1// SPDX-License-Identifier: GPL-2.0
2
3#include "bcachefs.h"
4#include "btree_update.h"
5#include "btree_iter.h"
6#include "btree_journal_iter.h"
7#include "btree_locking.h"
8#include "buckets.h"
9#include "debug.h"
10#include "errcode.h"
11#include "error.h"
12#include "extents.h"
13#include "keylist.h"
14#include "snapshot.h"
15#include "trace.h"
16
17static inline int btree_insert_entry_cmp(const struct btree_insert_entry *l,
18 const struct btree_insert_entry *r)
19{
20 return cmp_int(l->btree_id, r->btree_id) ?:
21 cmp_int(l->cached, r->cached) ?:
22 -cmp_int(l->level, r->level) ?:
23 bpos_cmp(l: l->k->k.p, r: r->k->k.p);
24}
25
26static int __must_check
27bch2_trans_update_by_path(struct btree_trans *, btree_path_idx_t,
28 struct bkey_i *, enum btree_update_flags,
29 unsigned long ip);
30
31static noinline int extent_front_merge(struct btree_trans *trans,
32 struct btree_iter *iter,
33 struct bkey_s_c k,
34 struct bkey_i **insert,
35 enum btree_update_flags flags)
36{
37 struct bch_fs *c = trans->c;
38 struct bkey_i *update;
39 int ret;
40
41 if (unlikely(trans->journal_replay_not_finished))
42 return 0;
43
44 update = bch2_bkey_make_mut_noupdate(trans, k);
45 ret = PTR_ERR_OR_ZERO(ptr: update);
46 if (ret)
47 return ret;
48
49 if (!bch2_bkey_merge(c, bkey_i_to_s(k: update), bkey_i_to_s_c(k: *insert)))
50 return 0;
51
52 ret = bch2_key_has_snapshot_overwrites(trans, id: iter->btree_id, pos: k.k->p) ?:
53 bch2_key_has_snapshot_overwrites(trans, id: iter->btree_id, pos: (*insert)->k.p);
54 if (ret < 0)
55 return ret;
56 if (ret)
57 return 0;
58
59 ret = bch2_btree_delete_at(trans, iter, flags);
60 if (ret)
61 return ret;
62
63 *insert = update;
64 return 0;
65}
66
67static noinline int extent_back_merge(struct btree_trans *trans,
68 struct btree_iter *iter,
69 struct bkey_i *insert,
70 struct bkey_s_c k)
71{
72 struct bch_fs *c = trans->c;
73 int ret;
74
75 if (unlikely(trans->journal_replay_not_finished))
76 return 0;
77
78 ret = bch2_key_has_snapshot_overwrites(trans, id: iter->btree_id, pos: insert->k.p) ?:
79 bch2_key_has_snapshot_overwrites(trans, id: iter->btree_id, pos: k.k->p);
80 if (ret < 0)
81 return ret;
82 if (ret)
83 return 0;
84
85 bch2_bkey_merge(c, bkey_i_to_s(k: insert), k);
86 return 0;
87}
88
89/*
90 * When deleting, check if we need to emit a whiteout (because we're overwriting
91 * something in an ancestor snapshot)
92 */
93static int need_whiteout_for_snapshot(struct btree_trans *trans,
94 enum btree_id btree_id, struct bpos pos)
95{
96 struct btree_iter iter;
97 struct bkey_s_c k;
98 u32 snapshot = pos.snapshot;
99 int ret;
100
101 if (!bch2_snapshot_parent(c: trans->c, id: pos.snapshot))
102 return 0;
103
104 pos.snapshot++;
105
106 for_each_btree_key_norestart(trans, iter, btree_id, pos,
107 BTREE_ITER_ALL_SNAPSHOTS|
108 BTREE_ITER_NOPRESERVE, k, ret) {
109 if (!bkey_eq(l: k.k->p, r: pos))
110 break;
111
112 if (bch2_snapshot_is_ancestor(c: trans->c, id: snapshot,
113 ancestor: k.k->p.snapshot)) {
114 ret = !bkey_whiteout(k.k);
115 break;
116 }
117 }
118 bch2_trans_iter_exit(trans, &iter);
119
120 return ret;
121}
122
123int __bch2_insert_snapshot_whiteouts(struct btree_trans *trans,
124 enum btree_id id,
125 struct bpos old_pos,
126 struct bpos new_pos)
127{
128 struct bch_fs *c = trans->c;
129 struct btree_iter old_iter, new_iter = { NULL };
130 struct bkey_s_c old_k, new_k;
131 snapshot_id_list s;
132 struct bkey_i *update;
133 int ret = 0;
134
135 if (!bch2_snapshot_has_children(c, id: old_pos.snapshot))
136 return 0;
137
138 darray_init(&s);
