1// SPDX-License-Identifier: GPL-2.0
2
3#include <linux/bitops.h>
4#include <linux/slab.h>
5#include <linux/blkdev.h>
6#include <linux/sched/mm.h>
7#include <linux/atomic.h>
8#include <linux/vmalloc.h>
9#include "ctree.h"
10#include "volumes.h"
11#include "zoned.h"
12#include "rcu-string.h"
13#include "disk-io.h"
14#include "block-group.h"
15#include "dev-replace.h"
16#include "space-info.h"
17#include "fs.h"
18#include "accessors.h"
19#include "bio.h"
20
21/* Maximum number of zones to report per blkdev_report_zones() call */
22#define BTRFS_REPORT_NR_ZONES 4096
23/* Invalid allocation pointer value for missing devices */
24#define WP_MISSING_DEV ((u64)-1)
25/* Pseudo write pointer value for conventional zone */
26#define WP_CONVENTIONAL ((u64)-2)
27
28/*
29 * Location of the first zone of superblock logging zone pairs.
30 *
31 * - primary superblock: 0B (zone 0)
32 * - first copy: 512G (zone starting at that offset)
33 * - second copy: 4T (zone starting at that offset)
34 */
35#define BTRFS_SB_LOG_PRIMARY_OFFSET (0ULL)
36#define BTRFS_SB_LOG_FIRST_OFFSET (512ULL * SZ_1G)
37#define BTRFS_SB_LOG_SECOND_OFFSET (4096ULL * SZ_1G)
38
39#define BTRFS_SB_LOG_FIRST_SHIFT const_ilog2(BTRFS_SB_LOG_FIRST_OFFSET)
40#define BTRFS_SB_LOG_SECOND_SHIFT const_ilog2(BTRFS_SB_LOG_SECOND_OFFSET)
41
42/* Number of superblock log zones */
43#define BTRFS_NR_SB_LOG_ZONES 2
44
45/*
46 * Minimum of active zones we need:
47 *
48 * - BTRFS_SUPER_MIRROR_MAX zones for superblock mirrors
49 * - 3 zones to ensure at least one zone per SYSTEM, META and DATA block group
50 * - 1 zone for tree-log dedicated block group
51 * - 1 zone for relocation
52 */
53#define BTRFS_MIN_ACTIVE_ZONES (BTRFS_SUPER_MIRROR_MAX + 5)
54
55/*
56 * Minimum / maximum supported zone size. Currently, SMR disks have a zone
57 * size of 256MiB, and we are expecting ZNS drives to be in the 1-4GiB range.
58 * We do not expect the zone size to become larger than 8GiB or smaller than
59 * 4MiB in the near future.
60 */
61#define BTRFS_MAX_ZONE_SIZE SZ_8G
62#define BTRFS_MIN_ZONE_SIZE SZ_4M
63
64#define SUPER_INFO_SECTORS ((u64)BTRFS_SUPER_INFO_SIZE >> SECTOR_SHIFT)
65
66static void wait_eb_writebacks(struct btrfs_block_group *block_group);
67static int do_zone_finish(struct btrfs_block_group *block_group, bool fully_written);
68
69static inline bool sb_zone_is_full(const struct blk_zone *zone)
70{
71 return (zone->cond == BLK_ZONE_COND_FULL) ||
72 (zone->wp + SUPER_INFO_SECTORS > zone->start + zone->capacity);
73}
74
75static int copy_zone_info_cb(struct blk_zone *zone, unsigned int idx, void *data)
76{
77 struct blk_zone *zones = data;
78
79 memcpy(&zones[idx], zone, sizeof(*zone));
80
81 return 0;
82}
83
84static int sb_write_pointer(struct block_device *bdev, struct blk_zone *zones,
85 u64 *wp_ret)
86{
87 bool empty[BTRFS_NR_SB_LOG_ZONES];
88 bool full[BTRFS_NR_SB_LOG_ZONES];
89 sector_t sector;
90 int i;
91
92 for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) {
93 ASSERT(zones[i].type != BLK_ZONE_TYPE_CONVENTIONAL);
94 empty[i] = (zones[i].cond == BLK_ZONE_COND_EMPTY);
95 full[i] = sb_zone_is_full(zone: &zones[i]);
96 }
97
98 /*
99 * Possible states of log buffer zones
100 *
101 * Empty[0] In use[0] Full[0]
102 * Empty[1] * 0 1
103 * In use[1] x x 1
104 * Full[1] 0 0 C
105 *
106 * Log position:
107 * *: Special case, no superblock is written
108 * 0: Use write pointer of zones[0]
109 * 1: Use write pointer of zones[1]
110 * C: Compare super blocks from zones[0] and zones[1], use the latest
111 * one determined by generation
112 * x: Invalid state
113 */
114
115 if (empty[0] && empty[1]) {
116 /* Special case to distinguish no superblock to read */
117 *wp_ret = zones[0].start << SECTOR_SHIFT;
118 return -ENOENT;
119 } else if (full[0] && full[1]) {
120 /* Compare two super blocks */
121 struct address_space *mapping = bdev->bd_inode->i_mapping;
122 struct page *page[BTRFS_NR_SB_LOG_ZONES];
123 struct btrfs_super_block *super[BTRFS_NR_SB_LOG_ZONES];
124 int i;
125
126 for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) {
127 u64 zone_end = (zones[i].start + zones[i].capacity) << SECTOR_SHIFT;
128 u64 bytenr = ALIGN_DOWN(zone_end, BTRFS_SUPER_INFO_SIZE) -
129 BTRFS_SUPER_INFO_SIZE;
130
131 page[i] = read_cache_page_gfp(mapping,
132 index: bytenr >> PAGE_SHIFT, GFP_NOFS);
133 if (IS_ERR(ptr: page[i])) {
134 if (i == 1)
135 btrfs_release_disk_super(super: super[0]);
136 return PTR_ERR(ptr: page[i]);
137 }
138 super[i] = page_address(page[i]);
139 }
140
141 if (btrfs_super_generation(s: super[0]) >
142 btrfs_super_generation(s: super[1]))
143 sector = zones[1].start;
144 else
145 sector = zones[0].start;
146
147 for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++)
148 btrfs_release_disk_super(super: super[i]);
149 } else if (!full[0] && (empty[1] || full[1])) {
150 sector = zones[0].wp;
151 } else if (full[0]) {
152 sector = zones[1].wp;
153 } else {
154 return -EUCLEAN;
155 }
156 *wp_ret = sector << SECTOR_SHIFT;
157 return 0;
158}
159
160/*
161 * Get the first zone number of the superblock mirror
162 */
163static inline u32 sb_zone_number(int shift, int mirror)
164{
165 u64 zone = U64_MAX;
166
167 ASSERT(mirror < BTRFS_SUPER_MIRROR_MAX);
168 switch (mirror) {
169 case 0: zone = 0; break;
170 case 1: zone = 1ULL << (BTRFS_SB_LOG_FIRST_SHIFT - shift); break;
171 case 2: zone = 1ULL << (BTRFS_SB_LOG_SECOND_SHIFT - shift); break;
172 }
173
174 ASSERT(zone <= U32_MAX);
175
176 return (u32)zone;
177}
178
179static inline sector_t zone_start_sector(u32 zone_number,
180 struct block_device *bdev)
181{
182 return (sector_t)zone_number << ilog2(bdev_zone_sectors(bdev));
183}
184
185static inline u64 zone_start_physical(u32 zone_number,
186 struct btrfs_zoned_device_info *zone_info)
187{
188 return (u64)zone_number << zone_info->zone_size_shift;
189}
190
191/*
192 * Emulate blkdev_report_zones() for a non-zoned device. It slices up the block
193 * device into static sized chunks and fake a conventional zone on each of
194 * them.
195 */
196static int emulate_report_zones(struct btrfs_device *device, u64 pos,
197 struct blk_zone *zones, unsigned int nr_zones)
198{
199 const sector_t zone_sectors = device->fs_info->zone_size >> SECTOR_SHIFT;
200 sector_t bdev_size = bdev_nr_sectors(bdev: device->bdev);
201 unsigned int i;
202
203 pos >>= SECTOR_SHIFT;
204 for (i = 0; i < nr_zones; i++) {
205 zones[i].start = i * zone_sectors + pos;
206 zones[i].len = zone_sectors;
207 zones[i].capacity = zone_sectors;
208 zones[i].wp = zones[i].start + zone_sectors;
209 zones[i].type = BLK_ZONE_TYPE_CONVENTIONAL;
210 zones[i].cond = BLK_ZONE_COND_NOT_WP;
211
212 if (zones[i].wp >= bdev_size) {
213 i++;
214 break;
215 }
216 }
217
218 return i;
219}
220
221static int btrfs_get_dev_zones(struct btrfs_device *device, u64 pos,
222 struct blk_zone *zones, unsigned int *nr_zones)
223{
224 struct btrfs_zoned_device_info *zinfo = device->zone_info;
225 int ret;
226
227 if (!*nr_zones)
228 return 0;
229
230 if (!bdev_is_zoned(bdev: device->bdev)) {
231 ret = emulate_report_zones(device, pos, zones, nr_zones: *nr_zones);
232 *nr_zones = ret;
233 return 0;
234 }
235
236 /* Check cache */
237 if (zinfo->zone_cache) {
238 unsigned int i;
239 u32 zno;
240
241 ASSERT(IS_ALIGNED(pos, zinfo->zone_size));
242 zno = pos >> zinfo->zone_size_shift;
243 /*
244 * We cannot report zones beyond the zone end. So, it is OK to
245 * cap *nr_zones to at the end.
