1// SPDX-License-Identifier: GPL-2.0
2
3#include "bcachefs.h"
4#include "alloc_foreground.h"
5#include "bkey_buf.h"
6#include "bkey_methods.h"
7#include "btree_cache.h"
8#include "btree_gc.h"
9#include "btree_journal_iter.h"
10#include "btree_update.h"
11#include "btree_update_interior.h"
12#include "btree_io.h"
13#include "btree_iter.h"
14#include "btree_locking.h"
15#include "buckets.h"
16#include "clock.h"
17#include "error.h"
18#include "extents.h"
19#include "journal.h"
20#include "journal_reclaim.h"
21#include "keylist.h"
22#include "recovery_passes.h"
23#include "replicas.h"
24#include "sb-members.h"
25#include "super-io.h"
26#include "trace.h"
27
28#include <linux/random.h>
29
30static const char * const bch2_btree_update_modes[] = {
31#define x(t) #t,
32 BTREE_UPDATE_MODES()
33#undef x
34 NULL
35};
36
37static int bch2_btree_insert_node(struct btree_update *, struct btree_trans *,
38 btree_path_idx_t, struct btree *, struct keylist *);
39static void bch2_btree_update_add_new_node(struct btree_update *, struct btree *);
40
41static btree_path_idx_t get_unlocked_mut_path(struct btree_trans *trans,
42 enum btree_id btree_id,
43 unsigned level,
44 struct bpos pos)
45{
46 btree_path_idx_t path_idx = bch2_path_get(trans, btree_id, pos, level + 1, level,
47 BTREE_ITER_NOPRESERVE|
48 BTREE_ITER_INTENT, _RET_IP_);
49 path_idx = bch2_btree_path_make_mut(trans, path: path_idx, intent: true, _RET_IP_);
50
51 struct btree_path *path = trans->paths + path_idx;
52 bch2_btree_path_downgrade(trans, path);
53 __bch2_btree_path_unlock(trans, path);
54 return path_idx;
55}
56
57/*
58 * Verify that child nodes correctly span parent node's range:
59 */
60int bch2_btree_node_check_topology(struct btree_trans *trans, struct btree *b)
61{
62 struct bch_fs *c = trans->c;
63 struct bpos node_min = b->key.k.type == KEY_TYPE_btree_ptr_v2
64 ? bkey_i_to_btree_ptr_v2(k: &b->key)->v.min_key
65 : b->data->min_key;
66 struct btree_and_journal_iter iter;
67 struct bkey_s_c k;
68 struct printbuf buf = PRINTBUF;
69 struct bkey_buf prev;
70 int ret = 0;
71
72 BUG_ON(b->key.k.type == KEY_TYPE_btree_ptr_v2 &&
73 !bpos_eq(bkey_i_to_btree_ptr_v2(&b->key)->v.min_key,
74 b->data->min_key));
75
76 if (!b->c.level)
77 return 0;
78
79 bch2_bkey_buf_init(s: &prev);
80 bkey_init(k: &prev.k->k);
81 bch2_btree_and_journal_iter_init_node_iter(trans, &iter, b);
82
83 while ((k = bch2_btree_and_journal_iter_peek(&iter)).k) {
84 if (k.k->type != KEY_TYPE_btree_ptr_v2)
85 goto out;
86
87 struct bkey_s_c_btree_ptr_v2 bp = bkey_s_c_to_btree_ptr_v2(k);
88
89 struct bpos expected_min = bkey_deleted(&prev.k->k)
90 ? node_min
91 : bpos_successor(p: prev.k->k.p);
92
93 if (!bpos_eq(l: expected_min, r: bp.v->min_key)) {
94 bch2_topology_error(c);
95
96 printbuf_reset(buf: &buf);
97 prt_str(out: &buf, str: "end of prev node doesn't match start of next node\n"),
98 prt_printf(&buf, " in btree %s level %u node ",
99 bch2_btree_id_str(b->c.btree_id), b->c.level);
100 bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(k: &b->key));
101 prt_str(out: &buf, str: "\n prev ");
102 bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(k: prev.k));
103 prt_str(out: &buf, str: "\n next ");
104 bch2_bkey_val_to_text(&buf, c, k);
105
106 need_fsck_err(c, btree_node_topology_bad_min_key, "%s", buf.buf);
107 goto topology_repair;
108 }
109
110 bch2_bkey_buf_reassemble(s: &prev, c, k);
111 bch2_btree_and_journal_iter_advance(&iter);
112 }
113
114 if (bkey_deleted(&prev.k->k)) {
115 bch2_topology_error(c);
116
117 printbuf_reset(buf: &buf);
118 prt_str(out: &buf, str: "empty interior node\n");
119 prt_printf(&buf, " in btree %s level %u node ",
120 bch2_btree_id_str(b->c.btree_id), b->c.level);
121 bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(k: &b->key));
122
123 need_fsck_err(c, btree_node_topology_empty_interior_node, "%s", buf.buf);
124 goto topology_repair;
125 } else if (!bpos_eq(l: prev.k->k.p, r: b->key.k.p)) {
126 bch2_topology_error(c);
127
128 printbuf_reset(buf: &buf);
129 prt_str(out: &buf, str: "last child node doesn't end at end of parent node\n");
130 prt_printf(&buf, " in btree %s level %u node ",
131 bch2_btree_id_str(b->c.btree_id), b->c.level);
132 bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(k: &b->key));
133 prt_str(out: &buf, str: "\n last key ");
134 bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(k: prev.k));
135
136 need_fsck_err(c, btree_node_topology_bad_max_key, "%s", buf.buf);
137 goto topology_repair;
138 }
139out:
140fsck_err:
141 bch2_btree_and_journal_iter_exit(&iter);
142 bch2_bkey_buf_exit(s: &prev, c);
143 printbuf_exit(&buf);
144 return ret;
145topology_repair:
146 if ((c->recovery_passes_explicit & BIT_ULL(BCH_RECOVERY_PASS_check_topology)) &&
147 c->curr_recovery_pass > BCH_RECOVERY_PASS_check_topology) {
148 bch2_inconsistent_error(c);
149 ret = -BCH_ERR_btree_need_topology_repair;
150 } else {
151 ret = bch2_run_explicit_recovery_pass(c, BCH_RECOVERY_PASS_check_topology);
152 }
153 goto out;
154}
155
156/* Calculate ideal packed bkey format for new btree nodes: */
157
158static void __bch2_btree_calc_format(struct bkey_format_state *s, struct btree *b)
159{
160 struct bkey_packed *k;
161 struct bset_tree *t;
162 struct bkey uk;
163
164 for_each_bset(b, t)
165 bset_tree_for_each_key(b, t, k)
166 if (!bkey_deleted(k)) {
167 uk = bkey_unpack_key(b, src: k);
168 bch2_bkey_format_add_key(s, k: &uk);
169 }
170}
171
172static struct bkey_format bch2_btree_calc_format(struct btree *b)
173{
174 struct bkey_format_state s;
175
176 bch2_bkey_format_init(&s);
177 bch2_bkey_format_add_pos(&s, b->data->min_key);
178 bch2_bkey_format_add_pos(&s, b->data->max_key);
179 __bch2_btree_calc_format(s: &s, b);
180
181 return bch2_bkey_format_done(&s);
182}
183
184static size_t btree_node_u64s_with_format(struct btree_nr_keys nr,
185 struct bkey_format *old_f,
186 struct bkey_format *new_f)
187{
188 /* stupid integer promotion rules */
189 ssize_t delta =
190 (((int) new_f->key_u64s - old_f->key_u64s) *
191 (int) nr.packed_keys) +
192 (((int) new_f->key_u64s - BKEY_U64s) *
193 (int) nr.unpacked_keys);
194
195 BUG_ON(delta + nr.live_u64s < 0);
196
197 return nr.live_u64s + delta;
198}
199
200/**
201 * bch2_btree_node_format_fits - check if we could rewrite node with a new format
202 *
203 * @c: filesystem handle
204 * @b: btree node to rewrite
205 * @nr: number of keys for new node (i.e. b->nr)
206 * @new_f: bkey format to translate keys to
207 *
208 * Returns: true if all re-packed keys will be able to fit in a new node.
209 *
210 * Assumes all keys will successfully pack with the new format.
211 */
212static bool bch2_btree_node_format_fits(struct bch_fs *c, struct btree *b,
213 struct btree_nr_keys nr,
214 struct bkey_format *new_f)
215{
216 size_t u64s = btree_node_u64s_with_format(nr, old_f: &b->format, new_f);
217
218 return __vstruct_bytes(struct btree_node, u64s) < btree_buf_bytes(b);
219}
220
221/* Btree node freeing/allocation: */
222
223static void __btree_node_free(struct btree_trans *trans, struct btree *b)
224{
225 struct bch_fs *c = trans->c;
226
227 trace_and_count(c, btree_node_free, trans, b);
228
229 BUG_ON(btree_node_write_blocked(b));
230 BUG_ON(btree_node_dirty(b));
231 BUG_ON(btree_node_need_write(b));
232 BUG_ON(b == btree_node_root(c, b));
233 BUG_ON(b->ob.nr);
234 BUG_ON(!list_empty(&b->write_blocked));
235 BUG_ON(b->will_make_reachable);
236
237 clear_btree_node_noevict(b);
238
239 mutex_lock(&c->btree_cache.lock);
240 list_move(list: &b->list, head: &c->btree_cache.freeable);
241 mutex_unlock(lock: &c->btree_cache.lock);
242}
243
244static void bch2_btree_node_free_inmem(struct btree_trans *trans,
245 struct btree_path *path,
246 struct btree *b)
247{
248 struct bch_fs *c = trans->c;
249 unsigned i, level = b->c.level;
250
251 bch2_btree_node_lock_write_nofail(trans, path, &b->c);
252 bch2_btree_node_hash_remove(&c->btree_cache, b);
253 __btree_node_free(trans, b);
254 six_unlock_write(lock: &b->c.lock);
255 mark_btree_node_locked_noreset(path, level, type: BTREE_NODE_INTENT_LOCKED);
256
257 trans_for_each_path(trans, path, i)
258 if (path->l[level].b == b) {
259 btree_node_unlock(trans, path, level);
260 path->l[level].b = ERR_PTR(error: -BCH_ERR_no_btree_node_init);
261 }
262}
263
264static void bch2_btree_node_free_never_used(struct btree_update *as,
265 struct btree_trans *trans,
266 struct btree *b)
267{
268 struct bch_fs *c = as->c;
269 struct prealloc_nodes *p = &as->prealloc_nodes[b->c.lock.readers != NULL];
270 struct btree_path *path;
271 unsigned i, level = b->c.level;
272
273 BUG_ON(!list_empty(&b->write_blocked));
274 BUG_ON(b->will_make_reachable != (1UL|(unsigned long) as));
275
276 b->will_make_reachable = 0;
277 closure_put(cl: &as->cl);
278
279 clear_btree_node_will_make_reachable(b);
280 clear_btree_node_accessed(b);
281 clear_btree_node_dirty_acct(c, b);
282 clear_btree_node_need_write(b);
283
284 mutex_lock(&c->btree_cache.lock);
285 list_del_init(entry: &b->list);
286 bch2_btree_node_hash_remove(&c->btree_cache, b);
287 mutex_unlock(lock: &c->btree_cache.lock);
288
289 BUG_ON(p->nr >= ARRAY_SIZE(p->b));
290 p->b[p->nr++] = b;
291
292 six_unlock_intent(lock: &b->c.lock);
293
294 trans_for_each_path(trans, path, i)
295 if (path->l[level].b == b) {
296 btree_node_unlock(trans, path, level);
297 path->l[level].b = ERR_PTR(error: -BCH_ERR_no_btree_node_init);
298 }
299}
300
301static struct btree *__bch2_btree_node_alloc(struct btree_trans *trans,
302 struct disk_reservation *res,
303 struct closure *cl,
304 bool interior_node,
305 unsigned flags)
306{
307 struct bch_fs *c = trans->c;
308 struct write_point *wp;
309 struct btree *b;
310 BKEY_PADDED_ONSTACK(k, BKEY_BTREE_PTR_VAL_U64s_MAX) tmp;
311 struct open_buckets obs = { .nr = 0 };
312 struct bch_devs_list devs_have = (struct bch_devs_list) { 0 };
313 enum bch_watermark watermark = flags & BCH_WATERMARK_MASK;
314 unsigned nr_reserve = watermark < BCH_WATERMARK_reclaim
315 ? BTREE_NODE_RESERVE
316 : 0;
317 int ret;
318
319 mutex_lock(&c->btree_reserve_cache_lock);
320 if (c->btree_reserve_cache_nr > nr_reserve) {
321 struct btree_alloc *a =
322 &c->btree_reserve_cache[--c->btree_reserve_cache_nr];
323
324 obs = a->ob;
325 bkey_copy(dst: &tmp.k, src: &a->k);
326 mutex_unlock(lock: &c->btree_reserve_cache_lock);
327 goto mem_alloc;
328 }
329 mutex_unlock(lock: &c->btree_reserve_cache_lock);
330
331retry:
332 ret = bch2_alloc_sectors_start_trans(trans,
333 c->opts.metadata_target ?:
334 c->opts.foreground_target,
335 0,
336 writepoint_ptr(wp: &c->btree_write_point),
337 &devs_have,
338 res->nr_replicas,
339 min(res->nr_replicas,
340 c->opts.metadata_replicas_required),
341 watermark, 0, cl, &wp);
342 if (unlikely(ret))
343 return ERR_PTR(error: ret);
344
345 if (wp->sectors_free < btree_sectors(c)) {
346 struct open_bucket *ob;
347 unsigned i;
348
349 open_bucket_for_each(c, &wp->ptrs, ob, i)
