1// SPDX-License-Identifier: GPL-2.0
2/*
3 * bcachefs setup/teardown code, and some metadata io - read a superblock and
4 * figure out what to do with it.
5 *
6 * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
7 * Copyright 2012 Google, Inc.
8 */
9
10#include "bcachefs.h"
11#include "alloc_background.h"
12#include "alloc_foreground.h"
13#include "bkey_sort.h"
14#include "btree_cache.h"
15#include "btree_gc.h"
16#include "btree_journal_iter.h"
17#include "btree_key_cache.h"
18#include "btree_node_scan.h"
19#include "btree_update_interior.h"
20#include "btree_io.h"
21#include "btree_write_buffer.h"
22#include "buckets_waiting_for_journal.h"
23#include "chardev.h"
24#include "checksum.h"
25#include "clock.h"
26#include "compress.h"
27#include "debug.h"
28#include "disk_groups.h"
29#include "ec.h"
30#include "errcode.h"
31#include "error.h"
32#include "fs.h"
33#include "fs-io.h"
34#include "fs-io-buffered.h"
35#include "fs-io-direct.h"
36#include "fsck.h"
37#include "inode.h"
38#include "io_read.h"
39#include "io_write.h"
40#include "journal.h"
41#include "journal_reclaim.h"
42#include "journal_seq_blacklist.h"
43#include "move.h"
44#include "migrate.h"
45#include "movinggc.h"
46#include "nocow_locking.h"
47#include "quota.h"
48#include "rebalance.h"
49#include "recovery.h"
50#include "replicas.h"
51#include "sb-clean.h"
52#include "sb-counters.h"
53#include "sb-errors.h"
54#include "sb-members.h"
55#include "snapshot.h"
56#include "subvolume.h"
57#include "super.h"
58#include "super-io.h"
59#include "sysfs.h"
60#include "thread_with_file.h"
61#include "trace.h"
62
63#include <linux/backing-dev.h>
64#include <linux/blkdev.h>
65#include <linux/debugfs.h>
66#include <linux/device.h>
67#include <linux/idr.h>
68#include <linux/module.h>
69#include <linux/percpu.h>
70#include <linux/random.h>
71#include <linux/sysfs.h>
72#include <crypto/hash.h>
73
74MODULE_LICENSE("GPL");
75MODULE_AUTHOR("Kent Overstreet <kent.overstreet@gmail.com>");
76MODULE_DESCRIPTION("bcachefs filesystem");
77MODULE_SOFTDEP("pre: crc32c");
78MODULE_SOFTDEP("pre: crc64");
79MODULE_SOFTDEP("pre: sha256");
80MODULE_SOFTDEP("pre: chacha20");
81MODULE_SOFTDEP("pre: poly1305");
82MODULE_SOFTDEP("pre: xxhash");
83
84const char * const bch2_fs_flag_strs[] = {
85#define x(n) #n,
86 BCH_FS_FLAGS()
87#undef x
88 NULL
89};
90
91__printf(2, 0)
92static void bch2_print_maybe_redirect(struct stdio_redirect *stdio, const char *fmt, va_list args)
93{
94#ifdef __KERNEL__
95 if (unlikely(stdio)) {
96 if (fmt[0] == KERN_SOH[0])
97 fmt += 2;
98
99 bch2_stdio_redirect_vprintf(stdio, true, fmt, args);
100 return;
101 }
102#endif
103 vprintk(fmt, args);
104}
105
106void bch2_print_opts(struct bch_opts *opts, const char *fmt, ...)
107{
108 struct stdio_redirect *stdio = (void *)(unsigned long)opts->stdio;
109
110 va_list args;
111 va_start(args, fmt);
112 bch2_print_maybe_redirect(stdio, fmt, args);
113 va_end(args);
114}
115
116void __bch2_print(struct bch_fs *c, const char *fmt, ...)
117{
118 struct stdio_redirect *stdio = bch2_fs_stdio_redirect(c);
119
120 va_list args;
121 va_start(args, fmt);
122 bch2_print_maybe_redirect(stdio, fmt, args);
123 va_end(args);
124}
125
126#define KTYPE(type) \
127static const struct attribute_group type ## _group = { \
128 .attrs = type ## _files \
129}; \
130 \
131static const struct attribute_group *type ## _groups[] = { \
132 &type ## _group, \
133 NULL \
134}; \
135 \
136static const struct kobj_type type ## _ktype = { \
137 .release = type ## _release, \
138 .sysfs_ops = &type ## _sysfs_ops, \
139 .default_groups = type ## _groups \
140}
141
142static void bch2_fs_release(struct kobject *);
143static void bch2_dev_release(struct kobject *);
144static void bch2_fs_counters_release(struct kobject *k)
145{
146}
147
148static void bch2_fs_internal_release(struct kobject *k)
149{
150}
151
152static void bch2_fs_opts_dir_release(struct kobject *k)
153{
154}
155
156static void bch2_fs_time_stats_release(struct kobject *k)
157{
158}
159
160KTYPE(bch2_fs);
161KTYPE(bch2_fs_counters);
162KTYPE(bch2_fs_internal);
163KTYPE(bch2_fs_opts_dir);
164KTYPE(bch2_fs_time_stats);
165KTYPE(bch2_dev);
166
167static struct kset *bcachefs_kset;
168static LIST_HEAD(bch_fs_list);
169static DEFINE_MUTEX(bch_fs_list_lock);
170
171DECLARE_WAIT_QUEUE_HEAD(bch2_read_only_wait);
172
173static void bch2_dev_free(struct bch_dev *);
174static int bch2_dev_alloc(struct bch_fs *, unsigned);
175static int bch2_dev_sysfs_online(struct bch_fs *, struct bch_dev *);
176static void __bch2_dev_read_only(struct bch_fs *, struct bch_dev *);
177
178struct bch_fs *bch2_dev_to_fs(dev_t dev)
179{
180 struct bch_fs *c;
181
182 mutex_lock(&bch_fs_list_lock);
183 rcu_read_lock();
184
185 list_for_each_entry(c, &bch_fs_list, list)
186 for_each_member_device_rcu(c, ca, NULL)
187 if (ca->disk_sb.bdev && ca->disk_sb.bdev->bd_dev == dev) {
188 closure_get(cl: &c->cl);
189 goto found;
190 }
191 c = NULL;
192found:
193 rcu_read_unlock();
194 mutex_unlock(lock: &bch_fs_list_lock);
195
196 return c;
197}
198
199static struct bch_fs *__bch2_uuid_to_fs(__uuid_t uuid)
200{
201 struct bch_fs *c;
202
203 lockdep_assert_held(&bch_fs_list_lock);
204
205 list_for_each_entry(c, &bch_fs_list, list)
206 if (!memcmp(p: &c->disk_sb.sb->uuid, q: &uuid, size: sizeof(uuid)))
207 return c;
208
209 return NULL;
210}
211
212struct bch_fs *bch2_uuid_to_fs(__uuid_t uuid)
213{
214 struct bch_fs *c;
215
216 mutex_lock(&bch_fs_list_lock);
217 c = __bch2_uuid_to_fs(uuid);
218 if (c)
219 closure_get(cl: &c->cl);
220 mutex_unlock(lock: &bch_fs_list_lock);
221
222 return c;
223}
224
225static void bch2_dev_usage_journal_reserve(struct bch_fs *c)
226{
227 unsigned nr = 0, u64s =
228 ((sizeof(struct jset_entry_dev_usage) +
229 sizeof(struct jset_entry_dev_usage_type) * BCH_DATA_NR)) /
230 sizeof(u64);
231
232 rcu_read_lock();
233 for_each_member_device_rcu(c, ca, NULL)
234 nr++;
235 rcu_read_unlock();
236
237 bch2_journal_entry_res_resize(&c->journal,
238 &c->dev_usage_journal_res, u64s * nr);
239}
240
241/* Filesystem RO/RW: */
242
243/*
244 * For startup/shutdown of RW stuff, the dependencies are:
245 *
246 * - foreground writes depend on copygc and rebalance (to free up space)
247 *
248 * - copygc and rebalance depend on mark and sweep gc (they actually probably
249 * don't because they either reserve ahead of time or don't block if
250 * allocations fail, but allocations can require mark and sweep gc to run
251 * because of generation number wraparound)
252 *
253 * - all of the above depends on the allocator threads
254 *
255 * - allocator depends on the journal (when it rewrites prios and gens)
256 */
257
258static void __bch2_fs_read_only(struct bch_fs *c)
259{
260 unsigned clean_passes = 0;
261 u64 seq = 0;
262
263 bch2_fs_ec_stop(c);
264 bch2_open_buckets_stop(c, NULL, true);
265 bch2_rebalance_stop(c);
266 bch2_copygc_stop(c);
267 bch2_gc_thread_stop(c);
268 bch2_fs_ec_flush(c);
269
270 bch_verbose(c, "flushing journal and stopping allocators, journal seq %llu",
271 journal_cur_seq(&c->journal));
272
273 do {
274 clean_passes++;
275
276 if (bch2_btree_interior_updates_flush(c) ||
277 bch2_journal_flush_all_pins(j: &c->journal) ||
278 bch2_btree_flush_all_writes(c) ||
279 seq != atomic64_read(v: &c->journal.seq)) {
280 seq = atomic64_read(v: &c->journal.seq);
281 clean_passes = 0;
282 }
283 } while (clean_passes < 2);
284
285 bch_verbose(c, "flushing journal and stopping allocators complete, journal seq %llu",
286 journal_cur_seq(&c->journal));
287
288 if (test_bit(JOURNAL_REPLAY_DONE, &c->journal.flags) &&
289 !test_bit(BCH_FS_emergency_ro, &c->flags))
