1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
4 * Copyright 2012 Google, Inc.
5 */
6
7#include "bcachefs.h"
8#include "alloc_foreground.h"
9#include "bkey_buf.h"
10#include "bset.h"
11#include "btree_update.h"
12#include "buckets.h"
13#include "checksum.h"
14#include "clock.h"
15#include "compress.h"
16#include "debug.h"
17#include "ec.h"
18#include "error.h"
19#include "extent_update.h"
20#include "inode.h"
21#include "io_write.h"
22#include "journal.h"
23#include "keylist.h"
24#include "move.h"
25#include "nocow_locking.h"
26#include "rebalance.h"
27#include "subvolume.h"
28#include "super.h"
29#include "super-io.h"
30#include "trace.h"
31
32#include <linux/blkdev.h>
33#include <linux/prefetch.h>
34#include <linux/random.h>
35#include <linux/sched/mm.h>
36
37#ifndef CONFIG_BCACHEFS_NO_LATENCY_ACCT
38
39static inline void bch2_congested_acct(struct bch_dev *ca, u64 io_latency,
40 u64 now, int rw)
41{
42 u64 latency_capable =
43 ca->io_latency[rw].quantiles.entries[QUANTILE_IDX(1)].m;
44 /* ideally we'd be taking into account the device's variance here: */
45 u64 latency_threshold = latency_capable << (rw == READ ? 2 : 3);
46 s64 latency_over = io_latency - latency_threshold;
47
48 if (latency_threshold && latency_over > 0) {
49 /*
50 * bump up congested by approximately latency_over * 4 /
51 * latency_threshold - we don't need much accuracy here so don't
52 * bother with the divide:
53 */
54 if (atomic_read(&ca->congested) < CONGESTED_MAX)
55 atomic_add(latency_over >>
56 max_t(int, ilog2(latency_threshold) - 2, 0),
57 &ca->congested);
58
59 ca->congested_last = now;
60 } else if (atomic_read(&ca->congested) > 0) {
61 atomic_dec(&ca->congested);
62 }
63}
64
65void bch2_latency_acct(struct bch_dev *ca, u64 submit_time, int rw)
66{
67 atomic64_t *latency = &ca->cur_latency[rw];
68 u64 now = local_clock();
69 u64 io_latency = time_after64(now, submit_time)
70 ? now - submit_time
71 : 0;
72 u64 old, new, v = atomic64_read(latency);
73
74 do {
75 old = v;
76
77 /*
78 * If the io latency was reasonably close to the current
79 * latency, skip doing the update and atomic operation - most of
80 * the time:
81 */
82 if (abs((int) (old - io_latency)) < (old >> 1) &&
83 now & ~(~0U << 5))
84 break;
85
86 new = ewma_add(old, io_latency, 5);
87 } while ((v = atomic64_cmpxchg(latency, old, new)) != old);
88
89 bch2_congested_acct(ca, io_latency, now, rw);
90
91 __bch2_time_stats_update(&ca->io_latency[rw].stats, submit_time, now);
92}
93
94#endif
95
96/* Allocate, free from mempool: */
97
98void bch2_bio_free_pages_pool(struct bch_fs *c, struct bio *bio)
99{
100 struct bvec_iter_all iter;
101 struct bio_vec *bv;
102
103 bio_for_each_segment_all(bv, bio, iter)
104 if (bv->bv_page != ZERO_PAGE(0))
105 mempool_free(element: bv->bv_page, pool: &c->bio_bounce_pages);
106 bio->bi_vcnt = 0;
107}
108
109static struct page *__bio_alloc_page_pool(struct bch_fs *c, bool *using_mempool)
110{
111 struct page *page;
112
113 if (likely(!*using_mempool)) {
114 page = alloc_page(GFP_NOFS);
115 if (unlikely(!page)) {
116 mutex_lock(&c->bio_bounce_pages_lock);
117 *using_mempool = true;
118 goto pool_alloc;
119
120 }
121 } else {
122pool_alloc:
123 page = mempool_alloc(pool: &c->bio_bounce_pages, GFP_NOFS);
124 }
125
126 return page;
127}
128
129void bch2_bio_alloc_pages_pool(struct bch_fs *c, struct bio *bio,
130 size_t size)
131{
132 bool using_mempool = false;
133
134 while (size) {
135 struct page *page = __bio_alloc_page_pool(c, using_mempool: &using_mempool);
136 unsigned len = min_t(size_t, PAGE_SIZE, size);
137
138 BUG_ON(!bio_add_page(bio, page, len, 0));
139 size -= len;
140 }
141
142 if (using_mempool)
143 mutex_unlock(lock: &c->bio_bounce_pages_lock);
144}
145
146/* Extent update path: */
147
148int bch2_sum_sector_overwrites(struct btree_trans *trans,
149 struct btree_iter *extent_iter,
150 struct bkey_i *new,
151 bool *usage_increasing,
152 s64 *i_sectors_delta,
153 s64 *disk_sectors_delta)
154{
155 struct bch_fs *c = trans->c;
156 struct btree_iter iter;
157 struct bkey_s_c old;
158 unsigned new_replicas = bch2_bkey_replicas(c, bkey_i_to_s_c(k: new));
159 bool new_compressed = bch2_bkey_sectors_compressed(bkey_i_to_s_c(k: new));
160 int ret = 0;
161
162 *usage_increasing = false;
163 *i_sectors_delta = 0;
164 *disk_sectors_delta = 0;
165
166 bch2_trans_copy_iter(&iter, extent_iter);
167
168 for_each_btree_key_upto_continue_norestart(iter,
169 new->k.p, BTREE_ITER_SLOTS, old, ret) {
170 s64 sectors = min(new->k.p.offset, old.k->p.offset) -
171 max(bkey_start_offset(&new->k),
172 bkey_start_offset(old.k));
173
174 *i_sectors_delta += sectors *
175 (bkey_extent_is_allocation(k: &new->k) -
176 bkey_extent_is_allocation(k: old.k));
177
178 *disk_sectors_delta += sectors * bch2_bkey_nr_ptrs_allocated(bkey_i_to_s_c(k: new));
179 *disk_sectors_delta -= new->k.p.snapshot == old.k->p.snapshot
180 ? sectors * bch2_bkey_nr_ptrs_fully_allocated(old)
181 : 0;
182
183 if (!*usage_increasing &&
184 (new->k.p.snapshot != old.k->p.snapshot ||
185 new_replicas > bch2_bkey_replicas(c, old) ||
186 (!new_compressed && bch2_bkey_sectors_compressed(old))))
187 *usage_increasing = true;
188
189 if (bkey_ge(l: old.k->p, r: new->k.p))
190 break;
191 }
192
193 bch2_trans_iter_exit(trans, &iter);
194 return ret;
195}
196
197static inline int bch2_extent_update_i_size_sectors(struct btree_trans *trans,
198 struct btree_iter *extent_iter,
199 u64 new_i_size,
200 s64 i_sectors_delta)
201{
202 struct btree_iter iter;
203 struct bkey_i *k;
204 struct bkey_i_inode_v3 *inode;
205 /*
206 * Crazy performance optimization:
207 * Every extent update needs to also update the inode: the inode trigger
208 * will set bi->journal_seq to the journal sequence number of this
209 * transaction - for fsync.
210 *
211 * But if that's the only reason we're updating the inode (we're not
212 * updating bi_size or bi_sectors), then we don't need the inode update
213 * to be journalled - if we crash, the bi_journal_seq update will be
214 * lost, but that's fine.