246 */
247 *nr_zones = min_t(u32, *nr_zones, zinfo->nr_zones - zno);
248
249 for (i = 0; i < *nr_zones; i++) {
250 struct blk_zone *zone_info;
251
252 zone_info = &zinfo->zone_cache[zno + i];
253 if (!zone_info->len)
254 break;
255 }
256
257 if (i == *nr_zones) {
258 /* Cache hit on all the zones */
259 memcpy(zones, zinfo->zone_cache + zno,
260 sizeof(*zinfo->zone_cache) * *nr_zones);
261 return 0;
262 }
263 }
264
265 ret = blkdev_report_zones(bdev: device->bdev, sector: pos >> SECTOR_SHIFT, nr_zones: *nr_zones,
266 cb: copy_zone_info_cb, data: zones);
267 if (ret < 0) {
268 btrfs_err_in_rcu(device->fs_info,
269 "zoned: failed to read zone %llu on %s (devid %llu)",
270 pos, rcu_str_deref(device->name),
271 device->devid);
272 return ret;
273 }
274 *nr_zones = ret;
275 if (!ret)
276 return -EIO;
277
278 /* Populate cache */
279 if (zinfo->zone_cache) {
280 u32 zno = pos >> zinfo->zone_size_shift;
281
282 memcpy(zinfo->zone_cache + zno, zones,
283 sizeof(*zinfo->zone_cache) * *nr_zones);
284 }
285
286 return 0;
287}
288
289/* The emulated zone size is determined from the size of device extent */
290static int calculate_emulated_zone_size(struct btrfs_fs_info *fs_info)
291{
292 struct btrfs_path *path;
293 struct btrfs_root *root = fs_info->dev_root;
294 struct btrfs_key key;
295 struct extent_buffer *leaf;
296 struct btrfs_dev_extent *dext;
297 int ret = 0;
298
299 key.objectid = 1;
300 key.type = BTRFS_DEV_EXTENT_KEY;
301 key.offset = 0;
302
303 path = btrfs_alloc_path();
304 if (!path)
305 return -ENOMEM;
306
307 ret = btrfs_search_slot(NULL, root, key: &key, p: path, ins_len: 0, cow: 0);
308 if (ret < 0)
309 goto out;
310
311 if (path->slots[0] >= btrfs_header_nritems(eb: path->nodes[0])) {
312 ret = btrfs_next_leaf(root, path);
313 if (ret < 0)
314 goto out;
315 /* No dev extents at all? Not good */
316 if (ret > 0) {
317 ret = -EUCLEAN;
318 goto out;
319 }
320 }
321
322 leaf = path->nodes[0];
323 dext = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_extent);
324 fs_info->zone_size = btrfs_dev_extent_length(eb: leaf, s: dext);
325 ret = 0;
326
327out:
328 btrfs_free_path(p: path);
329
330 return ret;
331}
332
333int btrfs_get_dev_zone_info_all_devices(struct btrfs_fs_info *fs_info)
334{
335 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
336 struct btrfs_device *device;
337 int ret = 0;
338
339 /* fs_info->zone_size might not set yet. Use the incomapt flag here. */
340 if (!btrfs_fs_incompat(fs_info, ZONED))
341 return 0;
342
343 mutex_lock(&fs_devices->device_list_mutex);
344 list_for_each_entry(device, &fs_devices->devices, dev_list) {
345 /* We can skip reading of zone info for missing devices */
346 if (!device->bdev)
347 continue;
348
349 ret = btrfs_get_dev_zone_info(device, populate_cache: true);
350 if (ret)
351 break;
352 }
353 mutex_unlock(lock: &fs_devices->device_list_mutex);
354
355 return ret;
356}
357
358int btrfs_get_dev_zone_info(struct btrfs_device *device, bool populate_cache)
359{
360 struct btrfs_fs_info *fs_info = device->fs_info;
361 struct btrfs_zoned_device_info *zone_info = NULL;
362 struct block_device *bdev = device->bdev;
363 unsigned int max_active_zones;
364 unsigned int nactive;
365 sector_t nr_sectors;
366 sector_t sector = 0;
367 struct blk_zone *zones = NULL;
368 unsigned int i, nreported = 0, nr_zones;
369 sector_t zone_sectors;
370 char *model, *emulated;
371 int ret;
372
373 /*
374 * Cannot use btrfs_is_zoned here, since fs_info::zone_size might not
375 * yet be set.
376 */
377 if (!btrfs_fs_incompat(fs_info, ZONED))
378 return 0;
379
380 if (device->zone_info)
381 return 0;
382
383 zone_info = kzalloc(size: sizeof(*zone_info), GFP_KERNEL);
384 if (!zone_info)
385 return -ENOMEM;
386
387 device->zone_info = zone_info;
388
389 if (!bdev_is_zoned(bdev)) {
390 if (!fs_info->zone_size) {
391 ret = calculate_emulated_zone_size(fs_info);
392 if (ret)
393 goto out;
394 }
395
396 ASSERT(fs_info->zone_size);
397 zone_sectors = fs_info->zone_size >> SECTOR_SHIFT;
398 } else {
399 zone_sectors = bdev_zone_sectors(bdev);
400 }
401
402 ASSERT(is_power_of_two_u64(zone_sectors));
403 zone_info->zone_size = zone_sectors << SECTOR_SHIFT;
404
405 /* We reject devices with a zone size larger than 8GB */
406 if (zone_info->zone_size > BTRFS_MAX_ZONE_SIZE) {
407 btrfs_err_in_rcu(fs_info,
408 "zoned: %s: zone size %llu larger than supported maximum %llu",
409 rcu_str_deref(device->name),
410 zone_info->zone_size, BTRFS_MAX_ZONE_SIZE);
411 ret = -EINVAL;
412 goto out;
413 } else if (zone_info->zone_size < BTRFS_MIN_ZONE_SIZE) {
414 btrfs_err_in_rcu(fs_info,
415 "zoned: %s: zone size %llu smaller than supported minimum %u",
416 rcu_str_deref(device->name),
417 zone_info->zone_size, BTRFS_MIN_ZONE_SIZE);
418 ret = -EINVAL;
419 goto out;
420 }
421
422 nr_sectors = bdev_nr_sectors(bdev);
423 zone_info->zone_size_shift = ilog2(zone_info->zone_size);
424 zone_info->nr_zones = nr_sectors >> ilog2(zone_sectors);
425 if (!IS_ALIGNED(nr_sectors, zone_sectors))
426 zone_info->nr_zones++;
427
428 max_active_zones = bdev_max_active_zones(bdev);
429 if (max_active_zones && max_active_zones < BTRFS_MIN_ACTIVE_ZONES) {
430 btrfs_err_in_rcu(fs_info,
431"zoned: %s: max active zones %u is too small, need at least %u active zones",
432 rcu_str_deref(device->name), max_active_zones,
433 BTRFS_MIN_ACTIVE_ZONES);
434 ret = -EINVAL;
435 goto out;
436 }
437 zone_info->max_active_zones = max_active_zones;
438
439 zone_info->seq_zones = bitmap_zalloc(nbits: zone_info->nr_zones, GFP_KERNEL);
440 if (!zone_info->seq_zones) {
441 ret = -ENOMEM;
442 goto out;
443 }
444
445 zone_info->empty_zones = bitmap_zalloc(nbits: zone_info->nr_zones, GFP_KERNEL);
446 if (!zone_info->empty_zones) {
447 ret = -ENOMEM;
448 goto out;
449 }
450
451 zone_info->active_zones = bitmap_zalloc(nbits: zone_info->nr_zones, GFP_KERNEL);
452 if (!zone_info->active_zones) {
453 ret = -ENOMEM;
454 goto out;
455 }
456
457 zones = kvcalloc(BTRFS_REPORT_NR_ZONES, size: sizeof(struct blk_zone), GFP_KERNEL);
458 if (!zones) {
459 ret = -ENOMEM;
460 goto out;
461 }
462
463 /*
464 * Enable zone cache only for a zoned device. On a non-zoned device, we
465 * fill the zone info with emulated CONVENTIONAL zones, so no need to
466 * use the cache.