139
140 bch2_trans_iter_init(trans, iter: &old_iter, btree_id: id, pos: old_pos,
141 flags: BTREE_ITER_NOT_EXTENTS|
142 BTREE_ITER_ALL_SNAPSHOTS);
143 while ((old_k = bch2_btree_iter_prev(&old_iter)).k &&
144 !(ret = bkey_err(old_k)) &&
145 bkey_eq(l: old_pos, r: old_k.k->p)) {
146 struct bpos whiteout_pos =
147 SPOS(inode: new_pos.inode, offset: new_pos.offset, snapshot: old_k.k->p.snapshot);;
148
149 if (!bch2_snapshot_is_ancestor(c, id: old_k.k->p.snapshot, ancestor: old_pos.snapshot) ||
150 snapshot_list_has_ancestor(c, s: &s, id: old_k.k->p.snapshot))
151 continue;
152
153 new_k = bch2_bkey_get_iter(trans, iter: &new_iter, btree_id: id, pos: whiteout_pos,
154 flags: BTREE_ITER_NOT_EXTENTS|
155 BTREE_ITER_INTENT);
156 ret = bkey_err(new_k);
157 if (ret)
158 break;
159
160 if (new_k.k->type == KEY_TYPE_deleted) {
161 update = bch2_trans_kmalloc(trans, size: sizeof(struct bkey_i));
162 ret = PTR_ERR_OR_ZERO(ptr: update);
163 if (ret)
164 break;
165
166 bkey_init(k: &update->k);
167 update->k.p = whiteout_pos;
168 update->k.type = KEY_TYPE_whiteout;
169
170 ret = bch2_trans_update(trans, &new_iter, update,
171 BTREE_UPDATE_INTERNAL_SNAPSHOT_NODE);
172 }
173 bch2_trans_iter_exit(trans, &new_iter);
174
175 ret = snapshot_list_add(c, s: &s, id: old_k.k->p.snapshot);
176 if (ret)
177 break;
178 }
179 bch2_trans_iter_exit(trans, &new_iter);
180 bch2_trans_iter_exit(trans, &old_iter);
181 darray_exit(&s);
182
183 return ret;
184}
185
186int bch2_trans_update_extent_overwrite(struct btree_trans *trans,
187 struct btree_iter *iter,
188 enum btree_update_flags flags,
189 struct bkey_s_c old,
190 struct bkey_s_c new)
191{
192 enum btree_id btree_id = iter->btree_id;
193 struct bkey_i *update;
194 struct bpos new_start = bkey_start_pos(k: new.k);
195 unsigned front_split = bkey_lt(l: bkey_start_pos(k: old.k), r: new_start);
196 unsigned back_split = bkey_gt(l: old.k->p, r: new.k->p);
197 unsigned middle_split = (front_split || back_split) &&
198 old.k->p.snapshot != new.k->p.snapshot;
199 unsigned nr_splits = front_split + back_split + middle_split;
200 int ret = 0, compressed_sectors;
201
202 /*
203 * If we're going to be splitting a compressed extent, note it
204 * so that __bch2_trans_commit() can increase our disk
205 * reservation:
206 */
207 if (nr_splits > 1 &&
208 (compressed_sectors = bch2_bkey_sectors_compressed(old)))
209 trans->extra_disk_res += compressed_sectors * (nr_splits - 1);
210
211 if (front_split) {
212 update = bch2_bkey_make_mut_noupdate(trans, k: old);
213 if ((ret = PTR_ERR_OR_ZERO(ptr: update)))
214 return ret;
215
216 bch2_cut_back(where: new_start, k: update);
217
218 ret = bch2_insert_snapshot_whiteouts(trans, btree: btree_id,
219 old_pos: old.k->p, new_pos: update->k.p) ?:
220 bch2_btree_insert_nonextent(trans, btree_id, update,
221 BTREE_UPDATE_INTERNAL_SNAPSHOT_NODE|flags);
222 if (ret)
223 return ret;
224 }
225
226 /* If we're overwriting in a different snapshot - middle split: */
227 if (middle_split) {
228 update = bch2_bkey_make_mut_noupdate(trans, k: old);
229 if ((ret = PTR_ERR_OR_ZERO(ptr: update)))
230 return ret;
231
232 bch2_cut_front(where: new_start, k: update);
233 bch2_cut_back(where: new.k->p, k: update);
234
235 ret = bch2_insert_snapshot_whiteouts(trans, btree: btree_id,
236 old_pos: old.k->p, new_pos: update->k.p) ?:
237 bch2_btree_insert_nonextent(trans, btree_id, update,
238 BTREE_UPDATE_INTERNAL_SNAPSHOT_NODE|flags);
239 if (ret)
240 return ret;
241 }
242
243 if (bkey_le(l: old.k->p, r: new.k->p)) {