350 if (ob->sectors_free < btree_sectors(c))
351 ob->sectors_free = 0;
352
353 bch2_alloc_sectors_done(c, wp);
354 goto retry;
355 }
356
357 bkey_btree_ptr_v2_init(k: &tmp.k);
358 bch2_alloc_sectors_append_ptrs(c, wp, &tmp.k, btree_sectors(c), false);
359
360 bch2_open_bucket_get(c, wp, ptrs: &obs);
361 bch2_alloc_sectors_done(c, wp);
362mem_alloc:
363 b = bch2_btree_node_mem_alloc(trans, interior_node);
364 six_unlock_write(lock: &b->c.lock);
365 six_unlock_intent(lock: &b->c.lock);
366
367 /* we hold cannibalize_lock: */
368 BUG_ON(IS_ERR(b));
369 BUG_ON(b->ob.nr);
370
371 bkey_copy(dst: &b->key, src: &tmp.k);
372 b->ob = obs;
373
374 return b;
375}
376
377static struct btree *bch2_btree_node_alloc(struct btree_update *as,
378 struct btree_trans *trans,
379 unsigned level)
380{
381 struct bch_fs *c = as->c;
382 struct btree *b;
383 struct prealloc_nodes *p = &as->prealloc_nodes[!!level];
384 int ret;
385
386 BUG_ON(level >= BTREE_MAX_DEPTH);
387 BUG_ON(!p->nr);
388
389 b = p->b[--p->nr];
390
391 btree_node_lock_nopath_nofail(trans, b: &b->c, type: SIX_LOCK_intent);
392 btree_node_lock_nopath_nofail(trans, b: &b->c, type: SIX_LOCK_write);
393
394 set_btree_node_accessed(b);
395 set_btree_node_dirty_acct(c, b);
396 set_btree_node_need_write(b);
397
398 bch2_bset_init_first(b, &b->data->keys);
399 b->c.level = level;
400 b->c.btree_id = as->btree_id;
401 b->version_ondisk = c->sb.version;
402
403 memset(&b->nr, 0, sizeof(b->nr));
404 b->data->magic = cpu_to_le64(bset_magic(c));
405 memset(&b->data->_ptr, 0, sizeof(b->data->_ptr));
406 b->data->flags = 0;
407 SET_BTREE_NODE_ID(n: b->data, v: as->btree_id);
408 SET_BTREE_NODE_LEVEL(k: b->data, v: level);
409
410 if (b->key.k.type == KEY_TYPE_btree_ptr_v2) {
411 struct bkey_i_btree_ptr_v2 *bp = bkey_i_to_btree_ptr_v2(k: &b->key);
412
413 bp->v.mem_ptr = 0;
414 bp->v.seq = b->data->keys.seq;
415 bp->v.sectors_written = 0;
416 }
417
418 SET_BTREE_NODE_NEW_EXTENT_OVERWRITE(k: b->data, v: true);
419
420 bch2_btree_build_aux_trees(b);
421
422 ret = bch2_btree_node_hash_insert(&c->btree_cache, b, level, as->btree_id);
423 BUG_ON(ret);
424
425 trace_and_count(c, btree_node_alloc, trans, b);
426 bch2_increment_clock(c, sectors: btree_sectors(c), WRITE);
427 return b;
428}
429
430static void btree_set_min(struct btree *b, struct bpos pos)
431{
432 if (b->key.k.type == KEY_TYPE_btree_ptr_v2)
433 bkey_i_to_btree_ptr_v2(k: &b->key)->v.min_key = pos;
434 b->data->min_key = pos;
435}
436
437static void btree_set_max(struct btree *b, struct bpos pos)
438{
439 b->key.k.p = pos;
440 b->data->max_key = pos;
441}
442
443static struct btree *bch2_btree_node_alloc_replacement(struct btree_update *as,
444 struct btree_trans *trans,
445 struct btree *b)
446{
447 struct btree *n = bch2_btree_node_alloc(as, trans, level: b->c.level);
448 struct bkey_format format = bch2_btree_calc_format(b);
449
450 /*
451 * The keys might expand with the new format - if they wouldn't fit in
452 * the btree node anymore, use the old format for now:
453 */
454 if (!bch2_btree_node_format_fits(c: as->c, b, nr: b->nr, new_f: &format))
455 format = b->format;
456
457 SET_BTREE_NODE_SEQ(k: n->data, v: BTREE_NODE_SEQ(k: b->data) + 1);
458
459 btree_set_min(b: n, pos: b->data->min_key);
460 btree_set_max(b: n, pos: b->data->max_key);
461
462 n->data->format = format;
463 btree_node_set_format(b: n, f: format);
464
465 bch2_btree_sort_into(as->c, n, b);
466
467 btree_node_reset_sib_u64s(b: n);
468 return n;
469}
470
471static struct btree *__btree_root_alloc(struct btree_update *as,
472 struct btree_trans *trans, unsigned level)
473{
474 struct btree *b = bch2_btree_node_alloc(as, trans, level);
475
476 btree_set_min(b, POS_MIN);
477 btree_set_max(b, SPOS_MAX);
478 b->data->format = bch2_btree_calc_format(b);
479
480 btree_node_set_format(b, f: b->data->format);
481 bch2_btree_build_aux_trees(b);
482
483 return b;
484}
485
486static void bch2_btree_reserve_put(struct btree_update *as, struct btree_trans *trans)
487{
488 struct bch_fs *c = as->c;
489 struct prealloc_nodes *p;
490
491 for (p = as->prealloc_nodes;
492 p < as->prealloc_nodes + ARRAY_SIZE(as->prealloc_nodes);
493 p++) {
494 while (p->nr) {
495 struct btree *b = p->b[--p->nr];
496
497 mutex_lock(&c->btree_reserve_cache_lock);
498
499 if (c->btree_reserve_cache_nr <
500 ARRAY_SIZE(c->btree_reserve_cache)) {
501 struct btree_alloc *a =
502 &c->btree_reserve_cache[c->btree_reserve_cache_nr++];
503
504 a->ob = b->ob;
505 b->ob.nr = 0;
506 bkey_copy(dst: &a->k, src: &b->key);
507 } else {
508 bch2_open_buckets_put(c, ptrs: &b->ob);
509 }
510
511 mutex_unlock(lock: &c->btree_reserve_cache_lock);
512
513 btree_node_lock_nopath_nofail(trans, b: &b->c, type: SIX_LOCK_intent);
514 btree_node_lock_nopath_nofail(trans, b: &b->c, type: SIX_LOCK_write);
515 __btree_node_free(trans, b);
516 six_unlock_write(lock: &b->c.lock);
517 six_unlock_intent(lock: &b->c.lock);
518 }
519 }
520}
521
522static int bch2_btree_reserve_get(struct btree_trans *trans,
523 struct btree_update *as,
524 unsigned nr_nodes[2],
525 unsigned flags,
526 struct closure *cl)
527{
528 struct btree *b;
529 unsigned interior;
530 int ret = 0;
531
532 BUG_ON(nr_nodes[0] + nr_nodes[1] > BTREE_RESERVE_MAX);
533
534 /*
535 * Protects reaping from the btree node cache and using the btree node
536 * open bucket reserve:
537 */
538 ret = bch2_btree_cache_cannibalize_lock(trans, cl);
539 if (ret)
540 return ret;
541
542 for (interior = 0; interior < 2; interior++) {
543 struct prealloc_nodes *p = as->prealloc_nodes + interior;
544
545 while (p->nr < nr_nodes[interior]) {
546 b = __bch2_btree_node_alloc(trans, res: &as->disk_res, cl,
547 interior_node: interior, flags);
548 if (IS_ERR(ptr: b)) {
549 ret = PTR_ERR(ptr: b);
550 goto err;
551 }
552
553 p->b[p->nr++] = b;
554 }
555 }
556err:
557 bch2_btree_cache_cannibalize_unlock(trans);
558 return ret;
559}
560
561/* Asynchronous interior node update machinery */
562
563static void bch2_btree_update_free(struct btree_update *as, struct btree_trans *trans)
564{
565 struct bch_fs *c = as->c;
566
567 if (as->took_gc_lock)
568 up_read(sem: &c->gc_lock);
569 as->took_gc_lock = false;
570
571 bch2_journal_pin_drop(&c->journal, &as->journal);
572 bch2_journal_pin_flush(&c->journal, &as->journal);
573 bch2_disk_reservation_put(c, res: &as->disk_res);
574 bch2_btree_reserve_put(as, trans);
575
576 bch2_time_stats_update(stats: &c->times[BCH_TIME_btree_interior_update_total],
577 start: as->start_time);
578
579 mutex_lock(&c->btree_interior_update_lock);
580 list_del(entry: &as->unwritten_list);
581 list_del(entry: &as->list);
582
583 closure_debug_destroy(cl: &as->cl);
584 mempool_free(element: as, pool: &c->btree_interior_update_pool);
585
586 /*
587 * Have to do the wakeup with btree_interior_update_lock still held,
588 * since being on btree_interior_update_list is our ref on @c:
589 */
590 closure_wake_up(list: &c->btree_interior_update_wait);
591
592 mutex_unlock(lock: &c->btree_interior_update_lock);
593}
594
595static void btree_update_add_key(struct btree_update *as,
596 struct keylist *keys, struct btree *b)
597{
598 struct bkey_i *k = &b->key;
599
600 BUG_ON(bch2_keylist_u64s(keys) + k->k.u64s >
601 ARRAY_SIZE(as->_old_keys));
602
603 bkey_copy(dst: keys->top, src: k);
604 bkey_i_to_btree_ptr_v2(k: keys->top)->v.mem_ptr = b->c.level + 1;
605
606 bch2_keylist_push(l: keys);
607}
608
609static bool btree_update_new_nodes_marked_sb(struct btree_update *as)
610{
611 for_each_keylist_key(&as->new_keys, k)
612 if (!bch2_dev_btree_bitmap_marked(as->c, bkey_i_to_s_c(k)))
613 return false;
614 return true;
615}
616
617static void btree_update_new_nodes_mark_sb(struct btree_update *as)
618{
619 struct bch_fs *c = as->c;
620
621 mutex_lock(&c->sb_lock);
622 for_each_keylist_key(&as->new_keys, k)
623 bch2_dev_btree_bitmap_mark(c, bkey_i_to_s_c(k));
624
625 bch2_write_super(c);
626 mutex_unlock(lock: &c->sb_lock);
627}
628
629/*
630 * The transactional part of an interior btree node update, where we journal the
631 * update we did to the interior node and update alloc info:
632 */
633static int btree_update_nodes_written_trans(struct btree_trans *trans,
634 struct btree_update *as)
635{
636 struct jset_entry *e = bch2_trans_jset_entry_alloc(trans, u64s: as->journal_u64s);
637 int ret = PTR_ERR_OR_ZERO(ptr: e);
638 if (ret)
639 return ret;
640
641 memcpy(e, as->journal_entries, as->journal_u64s * sizeof(u64));
642
643 trans->journal_pin = &as->journal;
644
645 for_each_keylist_key(&as->old_keys, k) {
646 unsigned level = bkey_i_to_btree_ptr_v2(k)->v.mem_ptr;
647
648 ret = bch2_key_trigger_old(trans, btree_id: as->btree_id, level, old: bkey_i_to_s_c(k),
649 BTREE_TRIGGER_TRANSACTIONAL);
650 if (ret)
651 return ret;
652 }
653
654 for_each_keylist_key(&as->new_keys, k) {
655 unsigned level = bkey_i_to_btree_ptr_v2(k)->v.mem_ptr;
656
657 ret = bch2_key_trigger_new(trans, btree_id: as->btree_id, level, new: bkey_i_to_s(k),
658 BTREE_TRIGGER_TRANSACTIONAL);
659 if (ret)
660 return ret;
661 }
662
663 return 0;
664}
665
666static void btree_update_nodes_written(struct btree_update *as)
667{
668 struct bch_fs *c = as->c;
669 struct btree *b;
670 struct btree_trans *trans = bch2_trans_get(c);
671 u64 journal_seq = 0;
672 unsigned i;
673 int ret;
674
675 /*
676 * If we're already in an error state, it might be because a btree node
677 * was never written, and we might be trying to free that same btree
678 * node here, but it won't have been marked as allocated and we'll see
679 * spurious disk usage inconsistencies in the transactional part below
680 * if we don't skip it:
681 */
682 ret = bch2_journal_error(j: &c->journal);
683 if (ret)
684 goto err;
685
686 if (!btree_update_new_nodes_marked_sb(as))
687 btree_update_new_nodes_mark_sb(as);
688
689 /*
690 * Wait for any in flight writes to finish before we free the old nodes
691 * on disk:
692 */
693 for (i = 0; i < as->nr_old_nodes; i++) {
694 __le64 seq;
695
696 b = as->old_nodes[i];
697
698 btree_node_lock_nopath_nofail(trans, b: &b->c, type: SIX_LOCK_read);
699 seq = b->data ? b->data->keys.seq : 0;
700 six_unlock_read(lock: &b->c.lock);
701
702 if (seq == as->old_nodes_seq[i])
703 wait_on_bit_io(word: &b->flags, bit: BTREE_NODE_write_in_flight_inner,
704 TASK_UNINTERRUPTIBLE);
705 }
706
707 /*
708 * We did an update to a parent node where the pointers we added pointed
709 * to child nodes that weren't written yet: now, the child nodes have
710 * been written so we can write out the update to the interior node.
711 */
712
713 /*
714 * We can't call into journal reclaim here: we'd block on the journal
715 * reclaim lock, but we may need to release the open buckets we have
716 * pinned in order for other btree updates to make forward progress, and
717 * journal reclaim does btree updates when flushing bkey_cached entries,
718 * which may require allocations as well.