215 */
216 unsigned inode_update_flags = BTREE_UPDATE_NOJOURNAL;
217 int ret;
218
219 k = bch2_bkey_get_mut_noupdate(trans, iter: &iter, btree_id: BTREE_ID_inodes,
220 pos: SPOS(inode: 0,
221 offset: extent_iter->pos.inode,
222 snapshot: extent_iter->snapshot),
223 flags: BTREE_ITER_CACHED);
224 ret = PTR_ERR_OR_ZERO(ptr: k);
225 if (unlikely(ret))
226 return ret;
227
228 if (unlikely(k->k.type != KEY_TYPE_inode_v3)) {
229 k = bch2_inode_to_v3(trans, k);
230 ret = PTR_ERR_OR_ZERO(ptr: k);
231 if (unlikely(ret))
232 goto err;
233 }
234
235 inode = bkey_i_to_inode_v3(k);
236
237 if (!(le64_to_cpu(inode->v.bi_flags) & BCH_INODE_i_size_dirty) &&
238 new_i_size > le64_to_cpu(inode->v.bi_size)) {
239 inode->v.bi_size = cpu_to_le64(new_i_size);
240 inode_update_flags = 0;
241 }
242
243 if (i_sectors_delta) {
244 le64_add_cpu(var: &inode->v.bi_sectors, val: i_sectors_delta);
245 inode_update_flags = 0;
246 }
247
248 if (inode->k.p.snapshot != iter.snapshot) {
249 inode->k.p.snapshot = iter.snapshot;
250 inode_update_flags = 0;
251 }
252
253 ret = bch2_trans_update(trans, &iter, &inode->k_i,
254 BTREE_UPDATE_INTERNAL_SNAPSHOT_NODE|
255 inode_update_flags);
256err:
257 bch2_trans_iter_exit(trans, &iter);
258 return ret;
259}
260
261int bch2_extent_update(struct btree_trans *trans,
262 subvol_inum inum,
263 struct btree_iter *iter,
264 struct bkey_i *k,
265 struct disk_reservation *disk_res,
266 u64 new_i_size,
267 s64 *i_sectors_delta_total,
268 bool check_enospc)
269{
270 struct bpos next_pos;
271 bool usage_increasing;
272 s64 i_sectors_delta = 0, disk_sectors_delta = 0;
273 int ret;
274
275 /*
276 * This traverses us the iterator without changing iter->path->pos to
277 * search_key() (which is pos + 1 for extents): we want there to be a
278 * path already traversed at iter->pos because
279 * bch2_trans_extent_update() will use it to attempt extent merging
280 */
281 ret = __bch2_btree_iter_traverse(iter);
282 if (ret)
283 return ret;
284
285 ret = bch2_extent_trim_atomic(trans, iter, k);
286 if (ret)
287 return ret;
288
289 next_pos = k->k.p;
290
291 ret = bch2_sum_sector_overwrites(trans, extent_iter: iter, new: k,
292 usage_increasing: &usage_increasing,
293 i_sectors_delta: &i_sectors_delta,
294 disk_sectors_delta: &disk_sectors_delta);
295 if (ret)
296 return ret;
297
298 if (disk_res &&
299 disk_sectors_delta > (s64) disk_res->sectors) {
300 ret = bch2_disk_reservation_add(c: trans->c, res: disk_res,
301 sectors: disk_sectors_delta - disk_res->sectors,
302 flags: !check_enospc || !usage_increasing
303 ? BCH_DISK_RESERVATION_NOFAIL : 0);
304 if (ret)
305 return ret;
306 }
307
308 /*
309 * Note:
310 * We always have to do an inode update - even when i_size/i_sectors
311 * aren't changing - for fsync to work properly; fsync relies on
312 * inode->bi_journal_seq which is updated by the trigger code:
313 */
314 ret = bch2_extent_update_i_size_sectors(trans, extent_iter: iter,
315 min(k->k.p.offset << 9, new_i_size),
316 i_sectors_delta) ?:
317 bch2_trans_update(trans, iter, k, 0) ?:
318 bch2_trans_commit(trans, disk_res, NULL,
319 flags: BCH_TRANS_COMMIT_no_check_rw|
320 BCH_TRANS_COMMIT_no_enospc);
321 if (unlikely(ret))
322 return ret;
323
324 if (i_sectors_delta_total)
325 *i_sectors_delta_total += i_sectors_delta;
326 bch2_btree_iter_set_pos(iter, new_pos: next_pos);
327 return 0;
328}
329
330static int bch2_write_index_default(struct bch_write_op *op)
331{
332 struct bch_fs *c = op->c;
333 struct bkey_buf sk;
334 struct keylist *keys = &op->insert_keys;
335 struct bkey_i *k = bch2_keylist_front(l: keys);
336 struct btree_trans *trans = bch2_trans_get(c);
337 struct btree_iter iter;
338 subvol_inum inum = {
339 .subvol = op->subvol,
340 .inum = k->k.p.inode,
341 };
342 int ret;
343
344 BUG_ON(!inum.subvol);
345
346 bch2_bkey_buf_init(s: &sk);
347
348 do {
349 bch2_trans_begin(trans);
350
351 k = bch2_keylist_front(l: keys);
352 bch2_bkey_buf_copy(s: &sk, c, src: k);
353
354 ret = bch2_subvolume_get_snapshot(trans, inum.subvol,
355 &sk.k->k.p.snapshot);
356 if (bch2_err_matches(ret, BCH_ERR_transaction_restart))
357 continue;
358 if (ret)
359 break;
360
361 bch2_trans_iter_init(trans, iter: &iter, btree_id: BTREE_ID_extents,
362 pos: bkey_start_pos(k: &sk.k->k),
363 flags: BTREE_ITER_SLOTS|BTREE_ITER_INTENT);
364
365 ret = bch2_bkey_set_needs_rebalance(c, sk.k, &op->opts) ?:
366 bch2_extent_update(trans, inum, iter: &iter, k: sk.k,
367 disk_res: &op->res,
368 new_i_size: op->new_i_size, i_sectors_delta_total: &op->i_sectors_delta,
369 check_enospc: op->flags & BCH_WRITE_CHECK_ENOSPC);
370 bch2_trans_iter_exit(trans, &iter);
371
372 if (bch2_err_matches(ret, BCH_ERR_transaction_restart))
373 continue;
374 if (ret)
375 break;
376
377 if (bkey_ge(l: iter.pos, r: k->k.p))
378 bch2_keylist_pop_front(&op->insert_keys);
379 else
380 bch2_cut_front(where: iter.pos, k);
381 } while (!bch2_keylist_empty(l: keys));
382
383 bch2_trans_put(trans);
384 bch2_bkey_buf_exit(s: &sk, c);
385
386 return ret;
387}
388
389/* Writes */
390
391void bch2_submit_wbio_replicas(struct bch_write_bio *wbio, struct bch_fs *c,
392 enum bch_data_type type,
393 const struct bkey_i *k,
394 bool nocow)
395{
396 struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k: bkey_i_to_s_c(k));
397 struct bch_write_bio *n;
398
399 BUG_ON(c->opts.nochanges);
400
401 bkey_for_each_ptr(ptrs, ptr) {
402 BUG_ON(!bch2_dev_exists2(c, ptr->dev));
403
404 struct bch_dev *ca = bch_dev_bkey_exists(c, idx: ptr->dev);
405
406 if (to_entry(ptr + 1) < ptrs.end) {
407 n = to_wbio(bio_alloc_clone(NULL, &wbio->bio,
408 GFP_NOFS, &ca->replica_set));
409
410 n->bio.bi_end_io = wbio->bio.bi_end_io;
411 n->bio.bi_private = wbio->bio.bi_private;
412 n->parent = wbio;
413 n->split = true;
414 n->bounce = false;
415 n->put_bio = true;
416 n->bio.bi_opf = wbio->bio.bi_opf;
417 bio_inc_remaining(bio: &wbio->bio);
418 } else {
419 n = wbio;
420 n->split = false;
421 }
422
423 n->c = c;
424 n->dev = ptr->dev;
425 n->have_ioref = nocow || bch2_dev_get_ioref(ca,
426 rw: type == BCH_DATA_btree ? READ : WRITE);
427 n->nocow = nocow;
428 n->submit_time = local_clock();
