1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2010 Kent Overstreet <kent.overstreet@gmail.com>
4 *
5 * Code for managing the extent btree and dynamically updating the writeback
6 * dirty sector count.
7 */
8
9#include "bcachefs.h"
10#include "bkey_methods.h"
11#include "btree_cache.h"
12#include "btree_gc.h"
13#include "btree_io.h"
14#include "btree_iter.h"
15#include "buckets.h"
16#include "checksum.h"
17#include "compress.h"
18#include "debug.h"
19#include "disk_groups.h"
20#include "error.h"
21#include "extents.h"
22#include "inode.h"
23#include "journal.h"
24#include "replicas.h"
25#include "super.h"
26#include "super-io.h"
27#include "trace.h"
28#include "util.h"
29
30static unsigned bch2_crc_field_size_max[] = {
31 [BCH_EXTENT_ENTRY_crc32] = CRC32_SIZE_MAX,
32 [BCH_EXTENT_ENTRY_crc64] = CRC64_SIZE_MAX,
33 [BCH_EXTENT_ENTRY_crc128] = CRC128_SIZE_MAX,
34};
35
36static void bch2_extent_crc_pack(union bch_extent_crc *,
37 struct bch_extent_crc_unpacked,
38 enum bch_extent_entry_type);
39
40static struct bch_dev_io_failures *dev_io_failures(struct bch_io_failures *f,
41 unsigned dev)
42{
43 struct bch_dev_io_failures *i;
44
45 for (i = f->devs; i < f->devs + f->nr; i++)
46 if (i->dev == dev)
47 return i;
48
49 return NULL;
50}
51
52void bch2_mark_io_failure(struct bch_io_failures *failed,
53 struct extent_ptr_decoded *p)
54{
55 struct bch_dev_io_failures *f = dev_io_failures(f: failed, dev: p->ptr.dev);
56
57 if (!f) {
58 BUG_ON(failed->nr >= ARRAY_SIZE(failed->devs));
59
60 f = &failed->devs[failed->nr++];
61 f->dev = p->ptr.dev;
62 f->idx = p->idx;
63 f->nr_failed = 1;
64 f->nr_retries = 0;
65 } else if (p->idx != f->idx) {
66 f->idx = p->idx;
67 f->nr_failed = 1;
68 f->nr_retries = 0;
69 } else {
70 f->nr_failed++;
71 }
72}
73
74/*
75 * returns true if p1 is better than p2:
76 */
77static inline bool ptr_better(struct bch_fs *c,
78 const struct extent_ptr_decoded p1,
79 const struct extent_ptr_decoded p2)
80{
81 if (likely(!p1.idx && !p2.idx)) {
82 struct bch_dev *dev1 = bch_dev_bkey_exists(c, idx: p1.ptr.dev);
83 struct bch_dev *dev2 = bch_dev_bkey_exists(c, idx: p2.ptr.dev);
84
85 u64 l1 = atomic64_read(v: &dev1->cur_latency[READ]);
86 u64 l2 = atomic64_read(v: &dev2->cur_latency[READ]);
87
88 /* Pick at random, biased in favor of the faster device: */
89
90 return bch2_rand_range(l1 + l2) > l1;
91 }
92
93 if (bch2_force_reconstruct_read)
94 return p1.idx > p2.idx;
95
96 return p1.idx < p2.idx;
97}
98
99/*
100 * This picks a non-stale pointer, preferably from a device other than @avoid.
101 * Avoid can be NULL, meaning pick any. If there are no non-stale pointers to
102 * other devices, it will still pick a pointer from avoid.
103 */
104int bch2_bkey_pick_read_device(struct bch_fs *c, struct bkey_s_c k,
105 struct bch_io_failures *failed,
106 struct extent_ptr_decoded *pick)
107{
108 struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k);
109 const union bch_extent_entry *entry;
110 struct extent_ptr_decoded p;
111 struct bch_dev_io_failures *f;
112 struct bch_dev *ca;
113 int ret = 0;
114
115 if (k.k->type == KEY_TYPE_error)
116 return -EIO;
117
118 bkey_for_each_ptr_decode(k.k, ptrs, p, entry) {
119 /*
120 * Unwritten extent: no need to actually read, treat it as a
121 * hole and return 0s:
122 */
123 if (p.ptr.unwritten)
124 return 0;
125
126 ca = bch_dev_bkey_exists(c, idx: p.ptr.dev);
127
128 /*
129 * If there are any dirty pointers it's an error if we can't
130 * read:
131 */
132 if (!ret && !p.ptr.cached)
133 ret = -EIO;
134
135 if (p.ptr.cached && ptr_stale(ca, ptr: &p.ptr))
136 continue;
137
138 f = failed ? dev_io_failures(f: failed, dev: p.ptr.dev) : NULL;
139 if (f)
140 p.idx = f->nr_failed < f->nr_retries
141 ? f->idx
142 : f->idx + 1;
143
144 if (!p.idx &&
145 !bch2_dev_is_readable(ca))
146 p.idx++;
147
148 if (bch2_force_reconstruct_read &&
149 !p.idx && p.has_ec)
150 p.idx++;
151
152 if (p.idx >= (unsigned) p.has_ec + 1)
153 continue;
154
155 if (ret > 0 && !ptr_better(c, p1: p, p2: *pick))
156 continue;
157
158 *pick = p;
159 ret = 1;
160 }
161
162 return ret;
163}
164
165/* KEY_TYPE_btree_ptr: */
166
167int bch2_btree_ptr_invalid(struct bch_fs *c, struct bkey_s_c k,
168 enum bkey_invalid_flags flags,
169 struct printbuf *err)
170{
171 int ret = 0;
172
173 bkey_fsck_err_on(bkey_val_u64s(k.k) > BCH_REPLICAS_MAX, c, err,
174 btree_ptr_val_too_big,
175 "value too big (%zu > %u)", bkey_val_u64s(k.k), BCH_REPLICAS_MAX);
176
177 ret = bch2_bkey_ptrs_invalid(c, k, flags, err);
178fsck_err:
179 return ret;
180}
181
182void bch2_btree_ptr_to_text(struct printbuf *out, struct bch_fs *c,
183 struct bkey_s_c k)
184{
185 bch2_bkey_ptrs_to_text(out, c, k);
186}
187
188int bch2_btree_ptr_v2_invalid(struct bch_fs *c, struct bkey_s_c k,
189 enum bkey_invalid_flags flags,
190 struct printbuf *err)
191{
192 struct bkey_s_c_btree_ptr_v2 bp = bkey_s_c_to_btree_ptr_v2(k);
193 int ret = 0;
194
195 bkey_fsck_err_on(bkey_val_u64s(k.k) > BKEY_BTREE_PTR_VAL_U64s_MAX,
196 c, err, btree_ptr_v2_val_too_big,
197 "value too big (%zu > %zu)",
198 bkey_val_u64s(k.k), BKEY_BTREE_PTR_VAL_U64s_MAX);
199
200 bkey_fsck_err_on(bpos_ge(bp.v->min_key, bp.k->p),
201 c, err, btree_ptr_v2_min_key_bad,
202 "min_key > key");
203
204 ret = bch2_bkey_ptrs_invalid(c, k, flags, err);
205fsck_err:
206 return ret;
207}
208
209void bch2_btree_ptr_v2_to_text(struct printbuf *out, struct bch_fs *c,
210 struct bkey_s_c k)
211{
212 struct bkey_s_c_btree_ptr_v2 bp = bkey_s_c_to_btree_ptr_v2(k);
213
214 prt_printf(out, "seq %llx written %u min_key %s",
215 le64_to_cpu(bp.v->seq),