719 */
720 ret = commit_do(trans, &as->disk_res, &journal_seq,
721 BCH_WATERMARK_interior_updates|
722 BCH_TRANS_COMMIT_no_enospc|
723 BCH_TRANS_COMMIT_no_check_rw|
724 BCH_TRANS_COMMIT_journal_reclaim,
725 btree_update_nodes_written_trans(trans, as));
726 bch2_trans_unlock(trans);
727
728 bch2_fs_fatal_err_on(ret && !bch2_journal_error(&c->journal), c,
729 "%s", bch2_err_str(ret));
730err:
731 /*
732 * We have to be careful because another thread might be getting ready
733 * to free as->b and calling btree_update_reparent() on us - we'll
734 * recheck under btree_update_lock below:
735 */
736 b = READ_ONCE(as->b);
737 if (b) {
738 btree_path_idx_t path_idx = get_unlocked_mut_path(trans,
739 btree_id: as->btree_id, level: b->c.level, pos: b->key.k.p);
740 struct btree_path *path = trans->paths + path_idx;
741 /*
742 * @b is the node we did the final insert into:
743 *
744 * On failure to get a journal reservation, we still have to
745 * unblock the write and allow most of the write path to happen
746 * so that shutdown works, but the i->journal_seq mechanism
747 * won't work to prevent the btree write from being visible (we
748 * didn't get a journal sequence number) - instead
749 * __bch2_btree_node_write() doesn't do the actual write if
750 * we're in journal error state:
751 */
752
753 /*
754 * Ensure transaction is unlocked before using
755 * btree_node_lock_nopath() (the use of which is always suspect,
756 * we need to work on removing this in the future)
757 *
758 * It should be, but get_unlocked_mut_path() -> bch2_path_get()
759 * calls bch2_path_upgrade(), before we call path_make_mut(), so
760 * we may rarely end up with a locked path besides the one we
761 * have here:
762 */
763 bch2_trans_unlock(trans);
764 btree_node_lock_nopath_nofail(trans, b: &b->c, type: SIX_LOCK_intent);
765 mark_btree_node_locked(trans, path, level: b->c.level, type: BTREE_NODE_INTENT_LOCKED);
766 path->l[b->c.level].lock_seq = six_lock_seq(lock: &b->c.lock);
767 path->l[b->c.level].b = b;
768
769 bch2_btree_node_lock_write_nofail(trans, path, &b->c);
770
771 mutex_lock(&c->btree_interior_update_lock);
772
773 list_del(entry: &as->write_blocked_list);
774 if (list_empty(head: &b->write_blocked))
775 clear_btree_node_write_blocked(b);
776
777 /*
778 * Node might have been freed, recheck under
779 * btree_interior_update_lock:
780 */
781 if (as->b == b) {
782 BUG_ON(!b->c.level);
783 BUG_ON(!btree_node_dirty(b));
784
785 if (!ret) {
786 struct bset *last = btree_bset_last(b);
787
788 last->journal_seq = cpu_to_le64(
789 max(journal_seq,
790 le64_to_cpu(last->journal_seq)));
791
792 bch2_btree_add_journal_pin(c, b, journal_seq);
793 } else {
794 /*
795 * If we didn't get a journal sequence number we
796 * can't write this btree node, because recovery
797 * won't know to ignore this write:
798 */
799 set_btree_node_never_write(b);
800 }
801 }
802
803 mutex_unlock(lock: &c->btree_interior_update_lock);
804
805 mark_btree_node_locked_noreset(path, level: b->c.level, type: BTREE_NODE_INTENT_LOCKED);
806 six_unlock_write(lock: &b->c.lock);
807
808 btree_node_write_if_need(c, b, lock_held: SIX_LOCK_intent);
809 btree_node_unlock(trans, path, level: b->c.level);
810 bch2_path_put(trans, path_idx, true);
811 }
812
813 bch2_journal_pin_drop(&c->journal, &as->journal);
814
815 mutex_lock(&c->btree_interior_update_lock);
816 for (i = 0; i < as->nr_new_nodes; i++) {
817 b = as->new_nodes[i];
818
819 BUG_ON(b->will_make_reachable != (unsigned long) as);
820 b->will_make_reachable = 0;
821 clear_btree_node_will_make_reachable(b);
822 }
823 mutex_unlock(lock: &c->btree_interior_update_lock);
824
825 for (i = 0; i < as->nr_new_nodes; i++) {
826 b = as->new_nodes[i];
827
828 btree_node_lock_nopath_nofail(trans, b: &b->c, type: SIX_LOCK_read);
829 btree_node_write_if_need(c, b, lock_held: SIX_LOCK_read);
830 six_unlock_read(lock: &b->c.lock);
831 }
832
833 for (i = 0; i < as->nr_open_buckets; i++)
834 bch2_open_bucket_put(c, ob: c->open_buckets + as->open_buckets[i]);
835
836 bch2_btree_update_free(as, trans);
837 bch2_trans_put(trans);
838}
839
840static void btree_interior_update_work(struct work_struct *work)
841{
842 struct bch_fs *c =
843 container_of(work, struct bch_fs, btree_interior_update_work);
844 struct btree_update *as;
845
846 while (1) {
847 mutex_lock(&c->btree_interior_update_lock);
848 as = list_first_entry_or_null(&c->btree_interior_updates_unwritten,
849 struct btree_update, unwritten_list);
850 if (as && !as->nodes_written)
851 as = NULL;
852 mutex_unlock(lock: &c->btree_interior_update_lock);
853
854 if (!as)
855 break;
856
857 btree_update_nodes_written(as);
858 }
859}
860
861static CLOSURE_CALLBACK(btree_update_set_nodes_written)
862{
863 closure_type(as, struct btree_update, cl);
864 struct bch_fs *c = as->c;
865
866 mutex_lock(&c->btree_interior_update_lock);
867 as->nodes_written = true;
868 mutex_unlock(lock: &c->btree_interior_update_lock);
869
870 queue_work(wq: c->btree_interior_update_worker, work: &c->btree_interior_update_work);
871}
872
873/*
874 * We're updating @b with pointers to nodes that haven't finished writing yet:
875 * block @b from being written until @as completes
876 */
877static void btree_update_updated_node(struct btree_update *as, struct btree *b)
878{
879 struct bch_fs *c = as->c;
880
881 BUG_ON(as->mode != BTREE_UPDATE_none);
882 BUG_ON(as->update_level_end < b->c.level);
883 BUG_ON(!btree_node_dirty(b));
884 BUG_ON(!b->c.level);
885
886 mutex_lock(&c->btree_interior_update_lock);
887 list_add_tail(new: &as->unwritten_list, head: &c->btree_interior_updates_unwritten);
888
889 as->mode = BTREE_UPDATE_node;
890 as->b = b;
891 as->update_level_end = b->c.level;
892
893 set_btree_node_write_blocked(b);
894 list_add(new: &as->write_blocked_list, head: &b->write_blocked);
895
896 mutex_unlock(lock: &c->btree_interior_update_lock);
897}
898
899static int bch2_update_reparent_journal_pin_flush(struct journal *j,
900 struct journal_entry_pin *_pin, u64 seq)
901{
902 return 0;
903}
904
905static void btree_update_reparent(struct btree_update *as,
906 struct btree_update *child)
907{
908 struct bch_fs *c = as->c;
909
910 lockdep_assert_held(&c->btree_interior_update_lock);
911
912 child->b = NULL;
913 child->mode = BTREE_UPDATE_update;
914
915 bch2_journal_pin_copy(&c->journal, &as->journal, &child->journal,
916 bch2_update_reparent_journal_pin_flush);
917}
918
919static void btree_update_updated_root(struct btree_update *as, struct btree *b)
920{
921 struct bkey_i *insert = &b->key;
922 struct bch_fs *c = as->c;
923
924 BUG_ON(as->mode != BTREE_UPDATE_none);
925
926 BUG_ON(as->journal_u64s + jset_u64s(insert->k.u64s) >
927 ARRAY_SIZE(as->journal_entries));
928
929 as->journal_u64s +=
930 journal_entry_set(entry: (void *) &as->journal_entries[as->journal_u64s],
931 type: BCH_JSET_ENTRY_btree_root,
932 id: b->c.btree_id, level: b->c.level,
933 data: insert, u64s: insert->k.u64s);
934
935 mutex_lock(&c->btree_interior_update_lock);
936 list_add_tail(new: &as->unwritten_list, head: &c->btree_interior_updates_unwritten);
937
938 as->mode = BTREE_UPDATE_root;
939 mutex_unlock(lock: &c->btree_interior_update_lock);
940}
941
942/*
943 * bch2_btree_update_add_new_node:
944 *
945 * This causes @as to wait on @b to be written, before it gets to
946 * bch2_btree_update_nodes_written
947 *
948 * Additionally, it sets b->will_make_reachable to prevent any additional writes
949 * to @b from happening besides the first until @b is reachable on disk
950 *
951 * And it adds @b to the list of @as's new nodes, so that we can update sector
952 * counts in bch2_btree_update_nodes_written:
953 */
954static void bch2_btree_update_add_new_node(struct btree_update *as, struct btree *b)
955{
956 struct bch_fs *c = as->c;
957
958 closure_get(cl: &as->cl);
959
960 mutex_lock(&c->btree_interior_update_lock);
961 BUG_ON(as->nr_new_nodes >= ARRAY_SIZE(as->new_nodes));
962 BUG_ON(b->will_make_reachable);
963
964 as->new_nodes[as->nr_new_nodes++] = b;
965 b->will_make_reachable = 1UL|(unsigned long) as;
966 set_btree_node_will_make_reachable(b);
967
968 mutex_unlock(lock: &c->btree_interior_update_lock);
969
970 btree_update_add_key(as, keys: &as->new_keys, b);
971
972 if (b->key.k.type == KEY_TYPE_btree_ptr_v2) {
973 unsigned bytes = vstruct_end(&b->data->keys) - (void *) b->data;
974 unsigned sectors = round_up(bytes, block_bytes(c)) >> 9;
975
976 bkey_i_to_btree_ptr_v2(k: &b->key)->v.sectors_written =
977 cpu_to_le16(sectors);
978 }
979}
980
981/*
982 * returns true if @b was a new node
983 */
984static void btree_update_drop_new_node(struct bch_fs *c, struct btree *b)
985{
986 struct btree_update *as;
987 unsigned long v;
988 unsigned i;
989
990 mutex_lock(&c->btree_interior_update_lock);
991 /*
992 * When b->will_make_reachable != 0, it owns a ref on as->cl that's
993 * dropped when it gets written by bch2_btree_complete_write - the
994 * xchg() is for synchronization with bch2_btree_complete_write:
995 */
996 v = xchg(&b->will_make_reachable, 0);
997 clear_btree_node_will_make_reachable(b);
998 as = (struct btree_update *) (v & ~1UL);
999
1000 if (!as) {
1001 mutex_unlock(lock: &c->btree_interior_update_lock);
1002 return;
1003 }
1004
1005 for (i = 0; i < as->nr_new_nodes; i++)
1006 if (as->new_nodes[i] == b)
1007 goto found;
1008
1009 BUG();
1010found:
1011 array_remove_item(as->new_nodes, as->nr_new_nodes, i);
1012 mutex_unlock(lock: &c->btree_interior_update_lock);
1013
1014 if (v & 1)
1015 closure_put(cl: &as->cl);
1016}
1017
1018static void bch2_btree_update_get_open_buckets(struct btree_update *as, struct btree *b)
1019{
1020 while (b->ob.nr)
1021 as->open_buckets[as->nr_open_buckets++] =
1022 b->ob.v[--b->ob.nr];
1023}
1024
1025static int bch2_btree_update_will_free_node_journal_pin_flush(struct journal *j,
1026 struct journal_entry_pin *_pin, u64 seq)
1027{
1028 return 0;
1029}
1030
1031/*
1032 * @b is being split/rewritten: it may have pointers to not-yet-written btree
1033 * nodes and thus outstanding btree_updates - redirect @b's
1034 * btree_updates to point to this btree_update:
1035 */
1036static void bch2_btree_interior_update_will_free_node(struct btree_update *as,
1037 struct btree *b)
1038{
1039 struct bch_fs *c = as->c;
1040 struct btree_update *p, *n;
1041 struct btree_write *w;
1042
1043 set_btree_node_dying(b);
1044
1045 if (btree_node_fake(b))
1046 return;
1047
1048 mutex_lock(&c->btree_interior_update_lock);
1049
1050 /*
1051 * Does this node have any btree_update operations preventing
1052 * it from being written?
1053 *
1054 * If so, redirect them to point to this btree_update: we can
1055 * write out our new nodes, but we won't make them visible until those
1056 * operations complete
1057 */
1058 list_for_each_entry_safe(p, n, &b->write_blocked, write_blocked_list) {
1059 list_del_init(entry: &p->write_blocked_list);
1060 btree_update_reparent(as, child: p);
1061
1062 /*
1063 * for flush_held_btree_writes() waiting on updates to flush or
1064 * nodes to be writeable:
1065 */
1066 closure_wake_up(list: &c->btree_interior_update_wait);
1067 }
1068
1069 clear_btree_node_dirty_acct(c, b);
1070 clear_btree_node_need_write(b);
1071 clear_btree_node_write_blocked(b);
1072
1073 /*
1074 * Does this node have unwritten data that has a pin on the journal?