290 set_bit(nr: BCH_FS_clean_shutdown, addr: &c->flags);
291
292 bch2_fs_journal_stop(&c->journal);
293
294 bch_info(c, "%sshutdown complete, journal seq %llu",
295 test_bit(BCH_FS_clean_shutdown, &c->flags) ? "" : "un",
296 c->journal.seq_ondisk);
297
298 /*
299 * After stopping journal:
300 */
301 for_each_member_device(c, ca)
302 bch2_dev_allocator_remove(c, ca);
303}
304
305#ifndef BCH_WRITE_REF_DEBUG
306static void bch2_writes_disabled(struct percpu_ref *writes)
307{
308 struct bch_fs *c = container_of(writes, struct bch_fs, writes);
309
310 set_bit(BCH_FS_write_disable_complete, &c->flags);
311 wake_up(&bch2_read_only_wait);
312}
313#endif
314
315void bch2_fs_read_only(struct bch_fs *c)
316{
317 if (!test_bit(BCH_FS_rw, &c->flags)) {
318 bch2_journal_reclaim_stop(&c->journal);
319 return;
320 }
321
322 BUG_ON(test_bit(BCH_FS_write_disable_complete, &c->flags));
323
324 bch_verbose(c, "going read-only");
325
326 /*
327 * Block new foreground-end write operations from starting - any new
328 * writes will return -EROFS:
329 */
330 set_bit(nr: BCH_FS_going_ro, addr: &c->flags);
331#ifndef BCH_WRITE_REF_DEBUG
332 percpu_ref_kill(&c->writes);
333#else
334 for (unsigned i = 0; i < BCH_WRITE_REF_NR; i++)
335 bch2_write_ref_put(c, ref: i);
336#endif
337
338 /*
339 * If we're not doing an emergency shutdown, we want to wait on
340 * outstanding writes to complete so they don't see spurious errors due
341 * to shutting down the allocator:
342 *
343 * If we are doing an emergency shutdown outstanding writes may
344 * hang until we shutdown the allocator so we don't want to wait
345 * on outstanding writes before shutting everything down - but
346 * we do need to wait on them before returning and signalling
347 * that going RO is complete:
348 */
349 wait_event(bch2_read_only_wait,
350 test_bit(BCH_FS_write_disable_complete, &c->flags) ||
351 test_bit(BCH_FS_emergency_ro, &c->flags));
352
353 bool writes_disabled = test_bit(BCH_FS_write_disable_complete, &c->flags);
354 if (writes_disabled)
355 bch_verbose(c, "finished waiting for writes to stop");
356
357 __bch2_fs_read_only(c);
358
359 wait_event(bch2_read_only_wait,
360 test_bit(BCH_FS_write_disable_complete, &c->flags));
361
362 if (!writes_disabled)
363 bch_verbose(c, "finished waiting for writes to stop");
364
365 clear_bit(nr: BCH_FS_write_disable_complete, addr: &c->flags);
366 clear_bit(nr: BCH_FS_going_ro, addr: &c->flags);
367 clear_bit(nr: BCH_FS_rw, addr: &c->flags);
368
369 if (!bch2_journal_error(j: &c->journal) &&
370 !test_bit(BCH_FS_error, &c->flags) &&
371 !test_bit(BCH_FS_emergency_ro, &c->flags) &&
372 test_bit(BCH_FS_started, &c->flags) &&
373 test_bit(BCH_FS_clean_shutdown, &c->flags) &&
374 c->recovery_pass_done >= BCH_RECOVERY_PASS_journal_replay) {
375 BUG_ON(c->journal.last_empty_seq != journal_cur_seq(&c->journal));
376 BUG_ON(atomic_read(&c->btree_cache.dirty));
377 BUG_ON(atomic_long_read(&c->btree_key_cache.nr_dirty));
378 BUG_ON(c->btree_write_buffer.inc.keys.nr);
379 BUG_ON(c->btree_write_buffer.flushing.keys.nr);
380
381 bch_verbose(c, "marking filesystem clean");
382 bch2_fs_mark_clean(c);
383 } else {
384 bch_verbose(c, "done going read-only, filesystem not clean");
385 }
386}
387
388static void bch2_fs_read_only_work(struct work_struct *work)
389{
390 struct bch_fs *c =
391 container_of(work, struct bch_fs, read_only_work);
392
393 down_write(sem: &c->state_lock);
394 bch2_fs_read_only(c);
395 up_write(sem: &c->state_lock);
396}
397
398static void bch2_fs_read_only_async(struct bch_fs *c)
399{
400 queue_work(wq: system_long_wq, work: &c->read_only_work);
401}
402
403bool bch2_fs_emergency_read_only(struct bch_fs *c)
404{
405 bool ret = !test_and_set_bit(nr: BCH_FS_emergency_ro, addr: &c->flags);
406
407 bch2_journal_halt(&c->journal);
408 bch2_fs_read_only_async(c);
409
410 wake_up(&bch2_read_only_wait);
411 return ret;
412}
413
414static int bch2_fs_read_write_late(struct bch_fs *c)
415{
416 int ret;
417
418 /*
419 * Data move operations can't run until after check_snapshots has
420 * completed, and bch2_snapshot_is_ancestor() is available.
421 *
422 * Ideally we'd start copygc/rebalance earlier instead of waiting for
423 * all of recovery/fsck to complete:
424 */
425 ret = bch2_copygc_start(c);
426 if (ret) {
427 bch_err(c, "error starting copygc thread");
428 return ret;
429 }
430
431 ret = bch2_rebalance_start(c);
432 if (ret) {
433 bch_err(c, "error starting rebalance thread");
434 return ret;
435 }
436
437 return 0;
438}
439
440static int __bch2_fs_read_write(struct bch_fs *c, bool early)
441{
442 int ret;
443
444 if (test_bit(BCH_FS_initial_gc_unfixed, &c->flags)) {
445 bch_err(c, "cannot go rw, unfixed btree errors");
446 return -BCH_ERR_erofs_unfixed_errors;
447 }
448
449 if (test_bit(BCH_FS_rw, &c->flags))
450 return 0;
451
452 bch_info(c, "going read-write");
453
454 ret = bch2_sb_members_v2_init(c);
455 if (ret)
456 goto err;
457
458 ret = bch2_fs_mark_dirty(c);
459 if (ret)
460 goto err;
461
462 clear_bit(nr: BCH_FS_clean_shutdown, addr: &c->flags);
463
464 /*
465 * First journal write must be a flush write: after a clean shutdown we
466 * don't read the journal, so the first journal write may end up
467 * overwriting whatever was there previously, and there must always be
468 * at least one non-flush write in the journal or recovery will fail:
469 */
470 set_bit(nr: JOURNAL_NEED_FLUSH_WRITE, addr: &c->journal.flags);
471
472 for_each_rw_member(c, ca)
473 bch2_dev_allocator_add(c, ca);
474 bch2_recalc_capacity(c);
475
476 set_bit(nr: BCH_FS_rw, addr: &c->flags);
477 set_bit(nr: BCH_FS_was_rw, addr: &c->flags);
478
479#ifndef BCH_WRITE_REF_DEBUG
480 percpu_ref_reinit(&c->writes);
481#else
482 for (unsigned i = 0; i < BCH_WRITE_REF_NR; i++) {
483 BUG_ON(atomic_long_read(&c->writes[i]));
484 atomic_long_inc(v: &c->writes[i]);
485 }
486#endif
487
488 ret = bch2_gc_thread_start(c);
489 if (ret) {
490 bch_err(c, "error starting gc thread");
491 return ret;
492 }
493
494 ret = bch2_journal_reclaim_start(&c->journal);
495 if (ret)
496 goto err;
497
498 if (!early) {
499 ret = bch2_fs_read_write_late(c);
500 if (ret)
501 goto err;
502 }
503
504 bch2_do_discards(c);
505 bch2_do_invalidates(c);
506 bch2_do_stripe_deletes(c);
507 bch2_do_pending_node_rewrites(c);
508 return 0;
509err:
510 if (test_bit(BCH_FS_rw, &c->flags))
511 bch2_fs_read_only(c);
512 else
513 __bch2_fs_read_only(c);
514 return ret;
515}
516
517int bch2_fs_read_write(struct bch_fs *c)
518{
519 if (c->opts.recovery_pass_last &&
520 c->opts.recovery_pass_last < BCH_RECOVERY_PASS_journal_replay)
521 return -BCH_ERR_erofs_norecovery;
522
523 if (c->opts.nochanges)
524 return -BCH_ERR_erofs_nochanges;
525
526 return __bch2_fs_read_write(c, early: false);
527}
528
529int bch2_fs_read_write_early(struct bch_fs *c)
530{
531 lockdep_assert_held(&c->state_lock);
532
533 return __bch2_fs_read_write(c, early: true);
534}
535
536/* Filesystem startup/shutdown: */
537
538static void __bch2_fs_free(struct bch_fs *c)
539{
540 unsigned i;
541
542 for (i = 0; i < BCH_TIME_STAT_NR; i++)
543 bch2_time_stats_exit(&c->times[i]);
544
545 bch2_find_btree_nodes_exit(&c->found_btree_nodes);
546 bch2_free_pending_node_rewrites(c);
547 bch2_fs_allocator_background_exit(c);
548 bch2_fs_sb_errors_exit(c);
549 bch2_fs_counters_exit(c);
550 bch2_fs_snapshots_exit(c);
551 bch2_fs_quota_exit(c);
552 bch2_fs_fs_io_direct_exit(c);
553 bch2_fs_fs_io_buffered_exit(c);
554 bch2_fs_fsio_exit(c);
555 bch2_fs_ec_exit(c);
556 bch2_fs_encryption_exit(c);
557 bch2_fs_nocow_locking_exit(c);
558 bch2_fs_io_write_exit(c);
559 bch2_fs_io_read_exit(c);