429 n->inode_offset = bkey_start_offset(k: &k->k);
430 n->bio.bi_iter.bi_sector = ptr->offset;
431
432 if (likely(n->have_ioref)) {
433 this_cpu_add(ca->io_done->sectors[WRITE][type],
434 bio_sectors(&n->bio));
435
436 bio_set_dev(bio: &n->bio, bdev: ca->disk_sb.bdev);
437
438 if (type != BCH_DATA_btree && unlikely(c->opts.no_data_io)) {
439 bio_endio(&n->bio);
440 continue;
441 }
442
443 submit_bio(bio: &n->bio);
444 } else {
445 n->bio.bi_status = BLK_STS_REMOVED;
446 bio_endio(&n->bio);
447 }
448 }
449}
450
451static void __bch2_write(struct bch_write_op *);
452
453static void bch2_write_done(struct closure *cl)
454{
455 struct bch_write_op *op = container_of(cl, struct bch_write_op, cl);
456 struct bch_fs *c = op->c;
457
458 EBUG_ON(op->open_buckets.nr);
459
460 bch2_time_stats_update(stats: &c->times[BCH_TIME_data_write], start: op->start_time);
461 bch2_disk_reservation_put(c, res: &op->res);
462
463 if (!(op->flags & BCH_WRITE_MOVE))
464 bch2_write_ref_put(c, ref: BCH_WRITE_REF_write);
465 bch2_keylist_free(l: &op->insert_keys, inline_keys: op->inline_keys);
466
467 EBUG_ON(cl->parent);
468 closure_debug_destroy(cl);
469 if (op->end_io)
470 op->end_io(op);
471}
472
473static noinline int bch2_write_drop_io_error_ptrs(struct bch_write_op *op)
474{
475 struct keylist *keys = &op->insert_keys;
476 struct bch_extent_ptr *ptr;
477 struct bkey_i *src, *dst = keys->keys, *n;
478
479 for (src = keys->keys; src != keys->top; src = n) {
480 n = bkey_next(k: src);
481
482 if (bkey_extent_is_direct_data(k: &src->k)) {
483 bch2_bkey_drop_ptrs(bkey_i_to_s(src), ptr,
484 test_bit(ptr->dev, op->failed.d));
485
486 if (!bch2_bkey_nr_ptrs(bkey_i_to_s_c(k: src)))
487 return -EIO;
488 }
489
490 if (dst != src)
491 memmove_u64s_down(dst, src, u64s: src->k.u64s);
492 dst = bkey_next(k: dst);
493 }
494
495 keys->top = dst;
496 return 0;
497}
498
499/**
500 * __bch2_write_index - after a write, update index to point to new data
501 * @op: bch_write_op to process
502 */
503static void __bch2_write_index(struct bch_write_op *op)
504{
505 struct bch_fs *c = op->c;
506 struct keylist *keys = &op->insert_keys;
507 unsigned dev;
508 int ret = 0;
509
510 if (unlikely(op->flags & BCH_WRITE_IO_ERROR)) {
511 ret = bch2_write_drop_io_error_ptrs(op);
512 if (ret)
513 goto err;
514 }
515
516 if (!bch2_keylist_empty(l: keys)) {
517 u64 sectors_start = keylist_sectors(keys);
518
519 ret = !(op->flags & BCH_WRITE_MOVE)
520 ? bch2_write_index_default(op)
521 : bch2_data_update_index_update(op);
522
523 BUG_ON(bch2_err_matches(ret, BCH_ERR_transaction_restart));
524 BUG_ON(keylist_sectors(keys) && !ret);
525
526 op->written += sectors_start - keylist_sectors(keys);
527
528 if (ret && !bch2_err_matches(ret, EROFS)) {
529 struct bkey_i *insert = bch2_keylist_front(l: &op->insert_keys);
530
531 bch_err_inum_offset_ratelimited(c,
532 insert->k.p.inode, insert->k.p.offset << 9,
533 "%s write error while doing btree update: %s",
534 op->flags & BCH_WRITE_MOVE ? "move" : "user",
535 bch2_err_str(ret));
536 }
537
538 if (ret)
539 goto err;
540 }
541out:
542 /* If some a bucket wasn't written, we can't erasure code it: */
543 for_each_set_bit(dev, op->failed.d, BCH_SB_MEMBERS_MAX)
544 bch2_open_bucket_write_error(c, &op->open_buckets, dev);
545
546 bch2_open_buckets_put(c, ptrs: &op->open_buckets);
547 return;
548err:
549 keys->top = keys->keys;
550 op->error = ret;
551 op->flags |= BCH_WRITE_DONE;
552 goto out;
553}
554
555static inline void __wp_update_state(struct write_point *wp, enum write_point_state state)
556{
557 if (state != wp->state) {
558 u64 now = ktime_get_ns();
559
560 if (wp->last_state_change &&
561 time_after64(now, wp->last_state_change))
562 wp->time[wp->state] += now - wp->last_state_change;
563 wp->state = state;
564 wp->last_state_change = now;
565 }
566}
567
568static inline void wp_update_state(struct write_point *wp, bool running)
569{
570 enum write_point_state state;
571
572 state = running ? WRITE_POINT_running :
573 !list_empty(head: &wp->writes) ? WRITE_POINT_waiting_io
574 : WRITE_POINT_stopped;
575
576 __wp_update_state(wp, state);
577}
578
579static CLOSURE_CALLBACK(bch2_write_index)
580{
581 closure_type(op, struct bch_write_op, cl);
582 struct write_point *wp = op->wp;
583 struct workqueue_struct *wq = index_update_wq(op);
584 unsigned long flags;
585
586 if ((op->flags & BCH_WRITE_DONE) &&
587 (op->flags & BCH_WRITE_MOVE))
588 bch2_bio_free_pages_pool(c: op->c, bio: &op->wbio.bio);
589
590 spin_lock_irqsave(&wp->writes_lock, flags);
591 if (wp->state == WRITE_POINT_waiting_io)
592 __wp_update_state(wp, state: WRITE_POINT_waiting_work);
593 list_add_tail(new: &op->wp_list, head: &wp->writes);
594 spin_unlock_irqrestore (lock: &wp->writes_lock, flags);
595
596 queue_work(wq, work: &wp->index_update_work);
597}
598
599static inline void bch2_write_queue(struct bch_write_op *op, struct write_point *wp)
600{
601 op->wp = wp;
602
603 if (wp->state == WRITE_POINT_stopped) {
604 spin_lock_irq(lock: &wp->writes_lock);
605 __wp_update_state(wp, state: WRITE_POINT_waiting_io);
606 spin_unlock_irq(lock: &wp->writes_lock);
607 }
608}
609
610void bch2_write_point_do_index_updates(struct work_struct *work)
611{
612 struct write_point *wp =
613 container_of(work, struct write_point, index_update_work);
614 struct bch_write_op *op;
615
616 while (1) {
617 spin_lock_irq(lock: &wp->writes_lock);
618 op = list_first_entry_or_null(&wp->writes, struct bch_write_op, wp_list);
619 if (op)
620 list_del(entry: &op->wp_list);
621 wp_update_state(wp, running: op != NULL);
622 spin_unlock_irq(lock: &wp->writes_lock);
623
624 if (!op)
625 break;
626
627 op->flags |= BCH_WRITE_IN_WORKER;
628
629 __bch2_write_index(op);
630
631 if (!(op->flags & BCH_WRITE_DONE))
632 __bch2_write(op);
633 else
634 bch2_write_done(cl: &op->cl);
635 }
636}
637
638static void bch2_write_endio(struct bio *bio)
639{
640 struct closure *cl = bio->bi_private;
641 struct bch_write_op *op = container_of(cl, struct bch_write_op, cl);
642 struct bch_write_bio *wbio = to_wbio(bio);
643 struct bch_write_bio *parent = wbio->split ? wbio->parent : NULL;