1075 *
1076 * If so, transfer that pin to the btree_update operation -
1077 * note that if we're freeing multiple nodes, we only need to keep the
1078 * oldest pin of any of the nodes we're freeing. We'll release the pin
1079 * when the new nodes are persistent and reachable on disk:
1080 */
1081 w = btree_current_write(b);
1082 bch2_journal_pin_copy(&c->journal, &as->journal, &w->journal,
1083 bch2_btree_update_will_free_node_journal_pin_flush);
1084 bch2_journal_pin_drop(&c->journal, &w->journal);
1085
1086 w = btree_prev_write(b);
1087 bch2_journal_pin_copy(&c->journal, &as->journal, &w->journal,
1088 bch2_btree_update_will_free_node_journal_pin_flush);
1089 bch2_journal_pin_drop(&c->journal, &w->journal);
1090
1091 mutex_unlock(lock: &c->btree_interior_update_lock);
1092
1093 /*
1094 * Is this a node that isn't reachable on disk yet?
1095 *
1096 * Nodes that aren't reachable yet have writes blocked until they're
1097 * reachable - now that we've cancelled any pending writes and moved
1098 * things waiting on that write to wait on this update, we can drop this
1099 * node from the list of nodes that the other update is making
1100 * reachable, prior to freeing it:
1101 */
1102 btree_update_drop_new_node(c, b);
1103
1104 btree_update_add_key(as, keys: &as->old_keys, b);
1105
1106 as->old_nodes[as->nr_old_nodes] = b;
1107 as->old_nodes_seq[as->nr_old_nodes] = b->data->keys.seq;
1108 as->nr_old_nodes++;
1109}
1110
1111static void bch2_btree_update_done(struct btree_update *as, struct btree_trans *trans)
1112{
1113 struct bch_fs *c = as->c;
1114 u64 start_time = as->start_time;
1115
1116 BUG_ON(as->mode == BTREE_UPDATE_none);
1117
1118 if (as->took_gc_lock)
1119 up_read(sem: &as->c->gc_lock);
1120 as->took_gc_lock = false;
1121
1122 bch2_btree_reserve_put(as, trans);
1123
1124 continue_at(&as->cl, btree_update_set_nodes_written,
1125 as->c->btree_interior_update_worker);
1126
1127 bch2_time_stats_update(stats: &c->times[BCH_TIME_btree_interior_update_foreground],
1128 start: start_time);
1129}
1130
1131static struct btree_update *
1132bch2_btree_update_start(struct btree_trans *trans, struct btree_path *path,
1133 unsigned level_start, bool split, unsigned flags)
1134{
1135 struct bch_fs *c = trans->c;
1136 struct btree_update *as;
1137 u64 start_time = local_clock();
1138 int disk_res_flags = (flags & BCH_TRANS_COMMIT_no_enospc)
1139 ? BCH_DISK_RESERVATION_NOFAIL : 0;
1140 unsigned nr_nodes[2] = { 0, 0 };
1141 unsigned level_end = level_start;
1142 enum bch_watermark watermark = flags & BCH_WATERMARK_MASK;
1143 int ret = 0;
1144 u32 restart_count = trans->restart_count;
1145
1146 BUG_ON(!path->should_be_locked);
1147
1148 if (watermark == BCH_WATERMARK_copygc)
1149 watermark = BCH_WATERMARK_btree_copygc;
1150 if (watermark < BCH_WATERMARK_btree)
1151 watermark = BCH_WATERMARK_btree;
1152
1153 flags &= ~BCH_WATERMARK_MASK;
1154 flags |= watermark;
1155
1156 if (watermark < BCH_WATERMARK_reclaim &&
1157 test_bit(JOURNAL_SPACE_LOW, &c->journal.flags)) {
1158 if (flags & BCH_TRANS_COMMIT_journal_reclaim)
1159 return ERR_PTR(error: -BCH_ERR_journal_reclaim_would_deadlock);
1160
1161 bch2_trans_unlock(trans);
1162 wait_event(c->journal.wait, !test_bit(JOURNAL_SPACE_LOW, &c->journal.flags));
1163 ret = bch2_trans_relock(trans);
1164 if (ret)
1165 return ERR_PTR(error: ret);
1166 }
1167
1168 while (1) {
1169 nr_nodes[!!level_end] += 1 + split;
1170 level_end++;
1171
1172 ret = bch2_btree_path_upgrade(trans, path, new_locks_want: level_end + 1);
1173 if (ret)
1174 return ERR_PTR(error: ret);
1175
1176 if (!btree_path_node(path, level: level_end)) {
1177 /* Allocating new root? */
1178 nr_nodes[1] += split;
1179 level_end = BTREE_MAX_DEPTH;
1180 break;
1181 }
1182
1183 /*
1184 * Always check for space for two keys, even if we won't have to
1185 * split at prior level - it might have been a merge instead:
1186 */
1187 if (bch2_btree_node_insert_fits(b: path->l[level_end].b,
1188 BKEY_BTREE_PTR_U64s_MAX * 2))
1189 break;
1190
1191 split = path->l[level_end].b->nr.live_u64s > BTREE_SPLIT_THRESHOLD(c);
1192 }
1193
1194 if (!down_read_trylock(sem: &c->gc_lock)) {
1195 ret = drop_locks_do(trans, (down_read(&c->gc_lock), 0));
1196 if (ret) {
1197 up_read(sem: &c->gc_lock);
1198 return ERR_PTR(error: ret);
1199 }
1200 }
1201
1202 as = mempool_alloc(pool: &c->btree_interior_update_pool, GFP_NOFS);
1203 memset(as, 0, sizeof(*as));
1204 closure_init(cl: &as->cl, NULL);
1205 as->c = c;
1206 as->start_time = start_time;
1207 as->ip_started = _RET_IP_;
1208 as->mode = BTREE_UPDATE_none;
1209 as->watermark = watermark;
1210 as->took_gc_lock = true;
1211 as->btree_id = path->btree_id;
1212 as->update_level_start = level_start;
1213 as->update_level_end = level_end;
1214 INIT_LIST_HEAD(list: &as->list);
1215 INIT_LIST_HEAD(list: &as->unwritten_list);
1216 INIT_LIST_HEAD(list: &as->write_blocked_list);
1217 bch2_keylist_init(l: &as->old_keys, inline_keys: as->_old_keys);
1218 bch2_keylist_init(l: &as->new_keys, inline_keys: as->_new_keys);
1219 bch2_keylist_init(l: &as->parent_keys, inline_keys: as->inline_keys);
1220
1221 mutex_lock(&c->btree_interior_update_lock);
1222 list_add_tail(new: &as->list, head: &c->btree_interior_update_list);
1223 mutex_unlock(lock: &c->btree_interior_update_lock);
1224
1225 /*
1226 * We don't want to allocate if we're in an error state, that can cause
1227 * deadlock on emergency shutdown due to open buckets getting stuck in
1228 * the btree_reserve_cache after allocator shutdown has cleared it out.
1229 * This check needs to come after adding us to the btree_interior_update
1230 * list but before calling bch2_btree_reserve_get, to synchronize with
1231 * __bch2_fs_read_only().
1232 */
1233 ret = bch2_journal_error(j: &c->journal);
1234 if (ret)
1235 goto err;
1236
1237 ret = bch2_disk_reservation_get(c, res: &as->disk_res,
1238 sectors: (nr_nodes[0] + nr_nodes[1]) * btree_sectors(c),
1239 nr_replicas: c->opts.metadata_replicas,
1240 flags: disk_res_flags);
1241 if (ret)
1242 goto err;
1243
1244 ret = bch2_btree_reserve_get(trans, as, nr_nodes, flags, NULL);
1245 if (bch2_err_matches(ret, ENOSPC) ||
1246 bch2_err_matches(ret, ENOMEM)) {
1247 struct closure cl;
1248
1249 /*
1250 * XXX: this should probably be a separate BTREE_INSERT_NONBLOCK
1251 * flag
1252 */
1253 if (bch2_err_matches(ret, ENOSPC) &&
1254 (flags & BCH_TRANS_COMMIT_journal_reclaim) &&
1255 watermark < BCH_WATERMARK_reclaim) {
1256 ret = -BCH_ERR_journal_reclaim_would_deadlock;
1257 goto err;
1258 }
1259
1260 closure_init_stack(cl: &cl);
1261
1262 do {
1263 ret = bch2_btree_reserve_get(trans, as, nr_nodes, flags, cl: &cl);
1264
1265 bch2_trans_unlock(trans);
1266 closure_sync(cl: &cl);
1267 } while (bch2_err_matches(ret, BCH_ERR_operation_blocked));
1268 }
1269
1270 if (ret) {
1271 trace_and_count(c, btree_reserve_get_fail, trans->fn,
1272 _RET_IP_, nr_nodes[0] + nr_nodes[1], ret);
1273 goto err;
1274 }
1275
1276 ret = bch2_trans_relock(trans);
1277 if (ret)
1278 goto err;
1279
1280 bch2_trans_verify_not_restarted(trans, restart_count);
1281 return as;
1282err:
1283 bch2_btree_update_free(as, trans);
1284 if (!bch2_err_matches(ret, ENOSPC) &&
1285 !bch2_err_matches(ret, EROFS) &&
1286 ret != -BCH_ERR_journal_reclaim_would_deadlock)
1287 bch_err_fn_ratelimited(c, ret);
1288 return ERR_PTR(error: ret);
1289}
1290
1291/* Btree root updates: */
1292
1293static void bch2_btree_set_root_inmem(struct bch_fs *c, struct btree *b)
1294{
1295 /* Root nodes cannot be reaped */
1296 mutex_lock(&c->btree_cache.lock);
1297 list_del_init(entry: &b->list);
1298 mutex_unlock(lock: &c->btree_cache.lock);
1299
1300 mutex_lock(&c->btree_root_lock);
1301 bch2_btree_id_root(c, id: b->c.btree_id)->b = b;
1302 mutex_unlock(lock: &c->btree_root_lock);
1303
1304 bch2_recalc_btree_reserve(c);
1305}
1306
1307static int bch2_btree_set_root(struct btree_update *as,
1308 struct btree_trans *trans,
1309 struct btree_path *path,
1310 struct btree *b,
1311 bool nofail)
1312{
1313 struct bch_fs *c = as->c;
1314
1315 trace_and_count(c, btree_node_set_root, trans, b);
1316
1317 struct btree *old = btree_node_root(c, b);
1318
1319 /*
1320 * Ensure no one is using the old root while we switch to the
1321 * new root:
1322 */
1323 if (nofail) {
1324 bch2_btree_node_lock_write_nofail(trans, path, &old->c);
1325 } else {
1326 int ret = bch2_btree_node_lock_write(trans, path, b: &old->c);
1327 if (ret)
1328 return ret;
1329 }
1330
1331 bch2_btree_set_root_inmem(c, b);
1332
1333 btree_update_updated_root(as, b);
1334
1335 /*
1336 * Unlock old root after new root is visible:
1337 *
1338 * The new root isn't persistent, but that's ok: we still have
1339 * an intent lock on the new root, and any updates that would
1340 * depend on the new root would have to update the new root.