216 le16_to_cpu(bp.v->sectors_written),
217 BTREE_PTR_RANGE_UPDATED(bp.v) ? "R " : "");
218
219 bch2_bpos_to_text(out, bp.v->min_key);
220 prt_printf(out, " ");
221 bch2_bkey_ptrs_to_text(out, c, k);
222}
223
224void bch2_btree_ptr_v2_compat(enum btree_id btree_id, unsigned version,
225 unsigned big_endian, int write,
226 struct bkey_s k)
227{
228 struct bkey_s_btree_ptr_v2 bp = bkey_s_to_btree_ptr_v2(k);
229
230 compat_bpos(level: 0, btree_id, version, big_endian, write, p: &bp.v->min_key);
231
232 if (version < bcachefs_metadata_version_inode_btree_change &&
233 btree_id_is_extents(btree: btree_id) &&
234 !bkey_eq(l: bp.v->min_key, POS_MIN))
235 bp.v->min_key = write
236 ? bpos_nosnap_predecessor(p: bp.v->min_key)
237 : bpos_nosnap_successor(p: bp.v->min_key);
238}
239
240/* KEY_TYPE_extent: */
241
242bool bch2_extent_merge(struct bch_fs *c, struct bkey_s l, struct bkey_s_c r)
243{
244 struct bkey_ptrs l_ptrs = bch2_bkey_ptrs(k: l);
245 struct bkey_ptrs_c r_ptrs = bch2_bkey_ptrs_c(k: r);
246 union bch_extent_entry *en_l;
247 const union bch_extent_entry *en_r;
248 struct extent_ptr_decoded lp, rp;
249 bool use_right_ptr;
250 struct bch_dev *ca;
251
252 en_l = l_ptrs.start;
253 en_r = r_ptrs.start;
254 while (en_l < l_ptrs.end && en_r < r_ptrs.end) {
255 if (extent_entry_type(e: en_l) != extent_entry_type(e: en_r))
256 return false;
257
258 en_l = extent_entry_next(en_l);
259 en_r = extent_entry_next(en_r);
260 }
261
262 if (en_l < l_ptrs.end || en_r < r_ptrs.end)
263 return false;
264
265 en_l = l_ptrs.start;
266 en_r = r_ptrs.start;
267 lp.crc = bch2_extent_crc_unpack(k: l.k, NULL);
268 rp.crc = bch2_extent_crc_unpack(k: r.k, NULL);
269
270 while (__bkey_ptr_next_decode(l.k, l_ptrs.end, lp, en_l) &&
271 __bkey_ptr_next_decode(r.k, r_ptrs.end, rp, en_r)) {
272 if (lp.ptr.offset + lp.crc.offset + lp.crc.live_size !=
273 rp.ptr.offset + rp.crc.offset ||
274 lp.ptr.dev != rp.ptr.dev ||
275 lp.ptr.gen != rp.ptr.gen ||
276 lp.ptr.unwritten != rp.ptr.unwritten ||
277 lp.has_ec != rp.has_ec)
278 return false;
279
280 /* Extents may not straddle buckets: */
281 ca = bch_dev_bkey_exists(c, idx: lp.ptr.dev);
282 if (PTR_BUCKET_NR(ca, ptr: &lp.ptr) != PTR_BUCKET_NR(ca, ptr: &rp.ptr))
283 return false;
284
285 if (lp.has_ec != rp.has_ec ||
286 (lp.has_ec &&
287 (lp.ec.block != rp.ec.block ||
288 lp.ec.redundancy != rp.ec.redundancy ||
289 lp.ec.idx != rp.ec.idx)))
290 return false;
291
292 if (lp.crc.compression_type != rp.crc.compression_type ||
293 lp.crc.nonce != rp.crc.nonce)
294 return false;
295
296 if (lp.crc.offset + lp.crc.live_size + rp.crc.live_size <=
297 lp.crc.uncompressed_size) {
298 /* can use left extent's crc entry */
299 } else if (lp.crc.live_size <= rp.crc.offset) {
300 /* can use right extent's crc entry */
301 } else {
302 /* check if checksums can be merged: */
303 if (lp.crc.csum_type != rp.crc.csum_type ||
304 lp.crc.nonce != rp.crc.nonce ||
305 crc_is_compressed(crc: lp.crc) ||
306 !bch2_checksum_mergeable(type: lp.crc.csum_type))
307 return false;
308
309 if (lp.crc.offset + lp.crc.live_size != lp.crc.compressed_size ||
310 rp.crc.offset)
311 return false;
312
313 if (lp.crc.csum_type &&
314 lp.crc.uncompressed_size +
315 rp.crc.uncompressed_size > (c->opts.encoded_extent_max >> 9))
316 return false;
317 }
318
319 en_l = extent_entry_next(en_l);
320 en_r = extent_entry_next(en_r);
321 }
322
323 en_l = l_ptrs.start;
324 en_r = r_ptrs.start;
325 while (en_l < l_ptrs.end && en_r < r_ptrs.end) {
326 if (extent_entry_is_crc(e: en_l)) {
327 struct bch_extent_crc_unpacked crc_l = bch2_extent_crc_unpack(k: l.k, entry_to_crc(en_l));
328 struct bch_extent_crc_unpacked crc_r = bch2_extent_crc_unpack(k: r.k, entry_to_crc(en_r));
329
330 if (crc_l.uncompressed_size + crc_r.uncompressed_size >
331 bch2_crc_field_size_max[extent_entry_type(e: en_l)])
332 return false;
333 }
334
335 en_l = extent_entry_next(en_l);
336 en_r = extent_entry_next(en_r);
337 }
338
339 use_right_ptr = false;
340 en_l = l_ptrs.start;
341 en_r = r_ptrs.start;
342 while (en_l < l_ptrs.end) {
343 if (extent_entry_type(e: en_l) == BCH_EXTENT_ENTRY_ptr &&
344 use_right_ptr)
345 en_l->ptr = en_r->ptr;
346
347 if (extent_entry_is_crc(e: en_l)) {
348 struct bch_extent_crc_unpacked crc_l =
349 bch2_extent_crc_unpack(k: l.k, entry_to_crc(en_l));
350 struct bch_extent_crc_unpacked crc_r =
351 bch2_extent_crc_unpack(k: r.k, entry_to_crc(en_r));
352
353 use_right_ptr = false;
354
355 if (crc_l.offset + crc_l.live_size + crc_r.live_size <=
356 crc_l.uncompressed_size) {
357 /* can use left extent's crc entry */
358 } else if (crc_l.live_size <= crc_r.offset) {
359 /* can use right extent's crc entry */
360 crc_r.offset -= crc_l.live_size;
361 bch2_extent_crc_pack(entry_to_crc(en_l), crc_r,
362 extent_entry_type(e: en_l));
363 use_right_ptr = true;
364 } else {
365 crc_l.csum = bch2_checksum_merge(crc_l.csum_type,
366 crc_l.csum,
367 crc_r.csum,
368 crc_r.uncompressed_size << 9);
369
370 crc_l.uncompressed_size += crc_r.uncompressed_size;
371 crc_l.compressed_size += crc_r.compressed_size;
372 bch2_extent_crc_pack(entry_to_crc(en_l), crc_l,
373 extent_entry_type(e: en_l));
374 }
375 }
376
377 en_l = extent_entry_next(en_l);
378 en_r = extent_entry_next(en_r);
379 }
380
381 bch2_key_resize(k: l.k, new_size: l.k->size + r.k->size);
382 return true;
383}
384
385/* KEY_TYPE_reservation: */
386
387int bch2_reservation_invalid(struct bch_fs *c, struct bkey_s_c k,
388 enum bkey_invalid_flags flags,
389 struct printbuf *err)
390{
391 struct bkey_s_c_reservation r = bkey_s_c_to_reservation(k);
392 int ret = 0;
393