467 */
468 if (populate_cache && bdev_is_zoned(bdev: device->bdev)) {
469 zone_info->zone_cache = vcalloc(n: zone_info->nr_zones,
470 size: sizeof(struct blk_zone));
471 if (!zone_info->zone_cache) {
472 btrfs_err_in_rcu(device->fs_info,
473 "zoned: failed to allocate zone cache for %s",
474 rcu_str_deref(device->name));
475 ret = -ENOMEM;
476 goto out;
477 }
478 }
479
480 /* Get zones type */
481 nactive = 0;
482 while (sector < nr_sectors) {
483 nr_zones = BTRFS_REPORT_NR_ZONES;
484 ret = btrfs_get_dev_zones(device, pos: sector << SECTOR_SHIFT, zones,
485 nr_zones: &nr_zones);
486 if (ret)
487 goto out;
488
489 for (i = 0; i < nr_zones; i++) {
490 if (zones[i].type == BLK_ZONE_TYPE_SEQWRITE_REQ)
491 __set_bit(nreported, zone_info->seq_zones);
492 switch (zones[i].cond) {
493 case BLK_ZONE_COND_EMPTY:
494 __set_bit(nreported, zone_info->empty_zones);
495 break;
496 case BLK_ZONE_COND_IMP_OPEN:
497 case BLK_ZONE_COND_EXP_OPEN:
498 case BLK_ZONE_COND_CLOSED:
499 __set_bit(nreported, zone_info->active_zones);
500 nactive++;
501 break;
502 }
503 nreported++;
504 }
505 sector = zones[nr_zones - 1].start + zones[nr_zones - 1].len;
506 }
507
508 if (nreported != zone_info->nr_zones) {
509 btrfs_err_in_rcu(device->fs_info,
510 "inconsistent number of zones on %s (%u/%u)",
511 rcu_str_deref(device->name), nreported,
512 zone_info->nr_zones);
513 ret = -EIO;
514 goto out;
515 }
516
517 if (max_active_zones) {
518 if (nactive > max_active_zones) {
519 btrfs_err_in_rcu(device->fs_info,
520 "zoned: %u active zones on %s exceeds max_active_zones %u",
521 nactive, rcu_str_deref(device->name),
522 max_active_zones);
523 ret = -EIO;
524 goto out;
525 }
526 atomic_set(v: &zone_info->active_zones_left,
527 i: max_active_zones - nactive);
528 set_bit(nr: BTRFS_FS_ACTIVE_ZONE_TRACKING, addr: &fs_info->flags);
529 }
530
531 /* Validate superblock log */
532 nr_zones = BTRFS_NR_SB_LOG_ZONES;
533 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
534 u32 sb_zone;
535 u64 sb_wp;
536 int sb_pos = BTRFS_NR_SB_LOG_ZONES * i;
537
538 sb_zone = sb_zone_number(shift: zone_info->zone_size_shift, mirror: i);
539 if (sb_zone + 1 >= zone_info->nr_zones)
540 continue;
541
542 ret = btrfs_get_dev_zones(device,
543 pos: zone_start_physical(zone_number: sb_zone, zone_info),
544 zones: &zone_info->sb_zones[sb_pos],
545 nr_zones: &nr_zones);
546 if (ret)
547 goto out;
548
549 if (nr_zones != BTRFS_NR_SB_LOG_ZONES) {
550 btrfs_err_in_rcu(device->fs_info,
551 "zoned: failed to read super block log zone info at devid %llu zone %u",
552 device->devid, sb_zone);
553 ret = -EUCLEAN;
554 goto out;
555 }
556
557 /*
558 * If zones[0] is conventional, always use the beginning of the
559 * zone to record superblock. No need to validate in that case.
560 */
561 if (zone_info->sb_zones[BTRFS_NR_SB_LOG_ZONES * i].type ==
562 BLK_ZONE_TYPE_CONVENTIONAL)
563 continue;
564
565 ret = sb_write_pointer(bdev: device->bdev,
566 zones: &zone_info->sb_zones[sb_pos], wp_ret: &sb_wp);
567 if (ret != -ENOENT && ret) {
568 btrfs_err_in_rcu(device->fs_info,
569 "zoned: super block log zone corrupted devid %llu zone %u",
570 device->devid, sb_zone);
571 ret = -EUCLEAN;
572 goto out;
573 }
574 }
575
576
577 kvfree(addr: zones);
578
579 if (bdev_is_zoned(bdev)) {
580 model = "host-managed zoned";
581 emulated = "";
582 } else {
583 model = "regular";
584 emulated = "emulated ";
585 }
586
587 btrfs_info_in_rcu(fs_info,
588 "%s block device %s, %u %szones of %llu bytes",
589 model, rcu_str_deref(device->name), zone_info->nr_zones,
590 emulated, zone_info->zone_size);
591
592 return 0;
593
594out:
595 kvfree(addr: zones);
596 btrfs_destroy_dev_zone_info(device);
597 return ret;
598}
599
600void btrfs_destroy_dev_zone_info(struct btrfs_device *device)
601{
602 struct btrfs_zoned_device_info *zone_info = device->zone_info;
603
604 if (!zone_info)
605 return;
606
607 bitmap_free(bitmap: zone_info->active_zones);
608 bitmap_free(bitmap: zone_info->seq_zones);
609 bitmap_free(bitmap: zone_info->empty_zones);
610 vfree(addr: zone_info->zone_cache);
611 kfree(objp: zone_info);
612 device->zone_info = NULL;
613}
614
615struct btrfs_zoned_device_info *btrfs_clone_dev_zone_info(struct btrfs_device *orig_dev)
616{
617 struct btrfs_zoned_device_info *zone_info;
618
619 zone_info = kmemdup(p: orig_dev->zone_info, size: sizeof(*zone_info), GFP_KERNEL);
620 if (!zone_info)
621 return NULL;
622
623 zone_info->seq_zones = bitmap_zalloc(nbits: zone_info->nr_zones, GFP_KERNEL);
624 if (!zone_info->seq_zones)
625 goto out;
626
627 bitmap_copy(dst: zone_info->seq_zones, src: orig_dev->zone_info->seq_zones,
628 nbits: zone_info->nr_zones);
629
630 zone_info->empty_zones = bitmap_zalloc(nbits: zone_info->nr_zones, GFP_KERNEL);
631 if (!zone_info->empty_zones)
632 goto out;
633
634 bitmap_copy(dst: zone_info->empty_zones, src: orig_dev->zone_info->empty_zones,
635 nbits: zone_info->nr_zones);
636
637 zone_info->active_zones = bitmap_zalloc(nbits: zone_info->nr_zones, GFP_KERNEL);
638 if (!zone_info->active_zones)
639 goto out;
640
641 bitmap_copy(dst: zone_info->active_zones, src: orig_dev->zone_info->active_zones,
642 nbits: zone_info->nr_zones);
643 zone_info->zone_cache = NULL;
644
645 return zone_info;
646
647out:
648 bitmap_free(bitmap: zone_info->seq_zones);
649 bitmap_free(bitmap: zone_info->empty_zones);
650 bitmap_free(bitmap: zone_info->active_zones);
651 kfree(objp: zone_info);
652 return NULL;
653}
654
655int btrfs_get_dev_zone(struct btrfs_device *device, u64 pos,
656 struct blk_zone *zone)
657{
658 unsigned int nr_zones = 1;
659 int ret;
660
661 ret = btrfs_get_dev_zones(device, pos, zones: zone, nr_zones: &nr_zones);
662 if (ret != 0 || !nr_zones)
663 return ret ? ret : -EIO;
664
665 return 0;
666}
667
668static int btrfs_check_for_zoned_device(struct btrfs_fs_info *fs_info)
669{
670 struct btrfs_device *device;
671
672 list_for_each_entry(device, &fs_info->fs_devices->devices, dev_list) {
673 if (device->bdev && bdev_is_zoned(bdev: device->bdev)) {
674 btrfs_err(fs_info,
675 "zoned: mode not enabled but zoned device found: %pg",
676 device->bdev);
677 return -EINVAL;
678 }
679 }
680
681 return 0;
682}
683
684int btrfs_check_zoned_mode(struct btrfs_fs_info *fs_info)
685{
686 struct queue_limits *lim = &fs_info->limits;
687 struct btrfs_device *device;
688 u64 zone_size = 0;
689 int ret;
690
691 /*
692 * Host-Managed devices can't be used without the ZONED flag. With the
693 * ZONED all devices can be used, using zone emulation if required.
694 */
695 if (!btrfs_fs_incompat(fs_info, ZONED))
696 return btrfs_check_for_zoned_device(fs_info);
697
698 blk_set_stacking_limits(lim);
699
700 list_for_each_entry(device, &fs_info->fs_devices->devices, dev_list) {
701 struct btrfs_zoned_device_info *zone_info = device->zone_info;
702
703 if (!device->bdev)
704 continue;
705
706 if (!zone_size) {
707 zone_size = zone_info->zone_size;
708 } else if (zone_info->zone_size != zone_size) {
709 btrfs_err(fs_info,
710 "zoned: unequal block device zone sizes: have %llu found %llu",
711 zone_info->zone_size, zone_size);
712 return -EINVAL;
713 }
714
715 /*
716 * With the zoned emulation, we can have non-zoned device on the
717 * zoned mode. In this case, we don't have a valid max zone
718 * append size.