1341 */
1342 bch2_btree_node_unlock_write(trans, path, old);
1343 return 0;
1344}
1345
1346/* Interior node updates: */
1347
1348static void bch2_insert_fixup_btree_ptr(struct btree_update *as,
1349 struct btree_trans *trans,
1350 struct btree_path *path,
1351 struct btree *b,
1352 struct btree_node_iter *node_iter,
1353 struct bkey_i *insert)
1354{
1355 struct bch_fs *c = as->c;
1356 struct bkey_packed *k;
1357 struct printbuf buf = PRINTBUF;
1358 unsigned long old, new, v;
1359
1360 BUG_ON(insert->k.type == KEY_TYPE_btree_ptr_v2 &&
1361 !btree_ptr_sectors_written(insert));
1362
1363 if (unlikely(!test_bit(JOURNAL_REPLAY_DONE, &c->journal.flags)))
1364 bch2_journal_key_overwritten(c, b->c.btree_id, b->c.level, insert->k.p);
1365
1366 if (bch2_bkey_invalid(c, bkey_i_to_s_c(k: insert),
1367 btree_node_type(b), WRITE, &buf) ?:
1368 bch2_bkey_in_btree_node(c, b, bkey_i_to_s_c(k: insert), &buf)) {
1369 printbuf_reset(buf: &buf);
1370 prt_printf(&buf, "inserting invalid bkey\n ");
1371 bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(k: insert));
1372 prt_printf(&buf, "\n ");
1373 bch2_bkey_invalid(c, bkey_i_to_s_c(k: insert),
1374 btree_node_type(b), WRITE, &buf);
1375 bch2_bkey_in_btree_node(c, b, bkey_i_to_s_c(k: insert), &buf);
1376
1377 bch2_fs_inconsistent(c, "%s", buf.buf);
1378 dump_stack();
1379 }
1380
1381 BUG_ON(as->journal_u64s + jset_u64s(insert->k.u64s) >
1382 ARRAY_SIZE(as->journal_entries));
1383
1384 as->journal_u64s +=
1385 journal_entry_set(entry: (void *) &as->journal_entries[as->journal_u64s],
1386 type: BCH_JSET_ENTRY_btree_keys,
1387 id: b->c.btree_id, level: b->c.level,
1388 data: insert, u64s: insert->k.u64s);
1389
1390 while ((k = bch2_btree_node_iter_peek_all(iter: node_iter, b)) &&
1391 bkey_iter_pos_cmp(b, l: k, r: &insert->k.p) < 0)
1392 bch2_btree_node_iter_advance(node_iter, b);
1393
1394 bch2_btree_bset_insert_key(trans, path, b, node_iter, insert);
1395 set_btree_node_dirty_acct(c, b);
1396
1397 v = READ_ONCE(b->flags);
1398 do {
1399 old = new = v;
1400
1401 new &= ~BTREE_WRITE_TYPE_MASK;
1402 new |= BTREE_WRITE_interior;
1403 new |= 1 << BTREE_NODE_need_write;
1404 } while ((v = cmpxchg(&b->flags, old, new)) != old);
1405
1406 printbuf_exit(&buf);
1407}
1408
1409static void
1410bch2_btree_insert_keys_interior(struct btree_update *as,
1411 struct btree_trans *trans,
1412 struct btree_path *path,
1413 struct btree *b,
1414 struct btree_node_iter node_iter,
1415 struct keylist *keys)
1416{
1417 struct bkey_i *insert = bch2_keylist_front(l: keys);
1418 struct bkey_packed *k;
1419
1420 BUG_ON(btree_node_type(b) != BKEY_TYPE_btree);
1421
1422 while ((k = bch2_btree_node_iter_prev_all(&node_iter, b)) &&
1423 (bkey_cmp_left_packed(b, l: k, r: &insert->k.p) >= 0))
1424 ;
1425
1426 while (!bch2_keylist_empty(l: keys)) {
1427 insert = bch2_keylist_front(l: keys);
1428
1429 if (bpos_gt(l: insert->k.p, r: b->key.k.p))
1430 break;
1431
1432 bch2_insert_fixup_btree_ptr(as, trans, path, b, node_iter: &node_iter, insert);
1433 bch2_keylist_pop_front(keys);
1434 }
1435}
1436
1437/*
1438 * Move keys from n1 (original replacement node, now lower node) to n2 (higher
1439 * node)
1440 */
1441static void __btree_split_node(struct btree_update *as,
1442 struct btree_trans *trans,
1443 struct btree *b,
1444 struct btree *n[2])
1445{
1446 struct bkey_packed *k;
1447 struct bpos n1_pos = POS_MIN;
1448 struct btree_node_iter iter;
1449 struct bset *bsets[2];
1450 struct bkey_format_state format[2];
1451 struct bkey_packed *out[2];
1452 struct bkey uk;
1453 unsigned u64s, n1_u64s = (b->nr.live_u64s * 3) / 5;
1454 struct { unsigned nr_keys, val_u64s; } nr_keys[2];
1455 int i;
1456
1457 memset(&nr_keys, 0, sizeof(nr_keys));
1458
1459 for (i = 0; i < 2; i++) {
1460 BUG_ON(n[i]->nsets != 1);
1461
1462 bsets[i] = btree_bset_first(b: n[i]);
1463 out[i] = bsets[i]->start;
1464
1465 SET_BTREE_NODE_SEQ(k: n[i]->data, v: BTREE_NODE_SEQ(k: b->data) + 1);
1466 bch2_bkey_format_init(&format[i]);
1467 }
1468
1469 u64s = 0;
1470 for_each_btree_node_key(b, k, &iter) {
1471 if (bkey_deleted(k))
1472 continue;
1473
1474 uk = bkey_unpack_key(b, src: k);
1475
1476 if (b->c.level &&
1477 u64s < n1_u64s &&
1478 u64s + k->u64s >= n1_u64s &&
1479 bch2_key_deleted_in_journal(trans, b->c.btree_id, b->c.level, uk.p))
1480 n1_u64s += k->u64s;
1481
1482 i = u64s >= n1_u64s;
1483 u64s += k->u64s;
1484 if (!i)
1485 n1_pos = uk.p;
1486 bch2_bkey_format_add_key(s: &format[i], k: &uk);
1487
1488 nr_keys[i].nr_keys++;
1489 nr_keys[i].val_u64s += bkeyp_val_u64s(format: &b->format, k);
1490 }
1491
1492 btree_set_min(b: n[0], pos: b->data->min_key);
1493 btree_set_max(b: n[0], pos: n1_pos);
1494 btree_set_min(b: n[1], pos: bpos_successor(p: n1_pos));
1495 btree_set_max(b: n[1], pos: b->data->max_key);
1496
1497 for (i = 0; i < 2; i++) {
1498 bch2_bkey_format_add_pos(&format[i], n[i]->data->min_key);
1499 bch2_bkey_format_add_pos(&format[i], n[i]->data->max_key);
1500
1501 n[i]->data->format = bch2_bkey_format_done(&format[i]);
1502
1503 unsigned u64s = nr_keys[i].nr_keys * n[i]->data->format.key_u64s +
1504 nr_keys[i].val_u64s;
1505 if (__vstruct_bytes(struct btree_node, u64s) > btree_buf_bytes(b))
1506 n[i]->data->format = b->format;
1507
1508 btree_node_set_format(b: n[i], f: n[i]->data->format);
1509 }
1510
1511 u64s = 0;
1512 for_each_btree_node_key(b, k, &iter) {
1513 if (bkey_deleted(k))
1514 continue;
1515
1516 i = u64s >= n1_u64s;
1517 u64s += k->u64s;
1518
1519 if (bch2_bkey_transform(&n[i]->format, out[i], bkey_packed(k)
1520 ? &b->format: &bch2_bkey_format_current, k))
1521 out[i]->format = KEY_FORMAT_LOCAL_BTREE;
1522 else
1523 bch2_bkey_unpack(b, (void *) out[i], k);
1524
1525 out[i]->needs_whiteout = false;
1526
1527 btree_keys_account_key_add(&n[i]->nr, 0, out[i]);
1528 out[i] = bkey_p_next(out[i]);
1529 }
1530
1531 for (i = 0; i < 2; i++) {
1532 bsets[i]->u64s = cpu_to_le16((u64 *) out[i] - bsets[i]->_data);
1533
1534 BUG_ON(!bsets[i]->u64s);
1535
1536 set_btree_bset_end(b: n[i], t: n[i]->set);
1537
1538 btree_node_reset_sib_u64s(b: n[i]);
1539
1540 bch2_verify_btree_nr_keys(b: n[i]);
1541
1542 BUG_ON(bch2_btree_node_check_topology(trans, n[i]));
1543 }
1544}
1545
1546/*
1547 * For updates to interior nodes, we've got to do the insert before we split
1548 * because the stuff we're inserting has to be inserted atomically. Post split,
1549 * the keys might have to go in different nodes and the split would no longer be
1550 * atomic.
1551 *
1552 * Worse, if the insert is from btree node coalescing, if we do the insert after
1553 * we do the split (and pick the pivot) - the pivot we pick might be between
1554 * nodes that were coalesced, and thus in the middle of a child node post
1555 * coalescing:
1556 */
1557static void btree_split_insert_keys(struct btree_update *as,
1558 struct btree_trans *trans,
1559 btree_path_idx_t path_idx,
1560 struct btree *b,
1561 struct keylist *keys)
1562{
1563 struct btree_path *path = trans->paths + path_idx;
1564
1565 if (!bch2_keylist_empty(l: keys) &&
1566 bpos_le(l: bch2_keylist_front(l: keys)->k.p, r: b->data->max_key)) {
1567 struct btree_node_iter node_iter;
1568
1569 bch2_btree_node_iter_init(&node_iter, b, &bch2_keylist_front(l: keys)->k.p);
1570
1571 bch2_btree_insert_keys_interior(as, trans, path, b, node_iter, keys);
1572
1573 BUG_ON(bch2_btree_node_check_topology(trans, b));
1574 }
1575}
1576
1577static int btree_split(struct btree_update *as, struct btree_trans *trans,
1578 btree_path_idx_t path, struct btree *b,
1579 struct keylist *keys)
1580{
1581 struct bch_fs *c = as->c;
1582 struct btree *parent = btree_node_parent(path: trans->paths + path, b);
1583 struct btree *n1, *n2 = NULL, *n3 = NULL;
1584 btree_path_idx_t path1 = 0, path2 = 0;
1585 u64 start_time = local_clock();
1586 int ret = 0;
1587
1588 bch2_verify_btree_nr_keys(b);
1589 BUG_ON(!parent && (b != btree_node_root(c, b)));
1590 BUG_ON(parent && !btree_node_intent_locked(trans->paths + path, b->c.level + 1));
1591
1592 ret = bch2_btree_node_check_topology(trans, b);
1593 if (ret)
1594 return ret;
1595
1596 bch2_btree_interior_update_will_free_node(as, b);
1597
1598 if (b->nr.live_u64s > BTREE_SPLIT_THRESHOLD(c)) {
1599 struct btree *n[2];
1600
1601 trace_and_count(c, btree_node_split, trans, b);
1602
1603 n[0] = n1 = bch2_btree_node_alloc(as, trans, level: b->c.level);
1604 n[1] = n2 = bch2_btree_node_alloc(as, trans, level: b->c.level);
1605
1606 __btree_split_node(as, trans, b, n);
1607
1608 if (keys) {
1609 btree_split_insert_keys(as, trans, path_idx: path, b: n1, keys);
1610 btree_split_insert_keys(as, trans, path_idx: path, b: n2, keys);
1611 BUG_ON(!bch2_keylist_empty(keys));
1612 }
1613
1614 bch2_btree_build_aux_trees(n2);
1615 bch2_btree_build_aux_trees(n1);
1616
1617 bch2_btree_update_add_new_node(as, b: n1);
1618 bch2_btree_update_add_new_node(as, b: n2);
1619 six_unlock_write(lock: &n2->c.lock);
1620 six_unlock_write(lock: &n1->c.lock);
1621
1622 path1 = get_unlocked_mut_path(trans, btree_id: as->btree_id, level: n1->c.level, pos: n1->key.k.p);
1623 six_lock_increment(&n1->c.lock, SIX_LOCK_intent);
1624 mark_btree_node_locked(trans, path: trans->paths + path1, level: n1->c.level, type: BTREE_NODE_INTENT_LOCKED);
1625 bch2_btree_path_level_init(trans, trans->paths + path1, n1);
1626
1627 path2 = get_unlocked_mut_path(trans, btree_id: as->btree_id, level: n2->c.level, pos: n2->key.k.p);
1628 six_lock_increment(&n2->c.lock, SIX_LOCK_intent);
1629 mark_btree_node_locked(trans, path: trans->paths + path2, level: n2->c.level, type: BTREE_NODE_INTENT_LOCKED);
1630 bch2_btree_path_level_init(trans, trans->paths + path2, n2);
1631
1632 /*
1633 * Note that on recursive parent_keys == keys, so we
1634 * can't start adding new keys to parent_keys before emptying it
1635 * out (which we did with btree_split_insert_keys() above)
1636 */
1637 bch2_keylist_add(l: &as->parent_keys, k: &n1->key);
1638 bch2_keylist_add(l: &as->parent_keys, k: &n2->key);
1639
1640 if (!parent) {
1641 /* Depth increases, make a new root */
1642 n3 = __btree_root_alloc(as, trans, level: b->c.level + 1);
1643
1644 bch2_btree_update_add_new_node(as, b: n3);
1645 six_unlock_write(lock: &n3->c.lock);
1646
1647 trans->paths[path2].locks_want++;
1648 BUG_ON(btree_node_locked(trans->paths + path2, n3->c.level));
1649 six_lock_increment(&n3->c.lock, SIX_LOCK_intent);
1650 mark_btree_node_locked(trans, path: trans->paths + path2, level: n3->c.level, type: BTREE_NODE_INTENT_LOCKED);
1651 bch2_btree_path_level_init(trans, trans->paths + path2, n3);
1652
1653 n3->sib_u64s[0] = U16_MAX;
1654 n3->sib_u64s[1] = U16_MAX;
1655
1656 btree_split_insert_keys(as, trans, path_idx: path, b: n3, keys: &as->parent_keys);
1657 }
1658 } else {
1659 trace_and_count(c, btree_node_compact, trans, b);
1660
1661 n1 = bch2_btree_node_alloc_replacement(as, trans, b);
1662
1663 if (keys) {
1664 btree_split_insert_keys(as, trans, path_idx: path, b: n1, keys);
1665 BUG_ON(!bch2_keylist_empty(keys));
1666 }
1667
1668 bch2_btree_build_aux_trees(n1);
1669 bch2_btree_update_add_new_node(as, b: n1);
1670 six_unlock_write(lock: &n1->c.lock);
1671
1672 path1 = get_unlocked_mut_path(trans, btree_id: as->btree_id, level: n1->c.level, pos: n1->key.k.p);
1673 six_lock_increment(&n1->c.lock, SIX_LOCK_intent);
1674 mark_btree_node_locked(trans, path: trans->paths + path1, level: n1->c.level, type: BTREE_NODE_INTENT_LOCKED);
1675 bch2_btree_path_level_init(trans, trans->paths + path1, n1);
1676
1677 if (parent)
1678 bch2_keylist_add(l: &as->parent_keys, k: &n1->key);
1679 }
1680
1681 /* New nodes all written, now make them visible: */
1682
1683 if (parent) {
1684 /* Split a non root node */
1685 ret = bch2_btree_insert_node(as, trans, path, parent, &as->parent_keys);
1686 } else if (n3) {
1687 ret = bch2_btree_set_root(as, trans, path: trans->paths + path, b: n3, nofail: false);
1688 } else {
1689 /* Root filled up but didn't need to be split */
1690 ret = bch2_btree_set_root(as, trans, path: trans->paths + path, b: n1, nofail: false);
1691 }
1692
1693 if (ret)
1694 goto err;
1695
1696 if (n3) {
1697 bch2_btree_update_get_open_buckets(as, b: n3);
1698 bch2_btree_node_write(c, n3, SIX_LOCK_intent, 0);
1699 }
1700 if (n2) {
1701 bch2_btree_update_get_open_buckets(as, b: n2);
1702 bch2_btree_node_write(c, n2, SIX_LOCK_intent, 0);
1703 }
1704 bch2_btree_update_get_open_buckets(as, b: n1);
1705 bch2_btree_node_write(c, n1, SIX_LOCK_intent, 0);
1706
1707 /*
1708 * The old node must be freed (in memory) _before_ unlocking the new
1709 * nodes - else another thread could re-acquire a read lock on the old
1710 * node after another thread has locked and updated the new node, thus
1711 * seeing stale data:
1712 */
1713 bch2_btree_node_free_inmem(trans, path: trans->paths + path, b);
1714
1715 if (n3)
1716 bch2_trans_node_add(trans, trans->paths + path, n3);
1717 if (n2)
1718 bch2_trans_node_add(trans, trans->paths + path2, n2);
1719 bch2_trans_node_add(trans, trans->paths + path1, n1);
1720
1721 if (n3)
1722 six_unlock_intent(lock: &n3->c.lock);
1723 if (n2)
1724 six_unlock_intent(lock: &n2->c.lock);
1725 six_unlock_intent(lock: &n1->c.lock);
1726out:
1727 if (path2) {
1728 __bch2_btree_path_unlock(trans, path: trans->paths + path2);
1729 bch2_path_put(trans, path2, true);
1730 }
1731 if (path1) {
1732 __bch2_btree_path_unlock(trans, path: trans->paths + path1);
1733 bch2_path_put(trans, path1, true);
1734 }
1735
1736 bch2_trans_verify_locks(trans);
1737
1738 bch2_time_stats_update(stats: &c->times[n2
1739 ? BCH_TIME_btree_node_split
1740 : BCH_TIME_btree_node_compact],
1741 start: start_time);
1742 return ret;
1743err:
1744 if (n3)
1745 bch2_btree_node_free_never_used(as, trans, b: n3);
1746 if (n2)
1747 bch2_btree_node_free_never_used(as, trans, b: n2);
1748 bch2_btree_node_free_never_used(as, trans, b: n1);
1749 goto out;
1750}
1751
1752/**
1753 * bch2_btree_insert_node - insert bkeys into a given btree node
1754 *
1755 * @as: btree_update object
1756 * @trans: btree_trans object
1757 * @path_idx: path that points to current node
1758 * @b: node to insert keys into
1759 * @keys: list of keys to insert
1760 *
1761 * Returns: 0 on success, typically transaction restart error on failure
1762 *
1763 * Inserts as many keys as it can into a given btree node, splitting it if full.