394 bkey_fsck_err_on(!r.v->nr_replicas || r.v->nr_replicas > BCH_REPLICAS_MAX, c, err,
395 reservation_key_nr_replicas_invalid,
396 "invalid nr_replicas (%u)", r.v->nr_replicas);
397fsck_err:
398 return ret;
399}
400
401void bch2_reservation_to_text(struct printbuf *out, struct bch_fs *c,
402 struct bkey_s_c k)
403{
404 struct bkey_s_c_reservation r = bkey_s_c_to_reservation(k);
405
406 prt_printf(out, "generation %u replicas %u",
407 le32_to_cpu(r.v->generation),
408 r.v->nr_replicas);
409}
410
411bool bch2_reservation_merge(struct bch_fs *c, struct bkey_s _l, struct bkey_s_c _r)
412{
413 struct bkey_s_reservation l = bkey_s_to_reservation(k: _l);
414 struct bkey_s_c_reservation r = bkey_s_c_to_reservation(k: _r);
415
416 if (l.v->generation != r.v->generation ||
417 l.v->nr_replicas != r.v->nr_replicas)
418 return false;
419
420 bch2_key_resize(k: l.k, new_size: l.k->size + r.k->size);
421 return true;
422}
423
424/* Extent checksum entries: */
425
426/* returns true if not equal */
427static inline bool bch2_crc_unpacked_cmp(struct bch_extent_crc_unpacked l,
428 struct bch_extent_crc_unpacked r)
429{
430 return (l.csum_type != r.csum_type ||
431 l.compression_type != r.compression_type ||
432 l.compressed_size != r.compressed_size ||
433 l.uncompressed_size != r.uncompressed_size ||
434 l.offset != r.offset ||
435 l.live_size != r.live_size ||
436 l.nonce != r.nonce ||
437 bch2_crc_cmp(l: l.csum, r: r.csum));
438}
439
440static inline bool can_narrow_crc(struct bch_extent_crc_unpacked u,
441 struct bch_extent_crc_unpacked n)
442{
443 return !crc_is_compressed(crc: u) &&
444 u.csum_type &&
445 u.uncompressed_size > u.live_size &&
446 bch2_csum_type_is_encryption(type: u.csum_type) ==
447 bch2_csum_type_is_encryption(type: n.csum_type);
448}
449
450bool bch2_can_narrow_extent_crcs(struct bkey_s_c k,
451 struct bch_extent_crc_unpacked n)
452{
453 struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k);
454 struct bch_extent_crc_unpacked crc;
455 const union bch_extent_entry *i;
456
457 if (!n.csum_type)
458 return false;
459
460 bkey_for_each_crc(k.k, ptrs, crc, i)
461 if (can_narrow_crc(u: crc, n))
462 return true;
463
464 return false;
465}
466
467/*
468 * We're writing another replica for this extent, so while we've got the data in
469 * memory we'll be computing a new checksum for the currently live data.
470 *
471 * If there are other replicas we aren't moving, and they are checksummed but
472 * not compressed, we can modify them to point to only the data that is
473 * currently live (so that readers won't have to bounce) while we've got the
474 * checksum we need:
475 */
476bool bch2_bkey_narrow_crcs(struct bkey_i *k, struct bch_extent_crc_unpacked n)
477{
478 struct bkey_ptrs ptrs = bch2_bkey_ptrs(k: bkey_i_to_s(k));
479 struct bch_extent_crc_unpacked u;
480 struct extent_ptr_decoded p;
481 union bch_extent_entry *i;
482 bool ret = false;
483
484 /* Find a checksum entry that covers only live data: */
485 if (!n.csum_type) {
486 bkey_for_each_crc(&k->k, ptrs, u, i)
487 if (!crc_is_compressed(crc: u) &&
488 u.csum_type &&
489 u.live_size == u.uncompressed_size) {
490 n = u;
491 goto found;
492 }
493 return false;
494 }
495found:
496 BUG_ON(crc_is_compressed(n));
497 BUG_ON(n.offset);
498 BUG_ON(n.live_size != k->k.size);
499
500restart_narrow_pointers:
501 ptrs = bch2_bkey_ptrs(k: bkey_i_to_s(k));
502
503 bkey_for_each_ptr_decode(&k->k, ptrs, p, i)
504 if (can_narrow_crc(u: p.crc, n)) {
505 bch2_bkey_drop_ptr_noerror(bkey_i_to_s(k), &i->ptr);
506 p.ptr.offset += p.crc.offset;
507 p.crc = n;
508 bch2_extent_ptr_decoded_append(k, &p);
509 ret = true;
510 goto restart_narrow_pointers;
511 }
512
513 return ret;
514}
515
516static void bch2_extent_crc_pack(union bch_extent_crc *dst,
517 struct bch_extent_crc_unpacked src,
518 enum bch_extent_entry_type type)
519{
520#define set_common_fields(_dst, _src) \
521 _dst.type = 1 << type; \
522 _dst.csum_type = _src.csum_type, \
523 _dst.compression_type = _src.compression_type, \
524 _dst._compressed_size = _src.compressed_size - 1, \
525 _dst._uncompressed_size = _src.uncompressed_size - 1, \
526 _dst.offset = _src.offset
527
528 switch (type) {
529 case BCH_EXTENT_ENTRY_crc32:
530 set_common_fields(dst->crc32, src);
531 dst->crc32.csum = (u32 __force) *((__le32 *) &src.csum.lo);
532 break;
533 case BCH_EXTENT_ENTRY_crc64:
534 set_common_fields(dst->crc64, src);
535 dst->crc64.nonce = src.nonce;
536 dst->crc64.csum_lo = (u64 __force) src.csum.lo;
537 dst->crc64.csum_hi = (u64 __force) *((__le16 *) &src.csum.hi);
538 break;
539 case BCH_EXTENT_ENTRY_crc128:
540 set_common_fields(dst->crc128, src);
541 dst->crc128.nonce = src.nonce;
542 dst->crc128.csum = src.csum;
543 break;
544 default:
545 BUG();
546 }
547#undef set_common_fields
548}
549
550void bch2_extent_crc_append(struct bkey_i *k,
551 struct bch_extent_crc_unpacked new)
552{
553 struct bkey_ptrs ptrs = bch2_bkey_ptrs(k: bkey_i_to_s(k));
554 union bch_extent_crc *crc = (void *) ptrs.end;
555 enum bch_extent_entry_type type;
556
557 if (bch_crc_bytes[new.csum_type] <= 4 &&
558 new.uncompressed_size <= CRC32_SIZE_MAX &&
559 new.nonce <= CRC32_NONCE_MAX)
560 type = BCH_EXTENT_ENTRY_crc32;
561 else if (bch_crc_bytes[new.csum_type] <= 10 &&
562 new.uncompressed_size <= CRC64_SIZE_MAX &&
563 new.nonce <= CRC64_NONCE_MAX)
564 type = BCH_EXTENT_ENTRY_crc64;
565 else if (bch_crc_bytes[new.csum_type] <= 16 &&
566 new.uncompressed_size <= CRC128_SIZE_MAX &&
567 new.nonce <= CRC128_NONCE_MAX)
568 type = BCH_EXTENT_ENTRY_crc128;
569 else
570 BUG();
571
572 bch2_extent_crc_pack(dst: crc, src: new, type);