644 struct bch_fs *c = wbio->c;
645 struct bch_dev *ca = bch_dev_bkey_exists(c, idx: wbio->dev);
646
647 if (bch2_dev_inum_io_err_on(bio->bi_status, ca, BCH_MEMBER_ERROR_write,
648 op->pos.inode,
649 wbio->inode_offset << 9,
650 "data write error: %s",
651 bch2_blk_status_to_str(bio->bi_status))) {
652 set_bit(nr: wbio->dev, addr: op->failed.d);
653 op->flags |= BCH_WRITE_IO_ERROR;
654 }
655
656 if (wbio->nocow)
657 set_bit(nr: wbio->dev, addr: op->devs_need_flush->d);
658
659 if (wbio->have_ioref) {
660 bch2_latency_acct(ca, submit_time: wbio->submit_time, WRITE);
661 percpu_ref_put(ref: &ca->io_ref);
662 }
663
664 if (wbio->bounce)
665 bch2_bio_free_pages_pool(c, bio);
666
667 if (wbio->put_bio)
668 bio_put(bio);
669
670 if (parent)
671 bio_endio(&parent->bio);
672 else
673 closure_put(cl);
674}
675
676static void init_append_extent(struct bch_write_op *op,
677 struct write_point *wp,
678 struct bversion version,
679 struct bch_extent_crc_unpacked crc)
680{
681 struct bkey_i_extent *e;
682
683 op->pos.offset += crc.uncompressed_size;
684
685 e = bkey_extent_init(k: op->insert_keys.top);
686 e->k.p = op->pos;
687 e->k.size = crc.uncompressed_size;
688 e->k.version = version;
689
690 if (crc.csum_type ||
691 crc.compression_type ||
692 crc.nonce)
693 bch2_extent_crc_append(&e->k_i, crc);
694
695 bch2_alloc_sectors_append_ptrs_inlined(c: op->c, wp, k: &e->k_i, sectors: crc.compressed_size,
696 cached: op->flags & BCH_WRITE_CACHED);
697
698 bch2_keylist_push(l: &op->insert_keys);
699}
700
701static struct bio *bch2_write_bio_alloc(struct bch_fs *c,
702 struct write_point *wp,
703 struct bio *src,
704 bool *page_alloc_failed,
705 void *buf)
706{
707 struct bch_write_bio *wbio;
708 struct bio *bio;
709 unsigned output_available =
710 min(wp->sectors_free << 9, src->bi_iter.bi_size);
711 unsigned pages = DIV_ROUND_UP(output_available +
712 (buf
713 ? ((unsigned long) buf & (PAGE_SIZE - 1))
714 : 0), PAGE_SIZE);
715
716 pages = min(pages, BIO_MAX_VECS);
717
718 bio = bio_alloc_bioset(NULL, nr_vecs: pages, opf: 0,
719 GFP_NOFS, bs: &c->bio_write);
720 wbio = wbio_init(bio);
721 wbio->put_bio = true;
722 /* copy WRITE_SYNC flag */
723 wbio->bio.bi_opf = src->bi_opf;
724
725 if (buf) {
726 bch2_bio_map(bio, base: buf, output_available);
727 return bio;
728 }
729
730 wbio->bounce = true;
731
732 /*
733 * We can't use mempool for more than c->sb.encoded_extent_max
734 * worth of pages, but we'd like to allocate more if we can:
735 */
736 bch2_bio_alloc_pages_pool(c, bio,
737 min_t(unsigned, output_available,
738 c->opts.encoded_extent_max));
739
740 if (bio->bi_iter.bi_size < output_available)
741 *page_alloc_failed =
742 bch2_bio_alloc_pages(bio,
743 output_available -
744 bio->bi_iter.bi_size,
745 GFP_NOFS) != 0;
746
747 return bio;
748}
749
750static int bch2_write_rechecksum(struct bch_fs *c,
751 struct bch_write_op *op,
752 unsigned new_csum_type)
753{
754 struct bio *bio = &op->wbio.bio;
755 struct bch_extent_crc_unpacked new_crc;
756 int ret;
757
758 /* bch2_rechecksum_bio() can't encrypt or decrypt data: */
759
760 if (bch2_csum_type_is_encryption(type: op->crc.csum_type) !=
761 bch2_csum_type_is_encryption(type: new_csum_type))
762 new_csum_type = op->crc.csum_type;
763
764 ret = bch2_rechecksum_bio(c, bio, op->version, op->crc,
765 NULL, &new_crc,
766 op->crc.offset, op->crc.live_size,
767 new_csum_type);
768 if (ret)
769 return ret;
770
771 bio_advance(bio, nbytes: op->crc.offset << 9);
772 bio->bi_iter.bi_size = op->crc.live_size << 9;
773 op->crc = new_crc;
774 return 0;
775}
776
777static int bch2_write_decrypt(struct bch_write_op *op)
778{
779 struct bch_fs *c = op->c;
780 struct nonce nonce = extent_nonce(version: op->version, crc: op->crc);
781 struct bch_csum csum;
782 int ret;
783
784 if (!bch2_csum_type_is_encryption(type: op->crc.csum_type))
785 return 0;
786
787 /*
788 * If we need to decrypt data in the write path, we'll no longer be able
789 * to verify the existing checksum (poly1305 mac, in this case) after
790 * it's decrypted - this is the last point we'll be able to reverify the
791 * checksum:
792 */
793 csum = bch2_checksum_bio(c, op->crc.csum_type, nonce, &op->wbio.bio);
794 if (bch2_crc_cmp(l: op->crc.csum, r: csum) && !c->opts.no_data_io)
795 return -EIO;
796
797 ret = bch2_encrypt_bio(c, type: op->crc.csum_type, nonce, bio: &op->wbio.bio);
798 op->crc.csum_type = 0;
799 op->crc.csum = (struct bch_csum) { 0, 0 };
800 return ret;
801}
802
803static enum prep_encoded_ret {
804 PREP_ENCODED_OK,
805 PREP_ENCODED_ERR,
806 PREP_ENCODED_CHECKSUM_ERR,
807 PREP_ENCODED_DO_WRITE,
808} bch2_write_prep_encoded_data(struct bch_write_op *op, struct write_point *wp)
809{
810 struct bch_fs *c = op->c;
811 struct bio *bio = &op->wbio.bio;
812
813 if (!(op->flags & BCH_WRITE_DATA_ENCODED))
814 return PREP_ENCODED_OK;
815
816 BUG_ON(bio_sectors(bio) != op->crc.compressed_size);
817
818 /* Can we just write the entire extent as is? */
819 if (op->crc.uncompressed_size == op->crc.live_size &&
820 op->crc.uncompressed_size <= c->opts.encoded_extent_max >> 9 &&
821 op->crc.compressed_size <= wp->sectors_free &&
822 (op->crc.compression_type == bch2_compression_opt_to_type(v: op->compression_opt) ||
823 op->incompressible)) {
824 if (!crc_is_compressed(crc: op->crc) &&
825 op->csum_type != op->crc.csum_type &&
826 bch2_write_rechecksum(c, op, new_csum_type: op->csum_type) &&
827 !c->opts.no_data_io)
828 return PREP_ENCODED_CHECKSUM_ERR;
829
830 return PREP_ENCODED_DO_WRITE;
831 }
832
833 /*
834 * If the data is compressed and we couldn't write the entire extent as
835 * is, we have to decompress it:
836 */
837 if (crc_is_compressed(crc: op->crc)) {
838 struct bch_csum csum;
839
840 if (bch2_write_decrypt(op))
841 return PREP_ENCODED_CHECKSUM_ERR;
842
843 /* Last point we can still verify checksum: */
844 csum = bch2_checksum_bio(c, op->crc.csum_type,
845 extent_nonce(version: op->version, crc: op->crc),
846 bio);
847 if (bch2_crc_cmp(l: op->crc.csum, r: csum) && !c->opts.no_data_io)
848 return PREP_ENCODED_CHECKSUM_ERR;
849
850 if (bch2_bio_uncompress_inplace(c, bio, &op->crc))
851 return PREP_ENCODED_ERR;
852 }