560 bch2_fs_buckets_waiting_for_journal_exit(c);
561 bch2_fs_btree_interior_update_exit(c);
562 bch2_fs_btree_iter_exit(c);
563 bch2_fs_btree_key_cache_exit(&c->btree_key_cache);
564 bch2_fs_btree_cache_exit(c);
565 bch2_fs_replicas_exit(c);
566 bch2_fs_journal_exit(&c->journal);
567 bch2_io_clock_exit(&c->io_clock[WRITE]);
568 bch2_io_clock_exit(&c->io_clock[READ]);
569 bch2_fs_compress_exit(c);
570 bch2_journal_keys_put_initial(c);
571 bch2_find_btree_nodes_exit(&c->found_btree_nodes);
572 BUG_ON(atomic_read(&c->journal_keys.ref));
573 bch2_fs_btree_write_buffer_exit(c);
574 percpu_free_rwsem(&c->mark_lock);
575 free_percpu(pdata: c->online_reserved);
576
577 darray_exit(&c->btree_roots_extra);
578 free_percpu(pdata: c->pcpu);
579 mempool_exit(pool: &c->large_bkey_pool);
580 mempool_exit(pool: &c->btree_bounce_pool);
581 bioset_exit(&c->btree_bio);
582 mempool_exit(pool: &c->fill_iter);
583#ifndef BCH_WRITE_REF_DEBUG
584 percpu_ref_exit(&c->writes);
585#endif
586 kfree(rcu_dereference_protected(c->disk_groups, 1));
587 kfree(objp: c->journal_seq_blacklist_table);
588 kfree(objp: c->unused_inode_hints);
589
590 if (c->write_ref_wq)
591 destroy_workqueue(wq: c->write_ref_wq);
592 if (c->io_complete_wq)
593 destroy_workqueue(wq: c->io_complete_wq);
594 if (c->copygc_wq)
595 destroy_workqueue(wq: c->copygc_wq);
596 if (c->btree_io_complete_wq)
597 destroy_workqueue(wq: c->btree_io_complete_wq);
598 if (c->btree_update_wq)
599 destroy_workqueue(wq: c->btree_update_wq);
600
601 bch2_free_super(&c->disk_sb);
602 kvfree(addr: c);
603 module_put(THIS_MODULE);
604}
605
606static void bch2_fs_release(struct kobject *kobj)
607{
608 struct bch_fs *c = container_of(kobj, struct bch_fs, kobj);
609
610 __bch2_fs_free(c);
611}
612
613void __bch2_fs_stop(struct bch_fs *c)
614{
615 bch_verbose(c, "shutting down");
616
617 set_bit(nr: BCH_FS_stopping, addr: &c->flags);
618
619 cancel_work_sync(work: &c->journal_seq_blacklist_gc_work);
620
621 down_write(sem: &c->state_lock);
622 bch2_fs_read_only(c);
623 up_write(sem: &c->state_lock);
624
625 for_each_member_device(c, ca)
626 if (ca->kobj.state_in_sysfs &&
627 ca->disk_sb.bdev)
628 sysfs_remove_link(bdev_kobj(ca->disk_sb.bdev), name: "bcachefs");
629
630 if (c->kobj.state_in_sysfs)
631 kobject_del(kobj: &c->kobj);
632
633 bch2_fs_debug_exit(c);
634 bch2_fs_chardev_exit(c);
635
636 bch2_ro_ref_put(c);
637 wait_event(c->ro_ref_wait, !refcount_read(&c->ro_ref));
638
639 kobject_put(kobj: &c->counters_kobj);
640 kobject_put(kobj: &c->time_stats);
641 kobject_put(kobj: &c->opts_dir);
642 kobject_put(kobj: &c->internal);
643
644 /* btree prefetch might have kicked off reads in the background: */
645 bch2_btree_flush_all_reads(c);
646
647 for_each_member_device(c, ca)
648 cancel_work_sync(work: &ca->io_error_work);
649
650 cancel_work_sync(work: &c->read_only_work);
651}
652
653void bch2_fs_free(struct bch_fs *c)
654{
655 unsigned i;
656
657 mutex_lock(&bch_fs_list_lock);
658 list_del(entry: &c->list);
659 mutex_unlock(lock: &bch_fs_list_lock);
660
661 closure_sync(cl: &c->cl);
662 closure_debug_destroy(cl: &c->cl);
663
664 for (i = 0; i < c->sb.nr_devices; i++) {
665 struct bch_dev *ca = rcu_dereference_protected(c->devs[i], true);
666
667 if (ca) {
668 bch2_free_super(&ca->disk_sb);
669 bch2_dev_free(ca);
670 }
671 }
672
673 bch_verbose(c, "shutdown complete");
674
675 kobject_put(kobj: &c->kobj);
676}
677
678void bch2_fs_stop(struct bch_fs *c)
679{
680 __bch2_fs_stop(c);
681 bch2_fs_free(c);
682}
683
684static int bch2_fs_online(struct bch_fs *c)
685{
686 int ret = 0;
687
688 lockdep_assert_held(&bch_fs_list_lock);
689
690 if (__bch2_uuid_to_fs(uuid: c->sb.uuid)) {
691 bch_err(c, "filesystem UUID already open");
692 return -EINVAL;
693 }
694
695 ret = bch2_fs_chardev_init(c);
696 if (ret) {
697 bch_err(c, "error creating character device");
698 return ret;
699 }
700
701 bch2_fs_debug_init(c);
702
703 ret = kobject_add(kobj: &c->kobj, NULL, fmt: "%pU", c->sb.user_uuid.b) ?:
704 kobject_add(kobj: &c->internal, parent: &c->kobj, fmt: "internal") ?:
705 kobject_add(kobj: &c->opts_dir, parent: &c->kobj, fmt: "options") ?:
706#ifndef CONFIG_BCACHEFS_NO_LATENCY_ACCT
707 kobject_add(&c->time_stats, &c->kobj, "time_stats") ?:
708#endif
709 kobject_add(kobj: &c->counters_kobj, parent: &c->kobj, fmt: "counters") ?:
710 bch2_opts_create_sysfs_files(&c->opts_dir);
711 if (ret) {
712 bch_err(c, "error creating sysfs objects");
713 return ret;
714 }
715
716 down_write(sem: &c->state_lock);
717
718 for_each_member_device(c, ca) {
719 ret = bch2_dev_sysfs_online(c, ca);
720 if (ret) {
721 bch_err(c, "error creating sysfs objects");
722 percpu_ref_put(ref: &ca->ref);
723 goto err;
724 }
725 }
726
727 BUG_ON(!list_empty(&c->list));
728 list_add(new: &c->list, head: &bch_fs_list);
729err:
730 up_write(sem: &c->state_lock);
731 return ret;
732}
733
734static struct bch_fs *bch2_fs_alloc(struct bch_sb *sb, struct bch_opts opts)
735{
736 struct bch_fs *c;
737 struct printbuf name = PRINTBUF;
738 unsigned i, iter_size;
739 int ret = 0;
740
741 c = kvmalloc(size: sizeof(struct bch_fs), GFP_KERNEL|__GFP_ZERO);
742 if (!c) {
743 c = ERR_PTR(error: -BCH_ERR_ENOMEM_fs_alloc);
744 goto out;
745 }
746
747 c->stdio = (void *)(unsigned long) opts.stdio;
748
749 __module_get(THIS_MODULE);
750
751 closure_init(cl: &c->cl, NULL);
752
753 c->kobj.kset = bcachefs_kset;
754 kobject_init(kobj: &c->kobj, ktype: &bch2_fs_ktype);
755 kobject_init(kobj: &c->internal, ktype: &bch2_fs_internal_ktype);
756 kobject_init(kobj: &c->opts_dir, ktype: &bch2_fs_opts_dir_ktype);
757 kobject_init(kobj: &c->time_stats, ktype: &bch2_fs_time_stats_ktype);
758 kobject_init(kobj: &c->counters_kobj, ktype: &bch2_fs_counters_ktype);
759
760 c->minor = -1;
761 c->disk_sb.fs_sb = true;
762
763 init_rwsem(&c->state_lock);
764 mutex_init(&c->sb_lock);
765 mutex_init(&c->replicas_gc_lock);
766 mutex_init(&c->btree_root_lock);
767 INIT_WORK(&c->read_only_work, bch2_fs_read_only_work);
768
769 refcount_set(r: &c->ro_ref, n: 1);
770 init_waitqueue_head(&c->ro_ref_wait);
771 sema_init(sem: &c->online_fsck_mutex, val: 1);
772
773 init_rwsem(&c->gc_lock);
774 mutex_init(&c->gc_gens_lock);
775 atomic_set(v: &c->journal_keys.ref, i: 1);
776 c->journal_keys.initial_ref_held = true;
777
778 for (i = 0; i < BCH_TIME_STAT_NR; i++)
779 bch2_time_stats_init(&c->times[i]);
780
781 bch2_fs_copygc_init(c);
782 bch2_fs_btree_key_cache_init_early(&c->btree_key_cache);
783 bch2_fs_btree_iter_init_early(c);
784 bch2_fs_btree_interior_update_init_early(c);
785 bch2_fs_allocator_background_init(c);
786 bch2_fs_allocator_foreground_init(c);
787 bch2_fs_rebalance_init(c);
788 bch2_fs_quota_init(c);
789 bch2_fs_ec_init_early(c);
790 bch2_fs_move_init(c);
791 bch2_fs_sb_errors_init_early(c);
792
793 INIT_LIST_HEAD(list: &c->list);
794
795 mutex_init(&c->usage_scratch_lock);
796
797 mutex_init(&c->bio_bounce_pages_lock);
798 mutex_init(&c->snapshot_table_lock);
799 init_rwsem(&c->snapshot_create_lock);
800
801 spin_lock_init(&c->btree_write_error_lock);
802
803 INIT_WORK(&c->journal_seq_blacklist_gc_work,
804 bch2_blacklist_entries_gc);
805
806 INIT_LIST_HEAD(list: &c->journal_iters);
807
808 INIT_LIST_HEAD(list: &c->fsck_error_msgs);
809 mutex_init(&c->fsck_error_msgs_lock);
810
811 seqcount_init(&c->gc_pos_lock);
812
813 seqcount_init(&c->usage_lock);
814
815 sema_init(sem: &c->io_in_flight, val: 128);
816
817 INIT_LIST_HEAD(list: &c->vfs_inodes_list);
818 mutex_init(&c->vfs_inodes_lock);
819
820 c->copy_gc_enabled = 1;
821 c->rebalance.enabled = 1;
822 c->promote_whole_extents = true;
823