573
574 k->k.u64s += extent_entry_u64s(entry: ptrs.end);
575
576 EBUG_ON(bkey_val_u64s(&k->k) > BKEY_EXTENT_VAL_U64s_MAX);
577}
578
579/* Generic code for keys with pointers: */
580
581unsigned bch2_bkey_nr_ptrs(struct bkey_s_c k)
582{
583 return bch2_bkey_devs(k).nr;
584}
585
586unsigned bch2_bkey_nr_ptrs_allocated(struct bkey_s_c k)
587{
588 return k.k->type == KEY_TYPE_reservation
589 ? bkey_s_c_to_reservation(k).v->nr_replicas
590 : bch2_bkey_dirty_devs(k).nr;
591}
592
593unsigned bch2_bkey_nr_ptrs_fully_allocated(struct bkey_s_c k)
594{
595 unsigned ret = 0;
596
597 if (k.k->type == KEY_TYPE_reservation) {
598 ret = bkey_s_c_to_reservation(k).v->nr_replicas;
599 } else {
600 struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k);
601 const union bch_extent_entry *entry;
602 struct extent_ptr_decoded p;
603
604 bkey_for_each_ptr_decode(k.k, ptrs, p, entry)
605 ret += !p.ptr.cached && !crc_is_compressed(crc: p.crc);
606 }
607
608 return ret;
609}
610
611unsigned bch2_bkey_sectors_compressed(struct bkey_s_c k)
612{
613 struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k);
614 const union bch_extent_entry *entry;
615 struct extent_ptr_decoded p;
616 unsigned ret = 0;
617
618 bkey_for_each_ptr_decode(k.k, ptrs, p, entry)
619 if (!p.ptr.cached && crc_is_compressed(crc: p.crc))
620 ret += p.crc.compressed_size;
621
622 return ret;
623}
624
625bool bch2_bkey_is_incompressible(struct bkey_s_c k)
626{
627 struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k);
628 const union bch_extent_entry *entry;
629 struct bch_extent_crc_unpacked crc;
630
631 bkey_for_each_crc(k.k, ptrs, crc, entry)
632 if (crc.compression_type == BCH_COMPRESSION_TYPE_incompressible)
633 return true;
634 return false;
635}
636
637unsigned bch2_bkey_replicas(struct bch_fs *c, struct bkey_s_c k)
638{
639 struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k);
640 const union bch_extent_entry *entry;
641 struct extent_ptr_decoded p = { 0 };
642 unsigned replicas = 0;
643
644 bkey_for_each_ptr_decode(k.k, ptrs, p, entry) {
645 if (p.ptr.cached)
646 continue;
647
648 if (p.has_ec)
649 replicas += p.ec.redundancy;
650
651 replicas++;
652
653 }
654
655 return replicas;
656}
657
658static inline unsigned __extent_ptr_durability(struct bch_dev *ca, struct extent_ptr_decoded *p)
659{
660 if (p->ptr.cached)
661 return 0;
662
663 return p->has_ec
664 ? p->ec.redundancy + 1
665 : ca->mi.durability;
666}
667
668unsigned bch2_extent_ptr_desired_durability(struct bch_fs *c, struct extent_ptr_decoded *p)
669{
670 struct bch_dev *ca = bch_dev_bkey_exists(c, idx: p->ptr.dev);
671
672 return __extent_ptr_durability(ca, p);
673}
674
675unsigned bch2_extent_ptr_durability(struct bch_fs *c, struct extent_ptr_decoded *p)
676{
677 struct bch_dev *ca = bch_dev_bkey_exists(c, idx: p->ptr.dev);
678
679 if (ca->mi.state == BCH_MEMBER_STATE_failed)
680 return 0;
681
682 return __extent_ptr_durability(ca, p);
683}
684
685unsigned bch2_bkey_durability(struct bch_fs *c, struct bkey_s_c k)
686{
687 struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k);
688 const union bch_extent_entry *entry;
689 struct extent_ptr_decoded p;
690 unsigned durability = 0;
691
692 bkey_for_each_ptr_decode(k.k, ptrs, p, entry)
693 durability += bch2_extent_ptr_durability(c, p: &p);
694
695 return durability;
696}
697
698static unsigned bch2_bkey_durability_safe(struct bch_fs *c, struct bkey_s_c k)
699{
700 struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k);
701 const union bch_extent_entry *entry;
702 struct extent_ptr_decoded p;
703 unsigned durability = 0;
704
705 bkey_for_each_ptr_decode(k.k, ptrs, p, entry)
706 if (p.ptr.dev < c->sb.nr_devices && c->devs[p.ptr.dev])
707 durability += bch2_extent_ptr_durability(c, p: &p);
708
709 return durability;
710}
711
712void bch2_bkey_extent_entry_drop(struct bkey_i *k, union bch_extent_entry *entry)
713{
714 union bch_extent_entry *end = bkey_val_end(bkey_i_to_s(k));
715 union bch_extent_entry *next = extent_entry_next(entry);
716
717 memmove_u64s(dst: entry, src: next, u64s: (u64 *) end - (u64 *) next);
718 k->k.u64s -= extent_entry_u64s(entry);
719}
720
721void bch2_extent_ptr_decoded_append(struct bkey_i *k,
722 struct extent_ptr_decoded *p)
723{
724 struct bkey_ptrs ptrs = bch2_bkey_ptrs(k: bkey_i_to_s(k));
725 struct bch_extent_crc_unpacked crc =
726 bch2_extent_crc_unpack(k: &k->k, NULL);
727 union bch_extent_entry *pos;
728
729 if (!bch2_crc_unpacked_cmp(l: crc, r: p->crc)) {
730 pos = ptrs.start;
731 goto found;
732 }
733
734 bkey_for_each_crc(&k->k, ptrs, crc, pos)
735 if (!bch2_crc_unpacked_cmp(l: crc, r: p->crc)) {
736 pos = extent_entry_next(pos);
737 goto found;
738 }
739
740 bch2_extent_crc_append(k, new: p->crc);
741 pos = bkey_val_end(bkey_i_to_s(k));
742found:
743 p->ptr.type = 1 << BCH_EXTENT_ENTRY_ptr;
744 __extent_entry_insert(k, dst: pos, to_entry(&p->ptr));
745
746 if (p->has_ec) {
747 p->ec.type = 1 << BCH_EXTENT_ENTRY_stripe_ptr;
748 __extent_entry_insert(k, dst: pos, to_entry(&p->ec));
749 }
750}
751
752static union bch_extent_entry *extent_entry_prev(struct bkey_ptrs ptrs,
753 union bch_extent_entry *entry)
754{
755 union bch_extent_entry *i = ptrs.start;
756
757 if (i == entry)
758 return NULL;
759
760 while (extent_entry_next(i) != entry)
761 i = extent_entry_next(i);
762 return i;
763}
764
765/*
766 * Returns pointer to the next entry after the one being dropped:
767 */
768union bch_extent_entry *bch2_bkey_drop_ptr_noerror(struct bkey_s k,
769 struct bch_extent_ptr *ptr)
770{
771 struct bkey_ptrs ptrs = bch2_bkey_ptrs(k);
772 union bch_extent_entry *entry = to_entry(ptr), *next;