853
854 /*
855 * No longer have compressed data after this point - data might be
856 * encrypted:
857 */
858
859 /*
860 * If the data is checksummed and we're only writing a subset,
861 * rechecksum and adjust bio to point to currently live data:
862 */
863 if ((op->crc.live_size != op->crc.uncompressed_size ||
864 op->crc.csum_type != op->csum_type) &&
865 bch2_write_rechecksum(c, op, new_csum_type: op->csum_type) &&
866 !c->opts.no_data_io)
867 return PREP_ENCODED_CHECKSUM_ERR;
868
869 /*
870 * If we want to compress the data, it has to be decrypted:
871 */
872 if ((op->compression_opt ||
873 bch2_csum_type_is_encryption(type: op->crc.csum_type) !=
874 bch2_csum_type_is_encryption(type: op->csum_type)) &&
875 bch2_write_decrypt(op))
876 return PREP_ENCODED_CHECKSUM_ERR;
877
878 return PREP_ENCODED_OK;
879}
880
881static int bch2_write_extent(struct bch_write_op *op, struct write_point *wp,
882 struct bio **_dst)
883{
884 struct bch_fs *c = op->c;
885 struct bio *src = &op->wbio.bio, *dst = src;
886 struct bvec_iter saved_iter;
887 void *ec_buf;
888 unsigned total_output = 0, total_input = 0;
889 bool bounce = false;
890 bool page_alloc_failed = false;
891 int ret, more = 0;
892
893 BUG_ON(!bio_sectors(src));
894
895 ec_buf = bch2_writepoint_ec_buf(c, wp);
896
897 switch (bch2_write_prep_encoded_data(op, wp)) {
898 case PREP_ENCODED_OK:
899 break;
900 case PREP_ENCODED_ERR:
901 ret = -EIO;
902 goto err;
903 case PREP_ENCODED_CHECKSUM_ERR:
904 goto csum_err;
905 case PREP_ENCODED_DO_WRITE:
906 /* XXX look for bug here */
907 if (ec_buf) {
908 dst = bch2_write_bio_alloc(c, wp, src,
909 page_alloc_failed: &page_alloc_failed,
910 buf: ec_buf);
911 bio_copy_data(dst, src);
912 bounce = true;
913 }
914 init_append_extent(op, wp, version: op->version, crc: op->crc);
915 goto do_write;
916 }
917
918 if (ec_buf ||
919 op->compression_opt ||
920 (op->csum_type &&
921 !(op->flags & BCH_WRITE_PAGES_STABLE)) ||
922 (bch2_csum_type_is_encryption(type: op->csum_type) &&
923 !(op->flags & BCH_WRITE_PAGES_OWNED))) {
924 dst = bch2_write_bio_alloc(c, wp, src,
925 page_alloc_failed: &page_alloc_failed,
926 buf: ec_buf);
927 bounce = true;
928 }
929
930 saved_iter = dst->bi_iter;
931
932 do {
933 struct bch_extent_crc_unpacked crc = { 0 };
934 struct bversion version = op->version;
935 size_t dst_len = 0, src_len = 0;
936
937 if (page_alloc_failed &&
938 dst->bi_iter.bi_size < (wp->sectors_free << 9) &&
939 dst->bi_iter.bi_size < c->opts.encoded_extent_max)
940 break;
941
942 BUG_ON(op->compression_opt &&
943 (op->flags & BCH_WRITE_DATA_ENCODED) &&
944 bch2_csum_type_is_encryption(op->crc.csum_type));
945 BUG_ON(op->compression_opt && !bounce);
946
947 crc.compression_type = op->incompressible
948 ? BCH_COMPRESSION_TYPE_incompressible
949 : op->compression_opt
950 ? bch2_bio_compress(c, dst, &dst_len, src, &src_len,
951 op->compression_opt)
952 : 0;
953 if (!crc_is_compressed(crc)) {
954 dst_len = min(dst->bi_iter.bi_size, src->bi_iter.bi_size);
955 dst_len = min_t(unsigned, dst_len, wp->sectors_free << 9);
956
957 if (op->csum_type)
958 dst_len = min_t(unsigned, dst_len,
959 c->opts.encoded_extent_max);
960
961 if (bounce) {
962 swap(dst->bi_iter.bi_size, dst_len);
963 bio_copy_data(dst, src);
964 swap(dst->bi_iter.bi_size, dst_len);
965 }
966
967 src_len = dst_len;
968 }
969
970 BUG_ON(!src_len || !dst_len);
971
972 if (bch2_csum_type_is_encryption(type: op->csum_type)) {
973 if (bversion_zero(v: version)) {
974 version.lo = atomic64_inc_return(v: &c->key_version);
975 } else {
976 crc.nonce = op->nonce;
977 op->nonce += src_len >> 9;
978 }
979 }
980
981 if ((op->flags & BCH_WRITE_DATA_ENCODED) &&
982 !crc_is_compressed(crc) &&
983 bch2_csum_type_is_encryption(type: op->crc.csum_type) ==
984 bch2_csum_type_is_encryption(type: op->csum_type)) {
985 u8 compression_type = crc.compression_type;
986 u16 nonce = crc.nonce;
987 /*
988 * Note: when we're using rechecksum(), we need to be
989 * checksumming @src because it has all the data our
990 * existing checksum covers - if we bounced (because we
991 * were trying to compress), @dst will only have the
992 * part of the data the new checksum will cover.
993 *
994 * But normally we want to be checksumming post bounce,
995 * because part of the reason for bouncing is so the
996 * data can't be modified (by userspace) while it's in
997 * flight.
998 */
999 if (bch2_rechecksum_bio(c, src, version, op->crc,
1000 &crc, &op->crc,
1001 src_len >> 9,
1002 bio_sectors(src) - (src_len >> 9),
1003 op->csum_type))
1004 goto csum_err;
1005 /*
1006 * rchecksum_bio sets compression_type on crc from op->crc,
1007 * this isn't always correct as sometimes we're changing
1008 * an extent from uncompressed to incompressible.
1009 */
1010 crc.compression_type = compression_type;
1011 crc.nonce = nonce;
1012 } else {
1013 if ((op->flags & BCH_WRITE_DATA_ENCODED) &&
1014 bch2_rechecksum_bio(c, src, version, op->crc,
1015 NULL, &op->crc,
1016 src_len >> 9,
1017 bio_sectors(src) - (src_len >> 9),
1018 op->crc.csum_type))
1019 goto csum_err;
1020
1021 crc.compressed_size = dst_len >> 9;
1022 crc.uncompressed_size = src_len >> 9;
1023 crc.live_size = src_len >> 9;
1024
1025 swap(dst->bi_iter.bi_size, dst_len);
1026 ret = bch2_encrypt_bio(c, type: op->csum_type,
1027 nonce: extent_nonce(version, crc), bio: dst);
1028 if (ret)
1029 goto err;
1030
1031 crc.csum = bch2_checksum_bio(c, op->csum_type,
1032 extent_nonce(version, crc), dst);
1033 crc.csum_type = op->csum_type;
1034 swap(dst->bi_iter.bi_size, dst_len);
1035 }
1036
1037 init_append_extent(op, wp, version, crc);
1038
1039 if (dst != src)
1040 bio_advance(bio: dst, nbytes: dst_len);
1041 bio_advance(bio: src, nbytes: src_len);
1042 total_output += dst_len;
1043 total_input += src_len;
1044 } while (dst->bi_iter.bi_size &&
1045 src->bi_iter.bi_size &&
1046 wp->sectors_free &&
1047 !bch2_keylist_realloc(&op->insert_keys,
1048 op->inline_keys,
1049 ARRAY_SIZE(op->inline_keys),
1050 BKEY_EXTENT_U64s_MAX));
1051
1052 more = src->bi_iter.bi_size != 0;
1053
1054 dst->bi_iter = saved_iter;
1055
1056 if (dst == src && more) {
1057 BUG_ON(total_output != total_input);