719 */
720 if (bdev_is_zoned(bdev: device->bdev)) {
721 blk_stack_limits(t: lim,
722 b: &bdev_get_queue(bdev: device->bdev)->limits,
723 offset: 0);
724 }
725 }
726
727 /*
728 * stripe_size is always aligned to BTRFS_STRIPE_LEN in
729 * btrfs_create_chunk(). Since we want stripe_len == zone_size,
730 * check the alignment here.
731 */
732 if (!IS_ALIGNED(zone_size, BTRFS_STRIPE_LEN)) {
733 btrfs_err(fs_info,
734 "zoned: zone size %llu not aligned to stripe %u",
735 zone_size, BTRFS_STRIPE_LEN);
736 return -EINVAL;
737 }
738
739 if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
740 btrfs_err(fs_info, "zoned: mixed block groups not supported");
741 return -EINVAL;
742 }
743
744 fs_info->zone_size = zone_size;
745 /*
746 * Also limit max_zone_append_size by max_segments * PAGE_SIZE.
747 * Technically, we can have multiple pages per segment. But, since
748 * we add the pages one by one to a bio, and cannot increase the
749 * metadata reservation even if it increases the number of extents, it
750 * is safe to stick with the limit.
751 */
752 fs_info->max_zone_append_size = ALIGN_DOWN(
753 min3((u64)lim->max_zone_append_sectors << SECTOR_SHIFT,
754 (u64)lim->max_sectors << SECTOR_SHIFT,
755 (u64)lim->max_segments << PAGE_SHIFT),
756 fs_info->sectorsize);
757 fs_info->fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_ZONED;
758 if (fs_info->max_zone_append_size < fs_info->max_extent_size)
759 fs_info->max_extent_size = fs_info->max_zone_append_size;
760
761 /*
762 * Check mount options here, because we might change fs_info->zoned
763 * from fs_info->zone_size.
764 */
765 ret = btrfs_check_mountopts_zoned(info: fs_info, mount_opt: &fs_info->mount_opt);
766 if (ret)
767 return ret;
768
769 btrfs_info(fs_info, "zoned mode enabled with zone size %llu", zone_size);
770 return 0;
771}
772
773int btrfs_check_mountopts_zoned(struct btrfs_fs_info *info, unsigned long *mount_opt)
774{
775 if (!btrfs_is_zoned(fs_info: info))
776 return 0;
777
778 /*
779 * Space cache writing is not COWed. Disable that to avoid write errors
780 * in sequential zones.
781 */
782 if (btrfs_raw_test_opt(*mount_opt, SPACE_CACHE)) {
783 btrfs_err(info, "zoned: space cache v1 is not supported");
784 return -EINVAL;
785 }
786
787 if (btrfs_raw_test_opt(*mount_opt, NODATACOW)) {
788 btrfs_err(info, "zoned: NODATACOW not supported");
789 return -EINVAL;
790 }
791
792 if (btrfs_raw_test_opt(*mount_opt, DISCARD_ASYNC)) {
793 btrfs_info(info,
794 "zoned: async discard ignored and disabled for zoned mode");
795 btrfs_clear_opt(*mount_opt, DISCARD_ASYNC);
796 }
797
798 return 0;
799}
800
801static int sb_log_location(struct block_device *bdev, struct blk_zone *zones,
802 int rw, u64 *bytenr_ret)
803{
804 u64 wp;
805 int ret;
806
807 if (zones[0].type == BLK_ZONE_TYPE_CONVENTIONAL) {
808 *bytenr_ret = zones[0].start << SECTOR_SHIFT;
809 return 0;
810 }
811
812 ret = sb_write_pointer(bdev, zones, wp_ret: &wp);
813 if (ret != -ENOENT && ret < 0)
814 return ret;
815
816 if (rw == WRITE) {
817 struct blk_zone *reset = NULL;
818
819 if (wp == zones[0].start << SECTOR_SHIFT)
820 reset = &zones[0];
821 else if (wp == zones[1].start << SECTOR_SHIFT)
822 reset = &zones[1];
823
824 if (reset && reset->cond != BLK_ZONE_COND_EMPTY) {
825 unsigned int nofs_flags;
826
827 ASSERT(sb_zone_is_full(reset));
828
829 nofs_flags = memalloc_nofs_save();
830 ret = blkdev_zone_mgmt(bdev, op: REQ_OP_ZONE_RESET,
831 sectors: reset->start, nr_sectors: reset->len);
832 memalloc_nofs_restore(flags: nofs_flags);
833 if (ret)
834 return ret;
835
836 reset->cond = BLK_ZONE_COND_EMPTY;
837 reset->wp = reset->start;
838 }
839 } else if (ret != -ENOENT) {
840 /*
841 * For READ, we want the previous one. Move write pointer to
842 * the end of a zone, if it is at the head of a zone.
843 */
844 u64 zone_end = 0;
845
846 if (wp == zones[0].start << SECTOR_SHIFT)
847 zone_end = zones[1].start + zones[1].capacity;
848 else if (wp == zones[1].start << SECTOR_SHIFT)
849 zone_end = zones[0].start + zones[0].capacity;
850 if (zone_end)
851 wp = ALIGN_DOWN(zone_end << SECTOR_SHIFT,
852 BTRFS_SUPER_INFO_SIZE);
853
854 wp -= BTRFS_SUPER_INFO_SIZE;
855 }
856
857 *bytenr_ret = wp;
858 return 0;
859
860}
861
862int btrfs_sb_log_location_bdev(struct block_device *bdev, int mirror, int rw,
863 u64 *bytenr_ret)
864{
865 struct blk_zone zones[BTRFS_NR_SB_LOG_ZONES];
866 sector_t zone_sectors;
867 u32 sb_zone;
868 int ret;
869 u8 zone_sectors_shift;
870 sector_t nr_sectors;
871 u32 nr_zones;
872
873 if (!bdev_is_zoned(bdev)) {
874 *bytenr_ret = btrfs_sb_offset(mirror);
875 return 0;
876 }
877
878 ASSERT(rw == READ || rw == WRITE);
879
880 zone_sectors = bdev_zone_sectors(bdev);
881 if (!is_power_of_2(n: zone_sectors))
882 return -EINVAL;
883 zone_sectors_shift = ilog2(zone_sectors);
884 nr_sectors = bdev_nr_sectors(bdev);
885 nr_zones = nr_sectors >> zone_sectors_shift;
886
887 sb_zone = sb_zone_number(shift: zone_sectors_shift + SECTOR_SHIFT, mirror);
888 if (sb_zone + 1 >= nr_zones)
889 return -ENOENT;
890
891 ret = blkdev_report_zones(bdev, sector: zone_start_sector(zone_number: sb_zone, bdev),
892 BTRFS_NR_SB_LOG_ZONES, cb: copy_zone_info_cb,
893 data: zones);
894 if (ret < 0)
895 return ret;
896 if (ret != BTRFS_NR_SB_LOG_ZONES)
897 return -EIO;
898
899 return sb_log_location(bdev, zones, rw, bytenr_ret);
900}
901
902int btrfs_sb_log_location(struct btrfs_device *device, int mirror, int rw,
903 u64 *bytenr_ret)
904{
905 struct btrfs_zoned_device_info *zinfo = device->zone_info;
906 u32 zone_num;
907
908 /*
909 * For a zoned filesystem on a non-zoned block device, use the same
910 * super block locations as regular filesystem. Doing so, the super
911 * block can always be retrieved and the zoned flag of the volume
912 * detected from the super block information.
913 */
914 if (!bdev_is_zoned(bdev: device->bdev)) {
915 *bytenr_ret = btrfs_sb_offset(mirror);
916 return 0;
917 }
918
919 zone_num = sb_zone_number(shift: zinfo->zone_size_shift, mirror);
920 if (zone_num + 1 >= zinfo->nr_zones)
921 return -ENOENT;
922
923 return sb_log_location(bdev: device->bdev,
924 zones: &zinfo->sb_zones[BTRFS_NR_SB_LOG_ZONES * mirror],
925 rw, bytenr_ret);
926}
927
928static inline bool is_sb_log_zone(struct btrfs_zoned_device_info *zinfo,
929 int mirror)
930{
931 u32 zone_num;
932
933 if (!zinfo)
934 return false;
935
936 zone_num = sb_zone_number(shift: zinfo->zone_size_shift, mirror);
937 if (zone_num + 1 >= zinfo->nr_zones)
938 return false;
939
940 if (!test_bit(zone_num, zinfo->seq_zones))
941 return false;
942
943 return true;
944}
945
946int btrfs_advance_sb_log(struct btrfs_device *device, int mirror)
947{
948 struct btrfs_zoned_device_info *zinfo = device->zone_info;
949 struct blk_zone *zone;
950 int i;
951
952 if (!is_sb_log_zone(zinfo, mirror))
953 return 0;
954
955 zone = &zinfo->sb_zones[BTRFS_NR_SB_LOG_ZONES * mirror];
956 for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) {
957 /* Advance the next zone */
958 if (zone->cond == BLK_ZONE_COND_FULL) {
959 zone++;
960 continue;
961 }
962
963 if (zone->cond == BLK_ZONE_COND_EMPTY)
964 zone->cond = BLK_ZONE_COND_IMP_OPEN;
965
966 zone->wp += SUPER_INFO_SECTORS;
967
968 if (sb_zone_is_full(zone)) {
969 /*
970 * No room left to write new superblock. Since
971 * superblock is written with REQ_SYNC, it is safe to
972 * finish the zone now.
