pages);
302
303 if (!ret)
304 if (copy_to_user(to: &p->ret, from: &param.ret, n: sizeof(__u32)))
305 return -EFAULT;
306
307 return ret;
308}
309
310/*
311 * Ioctl interface for FSL_HV_IOCTL_DOORBELL
312 *
313 * Ring a doorbell
314 */
315static long ioctl_doorbell(struct fsl_hv_ioctl_doorbell __user *p)
316{
317 struct fsl_hv_ioctl_doorbell param;
318
319 /* Get the parameters from the user. */
320 if (copy_from_user(to: &param, from: p, n: sizeof(struct fsl_hv_ioctl_doorbell)))
321 return -EFAULT;
322
323 param.ret = ev_doorbell_send(param.doorbell);
324
325 if (copy_to_user(to: &p->ret, from: &param.ret, n: sizeof(__u32)))
326 return -EFAULT;
327
328 return 0;
329}
330
331static long ioctl_dtprop(struct fsl_hv_ioctl_prop __user *p, int set)
332{
333 struct fsl_hv_ioctl_prop param;
334 char __user *upath, *upropname;
335 void __user *upropval;
336 char *path, *propname;
337 void *propval;
338 int ret = 0;
339
340 /* Get the parameters from the user. */
341 if (copy_from_user(to: &param, from: p, n: sizeof(struct fsl_hv_ioctl_prop)))
342 return -EFAULT;
343
344 upath = (char __user *)(uintptr_t)param.path;
345 upropname = (char __user *)(uintptr_t)param.propname;
346 upropval = (void __user *)(uintptr_t)param.propval;
347
348 path = strndup_user(upath, FH_DTPROP_MAX_PATHLEN);
349 if (IS_ERR(ptr: path))
350 return PTR_ERR(ptr: path);
351
352 propname = strndup_user(upropname, FH_DTPROP_MAX_PATHLEN);
353 if (IS_ERR(ptr: propname)) {
354 ret = PTR_ERR(ptr: propname);
355 goto err_free_path;
356 }
357
358 if (param.proplen > FH_DTPROP_MAX_PROPLEN) {
359 ret = -EINVAL;
360 goto err_free_propname;
361 }
362
363 propval = kmalloc(size: param.proplen, GFP_KERNEL);
364 if (!propval) {
365 ret = -ENOMEM;
366 goto err_free_propname;
367 }
368
369 if (set) {
370 if (copy_from_user(to: propval, from: upropval, n: param.proplen)) {
371 ret = -EFAULT;
372 goto err_free_propval;
373 }
374
375 param.ret = fh_partition_set_dtprop(param.handle,
376 virt_to_phys(address: path),
377 virt_to_phys(address: propname),
378 virt_to_phys(address: propval),
379 param.proplen);
380 } else {
381 param.ret = fh_partition_get_dtprop(param.handle,
382 virt_to_phys(address: path),
383 virt_to_phys(address: propname),
384 virt_to_phys(address: propval),
385 &param.proplen);
386
387 if (param.ret == 0) {
388 if (copy_to_user(to: upropval, from: propval, n: param.proplen) ||
389 put_user(param.proplen, &p->proplen)) {
390 ret = -EFAULT;
391 goto err_free_propval;
392 }
393 }
394 }
395
396 if (put_user(param.ret, &p->ret))
397 ret = -EFAULT;
398
399err_free_propval:
400 kfree(objp: propval);
401err_free_propname:
402 kfree(objp: propname);
403err_free_path:
404 kfree(objp: path);
405
406 return ret;
407}
408
409/*
410 * Ioctl main entry point
411 */
412static long fsl_hv_ioctl(struct file *file, unsigned int cmd,
413 unsigned long argaddr)
414{
415 void __user *arg = (void __user *)argaddr;
416 long ret;
417
418 switch (cmd) {
419 case FSL_HV_IOCTL_PARTITION_RESTART:
420 ret = ioctl_restart(p: arg);
421 break;
422 case FSL_HV_IOCTL_PARTITION_GET_STATUS:
423 ret = ioctl_status(p: arg);
424 break;
425 case FSL_HV_IOCTL_PARTITION_START:
426 ret = ioctl_start(p: arg);
427 break;
428 case FSL_HV_IOCTL_PARTITION_STOP:
429 ret = ioctl_stop(p: arg);
430 break;
431 case FSL_HV_IOCTL_MEMCPY:
432 ret = ioctl_memcpy(p: arg);
433 break;
434 case FSL_HV_IOCTL_DOORBELL:
435 ret = ioctl_doorbell(p: arg);
436 break;
437 case FSL_HV_IOCTL_GETPROP:
438 ret = ioctl_dtprop(p: arg, set: 0);
439 break;
440 case FSL_HV_IOCTL_SETPROP:
441 ret = ioctl_dtprop(p: arg, set: 1);
442 break;
443 default:
444 pr_debug("fsl-hv: bad ioctl dir=%u type=%u cmd=%u size=%u\n",
445 _IOC_DIR(cmd), _IOC_TYPE(cmd), _IOC_NR(cmd),
446 _IOC_SIZE(cmd));
447 return -ENOTTY;
448 }
449
450 return ret;
451}
452
453/* Linked list of processes that have us open */
454static struct list_head db_list;
455
456/* spinlock for db_list */
457static DEFINE_SPINLOCK(db_list_lock);
458
459/* The size of the doorbell event queue. This must be a power of two. */
460#define QSIZE 16
461
462/* Returns the next head/tail pointer, wrapping around the queue if necessary */
463#define nextp(x) (((x) + 1) & (QSIZE - 1))
464
465/* Per-open data structure */
466struct doorbell_queue {
467 struct list_head list;
468 spinlock_t lock;
469 wait_queue_head_t wait;
470 unsigned int head;
471 unsigned int tail;
472 uint32_t q[QSIZE];
473};
474
475/* Linked list of ISRs that we registered */
476struct list_head isr_list;
477
478/* Per-ISR data structure */
479struct doorbell_isr {
480 struct list_head list;
481 unsigned int irq;
482 uint32_t doorbell; /* The doorbell handle */
483 uint32_t partition; /* The partition handle, if used */
484};
485
486/*
487 * Add a doorbell to all of the doorbell queues
488 */
489static void fsl_hv_queue_doorbell(uint32_t doorbell)
490{
491 struct doorbell_queue *dbq;
492 unsigned long flags;
493
494 /* Prevent another core from modifying db_list */
495 spin_lock_irqsave(&db_list_lock, flags);
496
497 list_for_each_entry(dbq, &db_list, list) {
498 if (dbq->head != nextp(dbq->tail)) {
499 dbq->q[dbq->tail] = doorbell;
500 /*
501 * This memory barrier eliminates the need to grab
502 * the spinlock for dbq.
503 */
504 smp_wmb();
505 dbq->tail = nextp(dbq->tail);
506 wake_up_interruptible(&dbq->wait);
507 }
508 }
509
510 spin_unlock_irqrestore(lock: &db_list_lock, flags);
511}
512
513/*
514 * Interrupt handler for all doorbells
515 *
516 * We use the same interrupt handler for all doorbells. Whenever a doorbell
517 * is rung, and we receive an interrupt, we just put the handle for that
518 * doorbell (passed to us as *data) into all of the queues.
519 */
520static irqreturn_t fsl_hv_isr(int irq, void *data)
521{
522 fsl_hv_queue_doorbell(doorbell: (uintptr_t) data);
523
524 return IRQ_HANDLED;
525}
526
527/*
528 * State change thread function
529 *
530 * The state change notification arrives in an interrupt, but we can't call
531 * blocking_notifier_call_chain() in an interrupt handler. We could call
532 * atomic_notifier_call_chain(), but that would require the clients' call-back
533 * function to run in interrupt context. Since we don't want to impose that
534 * restriction on the clients, we use a threaded IRQ to process the
535 * notification in kernel context.