773 union bch_extent_entry *ret = entry;
774 bool drop_crc = true;
775
776 EBUG_ON(ptr < &ptrs.start->ptr ||
777 ptr >= &ptrs.end->ptr);
778 EBUG_ON(ptr->type != 1 << BCH_EXTENT_ENTRY_ptr);
779
780 for (next = extent_entry_next(entry);
781 next != ptrs.end;
782 next = extent_entry_next(next)) {
783 if (extent_entry_is_crc(e: next)) {
784 break;
785 } else if (extent_entry_is_ptr(e: next)) {
786 drop_crc = false;
787 break;
788 }
789 }
790
791 extent_entry_drop(k, entry);
792
793 while ((entry = extent_entry_prev(ptrs, entry))) {
794 if (extent_entry_is_ptr(e: entry))
795 break;
796
797 if ((extent_entry_is_crc(e: entry) && drop_crc) ||
798 extent_entry_is_stripe_ptr(e: entry)) {
799 ret = (void *) ret - extent_entry_bytes(entry);
800 extent_entry_drop(k, entry);
801 }
802 }
803
804 return ret;
805}
806
807union bch_extent_entry *bch2_bkey_drop_ptr(struct bkey_s k,
808 struct bch_extent_ptr *ptr)
809{
810 bool have_dirty = bch2_bkey_dirty_devs(k: k.s_c).nr;
811 union bch_extent_entry *ret =
812 bch2_bkey_drop_ptr_noerror(k, ptr);
813
814 /*
815 * If we deleted all the dirty pointers and there's still cached
816 * pointers, we could set the cached pointers to dirty if they're not
817 * stale - but to do that correctly we'd need to grab an open_bucket
818 * reference so that we don't race with bucket reuse:
819 */
820 if (have_dirty &&
821 !bch2_bkey_dirty_devs(k: k.s_c).nr) {
822 k.k->type = KEY_TYPE_error;
823 set_bkey_val_u64s(k: k.k, val_u64s: 0);
824 ret = NULL;
825 } else if (!bch2_bkey_nr_ptrs(k: k.s_c)) {
826 k.k->type = KEY_TYPE_deleted;
827 set_bkey_val_u64s(k: k.k, val_u64s: 0);
828 ret = NULL;
829 }
830
831 return ret;
832}
833
834void bch2_bkey_drop_device(struct bkey_s k, unsigned dev)
835{
836 struct bch_extent_ptr *ptr;
837
838 bch2_bkey_drop_ptrs(k, ptr, ptr->dev == dev);
839}
840
841void bch2_bkey_drop_device_noerror(struct bkey_s k, unsigned dev)
842{
843 struct bch_extent_ptr *ptr = bch2_bkey_has_device(k, dev);
844
845 if (ptr)
846 bch2_bkey_drop_ptr_noerror(k, ptr);
847}
848
849const struct bch_extent_ptr *bch2_bkey_has_device_c(struct bkey_s_c k, unsigned dev)
850{
851 struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k);
852
853 bkey_for_each_ptr(ptrs, ptr)
854 if (ptr->dev == dev)
855 return ptr;
856
857 return NULL;
858}
859
860bool bch2_bkey_has_target(struct bch_fs *c, struct bkey_s_c k, unsigned target)
861{
862 struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k);
863
864 bkey_for_each_ptr(ptrs, ptr)
865 if (bch2_dev_in_target(c, ptr->dev, target) &&
866 (!ptr->cached ||
867 !ptr_stale(ca: bch_dev_bkey_exists(c, idx: ptr->dev), ptr)))
868 return true;
869
870 return false;
871}
872
873bool bch2_bkey_matches_ptr(struct bch_fs *c, struct bkey_s_c k,
874 struct bch_extent_ptr m, u64 offset)
875{
876 struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k);
877 const union bch_extent_entry *entry;
878 struct extent_ptr_decoded p;
879
880 bkey_for_each_ptr_decode(k.k, ptrs, p, entry)
881 if (p.ptr.dev == m.dev &&
882 p.ptr.gen == m.gen &&
883 (s64) p.ptr.offset + p.crc.offset - bkey_start_offset(k: k.k) ==
884 (s64) m.offset - offset)
885 return true;
886
887 return false;
888}
889
890/*
891 * Returns true if two extents refer to the same data:
892 */
893bool bch2_extents_match(struct bkey_s_c k1, struct bkey_s_c k2)
894{
895 if (k1.k->type != k2.k->type)
896 return false;
897
898 if (bkey_extent_is_direct_data(k: k1.k)) {
899 struct bkey_ptrs_c ptrs1 = bch2_bkey_ptrs_c(k: k1);
900 struct bkey_ptrs_c ptrs2 = bch2_bkey_ptrs_c(k: k2);
901 const union bch_extent_entry *entry1, *entry2;
902 struct extent_ptr_decoded p1, p2;
903
904 if (bkey_extent_is_unwritten(k: k1) != bkey_extent_is_unwritten(k: k2))
905 return false;
906
907 bkey_for_each_ptr_decode(k1.k, ptrs1, p1, entry1)
908 bkey_for_each_ptr_decode(k2.k, ptrs2, p2, entry2)
909 if (p1.ptr.dev == p2.ptr.dev &&
910 p1.ptr.gen == p2.ptr.gen &&
911 (s64) p1.ptr.offset + p1.crc.offset - bkey_start_offset(k: k1.k) ==
912 (s64) p2.ptr.offset + p2.crc.offset - bkey_start_offset(k: k2.k))
913 return true;
914
915 return false;
916 } else {
917 /* KEY_TYPE_deleted, etc. */
918 return true;
919 }
920}
921
922struct bch_extent_ptr *
923bch2_extent_has_ptr(struct bkey_s_c k1, struct extent_ptr_decoded p1, struct bkey_s k2)
924{
925 struct bkey_ptrs ptrs2 = bch2_bkey_ptrs(k: k2);
926 union bch_extent_entry *entry2;
927 struct extent_ptr_decoded p2;
928
929 bkey_for_each_ptr_decode(k2.k, ptrs2, p2, entry2)
930 if (p1.ptr.dev == p2.ptr.dev &&
931 p1.ptr.gen == p2.ptr.gen &&
932 (s64) p1.ptr.offset + p1.crc.offset - bkey_start_offset(k: k1.k) ==
933 (s64) p2.ptr.offset + p2.crc.offset - bkey_start_offset(k: k2.k))
934 return &entry2->ptr;
935
936 return NULL;
937}
938
939void bch2_extent_ptr_set_cached(struct bkey_s k, struct bch_extent_ptr *ptr)
940{
941 struct bkey_ptrs ptrs = bch2_bkey_ptrs(k);
942 union bch_extent_entry *entry;
943 union bch_extent_entry *ec = NULL;
944
945 bkey_extent_entry_for_each(ptrs, entry) {
946 if (&entry->ptr == ptr) {
947 ptr->cached = true;
948 if (ec)
949 extent_entry_drop(k, entry: ec);
950 return;
951 }
952
953 if (extent_entry_is_stripe_ptr(e: entry))
954 ec = entry;
955 else if (extent_entry_is_ptr(e: entry))
956 ec = NULL;
957 }
958
959 BUG();
960}
961
962/*
963 * bch_extent_normalize - clean up an extent, dropping stale pointers etc.
964 *
965 * Returns true if @k should be dropped entirely
966 *
967 * For existing keys, only called when btree nodes are being rewritten, not when
968 * they're merely being compacted/resorted in memory.