1764 * If a split occurred, this function will return early. This can only happen
1765 * for leaf nodes -- inserts into interior nodes have to be atomic.
1766 */
1767static int bch2_btree_insert_node(struct btree_update *as, struct btree_trans *trans,
1768 btree_path_idx_t path_idx, struct btree *b,
1769 struct keylist *keys)
1770{
1771 struct bch_fs *c = as->c;
1772 struct btree_path *path = trans->paths + path_idx, *linked;
1773 unsigned i;
1774 int old_u64s = le16_to_cpu(btree_bset_last(b)->u64s);
1775 int old_live_u64s = b->nr.live_u64s;
1776 int live_u64s_added, u64s_added;
1777 int ret;
1778
1779 lockdep_assert_held(&c->gc_lock);
1780 BUG_ON(!btree_node_intent_locked(path, b->c.level));
1781 BUG_ON(!b->c.level);
1782 BUG_ON(!as || as->b);
1783 bch2_verify_keylist_sorted(keys);
1784
1785 ret = bch2_btree_node_lock_write(trans, path, b: &b->c);
1786 if (ret)
1787 return ret;
1788
1789 bch2_btree_node_prep_for_write(trans, path, b);
1790
1791 if (!bch2_btree_node_insert_fits(b, u64s: bch2_keylist_u64s(l: keys))) {
1792 bch2_btree_node_unlock_write(trans, path, b);
1793 goto split;
1794 }
1795
1796 ret = bch2_btree_node_check_topology(trans, b);
1797 if (ret) {
1798 bch2_btree_node_unlock_write(trans, path, b);
1799 return ret;
1800 }
1801
1802 bch2_btree_insert_keys_interior(as, trans, path, b,
1803 node_iter: path->l[b->c.level].iter, keys);
1804
1805 trans_for_each_path_with_node(trans, b, linked, i)
1806 bch2_btree_node_iter_peek(iter: &linked->l[b->c.level].iter, b);
1807
1808 bch2_trans_verify_paths(trans);
1809
1810 live_u64s_added = (int) b->nr.live_u64s - old_live_u64s;
1811 u64s_added = (int) le16_to_cpu(btree_bset_last(b)->u64s) - old_u64s;
1812
1813 if (b->sib_u64s[0] != U16_MAX && live_u64s_added < 0)
1814 b->sib_u64s[0] = max(0, (int) b->sib_u64s[0] + live_u64s_added);
1815 if (b->sib_u64s[1] != U16_MAX && live_u64s_added < 0)
1816 b->sib_u64s[1] = max(0, (int) b->sib_u64s[1] + live_u64s_added);
1817
1818 if (u64s_added > live_u64s_added &&
1819 bch2_maybe_compact_whiteouts(c, b))
1820 bch2_trans_node_reinit_iter(trans, b);
1821
1822 btree_update_updated_node(as, b);
1823 bch2_btree_node_unlock_write(trans, path, b);
1824
1825 BUG_ON(bch2_btree_node_check_topology(trans, b));
1826 return 0;
1827split:
1828 /*
1829 * We could attempt to avoid the transaction restart, by calling
1830 * bch2_btree_path_upgrade() and allocating more nodes:
1831 */
1832 if (b->c.level >= as->update_level_end) {
1833 trace_and_count(c, trans_restart_split_race, trans, _THIS_IP_, b);
1834 return btree_trans_restart(trans, err: BCH_ERR_transaction_restart_split_race);
1835 }
1836
1837 return btree_split(as, trans, path: path_idx, b, keys);
1838}
1839
1840int bch2_btree_split_leaf(struct btree_trans *trans,
1841 btree_path_idx_t path,
1842 unsigned flags)
1843{
1844 /* btree_split & merge may both cause paths array to be reallocated */
1845 struct btree *b = path_l(path: trans->paths + path)->b;
1846 struct btree_update *as;
1847 unsigned l;
1848 int ret = 0;
1849
1850 as = bch2_btree_update_start(trans, path: trans->paths + path,
1851 level_start: trans->paths[path].level,
1852 split: true, flags);
1853 if (IS_ERR(ptr: as))
1854 return PTR_ERR(ptr: as);
1855
1856 ret = btree_split(as, trans, path, b, NULL);
1857 if (ret) {
1858 bch2_btree_update_free(as, trans);
1859 return ret;
1860 }
1861
1862 bch2_btree_update_done(as, trans);
1863
1864 for (l = trans->paths[path].level + 1;
1865 btree_node_intent_locked(path: &trans->paths[path], l) && !ret;
1866 l++)
1867 ret = bch2_foreground_maybe_merge(trans, path, level: l, flags);
1868
1869 return ret;
1870}
1871
1872static void __btree_increase_depth(struct btree_update *as, struct btree_trans *trans,
1873 btree_path_idx_t path_idx)
1874{
1875 struct bch_fs *c = as->c;
1876 struct btree_path *path = trans->paths + path_idx;
1877 struct btree *n, *b = bch2_btree_id_root(c, id: path->btree_id)->b;
1878
1879 BUG_ON(!btree_node_locked(path, b->c.level));
1880
1881 n = __btree_root_alloc(as, trans, level: b->c.level + 1);
1882
1883 bch2_btree_update_add_new_node(as, b: n);
1884 six_unlock_write(lock: &n->c.lock);
1885
1886 path->locks_want++;
1887 BUG_ON(btree_node_locked(path, n->c.level));
1888 six_lock_increment(&n->c.lock, SIX_LOCK_intent);
1889 mark_btree_node_locked(trans, path, level: n->c.level, type: BTREE_NODE_INTENT_LOCKED);
1890 bch2_btree_path_level_init(trans, path, n);
1891
1892 n->sib_u64s[0] = U16_MAX;
1893 n->sib_u64s[1] = U16_MAX;
1894
1895 bch2_keylist_add(l: &as->parent_keys, k: &b->key);
1896 btree_split_insert_keys(as, trans, path_idx, b: n, keys: &as->parent_keys);
1897
1898 int ret = bch2_btree_set_root(as, trans, path, b: n, nofail: true);
1899 BUG_ON(ret);
1900
1901 bch2_btree_update_get_open_buckets(as, b: n);
1902 bch2_btree_node_write(c, n, SIX_LOCK_intent, 0);
1903 bch2_trans_node_add(trans, path, n);
1904 six_unlock_intent(lock: &n->c.lock);
1905
1906 mutex_lock(&c->btree_cache.lock);
1907 list_add_tail(new: &b->list, head: &c->btree_cache.live);
1908 mutex_unlock(lock: &c->btree_cache.lock);
1909
1910 bch2_trans_verify_locks(trans);
1911}
1912
1913int bch2_btree_increase_depth(struct btree_trans *trans, btree_path_idx_t path, unsigned flags)
1914{
1915 struct bch_fs *c = trans->c;
1916 struct btree *b = bch2_btree_id_root(c, id: trans->paths[path].btree_id)->b;
1917
1918 if (btree_node_fake(b))
1919 return bch2_btree_split_leaf(trans, path, flags);
1920
1921 struct btree_update *as =
1922 bch2_btree_update_start(trans, path: trans->paths + path, level_start: b->c.level, split: true, flags);
1923 if (IS_ERR(ptr: as))
1924 return PTR_ERR(ptr: as);
1925
1926 __btree_increase_depth(as, trans, path_idx: path);
1927 bch2_btree_update_done(as, trans);
1928 return 0;
1929}
1930
1931int __bch2_foreground_maybe_merge(struct btree_trans *trans,
1932 btree_path_idx_t path,
1933 unsigned level,
1934 unsigned flags,
1935 enum btree_node_sibling sib)
1936{
1937 struct bch_fs *c = trans->c;
1938 struct btree_update *as;
1939 struct bkey_format_state new_s;
1940 struct bkey_format new_f;
1941 struct bkey_i delete;
1942 struct btree *b, *m, *n, *prev, *next, *parent;
1943 struct bpos sib_pos;
1944 size_t sib_u64s;
1945 enum btree_id btree = trans->paths[path].btree_id;
1946 btree_path_idx_t sib_path = 0, new_path = 0;
1947 u64 start_time = local_clock();
1948 int ret = 0;
1949
1950 BUG_ON(!trans->paths[path].should_be_locked);
1951 BUG_ON(!btree_node_locked(&trans->paths[path], level));
1952
1953 /*
1954 * Work around a deadlock caused by the btree write buffer not doing
1955 * merges and leaving tons of merges for us to do - we really don't need
1956 * to be doing merges at all from the interior update path, and if the
1957 * interior update path is generating too many new interior updates we
1958 * deadlock:
1959 */
1960 if ((flags & BCH_WATERMARK_MASK) == BCH_WATERMARK_interior_updates)
1961 return 0;
1962
1963 if ((flags & BCH_WATERMARK_MASK) <= BCH_WATERMARK_reclaim) {
1964 flags &= ~BCH_WATERMARK_MASK;
1965 flags |= BCH_WATERMARK_btree;
1966 flags |= BCH_TRANS_COMMIT_journal_reclaim;
1967 }
1968
1969 b = trans->paths[path].l[level].b;
1970
1971 if ((sib == btree_prev_sib && bpos_eq(l: b->data->min_key, POS_MIN)) ||
1972 (sib == btree_next_sib && bpos_eq(l: b->data->max_key, SPOS_MAX))) {
1973 b->sib_u64s[sib] = U16_MAX;
1974 return 0;
1975 }
1976
1977 sib_pos = sib == btree_prev_sib
1978 ? bpos_predecessor(p: b->data->min_key)
1979 : bpos_successor(p: b->data->max_key);
1980
1981 sib_path = bch2_path_get(trans, btree, sib_pos,
1982 U8_MAX, level, BTREE_ITER_INTENT, _THIS_IP_);
1983 ret = bch2_btree_path_traverse(trans, path: sib_path, flags: false);
1984 if (ret)
1985 goto err;
1986
1987 btree_path_set_should_be_locked(path: trans->paths + sib_path);
1988
1989 m = trans->paths[sib_path].l[level].b;
1990
1991 if (btree_node_parent(path: trans->paths + path, b) !=
1992 btree_node_parent(path: trans->paths + sib_path, b: m)) {
1993 b->sib_u64s[sib] = U16_MAX;
1994 goto out;
1995 }
1996
1997 if (sib == btree_prev_sib) {
1998 prev = m;
1999 next = b;
2000 } else {
2001 prev = b;
2002 next = m;
2003 }
2004
2005 if (!bpos_eq(l: bpos_successor(p: prev->data->max_key), r: next->data->min_key)) {
2006 struct printbuf buf1 = PRINTBUF, buf2 = PRINTBUF;
2007
2008 bch2_bpos_to_text(&buf1, prev->data->max_key);
2009 bch2_bpos_to_text(&buf2, next->data->min_key);
2010 bch_err(c,
2011 "%s(): btree topology error:\n"
2012 " prev ends at %s\n"
2013 " next starts at %s",
2014 __func__, buf1.buf, buf2.buf);
2015 printbuf_exit(&buf1);
2016 printbuf_exit(&buf2);
2017 ret = bch2_topology_error(c);
2018 goto err;
2019 }
2020
2021 bch2_bkey_format_init(&new_s);
2022 bch2_bkey_format_add_pos(&new_s, prev->data->min_key);
2023 __bch2_btree_calc_format(s: &new_s, b: prev);
2024 __bch2_btree_calc_format(s: &new_s, b: next);
2025 bch2_bkey_format_add_pos(&new_s, next->data->max_key);
2026 new_f = bch2_bkey_format_done(&new_s);
2027
2028 sib_u64s = btree_node_u64s_with_format(nr: b->nr, old_f: &b->format, new_f: &new_f) +
2029 btree_node_u64s_with_format(nr: m->nr, old_f: &m->format, new_f: &new_f);
2030
2031 if (sib_u64s > BTREE_FOREGROUND_MERGE_HYSTERESIS(c)) {
2032 sib_u64s -= BTREE_FOREGROUND_MERGE_HYSTERESIS(c);
2033 sib_u64s /= 2;
2034 sib_u64s += BTREE_FOREGROUND_MERGE_HYSTERESIS(c);
2035 }
2036
2037 sib_u64s = min(sib_u64s, btree_max_u64s(c));
2038 sib_u64s = min(sib_u64s, (size_t) U16_MAX - 1);
2039 b->sib_u64s[sib] = sib_u64s;
2040
2041 if (b->sib_u64s[sib] > c->btree_foreground_merge_threshold)
2042 goto out;
2043
2044 parent = btree_node_parent(path: trans->paths + path, b);
2045 as = bch2_btree_update_start(trans, path: trans->paths + path, level_start: level, split: false,
2046 flags: BCH_TRANS_COMMIT_no_enospc|flags);
2047 ret = PTR_ERR_OR_ZERO(ptr: as);
2048 if (ret)
2049 goto err;
2050
2051 trace_and_count(c, btree_node_merge, trans, b);