824 c->journal.flush_write_time = &c->times[BCH_TIME_journal_flush_write];
825 c->journal.noflush_write_time = &c->times[BCH_TIME_journal_noflush_write];
826 c->journal.flush_seq_time = &c->times[BCH_TIME_journal_flush_seq];
827
828 bch2_fs_btree_cache_init_early(&c->btree_cache);
829
830 mutex_init(&c->sectors_available_lock);
831
832 ret = percpu_init_rwsem(&c->mark_lock);
833 if (ret)
834 goto err;
835
836 mutex_lock(&c->sb_lock);
837 ret = bch2_sb_to_fs(c, sb);
838 mutex_unlock(lock: &c->sb_lock);
839
840 if (ret)
841 goto err;
842
843 pr_uuid(out: &name, uuid: c->sb.user_uuid.b);
844 ret = name.allocation_failure ? -BCH_ERR_ENOMEM_fs_name_alloc : 0;
845 if (ret)
846 goto err;
847
848 strscpy(c->name, name.buf, sizeof(c->name));
849 printbuf_exit(&name);
850
851 /* Compat: */
852 if (le16_to_cpu(sb->version) <= bcachefs_metadata_version_inode_v2 &&
853 !BCH_SB_JOURNAL_FLUSH_DELAY(k: sb))
854 SET_BCH_SB_JOURNAL_FLUSH_DELAY(k: sb, v: 1000);
855
856 if (le16_to_cpu(sb->version) <= bcachefs_metadata_version_inode_v2 &&
857 !BCH_SB_JOURNAL_RECLAIM_DELAY(k: sb))
858 SET_BCH_SB_JOURNAL_RECLAIM_DELAY(k: sb, v: 100);
859
860 c->opts = bch2_opts_default;
861 ret = bch2_opts_from_sb(&c->opts, sb);
862 if (ret)
863 goto err;
864
865 bch2_opts_apply(&c->opts, opts);
866
867 c->btree_key_cache_btrees |= 1U << BTREE_ID_alloc;
868 if (c->opts.inodes_use_key_cache)
869 c->btree_key_cache_btrees |= 1U << BTREE_ID_inodes;
870 c->btree_key_cache_btrees |= 1U << BTREE_ID_logged_ops;
871
872 c->block_bits = ilog2(block_sectors(c));
873 c->btree_foreground_merge_threshold = BTREE_FOREGROUND_MERGE_THRESHOLD(c);
874
875 if (bch2_fs_init_fault("fs_alloc")) {
876 bch_err(c, "fs_alloc fault injected");
877 ret = -EFAULT;
878 goto err;
879 }
880
881 iter_size = sizeof(struct sort_iter) +
882 (btree_blocks(c) + 1) * 2 *
883 sizeof(struct sort_iter_set);
884
885 c->inode_shard_bits = ilog2(roundup_pow_of_two(num_possible_cpus()));
886
887 if (!(c->btree_update_wq = alloc_workqueue(fmt: "bcachefs",
888 flags: WQ_HIGHPRI|WQ_FREEZABLE|WQ_MEM_RECLAIM|WQ_UNBOUND, max_active: 512)) ||
889 !(c->btree_io_complete_wq = alloc_workqueue(fmt: "bcachefs_btree_io",
890 flags: WQ_HIGHPRI|WQ_FREEZABLE|WQ_MEM_RECLAIM, max_active: 1)) ||
891 !(c->copygc_wq = alloc_workqueue(fmt: "bcachefs_copygc",
892 flags: WQ_HIGHPRI|WQ_FREEZABLE|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE, max_active: 1)) ||
893 !(c->io_complete_wq = alloc_workqueue(fmt: "bcachefs_io",
894 flags: WQ_HIGHPRI|WQ_FREEZABLE|WQ_MEM_RECLAIM, max_active: 512)) ||
895 !(c->write_ref_wq = alloc_workqueue(fmt: "bcachefs_write_ref",
896 flags: WQ_FREEZABLE, max_active: 0)) ||
897#ifndef BCH_WRITE_REF_DEBUG
898 percpu_ref_init(&c->writes, bch2_writes_disabled,
899 PERCPU_REF_INIT_DEAD, GFP_KERNEL) ||
900#endif
901 mempool_init_kmalloc_pool(pool: &c->fill_iter, min_nr: 1, size: iter_size) ||
902 bioset_init(&c->btree_bio, 1,
903 max(offsetof(struct btree_read_bio, bio),
904 offsetof(struct btree_write_bio, wbio.bio)),
905 flags: BIOSET_NEED_BVECS) ||
906 !(c->pcpu = alloc_percpu(struct bch_fs_pcpu)) ||
907 !(c->online_reserved = alloc_percpu(u64)) ||
908 mempool_init_kvmalloc_pool(pool: &c->btree_bounce_pool, min_nr: 1,
909 size: c->opts.btree_node_size) ||
910 mempool_init_kmalloc_pool(pool: &c->large_bkey_pool, min_nr: 1, size: 2048) ||
911 !(c->unused_inode_hints = kcalloc(n: 1U << c->inode_shard_bits,
912 size: sizeof(u64), GFP_KERNEL))) {
913 ret = -BCH_ERR_ENOMEM_fs_other_alloc;
914 goto err;
915 }
916
917 ret = bch2_fs_counters_init(c) ?:
918 bch2_fs_sb_errors_init(c) ?:
919 bch2_io_clock_init(&c->io_clock[READ]) ?:
920 bch2_io_clock_init(&c->io_clock[WRITE]) ?:
921 bch2_fs_journal_init(&c->journal) ?:
922 bch2_fs_replicas_init(c) ?:
923 bch2_fs_btree_cache_init(c) ?:
924 bch2_fs_btree_key_cache_init(&c->btree_key_cache) ?:
925 bch2_fs_btree_iter_init(c) ?:
926 bch2_fs_btree_interior_update_init(c) ?:
927 bch2_fs_buckets_waiting_for_journal_init(c) ?:
928 bch2_fs_btree_write_buffer_init(c) ?:
929 bch2_fs_subvolumes_init(c) ?:
930 bch2_fs_io_read_init(c) ?:
931 bch2_fs_io_write_init(c) ?:
932 bch2_fs_nocow_locking_init(c) ?:
933 bch2_fs_encryption_init(c) ?:
934 bch2_fs_compress_init(c) ?:
935 bch2_fs_ec_init(c) ?:
936 bch2_fs_fsio_init(c) ?:
937 bch2_fs_fs_io_buffered_init(c) ?:
938 bch2_fs_fs_io_direct_init(c);
939 if (ret)
940 goto err;
941
942 for (i = 0; i < c->sb.nr_devices; i++)
943 if (bch2_dev_exists(sb: c->disk_sb.sb, dev: i) &&
944 bch2_dev_alloc(c, i)) {
945 ret = -EEXIST;
946 goto err;
947 }
948
949 bch2_journal_entry_res_resize(&c->journal,
950 &c->btree_root_journal_res,
951 BTREE_ID_NR * (JSET_KEYS_U64s + BKEY_BTREE_PTR_U64s_MAX));
952 bch2_dev_usage_journal_reserve(c);
953 bch2_journal_entry_res_resize(&c->journal,
954 &c->clock_journal_res,
955 (sizeof(struct jset_entry_clock) / sizeof(u64)) * 2);
956
957 mutex_lock(&bch_fs_list_lock);
958 ret = bch2_fs_online(c);
959 mutex_unlock(lock: &bch_fs_list_lock);
960
961 if (ret)
962 goto err;
963out:
964 return c;
965err:
966 bch2_fs_free(c);
967 c = ERR_PTR(error: ret);
968 goto out;
969}
970
971noinline_for_stack
972static void print_mount_opts(struct bch_fs *c)
973{
974 enum bch_opt_id i;
975 struct printbuf p = PRINTBUF;
976 bool first = true;
977
978 prt_str(out: &p, str: "mounting version ");
979 bch2_version_to_text(&p, c->sb.version);
980
981 if (c->opts.read_only) {
982 prt_str(out: &p, str: " opts=");
983 first = false;
984 prt_printf(&p, "ro");
985 }
986
987 for (i = 0; i < bch2_opts_nr; i++) {
988 const struct bch_option *opt = &bch2_opt_table[i];
989 u64 v = bch2_opt_get_by_id(&c->opts, i);
990
991 if (!(opt->flags & OPT_MOUNT))
992 continue;
993
994 if (v == bch2_opt_get_by_id(&bch2_opts_default, i))
995 continue;
996
997 prt_str(out: &p, str: first ? " opts=" : ",");
998 first = false;
999 bch2_opt_to_text(&p, c, c->disk_sb.sb, opt, v, OPT_SHOW_MOUNT_STYLE);
1000 }
1001
1002 bch_info(c, "%s", p.buf);
1003 printbuf_exit(&p);
1004}
1005
1006int bch2_fs_start(struct bch_fs *c)
1007{
1008 time64_t now = ktime_get_real_seconds();
1009 int ret;
1010
1011 print_mount_opts(c);
1012
1013 down_write(sem: &c->state_lock);
1014
1015 BUG_ON(test_bit(BCH_FS_started, &c->flags));
1016
1017 mutex_lock(&c->sb_lock);
1018
1019 ret = bch2_sb_members_v2_init(c);
1020 if (ret) {
1021 mutex_unlock(lock: &c->sb_lock);
1022 goto err;
1023 }
1024
1025 for_each_online_member(c, ca)
1026 bch2_members_v2_get_mut(sb: c->disk_sb.sb, i: ca->dev_idx)->last_mount = cpu_to_le64(now);
1027
1028 struct bch_sb_field_ext *ext =
1029 bch2_sb_field_get_minsize(&c->disk_sb, ext, sizeof(*ext) / sizeof(u64));
1030 mutex_unlock(lock: &c->sb_lock);
1031
1032 if (!ext) {
1033 bch_err(c, "insufficient space in superblock for sb_field_ext");
1034 ret = -BCH_ERR_ENOSPC_sb;
1035 goto err;
1036 }
1037
1038 for_each_rw_member(c, ca)
1039 bch2_dev_allocator_add(c, ca);
1040 bch2_recalc_capacity(c);
1041
1042 ret = BCH_SB_INITIALIZED(k: c->disk_sb.sb)
1043 ? bch2_fs_recovery(c)
1044 : bch2_fs_initialize(c);
1045 if (ret)
1046 goto err;
1047
1048 ret = bch2_opts_check_may_set(c);
1049 if (ret)
1050 goto err;
1051
1052 if (bch2_fs_init_fault("fs_start")) {
1053 bch_err(c, "fs_start fault injected");
1054 ret = -EINVAL;
1055 goto err;
1056 }
1057
1058 set_bit(nr: BCH_FS_started, addr: &c->flags);
1059
1060 if (c->opts.read_only) {
1061 bch2_fs_read_only(c);
1062 } else {
1063 ret = !test_bit(BCH_FS_rw, &c->flags)
1064 ? bch2_fs_read_write(c)
1065 : bch2_fs_read_write_late(c);
1066 if (ret)
1067 goto err;
1068 }
1069
1070 ret = 0;
1071err:
1072 if (ret)
1073 bch_err_msg(c, ret, "starting filesystem");
1074 else