973 *
974 * If the write pointer is exactly at the capacity,
975 * explicit ZONE_FINISH is not necessary.
976 */
977 if (zone->wp != zone->start + zone->capacity) {
978 unsigned int nofs_flags;
979 int ret;
980
981 nofs_flags = memalloc_nofs_save();
982 ret = blkdev_zone_mgmt(bdev: device->bdev,
983 op: REQ_OP_ZONE_FINISH, sectors: zone->start,
984 nr_sectors: zone->len);
985 memalloc_nofs_restore(flags: nofs_flags);
986 if (ret)
987 return ret;
988 }
989
990 zone->wp = zone->start + zone->len;
991 zone->cond = BLK_ZONE_COND_FULL;
992 }
993 return 0;
994 }
995
996 /* All the zones are FULL. Should not reach here. */
997 ASSERT(0);
998 return -EIO;
999}
1000
1001int btrfs_reset_sb_log_zones(struct block_device *bdev, int mirror)
1002{
1003 unsigned int nofs_flags;
1004 sector_t zone_sectors;
1005 sector_t nr_sectors;
1006 u8 zone_sectors_shift;
1007 u32 sb_zone;
1008 u32 nr_zones;
1009 int ret;
1010
1011 zone_sectors = bdev_zone_sectors(bdev);
1012 zone_sectors_shift = ilog2(zone_sectors);
1013 nr_sectors = bdev_nr_sectors(bdev);
1014 nr_zones = nr_sectors >> zone_sectors_shift;
1015
1016 sb_zone = sb_zone_number(shift: zone_sectors_shift + SECTOR_SHIFT, mirror);
1017 if (sb_zone + 1 >= nr_zones)
1018 return -ENOENT;
1019
1020 nofs_flags = memalloc_nofs_save();
1021 ret = blkdev_zone_mgmt(bdev, op: REQ_OP_ZONE_RESET,
1022 sectors: zone_start_sector(zone_number: sb_zone, bdev),
1023 nr_sectors: zone_sectors * BTRFS_NR_SB_LOG_ZONES);
1024 memalloc_nofs_restore(flags: nofs_flags);
1025 return ret;
1026}
1027
1028/*
1029 * Find allocatable zones within a given region.
1030 *
1031 * @device: the device to allocate a region on
1032 * @hole_start: the position of the hole to allocate the region
1033 * @num_bytes: size of wanted region
1034 * @hole_end: the end of the hole
1035 * @return: position of allocatable zones
1036 *
1037 * Allocatable region should not contain any superblock locations.
1038 */
1039u64 btrfs_find_allocatable_zones(struct btrfs_device *device, u64 hole_start,
1040 u64 hole_end, u64 num_bytes)
1041{
1042 struct btrfs_zoned_device_info *zinfo = device->zone_info;
1043 const u8 shift = zinfo->zone_size_shift;
1044 u64 nzones = num_bytes >> shift;
1045 u64 pos = hole_start;
1046 u64 begin, end;
1047 bool have_sb;
1048 int i;
1049
1050 ASSERT(IS_ALIGNED(hole_start, zinfo->zone_size));
1051 ASSERT(IS_ALIGNED(num_bytes, zinfo->zone_size));
1052
1053 while (pos < hole_end) {
1054 begin = pos >> shift;
1055 end = begin + nzones;
1056
1057 if (end > zinfo->nr_zones)
1058 return hole_end;
1059
1060 /* Check if zones in the region are all empty */
1061 if (btrfs_dev_is_sequential(device, pos) &&
1062 !bitmap_test_range_all_set(addr: zinfo->empty_zones, start: begin, nbits: nzones)) {
1063 pos += zinfo->zone_size;
1064 continue;
1065 }
1066
1067 have_sb = false;
1068 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
1069 u32 sb_zone;
1070 u64 sb_pos;
1071
1072 sb_zone = sb_zone_number(shift, mirror: i);
1073 if (!(end <= sb_zone ||
1074 sb_zone + BTRFS_NR_SB_LOG_ZONES <= begin)) {
1075 have_sb = true;
1076 pos = zone_start_physical(
1077 zone_number: sb_zone + BTRFS_NR_SB_LOG_ZONES, zone_info: zinfo);
1078 break;
1079 }
1080
1081 /* We also need to exclude regular superblock positions */
1082 sb_pos = btrfs_sb_offset(mirror: i);
1083 if (!(pos + num_bytes <= sb_pos ||
1084 sb_pos + BTRFS_SUPER_INFO_SIZE <= pos)) {
1085 have_sb = true;
1086 pos = ALIGN(sb_pos + BTRFS_SUPER_INFO_SIZE,
1087 zinfo->zone_size);
1088 break;
1089 }
1090 }
1091 if (!have_sb)
1092 break;
1093 }
1094
1095 return pos;
1096}
1097
1098static bool btrfs_dev_set_active_zone(struct btrfs_device *device, u64 pos)
1099{
1100 struct btrfs_zoned_device_info *zone_info = device->zone_info;
1101 unsigned int zno = (pos >> zone_info->zone_size_shift);
1102
1103 /* We can use any number of zones */
1104 if (zone_info->max_active_zones == 0)
1105 return true;
1106
1107 if (!test_bit(zno, zone_info->active_zones)) {
1108 /* Active zone left? */
1109 if (atomic_dec_if_positive(v: &zone_info->active_zones_left) < 0)
1110 return false;
1111 if (test_and_set_bit(nr: zno, addr: zone_info->active_zones)) {
1112 /* Someone already set the bit */
1113 atomic_inc(v: &zone_info->active_zones_left);
1114 }
1115 }
1116
1117 return true;
1118}
1119
1120static void btrfs_dev_clear_active_zone(struct btrfs_device *device, u64 pos)
1121{
1122 struct btrfs_zoned_device_info *zone_info = device->zone_info;
1123 unsigned int zno = (pos >> zone_info->zone_size_shift);
1124
1125 /* We can use any number of zones */
1126 if (zone_info->max_active_zones == 0)
1127 return;
1128
1129 if (test_and_clear_bit(nr: zno, addr: zone_info->active_zones))
1130 atomic_inc(v: &zone_info->active_zones_left);
1131}
1132
1133int btrfs_reset_device_zone(struct btrfs_device *device, u64 physical,
1134 u64 length, u64 *bytes)
1135{
1136 unsigned int nofs_flags;
1137 int ret;
1138
1139 *bytes = 0;
1140 nofs_flags = memalloc_nofs_save();
1141 ret = blkdev_zone_mgmt(bdev: device->bdev, op: REQ_OP_ZONE_RESET,
1142 sectors: physical >> SECTOR_SHIFT, nr_sectors: length >> SECTOR_SHIFT);
1143 memalloc_nofs_restore(flags: nofs_flags);
1144 if (ret)
1145 return ret;
1146
1147 *bytes = length;
1148 while (length) {
1149 btrfs_dev_set_zone_empty(device, pos: physical);
1150 btrfs_dev_clear_active_zone(device, pos: physical);
1151 physical += device->zone_info->zone_size;
1152 length -= device->zone_info->zone_size;
1153 }
1154
1155 return 0;
1156}
1157
1158int btrfs_ensure_empty_zones(struct btrfs_device *device, u64 start, u64 size)
1159{
1160 struct btrfs_zoned_device_info *zinfo = device->zone_info;
1161 const u8 shift = zinfo->zone_size_shift;
1162 unsigned long begin = start >> shift;
1163 unsigned long nbits = size >> shift;
1164 u64 pos;
1165 int ret;
1166
1167 ASSERT(IS_ALIGNED(start, zinfo->zone_size));
1168 ASSERT(IS_ALIGNED(size, zinfo->zone_size));
1169
1170 if (begin + nbits > zinfo->nr_zones)
1171 return -ERANGE;
1172
1173 /* All the zones are conventional */
1174 if (bitmap_test_range_all_zero(addr: zinfo->seq_zones, start: begin, nbits))
1175 return 0;
1176
1177 /* All the zones are sequential and empty */
1178 if (bitmap_test_range_all_set(addr: zinfo->seq_zones, start: begin, nbits) &&
1179 bitmap_test_range_all_set(addr: zinfo->empty_zones, start: begin, nbits))
1180 return 0;
1181
1182 for (pos = start; pos < start + size; pos += zinfo->zone_size) {
1183 u64 reset_bytes;
1184
1185 if (!btrfs_dev_is_sequential(device, pos) ||
1186 btrfs_dev_is_empty_zone(device, pos))
1187 continue;
1188
1189 /* Free regions should be empty */
1190 btrfs_warn_in_rcu(
1191 device->fs_info,
1192 "zoned: resetting device %s (devid %llu) zone %llu for allocation",
1193 rcu_str_deref(device->name), device->devid, pos >> shift);
1194 WARN_ON_ONCE(1);
1195
1196 ret = btrfs_reset_device_zone(device, physical: pos, length: zinfo->zone_size,
1197 bytes: &reset_bytes);
1198 if (ret)
1199 return ret;
1200 }
1201
1202 return 0;
1203}
1204
1205/*
1206 * Calculate an allocation pointer from the extent allocation information
1207 * for a block group consist of conventional zones. It is pointed to the
1208 * end of the highest addressed extent in the block group as an allocation
1209 * offset.