244 update = bch2_trans_kmalloc(trans, size: sizeof(*update));
245 if ((ret = PTR_ERR_OR_ZERO(ptr: update)))
246 return ret;
247
248 bkey_init(k: &update->k);
249 update->k.p = old.k->p;
250 update->k.p.snapshot = new.k->p.snapshot;
251
252 if (new.k->p.snapshot != old.k->p.snapshot) {
253 update->k.type = KEY_TYPE_whiteout;
254 } else if (btree_type_has_snapshots(id: btree_id)) {
255 ret = need_whiteout_for_snapshot(trans, btree_id, pos: update->k.p);
256 if (ret < 0)
257 return ret;
258 if (ret)
259 update->k.type = KEY_TYPE_whiteout;
260 }
261
262 ret = bch2_btree_insert_nonextent(trans, btree_id, update,
263 BTREE_UPDATE_INTERNAL_SNAPSHOT_NODE|flags);
264 if (ret)
265 return ret;
266 }
267
268 if (back_split) {
269 update = bch2_bkey_make_mut_noupdate(trans, k: old);
270 if ((ret = PTR_ERR_OR_ZERO(ptr: update)))
271 return ret;
272
273 bch2_cut_front(where: new.k->p, k: update);
274
275 ret = bch2_trans_update_by_path(trans, iter->path, update,
276 BTREE_UPDATE_INTERNAL_SNAPSHOT_NODE|
277 flags, _RET_IP_);
278 if (ret)
279 return ret;
280 }
281
282 return 0;
283}
284
285static int bch2_trans_update_extent(struct btree_trans *trans,
286 struct btree_iter *orig_iter,
287 struct bkey_i *insert,
288 enum btree_update_flags flags)
289{
290 struct btree_iter iter;
291 struct bkey_s_c k;
292 enum btree_id btree_id = orig_iter->btree_id;
293 int ret = 0;
294
295 bch2_trans_iter_init(trans, iter: &iter, btree_id, pos: bkey_start_pos(k: &insert->k),
296 flags: BTREE_ITER_INTENT|
297 BTREE_ITER_WITH_UPDATES|
298 BTREE_ITER_NOT_EXTENTS);
299 k = bch2_btree_iter_peek_upto(&iter, POS(insert->k.p.inode, U64_MAX));
300 if ((ret = bkey_err(k)))
301 goto err;
302 if (!k.k)
303 goto out;
304
305 if (bkey_eq(l: k.k->p, r: bkey_start_pos(k: &insert->k))) {
306 if (bch2_bkey_maybe_mergable(l: k.k, r: &insert->k)) {
307 ret = extent_front_merge(trans, iter: &iter, k, insert: &insert, flags);
308 if (ret)
309 goto err;
310 }
311
312 goto next;
313 }
314
315 while (bkey_gt(l: insert->k.p, r: bkey_start_pos(k: k.k))) {
316 bool done = bkey_lt(l: insert->k.p, r: k.k->p);
317
318 ret = bch2_trans_update_extent_overwrite(trans, iter: &iter, flags, old: k, new: bkey_i_to_s_c(k: insert));
319 if (ret)
320 goto err;
321
322 if (done)
323 goto out;
324next:
325 bch2_btree_iter_advance(&iter);
326 k = bch2_btree_iter_peek_upto(&iter, POS(insert->k.p.inode, U64_MAX));
327 if ((ret = bkey_err(k)))
328 goto err;
329 if (!k.k)
330 goto out;
331 }
332
333 if (bch2_bkey_maybe_mergable(l: &insert->k, r: k.k)) {
334 ret = extent_back_merge(trans, iter: &iter, insert, k);
335 if (ret)
336 goto err;
337 }
338out:
339 if (!bkey_deleted(&insert->k))
340 ret = bch2_btree_insert_nonextent(trans, btree_id, insert, flags);
341err:
342 bch2_trans_iter_exit(trans, &iter);
343
344 return ret;
345}
346
347static noinline int flush_new_cached_update(struct btree_trans *trans,
348 struct btree_insert_entry *i,
349 enum btree_update_flags flags,
350 unsigned long ip)
351{
352 struct bkey k;
353 int ret;
354
355 btree_path_idx_t path_idx =
356 bch2_path_get(trans, i->btree_id, i->old_k.p, 1, 0,
357 BTREE_ITER_INTENT, _THIS_IP_);
358 ret = bch2_btree_path_traverse(trans, path: path_idx, flags: 0);
359 if (ret)
360 goto out;
361
362 struct btree_path *btree_path = trans->paths + path_idx;
363
364 /*
365 * The old key in the insert entry might actually refer to an existing
366 * key in the btree that has been deleted from cache and not yet
367 * flushed. Check for this and skip the flush so we don't run triggers
368 * against a stale key.