2052
2053 bch2_btree_interior_update_will_free_node(as, b);
2054 bch2_btree_interior_update_will_free_node(as, b: m);
2055
2056 n = bch2_btree_node_alloc(as, trans, level: b->c.level);
2057
2058 SET_BTREE_NODE_SEQ(k: n->data,
2059 max(BTREE_NODE_SEQ(b->data),
2060 BTREE_NODE_SEQ(m->data)) + 1);
2061
2062 btree_set_min(b: n, pos: prev->data->min_key);
2063 btree_set_max(b: n, pos: next->data->max_key);
2064
2065 n->data->format = new_f;
2066 btree_node_set_format(b: n, f: new_f);
2067
2068 bch2_btree_sort_into(c, n, prev);
2069 bch2_btree_sort_into(c, n, next);
2070
2071 bch2_btree_build_aux_trees(n);
2072 bch2_btree_update_add_new_node(as, b: n);
2073 six_unlock_write(lock: &n->c.lock);
2074
2075 new_path = get_unlocked_mut_path(trans, btree_id: btree, level: n->c.level, pos: n->key.k.p);
2076 six_lock_increment(&n->c.lock, SIX_LOCK_intent);
2077 mark_btree_node_locked(trans, path: trans->paths + new_path, level: n->c.level, type: BTREE_NODE_INTENT_LOCKED);
2078 bch2_btree_path_level_init(trans, trans->paths + new_path, n);
2079
2080 bkey_init(k: &delete.k);
2081 delete.k.p = prev->key.k.p;
2082 bch2_keylist_add(l: &as->parent_keys, k: &delete);
2083 bch2_keylist_add(l: &as->parent_keys, k: &n->key);
2084
2085 bch2_trans_verify_paths(trans);
2086
2087 ret = bch2_btree_insert_node(as, trans, path_idx: path, b: parent, keys: &as->parent_keys);
2088 if (ret)
2089 goto err_free_update;
2090
2091 bch2_trans_verify_paths(trans);
2092
2093 bch2_btree_update_get_open_buckets(as, b: n);
2094 bch2_btree_node_write(c, n, SIX_LOCK_intent, 0);
2095
2096 bch2_btree_node_free_inmem(trans, path: trans->paths + path, b);
2097 bch2_btree_node_free_inmem(trans, path: trans->paths + sib_path, b: m);
2098
2099 bch2_trans_node_add(trans, trans->paths + path, n);
2100
2101 bch2_trans_verify_paths(trans);
2102
2103 six_unlock_intent(lock: &n->c.lock);
2104
2105 bch2_btree_update_done(as, trans);
2106
2107 bch2_time_stats_update(stats: &c->times[BCH_TIME_btree_node_merge], start: start_time);
2108out:
2109err:
2110 if (new_path)
2111 bch2_path_put(trans, new_path, true);
2112 bch2_path_put(trans, sib_path, true);
2113 bch2_trans_verify_locks(trans);
2114 if (ret == -BCH_ERR_journal_reclaim_would_deadlock)
2115 ret = 0;
2116 if (!ret)
2117 ret = bch2_trans_relock(trans);
2118 return ret;
2119err_free_update:
2120 bch2_btree_node_free_never_used(as, trans, b: n);
2121 bch2_btree_update_free(as, trans);
2122 goto out;
2123}
2124
2125int bch2_btree_node_rewrite(struct btree_trans *trans,
2126 struct btree_iter *iter,
2127 struct btree *b,
2128 unsigned flags)
2129{
2130 struct bch_fs *c = trans->c;
2131 struct btree *n, *parent;
2132 struct btree_update *as;
2133 btree_path_idx_t new_path = 0;
2134 int ret;
2135
2136 flags |= BCH_TRANS_COMMIT_no_enospc;
2137
2138 struct btree_path *path = btree_iter_path(trans, iter);
2139 parent = btree_node_parent(path, b);
2140 as = bch2_btree_update_start(trans, path, level_start: b->c.level, split: false, flags);
2141 ret = PTR_ERR_OR_ZERO(ptr: as);
2142 if (ret)
2143 goto out;
2144
2145 bch2_btree_interior_update_will_free_node(as, b);
2146
2147 n = bch2_btree_node_alloc_replacement(as, trans, b);
2148
2149 bch2_btree_build_aux_trees(n);
2150 bch2_btree_update_add_new_node(as, b: n);
2151 six_unlock_write(lock: &n->c.lock);
2152
2153 new_path = get_unlocked_mut_path(trans, btree_id: iter->btree_id, level: n->c.level, pos: n->key.k.p);
2154 six_lock_increment(&n->c.lock, SIX_LOCK_intent);
2155 mark_btree_node_locked(trans, path: trans->paths + new_path, level: n->c.level, type: BTREE_NODE_INTENT_LOCKED);
2156 bch2_btree_path_level_init(trans, trans->paths + new_path, n);
2157
2158 trace_and_count(c, btree_node_rewrite, trans, b);
2159
2160 if (parent) {
2161 bch2_keylist_add(l: &as->parent_keys, k: &n->key);
2162 ret = bch2_btree_insert_node(as, trans, path_idx: iter->path, b: parent, keys: &as->parent_keys);
2163 } else {
2164 ret = bch2_btree_set_root(as, trans, path: btree_iter_path(trans, iter), b: n, nofail: false);
2165 }
2166
2167 if (ret)
2168 goto err;
2169
2170 bch2_btree_update_get_open_buckets(as, b: n);
2171 bch2_btree_node_write(c, n, SIX_LOCK_intent, 0);
2172
2173 bch2_btree_node_free_inmem(trans, path: btree_iter_path(trans, iter), b);
2174
2175 bch2_trans_node_add(trans, trans->paths + iter->path, n);
2176 six_unlock_intent(lock: &n->c.lock);
2177
2178 bch2_btree_update_done(as, trans);
2179out:
2180 if (new_path)
2181 bch2_path_put(trans, new_path, true);
2182 bch2_trans_downgrade(trans);
2183 return ret;
2184err:
2185 bch2_btree_node_free_never_used(as, trans, b: n);
2186 bch2_btree_update_free(as, trans);
2187 goto out;
2188}
2189
2190struct async_btree_rewrite {
2191 struct bch_fs *c;
2192 struct work_struct work;
2193 struct list_head list;
2194 enum btree_id btree_id;
2195 unsigned level;
2196 struct bpos pos;
2197 __le64 seq;
2198};
2199
2200static int async_btree_node_rewrite_trans(struct btree_trans *trans,
2201 struct async_btree_rewrite *a)
2202{
2203 struct bch_fs *c = trans->c;
2204 struct btree_iter iter;
2205 struct btree *b;
2206 int ret;
2207
2208 bch2_trans_node_iter_init(trans, &iter, a->btree_id, a->pos,
2209 BTREE_MAX_DEPTH, a->level, 0);
2210 b = bch2_btree_iter_peek_node(&iter);
2211 ret = PTR_ERR_OR_ZERO(ptr: b);
2212 if (ret)
2213 goto out;
2214
2215 if (!b || b->data->keys.seq != a->seq) {
2216 struct printbuf buf = PRINTBUF;
2217
2218 if (b)
2219 bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(k: &b->key));
2220 else
2221 prt_str(out: &buf, str: "(null");
2222 bch_info(c, "%s: node to rewrite not found:, searching for seq %llu, got\n%s",
2223 __func__, a->seq, buf.buf);
2224 printbuf_exit(&buf);
2225 goto out;
2226 }
2227
2228 ret = bch2_btree_node_rewrite(trans, iter: &iter, b, flags: 0);
2229out:
2230 bch2_trans_iter_exit(trans, &iter);
2231
2232 return ret;
2233}
2234
2235static void async_btree_node_rewrite_work(struct work_struct *work)
2236{
2237 struct async_btree_rewrite *a =
2238 container_of(work, struct async_btree_rewrite, work);
2239 struct bch_fs *c = a->c;
2240 int ret;
2241
2242 ret = bch2_trans_do(c, NULL, NULL, 0,
2243 async_btree_node_rewrite_trans(trans, a));
2244 bch_err_fn_ratelimited(c, ret);
2245 bch2_write_ref_put(c, ref: BCH_WRITE_REF_node_rewrite);
2246 kfree(objp: a);
2247}
2248
2249void bch2_btree_node_rewrite_async(struct bch_fs *c, struct btree *b)
2250{
2251 struct async_btree_rewrite *a;
2252 int ret;
2253
2254 a = kmalloc(size: sizeof(*a), GFP_NOFS);
2255 if (!a) {
2256 bch_err(c, "%s: error allocating memory", __func__);
2257 return;
2258 }
2259
2260 a->c = c;
2261 a->btree_id = b->c.btree_id;
2262 a->level = b->c.level;
2263 a->pos = b->key.k.p;
2264 a->seq = b->data->keys.seq;
2265 INIT_WORK(&a->work, async_btree_node_rewrite_work);
2266
2267 if (unlikely(!test_bit(BCH_FS_may_go_rw, &c->flags))) {
2268 mutex_lock(&c->pending_node_rewrites_lock);
2269 list_add(new: &a->list, head: &c->pending_node_rewrites);
2270 mutex_unlock(lock: &c->pending_node_rewrites_lock);
2271 return;
2272 }
2273
2274 if (!bch2_write_ref_tryget(c, ref: BCH_WRITE_REF_node_rewrite)) {
2275 if (test_bit(BCH_FS_started, &c->flags)) {
2276 bch_err(c, "%s: error getting c->writes ref", __func__);
2277 kfree(objp: a);
2278 return;
2279 }
2280
2281 ret = bch2_fs_read_write_early(c);
2282 bch_err_msg(c, ret, "going read-write");
2283 if (ret) {
2284 kfree(objp: a);
2285 return;
2286 }
2287
2288 bch2_write_ref_get(c, ref: BCH_WRITE_REF_node_rewrite);
2289 }
2290
2291 queue_work(wq: c->btree_node_rewrite_worker, work: &a->work);
2292}
2293
2294void bch2_do_pending_node_rewrites(struct bch_fs *c)
2295{
2296 struct async_btree_rewrite *a, *n;
2297
2298 mutex_lock(&c->pending_node_rewrites_lock);
2299 list_for_each_entry_safe(a, n, &c->pending_node_rewrites, list) {
2300 list_del(entry: &a->list);
2301
2302 bch2_write_ref_get(c, ref: BCH_WRITE_REF_node_rewrite);
2303 queue_work(wq: c->btree_node_rewrite_worker, work: &a->work);
2304 }
2305 mutex_unlock(lock: &c->pending_node_rewrites_lock);
2306}
2307
2308void bch2_free_pending_node_rewrites(struct bch_fs *c)
2309{
2310 struct async_btree_rewrite *a, *n;
2311
2312 mutex_lock(&c->pending_node_rewrites_lock);
2313 list_for_each_entry_safe(a, n, &c->pending_node_rewrites, list) {
2314 list_del(entry: &a->list);
2315
2316 kfree(objp: a);
2317 }
2318 mutex_unlock(lock: &c->pending_node_rewrites_lock);
2319}
2320
2321static int __bch2_btree_node_update_key(struct btree_trans *trans,
2322 struct btree_iter *iter,
2323 struct btree *b, struct btree *new_hash,
2324 struct bkey_i *new_key,
2325 unsigned commit_flags,
2326 bool skip_triggers)
2327{
2328 struct bch_fs *c = trans->c;
2329 struct btree_iter iter2 = { NULL };
2330 struct btree *parent;
2331 int ret;
2332
2333 if (!skip_triggers) {
2334 ret = bch2_key_trigger_old(trans, btree_id: b->c.btree_id, level: b->c.level + 1,
2335 old: bkey_i_to_s_c(k: &b->key),
2336 BTREE_TRIGGER_TRANSACTIONAL) ?:
2337 bch2_key_trigger_new(trans, btree_id: b->c.btree_id, level: b->c.level + 1,
2338 new: bkey_i_to_s(k: new_key),
2339 BTREE_TRIGGER_TRANSACTIONAL);
2340 if (ret)
2341 return ret;
2342 }
2343
2344 if (new_hash) {
2345 bkey_copy(dst: &new_hash->key, src: new_key);
2346 ret = bch2_btree_node_hash_insert(&c->btree_cache,
2347 new_hash, b->c.level, b->c.btree_id);
2348 BUG_ON(ret);
2349 }
2350
2351 parent = btree_node_parent(path: btree_iter_path(trans, iter), b);
2352 if (parent) {
2353 bch2_trans_copy_iter(&iter2, iter);
2354
2355 iter2.path = bch2_btree_path_make_mut(trans, path: iter2.path,
2356 intent: iter2.flags & BTREE_ITER_INTENT,
2357 _THIS_IP_);
2358
2359 struct btree_path *path2 = btree_iter_path(trans, iter: &iter2);
2360 BUG_ON(path2->level != b->c.level);
2361 BUG_ON(!bpos_eq(path2->pos, new_key->k.p));
2362
2363 btree_path_set_level_up(trans, path: path2);
2364
2365 trans->paths_sorted = false;
2366