1210 */
1211static int calculate_alloc_pointer(struct btrfs_block_group *cache,
1212 u64 *offset_ret, bool new)
1213{
1214 struct btrfs_fs_info *fs_info = cache->fs_info;
1215 struct btrfs_root *root;
1216 struct btrfs_path *path;
1217 struct btrfs_key key;
1218 struct btrfs_key found_key;
1219 int ret;
1220 u64 length;
1221
1222 /*
1223 * Avoid tree lookups for a new block group, there's no use for it.
1224 * It must always be 0.
1225 *
1226 * Also, we have a lock chain of extent buffer lock -> chunk mutex.
1227 * For new a block group, this function is called from
1228 * btrfs_make_block_group() which is already taking the chunk mutex.
1229 * Thus, we cannot call calculate_alloc_pointer() which takes extent
1230 * buffer locks to avoid deadlock.
1231 */
1232 if (new) {
1233 *offset_ret = 0;
1234 return 0;
1235 }
1236
1237 path = btrfs_alloc_path();
1238 if (!path)
1239 return -ENOMEM;
1240
1241 key.objectid = cache->start + cache->length;
1242 key.type = 0;
1243 key.offset = 0;
1244
1245 root = btrfs_extent_root(fs_info, bytenr: key.objectid);
1246 ret = btrfs_search_slot(NULL, root, key: &key, p: path, ins_len: 0, cow: 0);
1247 /* We should not find the exact match */
1248 if (!ret)
1249 ret = -EUCLEAN;
1250 if (ret < 0)
1251 goto out;
1252
1253 ret = btrfs_previous_extent_item(root, path, min_objectid: cache->start);
1254 if (ret) {
1255 if (ret == 1) {
1256 ret = 0;
1257 *offset_ret = 0;
1258 }
1259 goto out;
1260 }
1261
1262 btrfs_item_key_to_cpu(eb: path->nodes[0], cpu_key: &found_key, nr: path->slots[0]);
1263
1264 if (found_key.type == BTRFS_EXTENT_ITEM_KEY)
1265 length = found_key.offset;
1266 else
1267 length = fs_info->nodesize;
1268
1269 if (!(found_key.objectid >= cache->start &&
1270 found_key.objectid + length <= cache->start + cache->length)) {
1271 ret = -EUCLEAN;
1272 goto out;
1273 }
1274 *offset_ret = found_key.objectid + length - cache->start;
1275 ret = 0;
1276
1277out:
1278 btrfs_free_path(p: path);
1279 return ret;
1280}
1281
1282struct zone_info {
1283 u64 physical;
1284 u64 capacity;
1285 u64 alloc_offset;
1286};
1287
1288static int btrfs_load_zone_info(struct btrfs_fs_info *fs_info, int zone_idx,
1289 struct zone_info *info, unsigned long *active,
1290 struct btrfs_chunk_map *map)
1291{
1292 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
1293 struct btrfs_device *device = map->stripes[zone_idx].dev;
1294 int dev_replace_is_ongoing = 0;
1295 unsigned int nofs_flag;
1296 struct blk_zone zone;
1297 int ret;
1298
1299 info->physical = map->stripes[zone_idx].physical;
1300
1301 if (!device->bdev) {
1302 info->alloc_offset = WP_MISSING_DEV;
1303 return 0;
1304 }
1305
1306 /* Consider a zone as active if we can allow any number of active zones. */
1307 if (!device->zone_info->max_active_zones)
1308 __set_bit(zone_idx, active);
1309
1310 if (!btrfs_dev_is_sequential(device, pos: info->physical)) {
1311 info->alloc_offset = WP_CONVENTIONAL;
1312 return 0;
1313 }
1314
1315 /* This zone will be used for allocation, so mark this zone non-empty. */
1316 btrfs_dev_clear_zone_empty(device, pos: info->physical);
1317
1318 down_read(sem: &dev_replace->rwsem);
1319 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
1320 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL)
1321 btrfs_dev_clear_zone_empty(device: dev_replace->tgtdev, pos: info->physical);
1322 up_read(sem: &dev_replace->rwsem);
1323
1324 /*
1325 * The group is mapped to a sequential zone. Get the zone write pointer
1326 * to determine the allocation offset within the zone.
1327 */
1328 WARN_ON(!IS_ALIGNED(info->physical, fs_info->zone_size));
1329 nofs_flag = memalloc_nofs_save();
1330 ret = btrfs_get_dev_zone(device, pos: info->physical, zone: &zone);
1331 memalloc_nofs_restore(flags: nofs_flag);
1332 if (ret) {
1333 if (ret != -EIO && ret != -EOPNOTSUPP)
1334 return ret;
1335 info->alloc_offset = WP_MISSING_DEV;
1336 return 0;
1337 }
1338
1339 if (zone.type == BLK_ZONE_TYPE_CONVENTIONAL) {
1340 btrfs_err_in_rcu(fs_info,
1341 "zoned: unexpected conventional zone %llu on device %s (devid %llu)",
1342 zone.start << SECTOR_SHIFT, rcu_str_deref(device->name),
1343 device->devid);
1344 return -EIO;
1345 }
1346
1347 info->capacity = (zone.capacity << SECTOR_SHIFT);
1348
1349 switch (zone.cond) {
1350 case BLK_ZONE_COND_OFFLINE:
1351 case BLK_ZONE_COND_READONLY:
1352 btrfs_err(fs_info,
1353 "zoned: offline/readonly zone %llu on device %s (devid %llu)",
1354 (info->physical >> device->zone_info->zone_size_shift),
1355 rcu_str_deref(device->name), device->devid);
1356 info->alloc_offset = WP_MISSING_DEV;
1357 break;
1358 case BLK_ZONE_COND_EMPTY:
1359 info->alloc_offset = 0;
1360 break;
1361 case BLK_ZONE_COND_FULL:
1362 info->alloc_offset = info->capacity;
1363 break;
1364 default:
1365 /* Partially used zone. */
1366 info->alloc_offset = ((zone.wp - zone.start) << SECTOR_SHIFT);
1367 __set_bit(zone_idx, active);
1368 break;
1369 }
1370
1371 return 0;
1372}
1373
1374static int btrfs_load_block_group_single(struct btrfs_block_group *bg,
1375 struct zone_info *info,
1376 unsigned long *active)
1377{
1378 if (info->alloc_offset == WP_MISSING_DEV) {
1379 btrfs_err(bg->fs_info,
1380 "zoned: cannot recover write pointer for zone %llu",
1381 info->physical);
1382 return -EIO;
1383 }
1384
1385 bg->alloc_offset = info->alloc_offset;
1386 bg->zone_capacity = info->capacity;
1387 if (test_bit(0, active))
1388 set_bit(nr: BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, addr: &bg->runtime_flags);
1389 return 0;
1390}
1391
1392static int btrfs_load_block_group_dup(struct btrfs_block_group *bg,
1393 struct btrfs_chunk_map *map,
1394 struct zone_info *zone_info,
1395 unsigned long *active)
1396{
1397 struct btrfs_fs_info *fs_info = bg->fs_info;
1398
1399 if ((map->type & BTRFS_BLOCK_GROUP_DATA) && !fs_info->stripe_root) {
1400 btrfs_err(fs_info, "zoned: data DUP profile needs raid-stripe-tree");
1401 return -EINVAL;
1402 }
1403
1404 if (zone_info[0].alloc_offset == WP_MISSING_DEV) {
1405 btrfs_err(bg->fs_info,
1406 "zoned: cannot recover write pointer for zone %llu",
1407 zone_info[0].physical);
1408 return -EIO;
1409 }
1410 if (zone_info[1].alloc_offset == WP_MISSING_DEV) {
1411 btrfs_err(bg->fs_info,
1412 "zoned: cannot recover write pointer for zone %llu",
1413 zone_info[1].physical);
1414 return -EIO;
1415 }
1416 if (zone_info[0].alloc_offset != zone_info[1].alloc_offset) {
1417 btrfs_err(bg->fs_info,
1418 "zoned: write pointer offset mismatch of zones in DUP profile");
1419 return -EIO;
1420 }
1421
1422 if (test_bit(0, active) != test_bit(1, active)) {
1423 if (!btrfs_zone_activate(block_group: bg))
1424 return -EIO;
1425 } else if (test_bit(0, active)) {
1426 set_bit(nr: BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, addr: &bg->runtime_flags);
1427 }
1428
1429 bg->alloc_offset = zone_info[0].alloc_offset;
1430 bg->zone_capacity = min(zone_info[0].capacity, zone_info[1].capacity);
1431 return 0;
1432}
1433
1434static int btrfs_load_block_group_raid1(struct btrfs_block_group *bg,
1435 struct btrfs_chunk_map *map,
1436 struct zone_info *zone_info,
1437 unsigned long *active)
1438{
1439 struct btrfs_fs_info *fs_info = bg->fs_info;
1440 int i;
1441