369 */
370 bch2_btree_path_peek_slot_exact(path: btree_path, u: &k);
371 if (!bkey_deleted(&k))
372 goto out;
373
374 i->key_cache_already_flushed = true;
375 i->flags |= BTREE_TRIGGER_NORUN;
376
377 btree_path_set_should_be_locked(path: btree_path);
378 ret = bch2_trans_update_by_path(trans, path_idx, i->k, flags, ip);
379out:
380 bch2_path_put(trans, path_idx, true);
381 return ret;
382}
383
384static int __must_check
385bch2_trans_update_by_path(struct btree_trans *trans, btree_path_idx_t path_idx,
386 struct bkey_i *k, enum btree_update_flags flags,
387 unsigned long ip)
388{
389 struct bch_fs *c = trans->c;
390 struct btree_insert_entry *i, n;
391 int cmp;
392
393 struct btree_path *path = trans->paths + path_idx;
394 EBUG_ON(!path->should_be_locked);
395 EBUG_ON(trans->nr_updates >= trans->nr_paths);
396 EBUG_ON(!bpos_eq(k->k.p, path->pos));
397
398 n = (struct btree_insert_entry) {
399 .flags = flags,
400 .bkey_type = __btree_node_type(level: path->level, id: path->btree_id),
401 .btree_id = path->btree_id,
402 .level = path->level,
403 .cached = path->cached,
404 .path = path_idx,
405 .k = k,
406 .ip_allocated = ip,
407 };
408
409#ifdef CONFIG_BCACHEFS_DEBUG
410 trans_for_each_update(trans, i)
411 BUG_ON(i != trans->updates &&
412 btree_insert_entry_cmp(i - 1, i) >= 0);
413#endif
414
415 /*
416 * Pending updates are kept sorted: first, find position of new update,
417 * then delete/trim any updates the new update overwrites:
418 */
419 for (i = trans->updates; i < trans->updates + trans->nr_updates; i++) {
420 cmp = btree_insert_entry_cmp(l: &n, r: i);
421 if (cmp <= 0)
422 break;
423 }
424
425 if (!cmp && i < trans->updates + trans->nr_updates) {
426 EBUG_ON(i->insert_trigger_run || i->overwrite_trigger_run);
427
428 bch2_path_put(trans, i->path, true);
429 i->flags = n.flags;
430 i->cached = n.cached;
431 i->k = n.k;
432 i->path = n.path;
433 i->ip_allocated = n.ip_allocated;
434 } else {
435 array_insert_item(trans->updates, trans->nr_updates,
436 i - trans->updates, n);
437
438 i->old_v = bch2_btree_path_peek_slot_exact(path, u: &i->old_k).v;
439 i->old_btree_u64s = !bkey_deleted(&i->old_k) ? i->old_k.u64s : 0;
440
441 if (unlikely(trans->journal_replay_not_finished)) {
442 struct bkey_i *j_k =
443 bch2_journal_keys_peek_slot(c, n.btree_id, n.level, k->k.p);
444
445 if (j_k) {
446 i->old_k = j_k->k;
447 i->old_v = &j_k->v;
448 }
449 }
450 }
451
452 __btree_path_get(path: trans->paths + i->path, intent: true);
453
454 /*
455 * If a key is present in the key cache, it must also exist in the
456 * btree - this is necessary for cache coherency. When iterating over
457 * a btree that's cached in the key cache, the btree iter code checks
458 * the key cache - but the key has to exist in the btree for that to
459 * work:
460 */
461 if (path->cached && !i->old_btree_u64s)
462 return flush_new_cached_update(trans, i, flags, ip);
463
464 return 0;
465}
466
467static noinline int bch2_trans_update_get_key_cache(struct btree_trans *trans,
468 struct btree_iter *iter,
469 struct btree_path *path)
470{
471 struct btree_path *key_cache_path = btree_iter_key_cache_path(trans, iter);
472
473 if (!key_cache_path ||
474 !key_cache_path->should_be_locked ||