969 */
970bool bch2_extent_normalize(struct bch_fs *c, struct bkey_s k)
971{
972 struct bch_extent_ptr *ptr;
973
974 bch2_bkey_drop_ptrs(k, ptr,
975 ptr->cached &&
976 ptr_stale(bch_dev_bkey_exists(c, ptr->dev), ptr));
977
978 return bkey_deleted(k.k);
979}
980
981void bch2_extent_ptr_to_text(struct printbuf *out, struct bch_fs *c, const struct bch_extent_ptr *ptr)
982{
983 struct bch_dev *ca = c && ptr->dev < c->sb.nr_devices && c->devs[ptr->dev]
984 ? bch_dev_bkey_exists(c, idx: ptr->dev)
985 : NULL;
986
987 if (!ca) {
988 prt_printf(out, "ptr: %u:%llu gen %u%s", ptr->dev,
989 (u64) ptr->offset, ptr->gen,
990 ptr->cached ? " cached" : "");
991 } else {
992 u32 offset;
993 u64 b = sector_to_bucket_and_offset(ca, s: ptr->offset, offset: &offset);
994
995 prt_printf(out, "ptr: %u:%llu:%u gen %u",
996 ptr->dev, b, offset, ptr->gen);
997 if (ptr->cached)
998 prt_str(out, str: " cached");
999 if (ptr->unwritten)
1000 prt_str(out, str: " unwritten");
1001 if (b >= ca->mi.first_bucket &&
1002 b < ca->mi.nbuckets &&
1003 ptr_stale(ca, ptr))
1004 prt_printf(out, " stale");
1005 }
1006}
1007
1008void bch2_bkey_ptrs_to_text(struct printbuf *out, struct bch_fs *c,
1009 struct bkey_s_c k)
1010{
1011 struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k);
1012 const union bch_extent_entry *entry;
1013 bool first = true;
1014
1015 if (c)
1016 prt_printf(out, "durability: %u ", bch2_bkey_durability_safe(c, k));
1017
1018 bkey_extent_entry_for_each(ptrs, entry) {
1019 if (!first)
1020 prt_printf(out, " ");
1021
1022 switch (__extent_entry_type(e: entry)) {
1023 case BCH_EXTENT_ENTRY_ptr:
1024 bch2_extent_ptr_to_text(out, c, entry_to_ptr(entry));
1025 break;
1026
1027 case BCH_EXTENT_ENTRY_crc32:
1028 case BCH_EXTENT_ENTRY_crc64:
1029 case BCH_EXTENT_ENTRY_crc128: {
1030 struct bch_extent_crc_unpacked crc =
1031 bch2_extent_crc_unpack(k: k.k, entry_to_crc(entry));
1032
1033 prt_printf(out, "crc: c_size %u size %u offset %u nonce %u csum ",
1034 crc.compressed_size,
1035 crc.uncompressed_size,
1036 crc.offset, crc.nonce);
1037 bch2_prt_csum_type(out, crc.csum_type);
1038 prt_str(out, str: " compress ");
1039 bch2_prt_compression_type(out, crc.compression_type);
1040 break;
1041 }
1042 case BCH_EXTENT_ENTRY_stripe_ptr: {
1043 const struct bch_extent_stripe_ptr *ec = &entry->stripe_ptr;
1044
1045 prt_printf(out, "ec: idx %llu block %u",
1046 (u64) ec->idx, ec->block);
1047 break;
1048 }
1049 case BCH_EXTENT_ENTRY_rebalance: {
1050 const struct bch_extent_rebalance *r = &entry->rebalance;
1051
1052 prt_str(out, str: "rebalance: target ");
1053 if (c)
1054 bch2_target_to_text(out, c, r->target);
1055 else
1056 prt_printf(out, "%u", r->target);
1057 prt_str(out, str: " compression ");
1058 bch2_compression_opt_to_text(out, r->compression);
1059 break;
1060 }
1061 default:
1062 prt_printf(out, "(invalid extent entry %.16llx)", *((u64 *) entry));
1063 return;
1064 }
1065
1066 first = false;
1067 }
1068}
1069
1070static int extent_ptr_invalid(struct bch_fs *c,
1071 struct bkey_s_c k,
1072 enum bkey_invalid_flags flags,
1073 const struct bch_extent_ptr *ptr,
1074 unsigned size_ondisk,
1075 bool metadata,
1076 struct printbuf *err)
1077{
1078 struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k);
1079 u64 bucket;
1080 u32 bucket_offset;
1081 struct bch_dev *ca;
1082 int ret = 0;
1083
1084 if (!bch2_dev_exists2(c, dev: ptr->dev)) {
1085 /*
1086 * If we're in the write path this key might have already been
1087 * overwritten, and we could be seeing a device that doesn't
1088 * exist anymore due to racing with device removal:
1089 */
1090 if (flags & BKEY_INVALID_WRITE)
1091 return 0;
1092
1093 bkey_fsck_err(c, err, ptr_to_invalid_device,
1094 "pointer to invalid device (%u)", ptr->dev);
1095 }
1096
1097 ca = bch_dev_bkey_exists(c, idx: ptr->dev);
1098 bkey_for_each_ptr(ptrs, ptr2)
1099 bkey_fsck_err_on(ptr != ptr2 && ptr->dev == ptr2->dev, c, err,
1100 ptr_to_duplicate_device,
1101 "multiple pointers to same device (%u)", ptr->dev);
1102
1103 bucket = sector_to_bucket_and_offset(ca, s: ptr->offset, offset: &bucket_offset);
1104
1105 bkey_fsck_err_on(bucket >= ca->mi.nbuckets, c, err,
1106 ptr_after_last_bucket,
1107 "pointer past last bucket (%llu > %llu)", bucket, ca->mi.nbuckets);
1108 bkey_fsck_err_on(ptr->offset < bucket_to_sector(ca, ca->mi.first_bucket), c, err,
1109 ptr_before_first_bucket,
1110 "pointer before first bucket (%llu < %u)", bucket, ca->mi.first_bucket);
1111 bkey_fsck_err_on(bucket_offset + size_ondisk > ca->mi.bucket_size, c, err,
1112 ptr_spans_multiple_buckets,
1113 "pointer spans multiple buckets (%u + %u > %u)",
1114 bucket_offset, size_ondisk, ca->mi.bucket_size);
1115fsck_err:
1116 return ret;
1117}
1118
1119int bch2_bkey_ptrs_invalid(struct bch_fs *c, struct bkey_s_c k,
1120 enum bkey_invalid_flags flags,
1121 struct printbuf *err)
1122{
1123 struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k);
1124 const union bch_extent_entry *entry;
1125 struct bch_extent_crc_unpacked crc;
1126 unsigned size_ondisk = k.k->size;
1127 unsigned nonce = UINT_MAX;
1128 unsigned nr_ptrs = 0;
1129 bool have_written = false, have_unwritten = false, have_ec = false, crc_since_last_ptr = false;
1130 int ret = 0;
1131
1132 if (bkey_is_btree_ptr(k: k.k))
1133 size_ondisk = btree_sectors(c);
1134
1135 bkey_extent_entry_for_each(ptrs, entry) {
1136 bkey_fsck_err_on(__extent_entry_type(entry) >= BCH_EXTENT_ENTRY_MAX, c, err,
1137 extent_ptrs_invalid_entry,
1138 "invalid extent entry type (got %u, max %u)",
1139 __extent_entry_type(entry), BCH_EXTENT_ENTRY_MAX);
1140
1141 bkey_fsck_err_on(bkey_is_btree_ptr(k.k) &&
1142 !extent_entry_is_ptr(entry), c, err,