1075 bch_verbose(c, "done starting filesystem");
1076 up_write(sem: &c->state_lock);
1077 return ret;
1078}
1079
1080static int bch2_dev_may_add(struct bch_sb *sb, struct bch_fs *c)
1081{
1082 struct bch_member m = bch2_sb_member_get(sb, i: sb->dev_idx);
1083
1084 if (le16_to_cpu(sb->block_size) != block_sectors(c))
1085 return -BCH_ERR_mismatched_block_size;
1086
1087 if (le16_to_cpu(m.bucket_size) <
1088 BCH_SB_BTREE_NODE_SIZE(k: c->disk_sb.sb))
1089 return -BCH_ERR_bucket_size_too_small;
1090
1091 return 0;
1092}
1093
1094static int bch2_dev_in_fs(struct bch_sb_handle *fs,
1095 struct bch_sb_handle *sb,
1096 struct bch_opts *opts)
1097{
1098 if (fs == sb)
1099 return 0;
1100
1101 if (!uuid_equal(u1: &fs->sb->uuid, u2: &sb->sb->uuid))
1102 return -BCH_ERR_device_not_a_member_of_filesystem;
1103
1104 if (!bch2_dev_exists(sb: fs->sb, dev: sb->sb->dev_idx))
1105 return -BCH_ERR_device_has_been_removed;
1106
1107 if (fs->sb->block_size != sb->sb->block_size)
1108 return -BCH_ERR_mismatched_block_size;
1109
1110 if (le16_to_cpu(fs->sb->version) < bcachefs_metadata_version_member_seq ||
1111 le16_to_cpu(sb->sb->version) < bcachefs_metadata_version_member_seq)
1112 return 0;
1113
1114 if (fs->sb->seq == sb->sb->seq &&
1115 fs->sb->write_time != sb->sb->write_time) {
1116 struct printbuf buf = PRINTBUF;
1117
1118 prt_str(out: &buf, str: "Split brain detected between ");
1119 prt_bdevname(out: &buf, bdev: sb->bdev);
1120 prt_str(out: &buf, str: " and ");
1121 prt_bdevname(out: &buf, bdev: fs->bdev);
1122 prt_char(out: &buf, c: ':');
1123 prt_newline(&buf);
1124 prt_printf(&buf, "seq=%llu but write_time different, got", le64_to_cpu(sb->sb->seq));
1125 prt_newline(&buf);
1126
1127 prt_bdevname(out: &buf, bdev: fs->bdev);
1128 prt_char(out: &buf, c: ' ');
1129 bch2_prt_datetime(&buf, le64_to_cpu(fs->sb->write_time));;
1130 prt_newline(&buf);
1131
1132 prt_bdevname(out: &buf, bdev: sb->bdev);
1133 prt_char(out: &buf, c: ' ');
1134 bch2_prt_datetime(&buf, le64_to_cpu(sb->sb->write_time));;
1135 prt_newline(&buf);
1136
1137 if (!opts->no_splitbrain_check)
1138 prt_printf(&buf, "Not using older sb");
1139
1140 pr_err("%s", buf.buf);
1141 printbuf_exit(&buf);
1142
1143 if (!opts->no_splitbrain_check)
1144 return -BCH_ERR_device_splitbrain;
1145 }
1146
1147 struct bch_member m = bch2_sb_member_get(sb: fs->sb, i: sb->sb->dev_idx);
1148 u64 seq_from_fs = le64_to_cpu(m.seq);
1149 u64 seq_from_member = le64_to_cpu(sb->sb->seq);
1150
1151 if (seq_from_fs && seq_from_fs < seq_from_member) {
1152 struct printbuf buf = PRINTBUF;
1153
1154 prt_str(out: &buf, str: "Split brain detected between ");
1155 prt_bdevname(out: &buf, bdev: sb->bdev);
1156 prt_str(out: &buf, str: " and ");
1157 prt_bdevname(out: &buf, bdev: fs->bdev);
1158 prt_char(out: &buf, c: ':');
1159 prt_newline(&buf);
1160
1161 prt_bdevname(out: &buf, bdev: fs->bdev);
1162 prt_str(out: &buf, str: " believes seq of ");
1163 prt_bdevname(out: &buf, bdev: sb->bdev);
1164 prt_printf(&buf, " to be %llu, but ", seq_from_fs);
1165 prt_bdevname(out: &buf, bdev: sb->bdev);
1166 prt_printf(&buf, " has %llu\n", seq_from_member);
1167
1168 if (!opts->no_splitbrain_check) {
1169 prt_str(out: &buf, str: "Not using ");
1170 prt_bdevname(out: &buf, bdev: sb->bdev);
1171 }
1172
1173 pr_err("%s", buf.buf);
1174 printbuf_exit(&buf);
1175
1176 if (!opts->no_splitbrain_check)
1177 return -BCH_ERR_device_splitbrain;
1178 }
1179
1180 return 0;
1181}
1182
1183/* Device startup/shutdown: */
1184
1185static void bch2_dev_release(struct kobject *kobj)
1186{
1187 struct bch_dev *ca = container_of(kobj, struct bch_dev, kobj);
1188
1189 kfree(objp: ca);
1190}
1191
1192static void bch2_dev_free(struct bch_dev *ca)
1193{
1194 cancel_work_sync(work: &ca->io_error_work);
1195
1196 if (ca->kobj.state_in_sysfs &&
1197 ca->disk_sb.bdev)
1198 sysfs_remove_link(bdev_kobj(ca->disk_sb.bdev), name: "bcachefs");
1199
1200 if (ca->kobj.state_in_sysfs)
1201 kobject_del(kobj: &ca->kobj);
1202
1203 bch2_free_super(&ca->disk_sb);
1204 bch2_dev_journal_exit(ca);
1205
1206 free_percpu(pdata: ca->io_done);
1207 bioset_exit(&ca->replica_set);
1208 bch2_dev_buckets_free(ca);
1209 free_page((unsigned long) ca->sb_read_scratch);
1210
1211 bch2_time_stats_quantiles_exit(statq: &ca->io_latency[WRITE]);
1212 bch2_time_stats_quantiles_exit(statq: &ca->io_latency[READ]);
1213
1214 percpu_ref_exit(ref: &ca->io_ref);
1215 percpu_ref_exit(ref: &ca->ref);
1216 kobject_put(kobj: &ca->kobj);
1217}
1218
1219static void __bch2_dev_offline(struct bch_fs *c, struct bch_dev *ca)
1220{
1221
1222 lockdep_assert_held(&c->state_lock);
1223
1224 if (percpu_ref_is_zero(ref: &ca->io_ref))
1225 return;
1226
1227 __bch2_dev_read_only(c, ca);
1228
1229 reinit_completion(x: &ca->io_ref_completion);
1230 percpu_ref_kill(ref: &ca->io_ref);
1231 wait_for_completion(&ca->io_ref_completion);
1232
1233 if (ca->kobj.state_in_sysfs) {
1234 sysfs_remove_link(bdev_kobj(ca->disk_sb.bdev), name: "bcachefs");
1235 sysfs_remove_link(kobj: &ca->kobj, name: "block");
1236 }
1237
1238 bch2_free_super(&ca->disk_sb);
1239 bch2_dev_journal_exit(ca);
1240}
1241
1242static void bch2_dev_ref_complete(struct percpu_ref *ref)
1243{
1244 struct bch_dev *ca = container_of(ref, struct bch_dev, ref);
1245
1246 complete(&ca->ref_completion);
1247}
1248
1249static void bch2_dev_io_ref_complete(struct percpu_ref *ref)
1250{
1251 struct bch_dev *ca = container_of(ref, struct bch_dev, io_ref);
1252
1253 complete(&ca->io_ref_completion);
1254}
1255
1256static int bch2_dev_sysfs_online(struct bch_fs *c, struct bch_dev *ca)
1257{
1258 int ret;
1259
1260 if (!c->kobj.state_in_sysfs)
1261 return 0;
1262
1263 if (!ca->kobj.state_in_sysfs) {
1264 ret = kobject_add(kobj: &ca->kobj, parent: &c->kobj,
1265 fmt: "dev-%u", ca->dev_idx);
1266 if (ret)
1267 return ret;
1268 }
1269
1270 if (ca->disk_sb.bdev) {
1271 struct kobject *block = bdev_kobj(ca->disk_sb.bdev);
1272
1273 ret = sysfs_create_link(kobj: block, target: &ca->kobj, name: "bcachefs");
1274 if (ret)
1275 return ret;
1276
1277 ret = sysfs_create_link(kobj: &ca->kobj, target: block, name: "block");
1278 if (ret)
1279 return ret;
1280 }
1281
1282 return 0;
1283}
1284
1285static struct bch_dev *__bch2_dev_alloc(struct bch_fs *c,
1286 struct bch_member *member)
1287{
1288 struct bch_dev *ca;
1289 unsigned i;
1290
1291 ca = kzalloc(size: sizeof(*ca), GFP_KERNEL);
1292 if (!ca)
1293 return NULL;
1294
1295 kobject_init(kobj: &ca->kobj, ktype: &bch2_dev_ktype);
1296 init_completion(x: &ca->ref_completion);
1297 init_completion(x: &ca->io_ref_completion);
1298
1299 init_rwsem(&ca->bucket_lock);
1300
1301 INIT_WORK(&ca->io_error_work, bch2_io_error_work);
1302
1303 bch2_time_stats_quantiles_init(statq: &ca->io_latency[READ]);
1304 bch2_time_stats_quantiles_init(statq: &ca->io_latency[WRITE]);
1305
1306 ca->mi = bch2_mi_to_cpu(mi: member);
1307
1308 for (i = 0; i < ARRAY_SIZE(member->errors); i++)
1309 atomic64_set(v: &ca->errors[i], le64_to_cpu(member->errors[i]));
1310
1311 ca->uuid = member->uuid;
1312
1313 ca->nr_btree_reserve = DIV_ROUND_UP(BTREE_NODE_RESERVE,
1314 ca->mi.bucket_size / btree_sectors(c));
1315
1316 if (percpu_ref_init(ref: &ca->ref, release: bch2_dev_ref_complete,
1317 flags: 0, GFP_KERNEL) ||
1318 percpu_ref_init(ref: &ca->io_ref, release: bch2_dev_io_ref_complete,
1319 flags: PERCPU_REF_INIT_DEAD, GFP_KERNEL) ||
1320 !(ca->sb_read_scratch = (void *) __get_free_page(GFP_KERNEL)) ||
1321 bch2_dev_buckets_alloc(c, ca) ||
1322 bioset_init(&ca->replica_set, 4,
1323 offsetof(struct bch_write_bio, bio), flags: 0) ||
1324 !(ca->io_done = alloc_percpu(*ca->io_done)))