2367 ret = bch2_btree_iter_traverse(&iter2) ?:
2368 bch2_trans_update(trans, &iter2, new_key, BTREE_TRIGGER_NORUN);
2369 if (ret)
2370 goto err;
2371 } else {
2372 BUG_ON(btree_node_root(c, b) != b);
2373
2374 struct jset_entry *e = bch2_trans_jset_entry_alloc(trans,
2375 u64s: jset_u64s(u64s: new_key->k.u64s));
2376 ret = PTR_ERR_OR_ZERO(ptr: e);
2377 if (ret)
2378 return ret;
2379
2380 journal_entry_set(entry: e,
2381 type: BCH_JSET_ENTRY_btree_root,
2382 id: b->c.btree_id, level: b->c.level,
2383 data: new_key, u64s: new_key->k.u64s);
2384 }
2385
2386 ret = bch2_trans_commit(trans, NULL, NULL, flags: commit_flags);
2387 if (ret)
2388 goto err;
2389
2390 bch2_btree_node_lock_write_nofail(trans, btree_iter_path(trans, iter), &b->c);
2391
2392 if (new_hash) {
2393 mutex_lock(&c->btree_cache.lock);
2394 bch2_btree_node_hash_remove(&c->btree_cache, new_hash);
2395 bch2_btree_node_hash_remove(&c->btree_cache, b);
2396
2397 bkey_copy(dst: &b->key, src: new_key);
2398 ret = __bch2_btree_node_hash_insert(&c->btree_cache, b);
2399 BUG_ON(ret);
2400 mutex_unlock(lock: &c->btree_cache.lock);
2401 } else {
2402 bkey_copy(dst: &b->key, src: new_key);
2403 }
2404
2405 bch2_btree_node_unlock_write(trans, btree_iter_path(trans, iter), b);
2406out:
2407 bch2_trans_iter_exit(trans, &iter2);
2408 return ret;
2409err:
2410 if (new_hash) {
2411 mutex_lock(&c->btree_cache.lock);
2412 bch2_btree_node_hash_remove(&c->btree_cache, b);
2413 mutex_unlock(lock: &c->btree_cache.lock);
2414 }
2415 goto out;
2416}
2417
2418int bch2_btree_node_update_key(struct btree_trans *trans, struct btree_iter *iter,
2419 struct btree *b, struct bkey_i *new_key,
2420 unsigned commit_flags, bool skip_triggers)
2421{
2422 struct bch_fs *c = trans->c;
2423 struct btree *new_hash = NULL;
2424 struct btree_path *path = btree_iter_path(trans, iter);
2425 struct closure cl;
2426 int ret = 0;
2427
2428 ret = bch2_btree_path_upgrade(trans, path, new_locks_want: b->c.level + 1);
2429 if (ret)
2430 return ret;
2431
2432 closure_init_stack(cl: &cl);
2433
2434 /*
2435 * check btree_ptr_hash_val() after @b is locked by
2436 * btree_iter_traverse():
2437 */
2438 if (btree_ptr_hash_val(k: new_key) != b->hash_val) {
2439 ret = bch2_btree_cache_cannibalize_lock(trans, &cl);
2440 if (ret) {
2441 ret = drop_locks_do(trans, (closure_sync(&cl), 0));
2442 if (ret)
2443 return ret;
2444 }
2445
2446 new_hash = bch2_btree_node_mem_alloc(trans, false);
2447 }
2448
2449 path->intent_ref++;
2450 ret = __bch2_btree_node_update_key(trans, iter, b, new_hash, new_key,
2451 commit_flags, skip_triggers);
2452 --path->intent_ref;
2453
2454 if (new_hash) {
2455 mutex_lock(&c->btree_cache.lock);
2456 list_move(list: &new_hash->list, head: &c->btree_cache.freeable);
2457 mutex_unlock(lock: &c->btree_cache.lock);
2458
2459 six_unlock_write(lock: &new_hash->c.lock);
2460 six_unlock_intent(lock: &new_hash->c.lock);
2461 }
2462 closure_sync(cl: &cl);
2463 bch2_btree_cache_cannibalize_unlock(trans);
2464 return ret;
2465}
2466
2467int bch2_btree_node_update_key_get_iter(struct btree_trans *trans,
2468 struct btree *b, struct bkey_i *new_key,
2469 unsigned commit_flags, bool skip_triggers)
2470{
2471 struct btree_iter iter;
2472 int ret;
2473
2474 bch2_trans_node_iter_init(trans, &iter, b->c.btree_id, b->key.k.p,
2475 BTREE_MAX_DEPTH, b->c.level,
2476 BTREE_ITER_INTENT);
2477 ret = bch2_btree_iter_traverse(&iter);
2478 if (ret)
2479 goto out;
2480
2481 /* has node been freed? */
2482 if (btree_iter_path(trans, iter: &iter)->l[b->c.level].b != b) {
2483 /* node has been freed: */
2484 BUG_ON(!btree_node_dying(b));
2485 goto out;
2486 }
2487
2488 BUG_ON(!btree_node_hashed(b));
2489
2490 struct bch_extent_ptr *ptr;
2491 bch2_bkey_drop_ptrs(bkey_i_to_s(new_key), ptr,
2492 !bch2_bkey_has_device(bkey_i_to_s(&b->key), ptr->dev));
2493
2494 ret = bch2_btree_node_update_key(trans, iter: &iter, b, new_key,
2495 commit_flags, skip_triggers);
2496out:
2497 bch2_trans_iter_exit(trans, &iter);
2498 return ret;
2499}
2500
2501/* Init code: */
2502
2503/*
2504 * Only for filesystem bringup, when first reading the btree roots or allocating
2505 * btree roots when initializing a new filesystem:
2506 */
2507void bch2_btree_set_root_for_read(struct bch_fs *c, struct btree *b)
2508{
2509 BUG_ON(btree_node_root(c, b));
2510
2511 bch2_btree_set_root_inmem(c, b);
2512}
2513
2514static int __bch2_btree_root_alloc_fake(struct btree_trans *trans, enum btree_id id, unsigned level)
2515{
2516 struct bch_fs *c = trans->c;
2517 struct closure cl;
2518 struct btree *b;
2519 int ret;
2520
2521 closure_init_stack(cl: &cl);
2522
2523 do {
2524 ret = bch2_btree_cache_cannibalize_lock(trans, &cl);
2525 closure_sync(cl: &cl);
2526 } while (ret);
2527
2528 b = bch2_btree_node_mem_alloc(trans, false);
2529 bch2_btree_cache_cannibalize_unlock(trans);
2530
2531 set_btree_node_fake(b);
2532 set_btree_node_need_rewrite(b);
2533 b->c.level = level;
2534 b->c.btree_id = id;
2535
2536 bkey_btree_ptr_init(k: &b->key);
2537 b->key.k.p = SPOS_MAX;
2538 *((u64 *) bkey_i_to_btree_ptr(k: &b->key)->v.start) = U64_MAX - id;
2539
2540 bch2_bset_init_first(b, &b->data->keys);
2541 bch2_btree_build_aux_trees(b);
2542
2543 b->data->flags = 0;
2544 btree_set_min(b, POS_MIN);
2545 btree_set_max(b, SPOS_MAX);
2546 b->data->format = bch2_btree_calc_format(b);
2547 btree_node_set_format(b, f: b->data->format);
2548
2549 ret = bch2_btree_node_hash_insert(&c->btree_cache, b,
2550 b->c.level, b->c.btree_id);
2551 BUG_ON(ret);
2552
2553 bch2_btree_set_root_inmem(c, b);
2554
2555 six_unlock_write(lock: &b->c.lock);
2556 six_unlock_intent(lock: &b->c.lock);
2557 return 0;
2558}
2559
2560void bch2_btree_root_alloc_fake(struct bch_fs *c, enum btree_id id, unsigned level)
2561{
2562 bch2_trans_run(c, __bch2_btree_root_alloc_fake(trans, id, level));
2563}
2564
2565static void bch2_btree_update_to_text(struct printbuf *out, struct btree_update *as)
2566{
2567 prt_printf(out, "%ps: btree=%s l=%u-%u watermark=%s mode=%s nodes_written=%u cl.remaining=%u journal_seq=%llu\n",
2568 (void *) as->ip_started,
2569 bch2_btree_id_str(as->btree_id),
2570 as->update_level_start,
2571 as->update_level_end,
2572 bch2_watermarks[as->watermark],
2573 bch2_btree_update_modes[as->mode],
2574 as->nodes_written,
2575 closure_nr_remaining(&as->cl),
2576 as->journal.seq);
2577}
2578
2579void bch2_btree_updates_to_text(struct printbuf *out, struct bch_fs *c)
2580{
2581 struct btree_update *as;
2582
2583 mutex_lock(&c->btree_interior_update_lock);
2584 list_for_each_entry(as, &c->btree_interior_update_list, list)
2585 bch2_btree_update_to_text(out, as);
2586 mutex_unlock(lock: &c->btree_interior_update_lock);
2587}
2588
2589static bool bch2_btree_interior_updates_pending(struct bch_fs *c)
2590{
2591 bool ret;
2592
2593 mutex_lock(&c->btree_interior_update_lock);
2594 ret = !list_empty(head: &c->btree_interior_update_list);
2595 mutex_unlock(lock: &c->btree_interior_update_lock);
2596
2597 return ret;
2598}
2599
2600bool bch2_btree_interior_updates_flush(struct bch_fs *c)
2601{
2602 bool ret = bch2_btree_interior_updates_pending(c);
2603
2604 if (ret)
2605 closure_wait_event(&c->btree_interior_update_wait,
2606 !bch2_btree_interior_updates_pending(c));
2607 return ret;
2608}
2609
2610void bch2_journal_entry_to_btree_root(struct bch_fs *c, struct jset_entry *entry)
2611{
2612 struct btree_root *r = bch2_btree_id_root(c, id: entry->btree_id);
2613
2614 mutex_lock(&c->btree_root_lock);
2615
2616 r->level = entry->level;
2617 r->alive = true;
2618 bkey_copy(dst: &r->key, src: (struct bkey_i *) entry->start);
2619
2620 mutex_unlock(lock: &c->btree_root_lock);
2621}
2622
2623struct jset_entry *
2624bch2_btree_roots_to_journal_entries(struct bch_fs *c,
2625 struct jset_entry *end,
2626 unsigned long skip)
2627{
2628 unsigned i;
2629
2630 mutex_lock(&c->btree_root_lock);
2631
2632 for (i = 0; i < btree_id_nr_alive(c); i++) {
2633 struct btree_root *r = bch2_btree_id_root(c, id: i);
2634
2635 if (r->alive && !test_bit(i, &skip)) {
2636 journal_entry_set(entry: end, type: BCH_JSET_ENTRY_btree_root,
2637 id: i, level: r->level, data: &r->key, u64s: r->key.k.u64s);
2638 end = vstruct_next(end);
2639 }
2640 }
2641
2642 mutex_unlock(lock: &c->btree_root_lock);
2643
2644 return end;
2645}
2646
2647void bch2_fs_btree_interior_update_exit(struct bch_fs *c)
2648{
2649 if (c->btree_node_rewrite_worker)
2650 destroy_workqueue(wq: c->btree_node_rewrite_worker);
2651 if (c->btree_interior_update_worker)
2652 destroy_workqueue(wq: c->btree_interior_update_worker);
2653 mempool_exit(pool: &c->btree_interior_update_pool);
2654}
2655
2656void bch2_fs_btree_interior_update_init_early(struct bch_fs *c)
2657{
2658 mutex_init(&c->btree_reserve_cache_lock);
2659 INIT_LIST_HEAD(list: &c->btree_interior_update_list);
2660 INIT_LIST_HEAD(list: &c->btree_interior_updates_unwritten);
2661 mutex_init(&c->btree_interior_update_lock);
2662 INIT_WORK(&c->btree_interior_update_work, btree_interior_update_work);
2663
2664 INIT_LIST_HEAD(list: &c->pending_node_rewrites);
2665 mutex_init(&c->pending_node_rewrites_lock);
2666}
2667
2668int bch2_fs_btree_interior_update_init(struct bch_fs *c)
2669{
2670 c->btree_interior_update_worker =
2671 alloc_workqueue(fmt: "btree_update", flags: WQ_UNBOUND|WQ_MEM_RECLAIM, max_active: 8);
2672 if (!c->btree_interior_update_worker)
2673 return -BCH_ERR_ENOMEM_btree_interior_update_worker_init;
2674
2675 c->btree_node_rewrite_worker =
2676 alloc_ordered_workqueue("btree_node_rewrite", WQ_UNBOUND);
2677 if (!c->btree_node_rewrite_worker)
2678 return -BCH_ERR_ENOMEM_btree_interior_update_worker_init;
2679
2680 if (mempool_init_kmalloc_pool(pool: &c->btree_interior_update_pool, min_nr: 1,
2681 size: sizeof(struct btree_update)))
2682 return -BCH_ERR_ENOMEM_btree_interior_update_pool_init;
2683
2684 return 0;
2685}
2686

source code of linux/fs/bcachefs/btree_update_interior.c