1442 if ((map->type & BTRFS_BLOCK_GROUP_DATA) && !fs_info->stripe_root) {
1443 btrfs_err(fs_info, "zoned: data %s needs raid-stripe-tree",
1444 btrfs_bg_type_to_raid_name(map->type));
1445 return -EINVAL;
1446 }
1447
1448 for (i = 0; i < map->num_stripes; i++) {
1449 if (zone_info[i].alloc_offset == WP_MISSING_DEV ||
1450 zone_info[i].alloc_offset == WP_CONVENTIONAL)
1451 continue;
1452
1453 if ((zone_info[0].alloc_offset != zone_info[i].alloc_offset) &&
1454 !btrfs_test_opt(fs_info, DEGRADED)) {
1455 btrfs_err(fs_info,
1456 "zoned: write pointer offset mismatch of zones in %s profile",
1457 btrfs_bg_type_to_raid_name(map->type));
1458 return -EIO;
1459 }
1460 if (test_bit(0, active) != test_bit(i, active)) {
1461 if (!btrfs_test_opt(fs_info, DEGRADED) &&
1462 !btrfs_zone_activate(block_group: bg)) {
1463 return -EIO;
1464 }
1465 } else {
1466 if (test_bit(0, active))
1467 set_bit(nr: BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, addr: &bg->runtime_flags);
1468 }
1469 /* In case a device is missing we have a cap of 0, so don't use it. */
1470 bg->zone_capacity = min_not_zero(zone_info[0].capacity,
1471 zone_info[1].capacity);
1472 }
1473
1474 if (zone_info[0].alloc_offset != WP_MISSING_DEV)
1475 bg->alloc_offset = zone_info[0].alloc_offset;
1476 else
1477 bg->alloc_offset = zone_info[i - 1].alloc_offset;
1478
1479 return 0;
1480}
1481
1482static int btrfs_load_block_group_raid0(struct btrfs_block_group *bg,
1483 struct btrfs_chunk_map *map,
1484 struct zone_info *zone_info,
1485 unsigned long *active)
1486{
1487 struct btrfs_fs_info *fs_info = bg->fs_info;
1488
1489 if ((map->type & BTRFS_BLOCK_GROUP_DATA) && !fs_info->stripe_root) {
1490 btrfs_err(fs_info, "zoned: data %s needs raid-stripe-tree",
1491 btrfs_bg_type_to_raid_name(map->type));
1492 return -EINVAL;
1493 }
1494
1495 for (int i = 0; i < map->num_stripes; i++) {
1496 if (zone_info[i].alloc_offset == WP_MISSING_DEV ||
1497 zone_info[i].alloc_offset == WP_CONVENTIONAL)
1498 continue;
1499
1500 if (test_bit(0, active) != test_bit(i, active)) {
1501 if (!btrfs_zone_activate(block_group: bg))
1502 return -EIO;
1503 } else {
1504 if (test_bit(0, active))
1505 set_bit(nr: BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, addr: &bg->runtime_flags);
1506 }
1507 bg->zone_capacity += zone_info[i].capacity;
1508 bg->alloc_offset += zone_info[i].alloc_offset;
1509 }
1510
1511 return 0;
1512}
1513
1514static int btrfs_load_block_group_raid10(struct btrfs_block_group *bg,
1515 struct btrfs_chunk_map *map,
1516 struct zone_info *zone_info,
1517 unsigned long *active)
1518{
1519 struct btrfs_fs_info *fs_info = bg->fs_info;
1520
1521 if ((map->type & BTRFS_BLOCK_GROUP_DATA) && !fs_info->stripe_root) {
1522 btrfs_err(fs_info, "zoned: data %s needs raid-stripe-tree",
1523 btrfs_bg_type_to_raid_name(map->type));
1524 return -EINVAL;
1525 }
1526
1527 for (int i = 0; i < map->num_stripes; i++) {
1528 if (zone_info[i].alloc_offset == WP_MISSING_DEV ||
1529 zone_info[i].alloc_offset == WP_CONVENTIONAL)
1530 continue;
1531
1532 if (test_bit(0, active) != test_bit(i, active)) {
1533 if (!btrfs_zone_activate(block_group: bg))
1534 return -EIO;
1535 } else {
1536 if (test_bit(0, active))
1537 set_bit(nr: BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, addr: &bg->runtime_flags);
1538 }
1539
1540 if ((i % map->sub_stripes) == 0) {
1541 bg->zone_capacity += zone_info[i].capacity;
1542 bg->alloc_offset += zone_info[i].alloc_offset;
1543 }
1544 }
1545
1546 return 0;
1547}
1548
1549int btrfs_load_block_group_zone_info(struct btrfs_block_group *cache, bool new)
1550{
1551 struct btrfs_fs_info *fs_info = cache->fs_info;
1552 struct btrfs_chunk_map *map;
1553 u64 logical = cache->start;
1554 u64 length = cache->length;
1555 struct zone_info *zone_info = NULL;
1556 int ret;
1557 int i;
1558 unsigned long *active = NULL;
1559 u64 last_alloc = 0;
1560 u32 num_sequential = 0, num_conventional = 0;
1561
1562 if (!btrfs_is_zoned(fs_info))
1563 return 0;
1564
1565 /* Sanity check */
1566 if (!IS_ALIGNED(length, fs_info->zone_size)) {
1567 btrfs_err(fs_info,
1568 "zoned: block group %llu len %llu unaligned to zone size %llu",
1569 logical, length, fs_info->zone_size);
1570 return -EIO;
1571 }
1572
1573 map = btrfs_find_chunk_map(fs_info, logical, length);
1574 if (!map)
1575 return -EINVAL;
1576
1577 cache->physical_map = map;
1578
1579 zone_info = kcalloc(n: map->num_stripes, size: sizeof(*zone_info), GFP_NOFS);
1580 if (!zone_info) {
1581 ret = -ENOMEM;
1582 goto out;
1583 }
1584
1585 active = bitmap_zalloc(nbits: map->num_stripes, GFP_NOFS);
1586 if (!active) {
1587 ret = -ENOMEM;
1588 goto out;
1589 }
1590
1591 for (i = 0; i < map->num_stripes; i++) {
1592 ret = btrfs_load_zone_info(fs_info, zone_idx: i, info: &zone_info[i], active, map);
1593 if (ret)
1594 goto out;
1595
1596 if (zone_info[i].alloc_offset == WP_CONVENTIONAL)
1597 num_conventional++;
1598 else
1599 num_sequential++;
1600 }
1601
1602 if (num_sequential > 0)
1603 set_bit(nr: BLOCK_GROUP_FLAG_SEQUENTIAL_ZONE, addr: &cache->runtime_flags);
1604
1605 if (num_conventional > 0) {
1606 /* Zone capacity is always zone size in emulation */
1607 cache->zone_capacity = cache->length;
1608 ret = calculate_alloc_pointer(cache, offset_ret: &last_alloc, new);
1609 if (ret) {
1610 btrfs_err(fs_info,
1611 "zoned: failed to determine allocation offset of bg %llu",
1612 cache->start);
1613 goto out;
1614 } else if (map->num_stripes == num_conventional) {
1615 cache->alloc_offset = last_alloc;
1616 set_bit(nr: BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, addr: &cache->runtime_flags);
1617 goto out;
1618 }
1619 }
1620
1621 switch (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
1622 case 0: /* single */
1623 ret = btrfs_load_block_group_single(bg: cache, info: &zone_info[0], active);
1624 break;
1625 case BTRFS_BLOCK_GROUP_DUP:
1626 ret = btrfs_load_block_group_dup(bg: cache, map, zone_info, active);
1627 break;
1628 case BTRFS_BLOCK_GROUP_RAID1:
1629 case BTRFS_BLOCK_GROUP_RAID1C3:
1630 case BTRFS_BLOCK_GROUP_RAID1C4:
1631 ret = btrfs_load_block_group_raid1(bg: cache, map, zone_info, active);
1632 break;
1633 case BTRFS_BLOCK_GROUP_RAID0:
1634 ret = btrfs_load_block_group_raid0(bg: cache, map, zone_info, active);
1635 break;
1636 case BTRFS_BLOCK_GROUP_RAID10:
1637 ret = btrfs_load_block_group_raid10(bg: cache, map, zone_info, active);
1638 break;
1639 case BTRFS_BLOCK_GROUP_RAID5:
1640 case BTRFS_BLOCK_GROUP_RAID6:
1641 default:
1642 btrfs_err(fs_info, "zoned: profile %s not yet supported",
1643 btrfs_bg_type_to_raid_name(map->type));
1644 ret = -EINVAL;
1645 goto out;
1646 }
1647
1648out:
1649 /* Reject non SINGLE data profiles without RST */
1650 if ((map->type & BTRFS_BLOCK_GROUP_DATA) &&
1651 (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) &&
1652 !fs_info->stripe_root) {
1653 btrfs_err(fs_info, "zoned: data %s needs raid-stripe-tree",
1654 btrfs_bg_type_to_raid_name(map->type));
1655 return -EINVAL;
1656 }
1657
1658 if (cache->alloc_offset > cache->zone_capacity) {
1659 btrfs_err(fs_info,
1660"zoned: invalid write pointer %llu (larger than zone capacity %llu) in block group %llu",
1661 cache->alloc_offset, cache->zone_capacity,
1662 cache->start);
1663 ret = -EIO;
1664 }
1665