475 !bpos_eq(l: key_cache_path->pos, r: iter->pos)) {
476 struct bkey_cached *ck;
477 int ret;
478
479 if (!iter->key_cache_path)
480 iter->key_cache_path =
481 bch2_path_get(trans, path->btree_id, path->pos, 1, 0,
482 BTREE_ITER_INTENT|
483 BTREE_ITER_CACHED, _THIS_IP_);
484
485 iter->key_cache_path =
486 bch2_btree_path_set_pos(trans, path: iter->key_cache_path, new_pos: path->pos,
487 intent: iter->flags & BTREE_ITER_INTENT,
488 _THIS_IP_);
489
490 ret = bch2_btree_path_traverse(trans, path: iter->key_cache_path, flags: BTREE_ITER_CACHED);
491 if (unlikely(ret))
492 return ret;
493
494 ck = (void *) trans->paths[iter->key_cache_path].l[0].b;
495
496 if (test_bit(BKEY_CACHED_DIRTY, &ck->flags)) {
497 trace_and_count(trans->c, trans_restart_key_cache_raced, trans, _RET_IP_);
498 return btree_trans_restart(trans, err: BCH_ERR_transaction_restart_key_cache_raced);
499 }
500
501 btree_path_set_should_be_locked(path: trans->paths + iter->key_cache_path);
502 }
503
504 return 0;
505}
506
507int __must_check bch2_trans_update(struct btree_trans *trans, struct btree_iter *iter,
508 struct bkey_i *k, enum btree_update_flags flags)
509{
510 btree_path_idx_t path_idx = iter->update_path ?: iter->path;
511 int ret;
512
513 if (iter->flags & BTREE_ITER_IS_EXTENTS)
514 return bch2_trans_update_extent(trans, orig_iter: iter, insert: k, flags);
515
516 if (bkey_deleted(&k->k) &&
517 !(flags & BTREE_UPDATE_KEY_CACHE_RECLAIM) &&
518 (iter->flags & BTREE_ITER_FILTER_SNAPSHOTS)) {
519 ret = need_whiteout_for_snapshot(trans, btree_id: iter->btree_id, pos: k->k.p);
520 if (unlikely(ret < 0))
521 return ret;
522
523 if (ret)
524 k->k.type = KEY_TYPE_whiteout;
525 }
526
527 /*
528 * Ensure that updates to cached btrees go to the key cache:
529 */
530 struct btree_path *path = trans->paths + path_idx;
531 if (!(flags & BTREE_UPDATE_KEY_CACHE_RECLAIM) &&
532 !path->cached &&
533 !path->level &&
534 btree_id_cached(c: trans->c, btree: path->btree_id)) {
535 ret = bch2_trans_update_get_key_cache(trans, iter, path);
536 if (ret)
537 return ret;
538
539 path_idx = iter->key_cache_path;
540 }
541
542 return bch2_trans_update_by_path(trans, path_idx, k, flags, _RET_IP_);
543}
544
545int bch2_btree_insert_clone_trans(struct btree_trans *trans,
546 enum btree_id btree,
547 struct bkey_i *k)
548{
549 struct bkey_i *n = bch2_trans_kmalloc(trans, bkey_bytes(&k->k));
550 int ret = PTR_ERR_OR_ZERO(ptr: n);
551 if (ret)
552 return ret;
553
554 bkey_copy(dst: n, src: k);
555 return bch2_btree_insert_trans(trans, btree, n, 0);
556}
557
558struct jset_entry *__bch2_trans_jset_entry_alloc(struct btree_trans *trans, unsigned u64s)
559{
560 unsigned new_top = trans->journal_entries_u64s + u64s;
561 unsigned old_size = trans->journal_entries_size;
562
563 if (new_top > trans->journal_entries_size) {
564 trans->journal_entries_size = roundup_pow_of_two(new_top);
565
566 btree_trans_stats(trans)->journal_entries_size = trans->journal_entries_size;
567 }
568
569 struct jset_entry *n =
570 bch2_trans_kmalloc_nomemzero(trans,
571 size: trans->journal_entries_size * sizeof(u64));
572 if (IS_ERR(ptr: n))
573 return ERR_CAST(ptr: n);
574
575 if (trans->journal_entries)