536 */
537static irqreturn_t fsl_hv_state_change_thread(int irq, void *data)
538{
539 struct doorbell_isr *dbisr = data;
540
541 blocking_notifier_call_chain(nh: &failover_subscribers, val: dbisr->partition,
542 NULL);
543
544 return IRQ_HANDLED;
545}
546
547/*
548 * Interrupt handler for state-change doorbells
549 */
550static irqreturn_t fsl_hv_state_change_isr(int irq, void *data)
551{
552 unsigned int status;
553 struct doorbell_isr *dbisr = data;
554 int ret;
555
556 /* It's still a doorbell, so add it to all the queues. */
557 fsl_hv_queue_doorbell(doorbell: dbisr->doorbell);
558
559 /* Determine the new state, and if it's stopped, notify the clients. */
560 ret = fh_partition_get_status(dbisr->partition, &status);
561 if (!ret && (status == FH_PARTITION_STOPPED))
562 return IRQ_WAKE_THREAD;
563
564 return IRQ_HANDLED;
565}
566
567/*
568 * Returns a bitmask indicating whether a read will block
569 */
570static __poll_t fsl_hv_poll(struct file *filp, struct poll_table_struct *p)
571{
572 struct doorbell_queue *dbq = filp->private_data;
573 unsigned long flags;
574 __poll_t mask;
575
576 spin_lock_irqsave(&dbq->lock, flags);
577
578 poll_wait(filp, wait_address: &dbq->wait, p);
579 mask = (dbq->head == dbq->tail) ? 0 : (EPOLLIN | EPOLLRDNORM);
580
581 spin_unlock_irqrestore(lock: &dbq->lock, flags);
582
583 return mask;
584}
585
586/*
587 * Return the handles for any incoming doorbells
588 *
589 * If there are doorbell handles in the queue for this open instance, then
590 * return them to the caller as an array of 32-bit integers. Otherwise,
591 * block until there is at least one handle to return.
592 */
593static ssize_t fsl_hv_read(struct file *filp, char __user *buf, size_t len,
594 loff_t *off)
595{
596 struct doorbell_queue *dbq = filp->private_data;
597 uint32_t __user *p = (uint32_t __user *) buf; /* for put_user() */
598 unsigned long flags;
599 ssize_t count = 0;
600
601 /* Make sure we stop when the user buffer is full. */
602 while (len >= sizeof(uint32_t)) {
603 uint32_t dbell; /* Local copy of doorbell queue data */
604
605 spin_lock_irqsave(&dbq->lock, flags);
606
607 /*
608 * If the queue is empty, then either we're done or we need
609 * to block. If the application specified O_NONBLOCK, then
610 * we return the appropriate error code.
611 */
612 if (dbq->head == dbq->tail) {
613 spin_unlock_irqrestore(lock: &dbq->lock, flags);
614 if (count)
615 break;
616 if (filp->f_flags & O_NONBLOCK)
617 return -EAGAIN;
618 if (wait_event_interruptible(dbq->wait,
619 dbq->head != dbq->tail))
620 return -ERESTARTSYS;
621 continue;
622 }
623
624 /*
625 * Even though we have an smp_wmb() in the ISR, the core
626 * might speculatively execute the "dbell = ..." below while
627 * it's evaluating the if-statement above. In that case, the
628 * value put into dbell could be stale if the core accepts the
629 * speculation. To prevent that, we need a read memory barrier
630 * here as well.
631 */
632 smp_rmb();
633
634 /* Copy the data to a temporary local buffer, because
635 * we can't call copy_to_user() from inside a spinlock
636 */
637 dbell = dbq->q[dbq->head];
638 dbq->head = nextp(dbq->head);
639
640 spin_unlock_irqrestore(lock: &dbq->lock, flags);
641
642 if (put_user(dbell, p))
643 return -EFAULT;
644 p++;
645 count += sizeof(uint32_t);
646 len -= sizeof(uint32_t);
647 }
648
649 return count;
650}
651
652/*
653 * Open the driver and prepare for reading doorbells.
654 *
655 * Every time an application opens the driver, we create a doorbell queue
656 * for that file handle. This queue is used for any incoming doorbells.