1143 btree_ptr_has_non_ptr,
1144 "has non ptr field");
1145
1146 switch (extent_entry_type(e: entry)) {
1147 case BCH_EXTENT_ENTRY_ptr:
1148 ret = extent_ptr_invalid(c, k, flags, ptr: &entry->ptr,
1149 size_ondisk, metadata: false, err);
1150 if (ret)
1151 return ret;
1152
1153 bkey_fsck_err_on(entry->ptr.cached && have_ec, c, err,
1154 ptr_cached_and_erasure_coded,
1155 "cached, erasure coded ptr");
1156
1157 if (!entry->ptr.unwritten)
1158 have_written = true;
1159 else
1160 have_unwritten = true;
1161
1162 have_ec = false;
1163 crc_since_last_ptr = false;
1164 nr_ptrs++;
1165 break;
1166 case BCH_EXTENT_ENTRY_crc32:
1167 case BCH_EXTENT_ENTRY_crc64:
1168 case BCH_EXTENT_ENTRY_crc128:
1169 crc = bch2_extent_crc_unpack(k: k.k, entry_to_crc(entry));
1170
1171 bkey_fsck_err_on(crc.offset + crc.live_size > crc.uncompressed_size, c, err,
1172 ptr_crc_uncompressed_size_too_small,
1173 "checksum offset + key size > uncompressed size");
1174 bkey_fsck_err_on(!bch2_checksum_type_valid(c, crc.csum_type), c, err,
1175 ptr_crc_csum_type_unknown,
1176 "invalid checksum type");
1177 bkey_fsck_err_on(crc.compression_type >= BCH_COMPRESSION_TYPE_NR, c, err,
1178 ptr_crc_compression_type_unknown,
1179 "invalid compression type");
1180
1181 if (bch2_csum_type_is_encryption(type: crc.csum_type)) {
1182 if (nonce == UINT_MAX)
1183 nonce = crc.offset + crc.nonce;
1184 else if (nonce != crc.offset + crc.nonce)
1185 bkey_fsck_err(c, err, ptr_crc_nonce_mismatch,
1186 "incorrect nonce");
1187 }
1188
1189 bkey_fsck_err_on(crc_since_last_ptr, c, err,
1190 ptr_crc_redundant,
1191 "redundant crc entry");
1192 crc_since_last_ptr = true;
1193
1194 bkey_fsck_err_on(crc_is_encoded(crc) &&
1195 (crc.uncompressed_size > c->opts.encoded_extent_max >> 9) &&
1196 (flags & (BKEY_INVALID_WRITE|BKEY_INVALID_COMMIT)), c, err,
1197 ptr_crc_uncompressed_size_too_big,
1198 "too large encoded extent");
1199
1200 size_ondisk = crc.compressed_size;
1201 break;
1202 case BCH_EXTENT_ENTRY_stripe_ptr:
1203 bkey_fsck_err_on(have_ec, c, err,
1204 ptr_stripe_redundant,
1205 "redundant stripe entry");
1206 have_ec = true;
1207 break;
1208 case BCH_EXTENT_ENTRY_rebalance: {
1209 const struct bch_extent_rebalance *r = &entry->rebalance;
1210
1211 if (!bch2_compression_opt_valid(v: r->compression)) {
1212 struct bch_compression_opt opt = __bch2_compression_decode(v: r->compression);
1213 prt_printf(err, "invalid compression opt %u:%u",
1214 opt.type, opt.level);
1215 return -BCH_ERR_invalid_bkey;
1216 }
1217 break;
1218 }
1219 }
1220 }
1221
1222 bkey_fsck_err_on(!nr_ptrs, c, err,
1223 extent_ptrs_no_ptrs,
1224 "no ptrs");
1225 bkey_fsck_err_on(nr_ptrs > BCH_BKEY_PTRS_MAX, c, err,
1226 extent_ptrs_too_many_ptrs,
1227 "too many ptrs: %u > %u", nr_ptrs, BCH_BKEY_PTRS_MAX);
1228 bkey_fsck_err_on(have_written && have_unwritten, c, err,
1229 extent_ptrs_written_and_unwritten,
1230 "extent with unwritten and written ptrs");
1231 bkey_fsck_err_on(k.k->type != KEY_TYPE_extent && have_unwritten, c, err,
1232 extent_ptrs_unwritten,
1233 "has unwritten ptrs");
1234 bkey_fsck_err_on(crc_since_last_ptr, c, err,
1235 extent_ptrs_redundant_crc,
1236 "redundant crc entry");
1237 bkey_fsck_err_on(have_ec, c, err,
1238 extent_ptrs_redundant_stripe,
1239 "redundant stripe entry");
1240fsck_err:
1241 return ret;
1242}
1243
1244void bch2_ptr_swab(struct bkey_s k)
1245{
1246 struct bkey_ptrs ptrs = bch2_bkey_ptrs(k);
1247 union bch_extent_entry *entry;
1248 u64 *d;
1249
1250 for (d = (u64 *) ptrs.start;
1251 d != (u64 *) ptrs.end;
1252 d++)
1253 *d = swab64(*d);
1254
1255 for (entry = ptrs.start;
1256 entry < ptrs.end;
1257 entry = extent_entry_next(entry)) {
1258 switch (extent_entry_type(e: entry)) {
1259 case BCH_EXTENT_ENTRY_ptr:
1260 break;
1261 case BCH_EXTENT_ENTRY_crc32:
1262 entry->crc32.csum = swab32(entry->crc32.csum);
1263 break;
1264 case BCH_EXTENT_ENTRY_crc64:
1265 entry->crc64.csum_hi = swab16(entry->crc64.csum_hi);
1266 entry->crc64.csum_lo = swab64(entry->crc64.csum_lo);
1267 break;
1268 case BCH_EXTENT_ENTRY_crc128:
1269 entry->crc128.csum.hi = (__force __le64)
1270 swab64((__force u64) entry->crc128.csum.hi);
1271 entry->crc128.csum.lo = (__force __le64)
1272 swab64((__force u64) entry->crc128.csum.lo);
1273 break;
1274 case BCH_EXTENT_ENTRY_stripe_ptr:
1275 break;
1276 case BCH_EXTENT_ENTRY_rebalance:
1277 break;
1278 }
1279 }
1280}
1281
1282const struct bch_extent_rebalance *bch2_bkey_rebalance_opts(struct bkey_s_c k)
1283{
1284 struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k);
1285 const union bch_extent_entry *entry;
1286
1287 bkey_extent_entry_for_each(ptrs, entry)
1288 if (__extent_entry_type(e: entry) == BCH_EXTENT_ENTRY_rebalance)
1289 return &entry->rebalance;
1290
1291 return NULL;
1292}
1293
1294unsigned bch2_bkey_ptrs_need_rebalance(struct bch_fs *c, struct bkey_s_c k,
1295 unsigned target, unsigned compression)
1296{
1297 struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k);
1298 unsigned rewrite_ptrs = 0;
1299
1300 if (compression) {
1301 unsigned compression_type = bch2_compression_opt_to_type(v: compression);
1302 const union bch_extent_entry *entry;
1303 struct extent_ptr_decoded p;
1304 unsigned i = 0;
1305
1306 bkey_for_each_ptr_decode(k.k, ptrs, p, entry) {
1307 if (p.crc.compression_type == BCH_COMPRESSION_TYPE_incompressible ||
1308 p.ptr.unwritten) {
1309 rewrite_ptrs = 0;
1310 goto incompressible;
1311 }
1312
1313 if (!p.ptr.cached && p.crc.compression_type != compression_type)
1314 rewrite_ptrs |= 1U << i;
1315 i++;
1316 }
1317 }
1318incompressible:
1319 if (target && bch2_target_accepts_data(c, data_type: BCH_DATA_user, target)) {