576 memcpy(n, trans->journal_entries, old_size * sizeof(u64));
577 trans->journal_entries = n;
578
579 struct jset_entry *e = btree_trans_journal_entries_top(trans);
580 trans->journal_entries_u64s = new_top;
581 return e;
582}
583
584int bch2_bkey_get_empty_slot(struct btree_trans *trans, struct btree_iter *iter,
585 enum btree_id btree, struct bpos end)
586{
587 struct bkey_s_c k;
588 int ret = 0;
589
590 bch2_trans_iter_init(trans, iter, btree_id: btree, POS_MAX, flags: BTREE_ITER_INTENT);
591 k = bch2_btree_iter_prev(iter);
592 ret = bkey_err(k);
593 if (ret)
594 goto err;
595
596 bch2_btree_iter_advance(iter);
597 k = bch2_btree_iter_peek_slot(iter);
598 ret = bkey_err(k);
599 if (ret)
600 goto err;
601
602 BUG_ON(k.k->type != KEY_TYPE_deleted);
603
604 if (bkey_gt(l: k.k->p, r: end)) {
605 ret = -BCH_ERR_ENOSPC_btree_slot;
606 goto err;
607 }
608
609 return 0;
610err:
611 bch2_trans_iter_exit(trans, iter);
612 return ret;
613}
614
615void bch2_trans_commit_hook(struct btree_trans *trans,
616 struct btree_trans_commit_hook *h)
617{
618 h->next = trans->hooks;
619 trans->hooks = h;
620}
621
622int bch2_btree_insert_nonextent(struct btree_trans *trans,
623 enum btree_id btree, struct bkey_i *k,
624 enum btree_update_flags flags)
625{
626 struct btree_iter iter;
627 int ret;
628
629 bch2_trans_iter_init(trans, iter: &iter, btree_id: btree, pos: k->k.p,
630 flags: BTREE_ITER_CACHED|
631 BTREE_ITER_NOT_EXTENTS|
632 BTREE_ITER_INTENT);
633 ret = bch2_btree_iter_traverse(&iter) ?:
634 bch2_trans_update(trans, iter: &iter, k, flags);
635 bch2_trans_iter_exit(trans, &iter);
636 return ret;
637}
638
639int bch2_btree_insert_trans(struct btree_trans *trans, enum btree_id id,
640 struct bkey_i *k, enum btree_update_flags flags)
641{
642 struct btree_iter iter;
643 int ret;
644
645 bch2_trans_iter_init(trans, iter: &iter, btree_id: id, pos: bkey_start_pos(k: &k->k),
646 flags: BTREE_ITER_CACHED|
647 BTREE_ITER_INTENT);
648 ret = bch2_btree_iter_traverse(&iter) ?:
649 bch2_trans_update(trans, iter: &iter, k, flags);
650 bch2_trans_iter_exit(trans, &iter);
651 return ret;
652}
653
654/**
655 * bch2_btree_insert - insert keys into the extent btree
656 * @c: pointer to struct bch_fs
657 * @id: btree to insert into
658 * @k: key to insert
659 * @disk_res: must be non-NULL whenever inserting or potentially
660 * splitting data extents
661 * @flags: transaction commit flags
662 *
663 * Returns: 0 on success, error code on failure
664 */
665int bch2_btree_insert(struct bch_fs *c, enum btree_id id, struct bkey_i *k,
666 struct disk_reservation *disk_res, int flags)
667{
668 return bch2_trans_do(c, disk_res, NULL, flags,
669 bch2_btree_insert_trans(trans, id, k, 0));
670}
671
672int bch2_btree_delete_extent_at(struct btree_trans *trans, struct btree_iter *iter,
673 unsigned len, unsigned update_flags)
674{
675 struct bkey_i *k;
676
677 k = bch2_trans_kmalloc(trans, size: sizeof(*k));
678 if (IS_ERR(ptr: k))
679 return PTR_ERR(ptr: k);
680
681 bkey_init(k: &k->k);
682 k->k.p = iter->pos;
683 bch2_key_resize(k: &k->k, new_size: len);
684 return bch2_trans_update(trans, iter, k, flags: update_flags);
685}
686
687int bch2_btree_delete_at(struct btree_trans *trans,