1325 goto err;
1326
1327 return ca;
1328err:
1329 bch2_dev_free(ca);
1330 return NULL;
1331}
1332
1333static void bch2_dev_attach(struct bch_fs *c, struct bch_dev *ca,
1334 unsigned dev_idx)
1335{
1336 ca->dev_idx = dev_idx;
1337 __set_bit(ca->dev_idx, ca->self.d);
1338 scnprintf(buf: ca->name, size: sizeof(ca->name), fmt: "dev-%u", dev_idx);
1339
1340 ca->fs = c;
1341 rcu_assign_pointer(c->devs[ca->dev_idx], ca);
1342
1343 if (bch2_dev_sysfs_online(c, ca))
1344 pr_warn("error creating sysfs objects");
1345}
1346
1347static int bch2_dev_alloc(struct bch_fs *c, unsigned dev_idx)
1348{
1349 struct bch_member member = bch2_sb_member_get(sb: c->disk_sb.sb, i: dev_idx);
1350 struct bch_dev *ca = NULL;
1351 int ret = 0;
1352
1353 if (bch2_fs_init_fault("dev_alloc"))
1354 goto err;
1355
1356 ca = __bch2_dev_alloc(c, member: &member);
1357 if (!ca)
1358 goto err;
1359
1360 ca->fs = c;
1361
1362 bch2_dev_attach(c, ca, dev_idx);
1363 return ret;
1364err:
1365 if (ca)
1366 bch2_dev_free(ca);
1367 return -BCH_ERR_ENOMEM_dev_alloc;
1368}
1369
1370static int __bch2_dev_attach_bdev(struct bch_dev *ca, struct bch_sb_handle *sb)
1371{
1372 unsigned ret;
1373
1374 if (bch2_dev_is_online(ca)) {
1375 bch_err(ca, "already have device online in slot %u",
1376 sb->sb->dev_idx);
1377 return -BCH_ERR_device_already_online;
1378 }
1379
1380 if (get_capacity(disk: sb->bdev->bd_disk) <
1381 ca->mi.bucket_size * ca->mi.nbuckets) {
1382 bch_err(ca, "cannot online: device too small");
1383 return -BCH_ERR_device_size_too_small;
1384 }
1385
1386 BUG_ON(!percpu_ref_is_zero(&ca->io_ref));
1387
1388 ret = bch2_dev_journal_init(ca, sb->sb);
1389 if (ret)
1390 return ret;
1391
1392 /* Commit: */
1393 ca->disk_sb = *sb;
1394 memset(sb, 0, sizeof(*sb));
1395
1396 ca->dev = ca->disk_sb.bdev->bd_dev;
1397
1398 percpu_ref_reinit(ref: &ca->io_ref);
1399
1400 return 0;
1401}
1402
1403static int bch2_dev_attach_bdev(struct bch_fs *c, struct bch_sb_handle *sb)
1404{
1405 struct bch_dev *ca;
1406 int ret;
1407
1408 lockdep_assert_held(&c->state_lock);
1409
1410 if (le64_to_cpu(sb->sb->seq) >
1411 le64_to_cpu(c->disk_sb.sb->seq))
1412 bch2_sb_to_fs(c, sb->sb);
1413
1414 BUG_ON(sb->sb->dev_idx >= c->sb.nr_devices ||
1415 !c->devs[sb->sb->dev_idx]);
1416
1417 ca = bch_dev_locked(c, idx: sb->sb->dev_idx);
1418
1419 ret = __bch2_dev_attach_bdev(ca, sb);
1420 if (ret)
1421 return ret;
1422
1423 bch2_dev_sysfs_online(c, ca);
1424
1425 struct printbuf name = PRINTBUF;
1426 prt_bdevname(out: &name, bdev: ca->disk_sb.bdev);
1427
1428 if (c->sb.nr_devices == 1)
1429 strscpy(c->name, name.buf, sizeof(c->name));
1430 strscpy(ca->name, name.buf, sizeof(ca->name));
1431
1432 printbuf_exit(&name);
1433
1434 rebalance_wakeup(c);
1435 return 0;
1436}
1437
1438/* Device management: */
1439
1440/*
1441 * Note: this function is also used by the error paths - when a particular
1442 * device sees an error, we call it to determine whether we can just set the
1443 * device RO, or - if this function returns false - we'll set the whole
1444 * filesystem RO:
1445 *
1446 * XXX: maybe we should be more explicit about whether we're changing state
1447 * because we got an error or what have you?
1448 */
1449bool bch2_dev_state_allowed(struct bch_fs *c, struct bch_dev *ca,
1450 enum bch_member_state new_state, int flags)
1451{
1452 struct bch_devs_mask new_online_devs;
1453 int nr_rw = 0, required;
1454
1455 lockdep_assert_held(&c->state_lock);
1456
1457 switch (new_state) {
1458 case BCH_MEMBER_STATE_rw:
1459 return true;
1460 case BCH_MEMBER_STATE_ro:
1461 if (ca->mi.state != BCH_MEMBER_STATE_rw)
1462 return true;
1463
1464 /* do we have enough devices to write to? */
1465 for_each_member_device(c, ca2)
1466 if (ca2 != ca)
1467 nr_rw += ca2->mi.state == BCH_MEMBER_STATE_rw;
1468
1469 required = max(!(flags & BCH_FORCE_IF_METADATA_DEGRADED)
1470 ? c->opts.metadata_replicas
1471 : metadata_replicas_required(c),
1472 !(flags & BCH_FORCE_IF_DATA_DEGRADED)
1473 ? c->opts.data_replicas
1474 : data_replicas_required(c));
1475
1476 return nr_rw >= required;
1477 case BCH_MEMBER_STATE_failed:
1478 case BCH_MEMBER_STATE_spare:
1479 if (ca->mi.state != BCH_MEMBER_STATE_rw &&
1480 ca->mi.state != BCH_MEMBER_STATE_ro)
1481 return true;
1482
1483 /* do we have enough devices to read from? */
1484 new_online_devs = bch2_online_devs(c);
1485 __clear_bit(ca->dev_idx, new_online_devs.d);
1486
1487 return bch2_have_enough_devs(c, new_online_devs, flags, false);
1488 default:
1489 BUG();
1490 }
1491}
1492
1493static bool bch2_fs_may_start(struct bch_fs *c)
1494{
1495 struct bch_dev *ca;
1496 unsigned i, flags = 0;
1497
1498 if (c->opts.very_degraded)
1499 flags |= BCH_FORCE_IF_DEGRADED|BCH_FORCE_IF_LOST;
1500
1501 if (c->opts.degraded)
1502 flags |= BCH_FORCE_IF_DEGRADED;
1503
1504 if (!c->opts.degraded &&
1505 !c->opts.very_degraded) {
1506 mutex_lock(&c->sb_lock);
1507
1508 for (i = 0; i < c->disk_sb.sb->nr_devices; i++) {
1509 if (!bch2_dev_exists(sb: c->disk_sb.sb, dev: i))
1510 continue;
1511
1512 ca = bch_dev_locked(c, idx: i);
1513
1514 if (!bch2_dev_is_online(ca) &&
1515 (ca->mi.state == BCH_MEMBER_STATE_rw ||
1516 ca->mi.state == BCH_MEMBER_STATE_ro)) {
1517 mutex_unlock(lock: &c->sb_lock);
1518 return false;
1519 }
1520 }
1521 mutex_unlock(lock: &c->sb_lock);
1522 }
1523
1524 return bch2_have_enough_devs(c, bch2_online_devs(c), flags, true);
1525}
1526
1527static void __bch2_dev_read_only(struct bch_fs *c, struct bch_dev *ca)
1528{
1529 /*
1530 * The allocator thread itself allocates btree nodes, so stop it first:
1531 */
1532 bch2_dev_allocator_remove(c, ca);
1533 bch2_dev_journal_stop(&c->journal, ca);
1534}
1535
1536static void __bch2_dev_read_write(struct bch_fs *c, struct bch_dev *ca)
1537{
1538 lockdep_assert_held(&c->state_lock);
1539
1540 BUG_ON(ca->mi.state != BCH_MEMBER_STATE_rw);
1541
1542 bch2_dev_allocator_add(c, ca);
1543 bch2_recalc_capacity(c);
1544}
1545
1546int __bch2_dev_set_state(struct bch_fs *c, struct bch_dev *ca,
1547 enum bch_member_state new_state, int flags)
1548{
1549 struct bch_member *m;
1550 int ret = 0;
1551
1552 if (ca->mi.state == new_state)
1553 return 0;
1554
1555 if (!bch2_dev_state_allowed(c, ca, new_state, flags))
1556 return -BCH_ERR_device_state_not_allowed;
1557
1558 if (new_state != BCH_MEMBER_STATE_rw)
1559 __bch2_dev_read_only(c, ca);
1560
1561 bch_notice(ca, "%s", bch2_member_states[new_state]);
1562
1563 mutex_lock(&c->sb_lock);
1564 m = bch2_members_v2_get_mut(sb: c->disk_sb.sb, i: ca->dev_idx);
1565 SET_BCH_MEMBER_STATE(k: m, v: new_state);
1566 bch2_write_super(c);
1567 mutex_unlock(lock: &c->sb_lock);
1568
1569 if (new_state == BCH_MEMBER_STATE_rw)
1570 __bch2_dev_read_write(c, ca);
1571
1572 rebalance_wakeup(c);
1573
1574 return ret;
1575}
1576
1577int bch2_dev_set_state(struct bch_fs *c, struct bch_dev *ca,
1578 enum bch_member_state new_state, int flags)
1579{
1580 int ret;
1581
1582 down_write(sem: &c->state_lock);
1583 ret = __bch2_dev_set_state(c, ca, new_state, flags);
1584 up_write(sem: &c->state_lock);
1585
1586 return ret;
1587}
1588
1589/* Device add/removal: */
1590
1591static int bch2_dev_remove_alloc(struct bch_fs *c, struct bch_dev *ca)
1592{
1593 struct bpos start = POS(ca->dev_idx, 0);
1594 struct bpos end = POS(ca->dev_idx, U64_MAX);
1595 int ret;
1596
1597 /*
1598 * We clear the LRU and need_discard btrees first so that we don't race
1599 * with bch2_do_invalidates() and bch2_do_discards()
1600 */
1601 ret = bch2_btree_delete_range(c, BTREE_ID_lru, start, end,
1602 BTREE_TRIGGER_NORUN, NULL) ?:
1603 bch2_btree_delete_range(c, BTREE_ID_need_discard, start, end,