1058
1059 dst = bio_split(bio: src, sectors: total_input >> 9,
1060 GFP_NOFS, bs: &c->bio_write);
1061 wbio_init(bio: dst)->put_bio = true;
1062 /* copy WRITE_SYNC flag */
1063 dst->bi_opf = src->bi_opf;
1064 }
1065
1066 dst->bi_iter.bi_size = total_output;
1067do_write:
1068 *_dst = dst;
1069 return more;
1070csum_err:
1071 bch_err(c, "%s writ error: error verifying existing checksum while rewriting existing data (memory corruption?)",
1072 op->flags & BCH_WRITE_MOVE ? "move" : "user");
1073 ret = -EIO;
1074err:
1075 if (to_wbio(dst)->bounce)
1076 bch2_bio_free_pages_pool(c, bio: dst);
1077 if (to_wbio(dst)->put_bio)
1078 bio_put(dst);
1079
1080 return ret;
1081}
1082
1083static bool bch2_extent_is_writeable(struct bch_write_op *op,
1084 struct bkey_s_c k)
1085{
1086 struct bch_fs *c = op->c;
1087 struct bkey_s_c_extent e;
1088 struct extent_ptr_decoded p;
1089 const union bch_extent_entry *entry;
1090 unsigned replicas = 0;
1091
1092 if (k.k->type != KEY_TYPE_extent)
1093 return false;
1094
1095 e = bkey_s_c_to_extent(k);
1096 extent_for_each_ptr_decode(e, p, entry) {
1097 if (crc_is_encoded(crc: p.crc) || p.has_ec)
1098 return false;
1099
1100 replicas += bch2_extent_ptr_durability(c, &p);
1101 }
1102
1103 return replicas >= op->opts.data_replicas;
1104}
1105
1106static inline void bch2_nocow_write_unlock(struct bch_write_op *op)
1107{
1108 struct bch_fs *c = op->c;
1109
1110 for_each_keylist_key(&op->insert_keys, k) {
1111 struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k: bkey_i_to_s_c(k));
1112
1113 bkey_for_each_ptr(ptrs, ptr)
1114 bch2_bucket_nocow_unlock(&c->nocow_locks,
1115 PTR_BUCKET_POS(c, ptr),
1116 BUCKET_NOCOW_LOCK_UPDATE);
1117 }
1118}
1119
1120static int bch2_nocow_write_convert_one_unwritten(struct btree_trans *trans,
1121 struct btree_iter *iter,
1122 struct bkey_i *orig,
1123 struct bkey_s_c k,
1124 u64 new_i_size)
1125{
1126 if (!bch2_extents_match(bkey_i_to_s_c(k: orig), k)) {
1127 /* trace this */
1128 return 0;
1129 }
1130
1131 struct bkey_i *new = bch2_bkey_make_mut_noupdate(trans, k);
1132 int ret = PTR_ERR_OR_ZERO(ptr: new);
1133 if (ret)
1134 return ret;
1135
1136 bch2_cut_front(where: bkey_start_pos(k: &orig->k), k: new);
1137 bch2_cut_back(where: orig->k.p, k: new);
1138
1139 struct bkey_ptrs ptrs = bch2_bkey_ptrs(k: bkey_i_to_s(k: new));
1140 bkey_for_each_ptr(ptrs, ptr)
1141 ptr->unwritten = 0;
1142
1143 /*
1144 * Note that we're not calling bch2_subvol_get_snapshot() in this path -
1145 * that was done when we kicked off the write, and here it's important
1146 * that we update the extent that we wrote to - even if a snapshot has
1147 * since been created. The write is still outstanding, so we're ok
1148 * w.r.t. snapshot atomicity:
1149 */
1150 return bch2_extent_update_i_size_sectors(trans, extent_iter: iter,
1151 min(new->k.p.offset << 9, new_i_size), i_sectors_delta: 0) ?:
1152 bch2_trans_update(trans, iter, new,
1153 BTREE_UPDATE_INTERNAL_SNAPSHOT_NODE);
1154}
1155
1156static void bch2_nocow_write_convert_unwritten(struct bch_write_op *op)
1157{
1158 struct bch_fs *c = op->c;
1159 struct btree_trans *trans = bch2_trans_get(c);
1160
1161 for_each_keylist_key(&op->insert_keys, orig) {
1162 int ret = for_each_btree_key_upto_commit(trans, iter, BTREE_ID_extents,
1163 bkey_start_pos(&orig->k), orig->k.p,
1164 BTREE_ITER_INTENT, k,
1165 NULL, NULL, BCH_TRANS_COMMIT_no_enospc, ({
1166 bch2_nocow_write_convert_one_unwritten(trans, &iter, orig, k, op->new_i_size);
1167 }));
1168
1169 if (ret && !bch2_err_matches(ret, EROFS)) {
1170 struct bkey_i *insert = bch2_keylist_front(l: &op->insert_keys);
1171
1172 bch_err_inum_offset_ratelimited(c,
1173 insert->k.p.inode, insert->k.p.offset << 9,
1174 "%s write error while doing btree update: %s",
1175 op->flags & BCH_WRITE_MOVE ? "move" : "user",
1176 bch2_err_str(ret));
1177 }
1178
1179 if (ret) {
1180 op->error = ret;
1181 break;
1182 }
1183 }
1184
1185 bch2_trans_put(trans);
1186}
1187
1188static void __bch2_nocow_write_done(struct bch_write_op *op)
1189{
1190 bch2_nocow_write_unlock(op);
1191
1192 if (unlikely(op->flags & BCH_WRITE_IO_ERROR)) {
1193 op->error = -EIO;
1194 } else if (unlikely(op->flags & BCH_WRITE_CONVERT_UNWRITTEN))
1195 bch2_nocow_write_convert_unwritten(op);
1196}
1197
1198static CLOSURE_CALLBACK(bch2_nocow_write_done)
1199{
1200 closure_type(op, struct bch_write_op, cl);
1201
1202 __bch2_nocow_write_done(op);
1203 bch2_write_done(cl);
1204}
1205
1206struct bucket_to_lock {
1207 struct bpos b;
1208 unsigned gen;
1209 struct nocow_lock_bucket *l;
1210};
1211
1212static void bch2_nocow_write(struct bch_write_op *op)
1213{
1214 struct bch_fs *c = op->c;
1215 struct btree_trans *trans;
1216 struct btree_iter iter;
1217 struct bkey_s_c k;
1218 DARRAY_PREALLOCATED(struct bucket_to_lock, 3) buckets;
1219 u32 snapshot;
1220 struct bucket_to_lock *stale_at;
1221 int ret;
1222
1223 if (op->flags & BCH_WRITE_MOVE)
1224 return;
1225
1226 darray_init(&buckets);
1227 trans = bch2_trans_get(c);
1228retry:
1229 bch2_trans_begin(trans);
1230
1231 ret = bch2_subvolume_get_snapshot(trans, op->subvol, &snapshot);
1232 if (unlikely(ret))
1233 goto err;
1234
1235 bch2_trans_iter_init(trans, iter: &iter, btree_id: BTREE_ID_extents,
1236 pos: SPOS(inode: op->pos.inode, offset: op->pos.offset, snapshot),
1237 flags: BTREE_ITER_SLOTS);
1238 while (1) {
1239 struct bio *bio = &op->wbio.bio;
1240
1241 buckets.nr = 0;
1242
1243 k = bch2_btree_iter_peek_slot(&iter);
1244 ret = bkey_err(k);
1245 if (ret)
1246 break;
1247
1248 /* fall back to normal cow write path? */
1249 if (unlikely(k.k->p.snapshot != snapshot ||
1250 !bch2_extent_is_writeable(op, k)))
1251 break;
1252
1253 if (bch2_keylist_realloc(&op->insert_keys,
1254 op->inline_keys,
1255 ARRAY_SIZE(op->inline_keys),
1256 k.k->u64s))
1257 break;
1258
1259 /* Get iorefs before dropping btree locks: */
1260 struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k);
1261 bkey_for_each_ptr(ptrs, ptr) {
1262 struct bpos b = PTR_BUCKET_POS(c, ptr);
1263 struct nocow_lock_bucket *l =
1264 bucket_nocow_lock(t: &c->nocow_locks, dev_bucket: bucket_to_u64(bucket: b));