1320 unsigned i = 0;
1321
1322 bkey_for_each_ptr(ptrs, ptr) {
1323 if (!ptr->cached && !bch2_dev_in_target(c, ptr->dev, target))
1324 rewrite_ptrs |= 1U << i;
1325 i++;
1326 }
1327 }
1328
1329 return rewrite_ptrs;
1330}
1331
1332bool bch2_bkey_needs_rebalance(struct bch_fs *c, struct bkey_s_c k)
1333{
1334 const struct bch_extent_rebalance *r = bch2_bkey_rebalance_opts(k);
1335
1336 /*
1337 * If it's an indirect extent, we don't delete the rebalance entry when
1338 * done so that we know what options were applied - check if it still
1339 * needs work done:
1340 */
1341 if (r &&
1342 k.k->type == KEY_TYPE_reflink_v &&
1343 !bch2_bkey_ptrs_need_rebalance(c, k, target: r->target, compression: r->compression))
1344 r = NULL;
1345
1346 return r != NULL;
1347}
1348
1349int bch2_bkey_set_needs_rebalance(struct bch_fs *c, struct bkey_i *_k,
1350 struct bch_io_opts *opts)
1351{
1352 struct bkey_s k = bkey_i_to_s(k: _k);
1353 struct bch_extent_rebalance *r;
1354 unsigned target = opts->background_target;
1355 unsigned compression = background_compression(opts: *opts);
1356 bool needs_rebalance;
1357
1358 if (!bkey_extent_is_direct_data(k: k.k))
1359 return 0;
1360
1361 /* get existing rebalance entry: */
1362 r = (struct bch_extent_rebalance *) bch2_bkey_rebalance_opts(k: k.s_c);
1363 if (r) {
1364 if (k.k->type == KEY_TYPE_reflink_v) {
1365 /*
1366 * indirect extents: existing options take precedence,
1367 * so that we don't move extents back and forth if
1368 * they're referenced by different inodes with different
1369 * options:
1370 */
1371 if (r->target)
1372 target = r->target;
1373 if (r->compression)
1374 compression = r->compression;
1375 }
1376
1377 r->target = target;
1378 r->compression = compression;
1379 }
1380
1381 needs_rebalance = bch2_bkey_ptrs_need_rebalance(c, k: k.s_c, target, compression);
1382
1383 if (needs_rebalance && !r) {
1384 union bch_extent_entry *new = bkey_val_end(k);
1385
1386 new->rebalance.type = 1U << BCH_EXTENT_ENTRY_rebalance;
1387 new->rebalance.compression = compression;
1388 new->rebalance.target = target;
1389 new->rebalance.unused = 0;
1390 k.k->u64s += extent_entry_u64s(entry: new);
1391 } else if (!needs_rebalance && r && k.k->type != KEY_TYPE_reflink_v) {
1392 /*
1393 * For indirect extents, don't delete the rebalance entry when
1394 * we're finished so that we know we specifically moved it or
1395 * compressed it to its current location/compression type
1396 */
1397 extent_entry_drop(k, entry: (union bch_extent_entry *) r);
1398 }
1399
1400 return 0;
1401}
1402
1403/* Generic extent code: */
1404
1405int bch2_cut_front_s(struct bpos where, struct bkey_s k)
1406{
1407 unsigned new_val_u64s = bkey_val_u64s(k.k);
1408 int val_u64s_delta;
1409 u64 sub;
1410
1411 if (bkey_le(l: where, r: bkey_start_pos(k: k.k)))
1412 return 0;
1413
1414 EBUG_ON(bkey_gt(where, k.k->p));
1415
1416 sub = where.offset - bkey_start_offset(k: k.k);
1417
1418 k.k->size -= sub;
1419
1420 if (!k.k->size) {
1421 k.k->type = KEY_TYPE_deleted;
1422 new_val_u64s = 0;
1423 }
1424
1425 switch (k.k->type) {
1426 case KEY_TYPE_extent:
1427 case KEY_TYPE_reflink_v: {
1428 struct bkey_ptrs ptrs = bch2_bkey_ptrs(k);
1429 union bch_extent_entry *entry;
1430 bool seen_crc = false;
1431
1432 bkey_extent_entry_for_each(ptrs, entry) {
1433 switch (extent_entry_type(e: entry)) {
1434 case BCH_EXTENT_ENTRY_ptr:
1435 if (!seen_crc)
1436 entry->ptr.offset += sub;
1437 break;
1438 case BCH_EXTENT_ENTRY_crc32:
1439 entry->crc32.offset += sub;
1440 break;
1441 case BCH_EXTENT_ENTRY_crc64:
1442 entry->crc64.offset += sub;
1443 break;
1444 case BCH_EXTENT_ENTRY_crc128:
1445 entry->crc128.offset += sub;
1446 break;
1447 case BCH_EXTENT_ENTRY_stripe_ptr:
1448 break;
1449 case BCH_EXTENT_ENTRY_rebalance:
1450 break;
1451 }
1452
1453 if (extent_entry_is_crc(e: entry))
1454 seen_crc = true;
1455 }
1456
1457 break;
1458 }
1459 case KEY_TYPE_reflink_p: {
1460 struct bkey_s_reflink_p p = bkey_s_to_reflink_p(k);
1461
1462 le64_add_cpu(var: &p.v->idx, val: sub);
1463 break;
1464 }
1465 case KEY_TYPE_inline_data:
1466 case KEY_TYPE_indirect_inline_data: {
1467 void *p = bkey_inline_data_p(k);
1468 unsigned bytes = bkey_inline_data_bytes(k: k.k);
1469
1470 sub = min_t(u64, sub << 9, bytes);
1471
1472 memmove(p, p + sub, bytes - sub);
1473
1474 new_val_u64s -= sub >> 3;
1475 break;
1476 }
1477 }
1478
1479 val_u64s_delta = bkey_val_u64s(k.k) - new_val_u64s;
1480 BUG_ON(val_u64s_delta < 0);
1481
1482 set_bkey_val_u64s(k: k.k, val_u64s: new_val_u64s);
1483 memset(bkey_val_end(k), 0, val_u64s_delta * sizeof(u64));
1484 return -val_u64s_delta;
1485}
1486
1487int bch2_cut_back_s(struct bpos where, struct bkey_s k)
1488{
1489 unsigned new_val_u64s = bkey_val_u64s(k.k);
1490 int val_u64s_delta;
1491 u64 len = 0;
1492
1493 if (bkey_ge(l: where, r: k.k->p))
1494 return 0;
1495
1496 EBUG_ON(bkey_lt(where, bkey_start_pos(k.k)));
1497
1498 len = where.offset - bkey_start_offset(k: k.k);
1499
1500 k.k->p.offset = where.offset;
1501 k.k->size = len;
1502
1503 if (!len) {
1504 k.k->type = KEY_TYPE_deleted;
1505 new_val_u64s = 0;
1506 }
1507
1508 switch (k.k->type) {
1509 case KEY_TYPE_inline_data:
1510 case KEY_TYPE_indirect_inline_data:
1511 new_val_u64s = (bkey_inline_data_offset(k: k.k) +
1512 min(bkey_inline_data_bytes(k.k), k.k->size << 9)) >> 3;
1513 break;
1514 }
1515
1516 val_u64s_delta = bkey_val_u64s(k.k) - new_val_u64s;
1517 BUG_ON(val_u64s_delta < 0);
1518
1519 set_bkey_val_u64s(k: k.k, val_u64s: new_val_u64s);
1520 memset(bkey_val_end(k), 0, val_u64s_delta * sizeof(u64));
1521 return -val_u64s_delta;
1522}
1523

source code of linux/fs/bcachefs/extents.c