688 struct btree_iter *iter, unsigned update_flags)
689{
690 return bch2_btree_delete_extent_at(trans, iter, len: 0, update_flags);
691}
692
693int bch2_btree_delete(struct btree_trans *trans,
694 enum btree_id btree, struct bpos pos,
695 unsigned update_flags)
696{
697 struct btree_iter iter;
698 int ret;
699
700 bch2_trans_iter_init(trans, iter: &iter, btree_id: btree, pos,
701 flags: BTREE_ITER_CACHED|
702 BTREE_ITER_INTENT);
703 ret = bch2_btree_iter_traverse(&iter) ?:
704 bch2_btree_delete_at(trans, iter: &iter, update_flags);
705 bch2_trans_iter_exit(trans, &iter);
706
707 return ret;
708}
709
710int bch2_btree_delete_range_trans(struct btree_trans *trans, enum btree_id id,
711 struct bpos start, struct bpos end,
712 unsigned update_flags,
713 u64 *journal_seq)
714{
715 u32 restart_count = trans->restart_count;
716 struct btree_iter iter;
717 struct bkey_s_c k;
718 int ret = 0;
719
720 bch2_trans_iter_init(trans, iter: &iter, btree_id: id, pos: start, flags: BTREE_ITER_INTENT);
721 while ((k = bch2_btree_iter_peek_upto(&iter, end)).k) {
722 struct disk_reservation disk_res =
723 bch2_disk_reservation_init(c: trans->c, nr_replicas: 0);
724 struct bkey_i delete;
725
726 ret = bkey_err(k);
727 if (ret)
728 goto err;
729
730 bkey_init(k: &delete.k);
731
732 /*
733 * This could probably be more efficient for extents:
734 */
735
736 /*
737 * For extents, iter.pos won't necessarily be the same as
738 * bkey_start_pos(k.k) (for non extents they always will be the
739 * same). It's important that we delete starting from iter.pos
740 * because the range we want to delete could start in the middle
741 * of k.
742 *
743 * (bch2_btree_iter_peek() does guarantee that iter.pos >=
744 * bkey_start_pos(k.k)).
745 */
746 delete.k.p = iter.pos;
747
748 if (iter.flags & BTREE_ITER_IS_EXTENTS)
749 bch2_key_resize(k: &delete.k,
750 new_size: bpos_min(l: end, r: k.k->p).offset -
751 iter.pos.offset);
752
753 ret = bch2_trans_update(trans, iter: &iter, k: &delete, flags: update_flags) ?:
754 bch2_trans_commit(trans, disk_res: &disk_res, journal_seq,
755 flags: BCH_TRANS_COMMIT_no_enospc);
756 bch2_disk_reservation_put(c: trans->c, res: &disk_res);
757err:
758 /*
759 * the bch2_trans_begin() call is in a weird place because we
760 * need to call it after every transaction commit, to avoid path
761 * overflow, but don't want to call it if the delete operation
762 * is a no-op and we have no work to do:
763 */
764 bch2_trans_begin(trans);
765
766 if (bch2_err_matches(ret, BCH_ERR_transaction_restart))
767 ret = 0;
768 if (ret)
769 break;
770 }
771 bch2_trans_iter_exit(trans, &iter);
772
773 return ret ?: trans_was_restarted(trans, restart_count);
774}
775
776/*
777 * bch_btree_delete_range - delete everything within a given range
778 *
779 * Range is a half open interval - [start, end)
780 */
781int bch2_btree_delete_range(struct bch_fs *c, enum btree_id id,
782 struct bpos start, struct bpos end,
783 unsigned update_flags,
784 u64 *journal_seq)
785{
786 int ret = bch2_trans_run(c,
787 bch2_btree_delete_range_trans(trans, id, start, end,
788 update_flags, journal_seq));
789 if (ret == -BCH_ERR_transaction_restart_nested)
790 ret = 0;
791 return ret;
792}
793