1265 prefetch(l);
1266
1267 if (unlikely(!bch2_dev_get_ioref(bch_dev_bkey_exists(c, ptr->dev), WRITE)))
1268 goto err_get_ioref;
1269
1270 /* XXX allocating memory with btree locks held - rare */
1271 darray_push_gfp(&buckets, ((struct bucket_to_lock) {
1272 .b = b, .gen = ptr->gen, .l = l,
1273 }), GFP_KERNEL|__GFP_NOFAIL);
1274
1275 if (ptr->unwritten)
1276 op->flags |= BCH_WRITE_CONVERT_UNWRITTEN;
1277 }
1278
1279 /* Unlock before taking nocow locks, doing IO: */
1280 bkey_reassemble(dst: op->insert_keys.top, src: k);
1281 bch2_trans_unlock(trans);
1282
1283 bch2_cut_front(where: op->pos, k: op->insert_keys.top);
1284 if (op->flags & BCH_WRITE_CONVERT_UNWRITTEN)
1285 bch2_cut_back(POS(op->pos.inode, op->pos.offset + bio_sectors(bio)), k: op->insert_keys.top);
1286
1287 darray_for_each(buckets, i) {
1288 struct bch_dev *ca = bch_dev_bkey_exists(c, idx: i->b.inode);
1289
1290 __bch2_bucket_nocow_lock(&c->nocow_locks, i->l,
1291 bucket_to_u64(bucket: i->b),
1292 BUCKET_NOCOW_LOCK_UPDATE);
1293
1294 rcu_read_lock();
1295 bool stale = gen_after(a: *bucket_gen(ca, b: i->b.offset), b: i->gen);
1296 rcu_read_unlock();
1297
1298 if (unlikely(stale)) {
1299 stale_at = i;
1300 goto err_bucket_stale;
1301 }
1302 }
1303
1304 bio = &op->wbio.bio;
1305 if (k.k->p.offset < op->pos.offset + bio_sectors(bio)) {
1306 bio = bio_split(bio, sectors: k.k->p.offset - op->pos.offset,
1307 GFP_KERNEL, bs: &c->bio_write);
1308 wbio_init(bio)->put_bio = true;
1309 bio->bi_opf = op->wbio.bio.bi_opf;
1310 } else {
1311 op->flags |= BCH_WRITE_DONE;
1312 }
1313
1314 op->pos.offset += bio_sectors(bio);
1315 op->written += bio_sectors(bio);
1316
1317 bio->bi_end_io = bch2_write_endio;
1318 bio->bi_private = &op->cl;
1319 bio->bi_opf |= REQ_OP_WRITE;
1320 closure_get(cl: &op->cl);
1321 bch2_submit_wbio_replicas(to_wbio(bio), c, type: BCH_DATA_user,
1322 k: op->insert_keys.top, nocow: true);
1323
1324 bch2_keylist_push(l: &op->insert_keys);
1325 if (op->flags & BCH_WRITE_DONE)
1326 break;
1327 bch2_btree_iter_advance(&iter);
1328 }
1329out:
1330 bch2_trans_iter_exit(trans, &iter);
1331err:
1332 if (bch2_err_matches(ret, BCH_ERR_transaction_restart))
1333 goto retry;
1334
1335 if (ret) {
1336 bch_err_inum_offset_ratelimited(c,
1337 op->pos.inode, op->pos.offset << 9,
1338 "%s: btree lookup error %s", __func__, bch2_err_str(ret));
1339 op->error = ret;
1340 op->flags |= BCH_WRITE_DONE;
1341 }
1342
1343 bch2_trans_put(trans);
1344 darray_exit(&buckets);
1345
1346 /* fallback to cow write path? */
1347 if (!(op->flags & BCH_WRITE_DONE)) {
1348 closure_sync(cl: &op->cl);
1349 __bch2_nocow_write_done(op);
1350 op->insert_keys.top = op->insert_keys.keys;
1351 } else if (op->flags & BCH_WRITE_SYNC) {
1352 closure_sync(cl: &op->cl);
1353 bch2_nocow_write_done(ws: &op->cl.work);
1354 } else {
1355 /*
1356 * XXX
1357 * needs to run out of process context because ei_quota_lock is
1358 * a mutex
1359 */
1360 continue_at(&op->cl, bch2_nocow_write_done, index_update_wq(op));
1361 }
1362 return;
1363err_get_ioref:
1364 darray_for_each(buckets, i)
1365 percpu_ref_put(ref: &bch_dev_bkey_exists(c, idx: i->b.inode)->io_ref);
1366
1367 /* Fall back to COW path: */
1368 goto out;
1369err_bucket_stale:
1370 darray_for_each(buckets, i) {
1371 bch2_bucket_nocow_unlock(&c->nocow_locks, i->b, BUCKET_NOCOW_LOCK_UPDATE);
1372 if (i == stale_at)
1373 break;
1374 }
1375
1376 /* We can retry this: */
1377 ret = -BCH_ERR_transaction_restart;
1378 goto err_get_ioref;
1379}
1380
1381static void __bch2_write(struct bch_write_op *op)
1382{
1383 struct bch_fs *c = op->c;
1384 struct write_point *wp = NULL;
1385 struct bio *bio = NULL;
1386 unsigned nofs_flags;
1387 int ret;
1388
1389 nofs_flags = memalloc_nofs_save();
1390
1391 if (unlikely(op->opts.nocow && c->opts.nocow_enabled)) {
1392 bch2_nocow_write(op);
1393 if (op->flags & BCH_WRITE_DONE)
1394 goto out_nofs_restore;
1395 }
1396again:
1397 memset(&op->failed, 0, sizeof(op->failed));
1398
1399 do {
1400 struct bkey_i *key_to_write;
1401 unsigned key_to_write_offset = op->insert_keys.top_p -
1402 op->insert_keys.keys_p;
1403
1404 /* +1 for possible cache device: */
1405 if (op->open_buckets.nr + op->nr_replicas + 1 >
1406 ARRAY_SIZE(op->open_buckets.v))
1407 break;
1408
1409 if (bch2_keylist_realloc(&op->insert_keys,
1410 op->inline_keys,
1411 ARRAY_SIZE(op->inline_keys),
1412 BKEY_EXTENT_U64s_MAX))
1413 break;
1414
1415 /*
1416 * The copygc thread is now global, which means it's no longer
1417 * freeing up space on specific disks, which means that
1418 * allocations for specific disks may hang arbitrarily long:
1419 */
1420 ret = bch2_trans_do(c, NULL, NULL, 0,
1421 bch2_alloc_sectors_start_trans(trans,
1422 op->target,
1423 op->opts.erasure_code && !(op->flags & BCH_WRITE_CACHED),
1424 op->write_point,
1425 &op->devs_have,
1426 op->nr_replicas,
1427 op->nr_replicas_required,
1428 op->watermark,
1429 op->flags,
1430 (op->flags & (BCH_WRITE_ALLOC_NOWAIT|
1431 BCH_WRITE_ONLY_SPECIFIED_DEVS))
1432 ? NULL : &op->cl, &wp));
1433 if (unlikely(ret)) {
1434 if (bch2_err_matches(ret, BCH_ERR_operation_blocked))
1435 break;
1436
1437 goto err;
1438 }
1439
1440 EBUG_ON(!wp);
1441
1442 bch2_open_bucket_get(c, wp, ptrs: &op->open_buckets);
1443 ret = bch2_write_extent(op, wp, dst: &bio);
1444
1445 bch2_alloc_sectors_done_inlined(c, wp);
1446err:
1447 if (ret <= 0) {
1448 op->flags |= BCH_WRITE_DONE;
1449
1450 if (ret < 0) {
1451 if (!(op->flags & BCH_WRITE_ALLOC_NOWAIT))
1452 bch_err_inum_offset_ratelimited(c,
1453 op->pos.inode,
1454 op->pos.offset << 9,
1455 "%s(): %s error: %s", __func__,
1456 op->flags & BCH_WRITE_MOVE ? "move" : "user",
1457 bch2_err_str(ret));
1458 op->error = ret;
1459 break;
1460 }
1461 }
1462
1463 bio->bi_end_io = bch2_write_endio;
1464 bio->bi_private = &op->cl;
1465 bio->bi_opf |= REQ_OP_WRITE;
1466
1467 closure_get(cl: bio->bi_private);
1468
1469 key_to_write = (void *) (op->insert_keys.keys_p +
1470 key_to_write_offset);
1471
1472 bch2_submit_wbio_replicas(to_wbio(bio), c, type: BCH_DATA_user,
1473 k: key_to_write, nocow: false);
1474 } while (ret);
1475
1476 /*
1477 * Sync or no?