657 */
658static int fsl_hv_open(struct inode *inode, struct file *filp)
659{
660 struct doorbell_queue *dbq;
661 unsigned long flags;
662
663 dbq = kzalloc(size: sizeof(struct doorbell_queue), GFP_KERNEL);
664 if (!dbq) {
665 pr_err("fsl-hv: out of memory\n");
666 return -ENOMEM;
667 }
668
669 spin_lock_init(&dbq->lock);
670 init_waitqueue_head(&dbq->wait);
671
672 spin_lock_irqsave(&db_list_lock, flags);
673 list_add(new: &dbq->list, head: &db_list);
674 spin_unlock_irqrestore(lock: &db_list_lock, flags);
675
676 filp->private_data = dbq;
677
678 return 0;
679}
680
681/*
682 * Close the driver
683 */
684static int fsl_hv_close(struct inode *inode, struct file *filp)
685{
686 struct doorbell_queue *dbq = filp->private_data;
687 unsigned long flags;
688
689 spin_lock_irqsave(&db_list_lock, flags);
690 list_del(entry: &dbq->list);
691 spin_unlock_irqrestore(lock: &db_list_lock, flags);
692
693 kfree(objp: dbq);
694
695 return 0;
696}
697
698static const struct file_operations fsl_hv_fops = {
699 .owner = THIS_MODULE,
700 .open = fsl_hv_open,
701 .release = fsl_hv_close,
702 .poll = fsl_hv_poll,
703 .read = fsl_hv_read,
704 .unlocked_ioctl = fsl_hv_ioctl,
705 .compat_ioctl = compat_ptr_ioctl,
706};
707
708static struct miscdevice fsl_hv_misc_dev = {
709 MISC_DYNAMIC_MINOR,
710 "fsl-hv",
711 &fsl_hv_fops
712};
713
714static irqreturn_t fsl_hv_shutdown_isr(int irq, void *data)
715{
716 orderly_poweroff(force: false);
717
718 return IRQ_HANDLED;
719}
720
721/*
722 * Returns the handle of the parent of the given node
723 *
724 * The handle is the value of the 'hv-handle' property
725 */
726static int get_parent_handle(struct device_node *np)
727{
728 struct device_node *parent;
729 const uint32_t *prop;
730 uint32_t handle;
731 int len;
732
733 parent = of_get_parent(node: np);
734 if (!parent)
735 /* It's not really possible for this to fail */
736 return -ENODEV;
737
738 /*
739 * The proper name for the handle property is "hv-handle", but some
740 * older versions of the hypervisor used "reg".
741 */
742 prop = of_get_property(node: parent, name: "hv-handle", lenp: &len);
743 if (!prop)
744 prop = of_get_property(node: parent, name: "reg", lenp: &len);
745
746 if (!prop || (len != sizeof(uint32_t))) {
747 /* This can happen only if the node is malformed */
748 of_node_put(node: parent);
749 return -ENODEV;
750 }
751
752 handle = be32_to_cpup(p: prop);
753 of_node_put(node: parent);
754
755 return handle;
756}
757
758/*
759 * Register a callback for failover events
760 *
761 * This function is called by device drivers to register their callback
762 * functions for fail-over events.
763 */
764int fsl_hv_failover_register(struct notifier_block *nb)
765{
766 return blocking_notifier_chain_register(nh: &failover_subscribers, nb);
767}
768EXPORT_SYMBOL(fsl_hv_failover_register);
769
770/*
771 * Unregister a callback for failover events
772 */
773int fsl_hv_failover_unregister(struct notifier_block *nb)
774{
775 return blocking_notifier_chain_unregister(nh: &failover_subscribers, nb);
776}
777EXPORT_SYMBOL(fsl_hv_failover_unregister);
778
779/*
780 * Return TRUE if we're running under FSL hypervisor
781 *
782 * This function checks to see if we're running under the Freescale
783 * hypervisor, and returns zero if we're not, or non-zero if we are.
784 *
785 * First, it checks if MSR[GS]==1, which means we're running under some
786 * hypervisor. Then it checks if there is a hypervisor node in the device
787 * tree. Currently, that means there needs to be a node in the root called
788 * "hypervisor" and which has a property named "fsl,hv-version".
789 */
790static int has_fsl_hypervisor(void)
791{
792 struct device_node *node;
793 int ret;
794
795 node = of_find_node_by_path(path: "/hypervisor");
796 if (!node)
797 return 0;
798
799 ret = of_property_present(np: node, propname: "fsl,hv-version");
800
801 of_node_put(node);
802
803 return ret;
804}
805
806/*
807 * Freescale hypervisor management driver init
808 *
809 * This function is called when this module is loaded.
810 *
811 * Register ourselves as a miscellaneous driver. This will register the
812 * fops structure and create the right sysfs entries for udev.