1604 BTREE_TRIGGER_NORUN, NULL) ?:
1605 bch2_btree_delete_range(c, BTREE_ID_freespace, start, end,
1606 BTREE_TRIGGER_NORUN, NULL) ?:
1607 bch2_btree_delete_range(c, BTREE_ID_backpointers, start, end,
1608 BTREE_TRIGGER_NORUN, NULL) ?:
1609 bch2_btree_delete_range(c, BTREE_ID_alloc, start, end,
1610 BTREE_TRIGGER_NORUN, NULL) ?:
1611 bch2_btree_delete_range(c, BTREE_ID_bucket_gens, start, end,
1612 BTREE_TRIGGER_NORUN, NULL);
1613 bch_err_msg(c, ret, "removing dev alloc info");
1614 return ret;
1615}
1616
1617int bch2_dev_remove(struct bch_fs *c, struct bch_dev *ca, int flags)
1618{
1619 struct bch_member *m;
1620 unsigned dev_idx = ca->dev_idx, data;
1621 int ret;
1622
1623 down_write(sem: &c->state_lock);
1624
1625 /*
1626 * We consume a reference to ca->ref, regardless of whether we succeed
1627 * or fail:
1628 */
1629 percpu_ref_put(ref: &ca->ref);
1630
1631 if (!bch2_dev_state_allowed(c, ca, new_state: BCH_MEMBER_STATE_failed, flags)) {
1632 bch_err(ca, "Cannot remove without losing data");
1633 ret = -BCH_ERR_device_state_not_allowed;
1634 goto err;
1635 }
1636
1637 __bch2_dev_read_only(c, ca);
1638
1639 ret = bch2_dev_data_drop(c, ca->dev_idx, flags);
1640 bch_err_msg(ca, ret, "bch2_dev_data_drop()");
1641 if (ret)
1642 goto err;
1643
1644 ret = bch2_dev_remove_alloc(c, ca);
1645 bch_err_msg(ca, ret, "bch2_dev_remove_alloc()");
1646 if (ret)
1647 goto err;
1648
1649 ret = bch2_journal_flush_device_pins(&c->journal, ca->dev_idx);
1650 bch_err_msg(ca, ret, "bch2_journal_flush_device_pins()");
1651 if (ret)
1652 goto err;
1653
1654 ret = bch2_journal_flush(&c->journal);
1655 bch_err_msg(ca, ret, "bch2_journal_flush()");
1656 if (ret)
1657 goto err;
1658
1659 ret = bch2_replicas_gc2(c);
1660 bch_err_msg(ca, ret, "bch2_replicas_gc2()");
1661 if (ret)
1662 goto err;
1663
1664 data = bch2_dev_has_data(c, ca);
1665 if (data) {
1666 struct printbuf data_has = PRINTBUF;
1667
1668 prt_bitflags(&data_has, __bch2_data_types, data);
1669 bch_err(ca, "Remove failed, still has data (%s)", data_has.buf);
1670 printbuf_exit(&data_has);
1671 ret = -EBUSY;
1672 goto err;
1673 }
1674
1675 __bch2_dev_offline(c, ca);
1676
1677 mutex_lock(&c->sb_lock);
1678 rcu_assign_pointer(c->devs[ca->dev_idx], NULL);
1679 mutex_unlock(lock: &c->sb_lock);
1680
1681 percpu_ref_kill(ref: &ca->ref);
1682 wait_for_completion(&ca->ref_completion);
1683
1684 bch2_dev_free(ca);
1685
1686 /*
1687 * At this point the device object has been removed in-core, but the
1688 * on-disk journal might still refer to the device index via sb device
1689 * usage entries. Recovery fails if it sees usage information for an
1690 * invalid device. Flush journal pins to push the back of the journal
1691 * past now invalid device index references before we update the
1692 * superblock, but after the device object has been removed so any
1693 * further journal writes elide usage info for the device.
1694 */
1695 bch2_journal_flush_all_pins(j: &c->journal);
1696
1697 /*
1698 * Free this device's slot in the bch_member array - all pointers to
1699 * this device must be gone:
1700 */
1701 mutex_lock(&c->sb_lock);
1702 m = bch2_members_v2_get_mut(sb: c->disk_sb.sb, i: dev_idx);
1703 memset(&m->uuid, 0, sizeof(m->uuid));
1704
1705 bch2_write_super(c);
1706
1707 mutex_unlock(lock: &c->sb_lock);
1708 up_write(sem: &c->state_lock);
1709
1710 bch2_dev_usage_journal_reserve(c);
1711 return 0;
1712err:
1713 if (ca->mi.state == BCH_MEMBER_STATE_rw &&
1714 !percpu_ref_is_zero(ref: &ca->io_ref))
1715 __bch2_dev_read_write(c, ca);
1716 up_write(sem: &c->state_lock);
1717 return ret;
1718}
1719
1720/* Add new device to running filesystem: */
1721int bch2_dev_add(struct bch_fs *c, const char *path)
1722{
1723 struct bch_opts opts = bch2_opts_empty();
1724 struct bch_sb_handle sb;
1725 struct bch_dev *ca = NULL;
1726 struct bch_sb_field_members_v2 *mi;
1727 struct bch_member dev_mi;
1728 unsigned dev_idx, nr_devices, u64s;
1729 struct printbuf errbuf = PRINTBUF;
1730 struct printbuf label = PRINTBUF;
1731 int ret;
1732
1733 ret = bch2_read_super(path, &opts, &sb);
1734 bch_err_msg(c, ret, "reading super");
1735 if (ret)
1736 goto err;
1737
1738 dev_mi = bch2_sb_member_get(sb: sb.sb, i: sb.sb->dev_idx);
1739
1740 if (BCH_MEMBER_GROUP(k: &dev_mi)) {
1741 bch2_disk_path_to_text_sb(&label, sb.sb, BCH_MEMBER_GROUP(k: &dev_mi) - 1);
1742 if (label.allocation_failure) {
1743 ret = -ENOMEM;
1744 goto err;
1745 }
1746 }
1747
1748 ret = bch2_dev_may_add(sb: sb.sb, c);
1749 if (ret)
1750 goto err;
1751
1752 ca = __bch2_dev_alloc(c, member: &dev_mi);
1753 if (!ca) {
1754 ret = -ENOMEM;
1755 goto err;
1756 }
1757
1758 bch2_dev_usage_init(ca);
1759
1760 ret = __bch2_dev_attach_bdev(ca, sb: &sb);
1761 if (ret)
1762 goto err;
1763
1764 ret = bch2_dev_journal_alloc(ca);
1765 bch_err_msg(c, ret, "allocating journal");
1766 if (ret)
1767 goto err;
1768
1769 down_write(sem: &c->state_lock);
1770 mutex_lock(&c->sb_lock);
1771
1772 ret = bch2_sb_from_fs(c, ca);
1773 bch_err_msg(c, ret, "setting up new superblock");
1774 if (ret)
1775 goto err_unlock;
1776
1777 if (dynamic_fault("bcachefs:add:no_slot"))
1778 goto no_slot;
1779
1780 for (dev_idx = 0; dev_idx < BCH_SB_MEMBERS_MAX; dev_idx++)
1781 if (!bch2_dev_exists(sb: c->disk_sb.sb, dev: dev_idx))
1782 goto have_slot;
1783no_slot:
1784 ret = -BCH_ERR_ENOSPC_sb_members;
1785 bch_err_msg(c, ret, "setting up new superblock");
1786 goto err_unlock;
1787
1788have_slot:
1789 nr_devices = max_t(unsigned, dev_idx + 1, c->sb.nr_devices);
1790
1791 mi = bch2_sb_field_get(c->disk_sb.sb, members_v2);
1792 u64s = DIV_ROUND_UP(sizeof(struct bch_sb_field_members_v2) +
1793 le16_to_cpu(mi->member_bytes) * nr_devices, sizeof(u64));
1794
1795 mi = bch2_sb_field_resize(&c->disk_sb, members_v2, u64s);
1796 if (!mi) {
1797 ret = -BCH_ERR_ENOSPC_sb_members;
1798 bch_err_msg(c, ret, "setting up new superblock");
1799 goto err_unlock;
1800 }
1801 struct bch_member *m = bch2_members_v2_get_mut(sb: c->disk_sb.sb, i: dev_idx);
1802
1803 /* success: */
1804
1805 *m = dev_mi;
1806 m->last_mount = cpu_to_le64(ktime_get_real_seconds());
1807 c->disk_sb.sb->nr_devices = nr_devices;
1808
1809 ca->disk_sb.sb->dev_idx = dev_idx;
1810 bch2_dev_attach(c, ca, dev_idx);
1811
1812 if (BCH_MEMBER_GROUP(k: &dev_mi)) {
1813 ret = __bch2_dev_group_set(c, ca, label.buf);
1814 bch_err_msg(c, ret, "creating new label");
1815 if (ret)
1816 goto err_unlock;
1817 }
1818
1819 bch2_write_super(c);
1820 mutex_unlock(lock: &c->sb_lock);
1821
1822 bch2_dev_usage_journal_reserve(c);
1823
1824 ret = bch2_trans_mark_dev_sb(c, ca);
1825 bch_err_msg(ca, ret, "marking new superblock");
1826 if (ret)
1827 goto err_late;
1828
1829 ret = bch2_fs_freespace_init(c);
1830 bch_err_msg(ca, ret, "initializing free space");
1831 if (ret)
1832 goto err_late;
1833
1834 ca->new_fs_bucket_idx = 0;
1835
1836 if (ca->mi.state == BCH_MEMBER_STATE_rw)
1837 __bch2_dev_read_write(c, ca);
1838
1839 up_write(sem: &c->state_lock);
1840 return 0;
1841
1842err_unlock:
1843 mutex_unlock(lock: &c->sb_lock);
1844 up_write(sem: &c->state_lock);
1845err:
1846 if (ca)
1847 bch2_dev_free(ca);
1848 bch2_free_super(&sb);
1849 printbuf_exit(&label);
1850 printbuf_exit(&errbuf);
1851 bch_err_fn(c, ret);
1852 return ret;
1853err_late:
1854 up_write(sem: &c->state_lock);
1855 ca = NULL;
1856 goto err;
1857}
1858
1859/* Hot add existing device to running filesystem: */
1860int bch2_dev_online(struct bch_fs *c, const char *path)
1861{
1862 struct bch_opts opts = bch2_opts_empty();
1863 struct bch_sb_handle sb = { NULL };
1864 struct bch_dev *ca;
1865 unsigned dev_idx;
1866 int ret;
1867
1868 down_write(sem: &c->state_lock);