794int bch2_btree_bit_mod(struct btree_trans *trans, enum btree_id btree,
795 struct bpos pos, bool set)
796{
797 struct bkey_i *k = bch2_trans_kmalloc(trans, size: sizeof(*k));
798 int ret = PTR_ERR_OR_ZERO(ptr: k);
799 if (ret)
800 return ret;
801
802 bkey_init(k: &k->k);
803 k->k.type = set ? KEY_TYPE_set : KEY_TYPE_deleted;
804 k->k.p = pos;
805
806 struct btree_iter iter;
807 bch2_trans_iter_init(trans, iter: &iter, btree_id: btree, pos, flags: BTREE_ITER_INTENT);
808
809 ret = bch2_btree_iter_traverse(&iter) ?:
810 bch2_trans_update(trans, iter: &iter, k, flags: 0);
811 bch2_trans_iter_exit(trans, &iter);
812 return ret;
813}
814
815int bch2_btree_bit_mod_buffered(struct btree_trans *trans, enum btree_id btree,
816 struct bpos pos, bool set)
817{
818 struct bkey_i k;
819
820 bkey_init(k: &k.k);
821 k.k.type = set ? KEY_TYPE_set : KEY_TYPE_deleted;
822 k.k.p = pos;
823
824 return bch2_trans_update_buffered(trans, btree, k: &k);
825}
826
827static int __bch2_trans_log_msg(struct btree_trans *trans, struct printbuf *buf, unsigned u64s)
828{
829 struct jset_entry *e = bch2_trans_jset_entry_alloc(trans, u64s: jset_u64s(u64s));
830 int ret = PTR_ERR_OR_ZERO(ptr: e);
831 if (ret)
832 return ret;
833
834 struct jset_entry_log *l = container_of(e, struct jset_entry_log, entry);
835 journal_entry_init(entry: e, type: BCH_JSET_ENTRY_log, id: 0, level: 1, u64s);
836 memcpy(l->d, buf->buf, buf->pos);
837 return 0;
838}
839
840__printf(3, 0)
841static int
842__bch2_fs_log_msg(struct bch_fs *c, unsigned commit_flags, const char *fmt,
843 va_list args)
844{
845 struct printbuf buf = PRINTBUF;
846 prt_vprintf(&buf, fmt, args);
847
848 unsigned u64s = DIV_ROUND_UP(buf.pos, sizeof(u64));
849 prt_chars(out: &buf, c: '\0', n: u64s * sizeof(u64) - buf.pos);
850
851 int ret = buf.allocation_failure ? -BCH_ERR_ENOMEM_trans_log_msg : 0;
852 if (ret)
853 goto err;
854
855 if (!test_bit(JOURNAL_STARTED, &c->journal.flags)) {
856 ret = darray_make_room(&c->journal.early_journal_entries, jset_u64s(u64s));
857 if (ret)
858 goto err;
859
860 struct jset_entry_log *l = (void *) &darray_top(c->journal.early_journal_entries);
861 journal_entry_init(entry: &l->entry, type: BCH_JSET_ENTRY_log, id: 0, level: 1, u64s);
862 memcpy(l->d, buf.buf, buf.pos);
863 c->journal.early_journal_entries.nr += jset_u64s(u64s);
864 } else {
865 ret = bch2_trans_do(c, NULL, NULL,
866 BCH_TRANS_COMMIT_lazy_rw|commit_flags,
867 __bch2_trans_log_msg(trans, &buf, u64s));
868 }
869err:
870 printbuf_exit(&buf);
871 return ret;
872}
873
874__printf(2, 3)
875int bch2_fs_log_msg(struct bch_fs *c, const char *fmt, ...)
876{
877 va_list args;
878 int ret;
879
880 va_start(args, fmt);
881 ret = __bch2_fs_log_msg(c, commit_flags: 0, fmt, args);
882 va_end(args);
883 return ret;
884}
885
886/*
887 * Use for logging messages during recovery to enable reserved space and avoid
888 * blocking.
889 */
890__printf(2, 3)
891int bch2_journal_log_msg(struct bch_fs *c, const char *fmt, ...)
892{
893 va_list args;
894 int ret;
895
896 va_start(args, fmt);
897 ret = __bch2_fs_log_msg(c, commit_flags: BCH_WATERMARK_reclaim, fmt, args);
898 va_end(args);
899 return ret;
900}
901

source code of linux/fs/bcachefs/btree_update.c