813 */
814static int __init fsl_hypervisor_init(void)
815{
816 struct device_node *np;
817 struct doorbell_isr *dbisr, *n;
818 int ret;
819
820 pr_info("Freescale hypervisor management driver\n");
821
822 if (!has_fsl_hypervisor()) {
823 pr_info("fsl-hv: no hypervisor found\n");
824 return -ENODEV;
825 }
826
827 ret = misc_register(misc: &fsl_hv_misc_dev);
828 if (ret) {
829 pr_err("fsl-hv: cannot register device\n");
830 return ret;
831 }
832
833 INIT_LIST_HEAD(list: &db_list);
834 INIT_LIST_HEAD(list: &isr_list);
835
836 for_each_compatible_node(np, NULL, "epapr,hv-receive-doorbell") {
837 unsigned int irq;
838 const uint32_t *handle;
839
840 handle = of_get_property(node: np, name: "interrupts", NULL);
841 irq = irq_of_parse_and_map(node: np, index: 0);
842 if (!handle || !irq) {
843 pr_err("fsl-hv: no 'interrupts' property in %pOF node\n",
844 np);
845 continue;
846 }
847
848 dbisr = kzalloc(size: sizeof(*dbisr), GFP_KERNEL);
849 if (!dbisr)
850 goto out_of_memory;
851
852 dbisr->irq = irq;
853 dbisr->doorbell = be32_to_cpup(p: handle);
854
855 if (of_device_is_compatible(device: np, "fsl,hv-shutdown-doorbell")) {
856 /* The shutdown doorbell gets its own ISR */
857 ret = request_irq(irq, handler: fsl_hv_shutdown_isr, flags: 0,
858 name: np->name, NULL);
859 } else if (of_device_is_compatible(device: np,
860 "fsl,hv-state-change-doorbell")) {
861 /*
862 * The state change doorbell triggers a notification if
863 * the state of the managed partition changes to
864 * "stopped". We need a separate interrupt handler for
865 * that, and we also need to know the handle of the
866 * target partition, not just the handle of the
867 * doorbell.
868 */
869 dbisr->partition = ret = get_parent_handle(np);
870 if (ret < 0) {
871 pr_err("fsl-hv: node %pOF has missing or "
872 "malformed parent\n", np);
873 kfree(objp: dbisr);
874 continue;
875 }
876 ret = request_threaded_irq(irq, handler: fsl_hv_state_change_isr,
877 thread_fn: fsl_hv_state_change_thread,
878 flags: 0, name: np->name, dev: dbisr);
879 } else
880 ret = request_irq(irq, handler: fsl_hv_isr, flags: 0, name: np->name, dev: dbisr);
881
882 if (ret < 0) {
883 pr_err("fsl-hv: could not request irq %u for node %pOF\n",
884 irq, np);
885 kfree(objp: dbisr);
886 continue;
887 }
888
889 list_add(new: &dbisr->list, head: &isr_list);
890
891 pr_info("fsl-hv: registered handler for doorbell %u\n",
892 dbisr->doorbell);
893 }
894
895 return 0;
896
897out_of_memory:
898 list_for_each_entry_safe(dbisr, n, &isr_list, list) {
899 free_irq(dbisr->irq, dbisr);
900 list_del(entry: &dbisr->list);
901 kfree(objp: dbisr);
902 }
903
904 misc_deregister(misc: &fsl_hv_misc_dev);
905
906 return -ENOMEM;
907}
908
909/*
910 * Freescale hypervisor management driver termination
911 *
912 * This function is called when this driver is unloaded.
913 */
914static void __exit fsl_hypervisor_exit(void)
915{
916 struct doorbell_isr *dbisr, *n;
917
918 list_for_each_entry_safe(dbisr, n, &isr_list, list) {
919 free_irq(dbisr->irq, dbisr);
920 list_del(entry: &dbisr->list);
921 kfree(objp: dbisr);
922 }
923
924 misc_deregister(misc: &fsl_hv_misc_dev);
925}
926
927module_init(fsl_hypervisor_init);
928module_exit(fsl_hypervisor_exit);
929
930MODULE_AUTHOR("Timur Tabi <timur@freescale.com>");
931MODULE_DESCRIPTION("Freescale hypervisor management driver");
932MODULE_LICENSE("GPL v2");
933

source code of linux/drivers/virt/fsl_hypervisor.c