1478 *
1479 * If we're running asynchronously, wne may still want to block
1480 * synchronously here if we weren't able to submit all of the IO at
1481 * once, as that signals backpressure to the caller.
1482 */
1483 if ((op->flags & BCH_WRITE_SYNC) ||
1484 (!(op->flags & BCH_WRITE_DONE) &&
1485 !(op->flags & BCH_WRITE_IN_WORKER))) {
1486 closure_sync(cl: &op->cl);
1487 __bch2_write_index(op);
1488
1489 if (!(op->flags & BCH_WRITE_DONE))
1490 goto again;
1491 bch2_write_done(cl: &op->cl);
1492 } else {
1493 bch2_write_queue(op, wp);
1494 continue_at(&op->cl, bch2_write_index, NULL);
1495 }
1496out_nofs_restore:
1497 memalloc_nofs_restore(flags: nofs_flags);
1498}
1499
1500static void bch2_write_data_inline(struct bch_write_op *op, unsigned data_len)
1501{
1502 struct bio *bio = &op->wbio.bio;
1503 struct bvec_iter iter;
1504 struct bkey_i_inline_data *id;
1505 unsigned sectors;
1506 int ret;
1507
1508 op->flags |= BCH_WRITE_WROTE_DATA_INLINE;
1509 op->flags |= BCH_WRITE_DONE;
1510
1511 bch2_check_set_feature(c: op->c, feat: BCH_FEATURE_inline_data);
1512
1513 ret = bch2_keylist_realloc(&op->insert_keys, op->inline_keys,
1514 ARRAY_SIZE(op->inline_keys),
1515 BKEY_U64s + DIV_ROUND_UP(data_len, 8));
1516 if (ret) {
1517 op->error = ret;
1518 goto err;
1519 }
1520
1521 sectors = bio_sectors(bio);
1522 op->pos.offset += sectors;
1523
1524 id = bkey_inline_data_init(k: op->insert_keys.top);
1525 id->k.p = op->pos;
1526 id->k.version = op->version;
1527 id->k.size = sectors;
1528
1529 iter = bio->bi_iter;
1530 iter.bi_size = data_len;
1531 memcpy_from_bio(id->v.data, bio, iter);
1532
1533 while (data_len & 7)
1534 id->v.data[data_len++] = '\0';
1535 set_bkey_val_bytes(k: &id->k, bytes: data_len);
1536 bch2_keylist_push(l: &op->insert_keys);
1537
1538 __bch2_write_index(op);
1539err:
1540 bch2_write_done(cl: &op->cl);
1541}
1542
1543/**
1544 * bch2_write() - handle a write to a cache device or flash only volume
1545 * @cl: &bch_write_op->cl
1546 *
1547 * This is the starting point for any data to end up in a cache device; it could
1548 * be from a normal write, or a writeback write, or a write to a flash only
1549 * volume - it's also used by the moving garbage collector to compact data in
1550 * mostly empty buckets.
1551 *
1552 * It first writes the data to the cache, creating a list of keys to be inserted
1553 * (if the data won't fit in a single open bucket, there will be multiple keys);
1554 * after the data is written it calls bch_journal, and after the keys have been
1555 * added to the next journal write they're inserted into the btree.
1556 *
1557 * If op->discard is true, instead of inserting the data it invalidates the
1558 * region of the cache represented by op->bio and op->inode.
1559 */
1560CLOSURE_CALLBACK(bch2_write)
1561{
1562 closure_type(op, struct bch_write_op, cl);
1563 struct bio *bio = &op->wbio.bio;
1564 struct bch_fs *c = op->c;
1565 unsigned data_len;
1566
1567 EBUG_ON(op->cl.parent);
1568 BUG_ON(!op->nr_replicas);
1569 BUG_ON(!op->write_point.v);
1570 BUG_ON(bkey_eq(op->pos, POS_MAX));
1571
1572 op->nr_replicas_required = min_t(unsigned, op->nr_replicas_required, op->nr_replicas);
1573 op->start_time = local_clock();
1574 bch2_keylist_init(l: &op->insert_keys, inline_keys: op->inline_keys);
1575 wbio_init(bio)->put_bio = false;
1576
1577 if (bio->bi_iter.bi_size & (c->opts.block_size - 1)) {
1578 bch_err_inum_offset_ratelimited(c,
1579 op->pos.inode,
1580 op->pos.offset << 9,
1581 "%s write error: misaligned write",
1582 op->flags & BCH_WRITE_MOVE ? "move" : "user");
1583 op->error = -EIO;
1584 goto err;
1585 }
1586
1587 if (c->opts.nochanges) {
1588 op->error = -BCH_ERR_erofs_no_writes;
1589 goto err;
1590 }
1591
1592 if (!(op->flags & BCH_WRITE_MOVE) &&
1593 !bch2_write_ref_tryget(c, ref: BCH_WRITE_REF_write)) {
1594 op->error = -BCH_ERR_erofs_no_writes;
1595 goto err;
1596 }
1597
1598 this_cpu_add(c->counters[BCH_COUNTER_io_write], bio_sectors(bio));
1599 bch2_increment_clock(c, bio_sectors(bio), WRITE);
1600
1601 data_len = min_t(u64, bio->bi_iter.bi_size,
1602 op->new_i_size - (op->pos.offset << 9));
1603
1604 if (c->opts.inline_data &&
1605 data_len <= min(block_bytes(c) / 2, 1024U)) {
1606 bch2_write_data_inline(op, data_len);
1607 return;
1608 }
1609
1610 __bch2_write(op);
1611 return;
1612err:
1613 bch2_disk_reservation_put(c, res: &op->res);
1614
1615 closure_debug_destroy(cl: &op->cl);
1616 if (op->end_io)
1617 op->end_io(op);
1618}
1619
1620static const char * const bch2_write_flags[] = {
1621#define x(f) #f,
1622 BCH_WRITE_FLAGS()
1623#undef x
1624 NULL
1625};
1626
1627void bch2_write_op_to_text(struct printbuf *out, struct bch_write_op *op)
1628{
1629 prt_str(out, str: "pos: ");
1630 bch2_bpos_to_text(out, op->pos);
1631 prt_newline(out);
1632 printbuf_indent_add(out, 2);
1633
1634 prt_str(out, str: "started: ");
1635 bch2_pr_time_units(out, local_clock() - op->start_time);
1636 prt_newline(out);
1637
1638 prt_str(out, str: "flags: ");
1639 prt_bitflags(out, bch2_write_flags, op->flags);
1640 prt_newline(out);
1641
1642 prt_printf(out, "ref: %u", closure_nr_remaining(&op->cl));
1643 prt_newline(out);
1644
1645 printbuf_indent_sub(out, 2);
1646}
1647
1648void bch2_fs_io_write_exit(struct bch_fs *c)
1649{
1650 mempool_exit(pool: &c->bio_bounce_pages);
1651 bioset_exit(&c->bio_write);
1652}
1653
1654int bch2_fs_io_write_init(struct bch_fs *c)
1655{
1656 if (bioset_init(&c->bio_write, 1, offsetof(struct bch_write_bio, bio),
1657 flags: BIOSET_NEED_BVECS))
1658 return -BCH_ERR_ENOMEM_bio_write_init;
1659
1660 if (mempool_init_page_pool(pool: &c->bio_bounce_pages,
1661 max_t(unsigned,
1662 c->opts.btree_node_size,
1663 c->opts.encoded_extent_max) /
1664 PAGE_SIZE, order: 0))
1665 return -BCH_ERR_ENOMEM_bio_bounce_pages_init;
1666
1667 return 0;
1668}
1669

source code of linux/fs/bcachefs/io_write.c