1869
1870 ret = bch2_read_super(path, &opts, &sb);
1871 if (ret) {
1872 up_write(sem: &c->state_lock);
1873 return ret;
1874 }
1875
1876 dev_idx = sb.sb->dev_idx;
1877
1878 ret = bch2_dev_in_fs(fs: &c->disk_sb, sb: &sb, opts: &c->opts);
1879 bch_err_msg(c, ret, "bringing %s online", path);
1880 if (ret)
1881 goto err;
1882
1883 ret = bch2_dev_attach_bdev(c, sb: &sb);
1884 if (ret)
1885 goto err;
1886
1887 ca = bch_dev_locked(c, idx: dev_idx);
1888
1889 ret = bch2_trans_mark_dev_sb(c, ca);
1890 bch_err_msg(c, ret, "bringing %s online: error from bch2_trans_mark_dev_sb", path);
1891 if (ret)
1892 goto err;
1893
1894 if (ca->mi.state == BCH_MEMBER_STATE_rw)
1895 __bch2_dev_read_write(c, ca);
1896
1897 if (!ca->mi.freespace_initialized) {
1898 ret = bch2_dev_freespace_init(c, ca, 0, ca->mi.nbuckets);
1899 bch_err_msg(ca, ret, "initializing free space");
1900 if (ret)
1901 goto err;
1902 }
1903
1904 if (!ca->journal.nr) {
1905 ret = bch2_dev_journal_alloc(ca);
1906 bch_err_msg(ca, ret, "allocating journal");
1907 if (ret)
1908 goto err;
1909 }
1910
1911 mutex_lock(&c->sb_lock);
1912 bch2_members_v2_get_mut(sb: c->disk_sb.sb, i: ca->dev_idx)->last_mount =
1913 cpu_to_le64(ktime_get_real_seconds());
1914 bch2_write_super(c);
1915 mutex_unlock(lock: &c->sb_lock);
1916
1917 up_write(sem: &c->state_lock);
1918 return 0;
1919err:
1920 up_write(sem: &c->state_lock);
1921 bch2_free_super(&sb);
1922 return ret;
1923}
1924
1925int bch2_dev_offline(struct bch_fs *c, struct bch_dev *ca, int flags)
1926{
1927 down_write(sem: &c->state_lock);
1928
1929 if (!bch2_dev_is_online(ca)) {
1930 bch_err(ca, "Already offline");
1931 up_write(sem: &c->state_lock);
1932 return 0;
1933 }
1934
1935 if (!bch2_dev_state_allowed(c, ca, new_state: BCH_MEMBER_STATE_failed, flags)) {
1936 bch_err(ca, "Cannot offline required disk");
1937 up_write(sem: &c->state_lock);
1938 return -BCH_ERR_device_state_not_allowed;
1939 }
1940
1941 __bch2_dev_offline(c, ca);
1942
1943 up_write(sem: &c->state_lock);
1944 return 0;
1945}
1946
1947int bch2_dev_resize(struct bch_fs *c, struct bch_dev *ca, u64 nbuckets)
1948{
1949 struct bch_member *m;
1950 u64 old_nbuckets;
1951 int ret = 0;
1952
1953 down_write(sem: &c->state_lock);
1954 old_nbuckets = ca->mi.nbuckets;
1955
1956 if (nbuckets < ca->mi.nbuckets) {
1957 bch_err(ca, "Cannot shrink yet");
1958 ret = -EINVAL;
1959 goto err;
1960 }
1961
1962 if (bch2_dev_is_online(ca) &&
1963 get_capacity(disk: ca->disk_sb.bdev->bd_disk) <
1964 ca->mi.bucket_size * nbuckets) {
1965 bch_err(ca, "New size larger than device");
1966 ret = -BCH_ERR_device_size_too_small;
1967 goto err;
1968 }
1969
1970 ret = bch2_dev_buckets_resize(c, ca, nbuckets);
1971 bch_err_msg(ca, ret, "resizing buckets");
1972 if (ret)
1973 goto err;
1974
1975 ret = bch2_trans_mark_dev_sb(c, ca);
1976 if (ret)
1977 goto err;
1978
1979 mutex_lock(&c->sb_lock);
1980 m = bch2_members_v2_get_mut(sb: c->disk_sb.sb, i: ca->dev_idx);
1981 m->nbuckets = cpu_to_le64(nbuckets);
1982
1983 bch2_write_super(c);
1984 mutex_unlock(lock: &c->sb_lock);
1985
1986 if (ca->mi.freespace_initialized) {
1987 ret = bch2_dev_freespace_init(c, ca, old_nbuckets, nbuckets);
1988 if (ret)
1989 goto err;
1990
1991 /*
1992 * XXX: this is all wrong transactionally - we'll be able to do
1993 * this correctly after the disk space accounting rewrite
1994 */
1995 ca->usage_base->d[BCH_DATA_free].buckets += nbuckets - old_nbuckets;
1996 }
1997
1998 bch2_recalc_capacity(c);
1999err:
2000 up_write(sem: &c->state_lock);
2001 return ret;
2002}
2003
2004/* return with ref on ca->ref: */
2005struct bch_dev *bch2_dev_lookup(struct bch_fs *c, const char *name)
2006{
2007 rcu_read_lock();
2008 for_each_member_device_rcu(c, ca, NULL)
2009 if (!strcmp(name, ca->name)) {
2010 rcu_read_unlock();
2011 return ca;
2012 }
2013 rcu_read_unlock();
2014 return ERR_PTR(error: -BCH_ERR_ENOENT_dev_not_found);
2015}
2016
2017/* Filesystem open: */
2018
2019static inline int sb_cmp(struct bch_sb *l, struct bch_sb *r)
2020{
2021 return cmp_int(le64_to_cpu(l->seq), le64_to_cpu(r->seq)) ?:
2022 cmp_int(le64_to_cpu(l->write_time), le64_to_cpu(r->write_time));
2023}
2024
2025struct bch_fs *bch2_fs_open(char * const *devices, unsigned nr_devices,
2026 struct bch_opts opts)
2027{
2028 DARRAY(struct bch_sb_handle) sbs = { 0 };
2029 struct bch_fs *c = NULL;
2030 struct bch_sb_handle *best = NULL;
2031 struct printbuf errbuf = PRINTBUF;
2032 int ret = 0;
2033
2034 if (!try_module_get(THIS_MODULE))
2035 return ERR_PTR(error: -ENODEV);
2036
2037 if (!nr_devices) {
2038 ret = -EINVAL;
2039 goto err;
2040 }
2041
2042 ret = darray_make_room(&sbs, nr_devices);
2043 if (ret)
2044 goto err;
2045
2046 for (unsigned i = 0; i < nr_devices; i++) {
2047 struct bch_sb_handle sb = { NULL };
2048
2049 ret = bch2_read_super(devices[i], &opts, &sb);
2050 if (ret)
2051 goto err;
2052
2053 BUG_ON(darray_push(&sbs, sb));
2054 }
2055
2056 if (opts.nochanges && !opts.read_only) {
2057 ret = -BCH_ERR_erofs_nochanges;
2058 goto err_print;
2059 }
2060
2061 darray_for_each(sbs, sb)
2062 if (!best || sb_cmp(l: sb->sb, r: best->sb) > 0)
2063 best = sb;
2064
2065 darray_for_each_reverse(sbs, sb) {
2066 ret = bch2_dev_in_fs(fs: best, sb, opts: &opts);
2067
2068 if (ret == -BCH_ERR_device_has_been_removed ||
2069 ret == -BCH_ERR_device_splitbrain) {
2070 bch2_free_super(sb);
2071 darray_remove_item(&sbs, sb);
2072 best -= best > sb;
2073 ret = 0;
2074 continue;
2075 }
2076
2077 if (ret)
2078 goto err_print;
2079 }
2080
2081 c = bch2_fs_alloc(sb: best->sb, opts);
2082 ret = PTR_ERR_OR_ZERO(ptr: c);
2083 if (ret)
2084 goto err;
2085
2086 down_write(sem: &c->state_lock);
2087 darray_for_each(sbs, sb) {
2088 ret = bch2_dev_attach_bdev(c, sb);
2089 if (ret) {
2090 up_write(sem: &c->state_lock);
2091 goto err;
2092 }
2093 }
2094 up_write(sem: &c->state_lock);
2095
2096 if (!bch2_fs_may_start(c)) {
2097 ret = -BCH_ERR_insufficient_devices_to_start;
2098 goto err_print;
2099 }
2100
2101 if (!c->opts.nostart) {
2102 ret = bch2_fs_start(c);
2103 if (ret)
2104 goto err;
2105 }
2106out:
2107 darray_for_each(sbs, sb)
2108 bch2_free_super(sb);
2109 darray_exit(&sbs);
2110 printbuf_exit(&errbuf);
2111 module_put(THIS_MODULE);
2112 return c;
2113err_print:
2114 pr_err("bch_fs_open err opening %s: %s",
2115 devices[0], bch2_err_str(ret));
2116err:
2117 if (!IS_ERR_OR_NULL(ptr: c))
2118 bch2_fs_stop(c);
2119 c = ERR_PTR(error: ret);
2120 goto out;
2121}
2122
2123/* Global interfaces/init */
2124
2125static void bcachefs_exit(void)
2126{
2127 bch2_debug_exit();
2128 bch2_vfs_exit();
2129 bch2_chardev_exit();
2130 bch2_btree_key_cache_exit();
2131 if (bcachefs_kset)
2132 kset_unregister(kset: bcachefs_kset);
2133}
2134
2135static int __init bcachefs_init(void)
2136{
2137 bch2_bkey_pack_test();
2138
2139 if (!(bcachefs_kset = kset_create_and_add(name: "bcachefs", NULL, parent_kobj: fs_kobj)) ||
2140 bch2_btree_key_cache_init() ||
2141 bch2_chardev_init() ||
2142 bch2_vfs_init() ||
2143 bch2_debug_init())
2144 goto err;
2145
2146 return 0;
2147err:
2148 bcachefs_exit();
2149 return -ENOMEM;
2150}
2151
2152#define BCH_DEBUG_PARAM(name, description) \
2153 bool bch2_##name; \
2154 module_param_named(name, bch2_##name, bool, 0644); \
2155 MODULE_PARM_DESC(name, description);
2156BCH_DEBUG_PARAMS()
2157#undef BCH_DEBUG_PARAM
2158
2159__maybe_unused
2160static unsigned bch2_metadata_version = bcachefs_metadata_version_current;
2161module_param_named(version, bch2_metadata_version, uint, 0400);
2162
2163module_exit(bcachefs_exit);
2164module_init(bcachefs_init);
2165

source code of linux/fs/bcachefs/super.c