1666 /* An extent is allocated after the write pointer */
1667 if (!ret && num_conventional && last_alloc > cache->alloc_offset) {
1668 btrfs_err(fs_info,
1669 "zoned: got wrong write pointer in BG %llu: %llu > %llu",
1670 logical, last_alloc, cache->alloc_offset);
1671 ret = -EIO;
1672 }
1673
1674 if (!ret) {
1675 cache->meta_write_pointer = cache->alloc_offset + cache->start;
1676 if (test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &cache->runtime_flags)) {
1677 btrfs_get_block_group(cache);
1678 spin_lock(lock: &fs_info->zone_active_bgs_lock);
1679 list_add_tail(new: &cache->active_bg_list,
1680 head: &fs_info->zone_active_bgs);
1681 spin_unlock(lock: &fs_info->zone_active_bgs_lock);
1682 }
1683 } else {
1684 btrfs_free_chunk_map(map: cache->physical_map);
1685 cache->physical_map = NULL;
1686 }
1687 bitmap_free(bitmap: active);
1688 kfree(objp: zone_info);
1689
1690 return ret;
1691}
1692
1693void btrfs_calc_zone_unusable(struct btrfs_block_group *cache)
1694{
1695 u64 unusable, free;
1696
1697 if (!btrfs_is_zoned(fs_info: cache->fs_info))
1698 return;
1699
1700 WARN_ON(cache->bytes_super != 0);
1701 unusable = (cache->alloc_offset - cache->used) +
1702 (cache->length - cache->zone_capacity);
1703 free = cache->zone_capacity - cache->alloc_offset;
1704
1705 /* We only need ->free_space in ALLOC_SEQ block groups */
1706 cache->cached = BTRFS_CACHE_FINISHED;
1707 cache->free_space_ctl->free_space = free;
1708 cache->zone_unusable = unusable;
1709}
1710
1711bool btrfs_use_zone_append(struct btrfs_bio *bbio)
1712{
1713 u64 start = (bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT);
1714 struct btrfs_inode *inode = bbio->inode;
1715 struct btrfs_fs_info *fs_info = bbio->fs_info;
1716 struct btrfs_block_group *cache;
1717 bool ret = false;
1718
1719 if (!btrfs_is_zoned(fs_info))
1720 return false;
1721
1722 if (!inode || !is_data_inode(inode: &inode->vfs_inode))
1723 return false;
1724
1725 if (btrfs_op(bio: &bbio->bio) != BTRFS_MAP_WRITE)
1726 return false;
1727
1728 /*
1729 * Using REQ_OP_ZONE_APPNED for relocation can break assumptions on the
1730 * extent layout the relocation code has.
1731 * Furthermore we have set aside own block-group from which only the
1732 * relocation "process" can allocate and make sure only one process at a
1733 * time can add pages to an extent that gets relocated, so it's safe to
1734 * use regular REQ_OP_WRITE for this special case.
1735 */
1736 if (btrfs_is_data_reloc_root(root: inode->root))
1737 return false;
1738
1739 cache = btrfs_lookup_block_group(info: fs_info, bytenr: start);
1740 ASSERT(cache);
1741 if (!cache)
1742 return false;
1743
1744 ret = !!test_bit(BLOCK_GROUP_FLAG_SEQUENTIAL_ZONE, &cache->runtime_flags);
1745 btrfs_put_block_group(cache);
1746
1747 return ret;
1748}
1749
1750void btrfs_record_physical_zoned(struct btrfs_bio *bbio)
1751{
1752 const u64 physical = bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT;
1753 struct btrfs_ordered_sum *sum = bbio->sums;
1754
1755 if (physical < bbio->orig_physical)
1756 sum->logical -= bbio->orig_physical - physical;
1757 else
1758 sum->logical += physical - bbio->orig_physical;
1759}
1760
1761static void btrfs_rewrite_logical_zoned(struct btrfs_ordered_extent *ordered,
1762 u64 logical)
1763{
1764 struct extent_map_tree *em_tree = &BTRFS_I(inode: ordered->inode)->extent_tree;
1765 struct extent_map *em;
1766
1767 ordered->disk_bytenr = logical;
1768
1769 write_lock(&em_tree->lock);
1770 em = search_extent_mapping(tree: em_tree, start: ordered->file_offset,
1771 len: ordered->num_bytes);
1772 em->block_start = logical;
1773 free_extent_map(em);
1774 write_unlock(&em_tree->lock);
1775}
1776
1777static bool btrfs_zoned_split_ordered(struct btrfs_ordered_extent *ordered,
1778 u64 logical, u64 len)
1779{
1780 struct btrfs_ordered_extent *new;
1781
1782 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags) &&
1783 split_extent_map(inode: BTRFS_I(inode: ordered->inode), start: ordered->file_offset,
1784 len: ordered->num_bytes, pre: len, new_logical: logical))
1785 return false;
1786
1787 new = btrfs_split_ordered_extent(ordered, len);
1788 if (IS_ERR(ptr: new))
1789 return false;
1790 new->disk_bytenr = logical;
1791 btrfs_finish_one_ordered(ordered_extent: new);
1792 return true;
1793}
1794
1795void btrfs_finish_ordered_zoned(struct btrfs_ordered_extent *ordered)
1796{
1797 struct btrfs_inode *inode = BTRFS_I(inode: ordered->inode);
1798 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1799 struct btrfs_ordered_sum *sum;
1800 u64 logical, len;
1801
1802 /*
1803 * Write to pre-allocated region is for the data relocation, and so
1804 * it should use WRITE operation. No split/rewrite are necessary.
1805 */
1806 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags))
1807 return;
1808
1809 ASSERT(!list_empty(&ordered->list));
1810 /* The ordered->list can be empty in the above pre-alloc case. */
1811 sum = list_first_entry(&ordered->list, struct btrfs_ordered_sum, list);
1812 logical = sum->logical;
1813 len = sum->len;
1814
1815 while (len < ordered->disk_num_bytes) {
1816 sum = list_next_entry(sum, list);
1817 if (sum->logical == logical + len) {
1818 len += sum->len;
1819 continue;
1820 }
1821 if (!btrfs_zoned_split_ordered(ordered, logical, len)) {
1822 set_bit(nr: BTRFS_ORDERED_IOERR, addr: &ordered->flags);
1823 btrfs_err(fs_info, "failed to split ordered extent");
1824 goto out;
1825 }
1826 logical = sum->logical;
1827 len = sum->len;
1828 }
1829
1830 if (ordered->disk_bytenr != logical)
1831 btrfs_rewrite_logical_zoned(ordered, logical);
1832
1833out:
1834 /*
1835 * If we end up here for nodatasum I/O, the btrfs_ordered_sum structures
1836 * were allocated by btrfs_alloc_dummy_sum only to record the logical
1837 * addresses and don't contain actual checksums. We thus must free them
1838 * here so that we don't attempt to log the csums later.
1839 */
1840 if ((inode->flags & BTRFS_INODE_NODATASUM) ||
1841 test_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state)) {
1842 while ((sum = list_first_entry_or_null(&ordered->list,
1843 typeof(*sum), list))) {
1844 list_del(entry: &sum->list);
1845 kfree(objp: sum);
1846 }
1847 }
1848}
1849
1850static bool check_bg_is_active(struct btrfs_eb_write_context *ctx,
1851 struct btrfs_block_group **active_bg)
1852{
1853 const struct writeback_control *wbc = ctx->wbc;
1854 struct btrfs_block_group *block_group = ctx->zoned_bg;
1855 struct btrfs_fs_info *fs_info = block_group->fs_info;
1856
1857 if (test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags))
1858 return true;
1859
1860 if (fs_info->treelog_bg == block_group->start) {
1861 if (!btrfs_zone_activate(block_group)) {
1862 int ret_fin = btrfs_zone_finish_one_bg(fs_info);
1863
1864 if (ret_fin != 1 || !btrfs_zone_activate(block_group))
1865 return false;
1866 }
1867 } else if (*active_bg != block_group) {
1868 struct btrfs_block_group *tgt = *active_bg;
1869
1870 /* zoned_meta_io_lock protects fs_info->active_{meta,system}_bg. */
1871 lockdep_assert_held(&fs_info->zoned_meta_io_lock);
1872
1873 if (tgt) {
1874 /*
1875 * If there is an unsent IO left in the allocated area,
1876 * we cannot wait for them as it may cause a deadlock.
1877 */
1878 if (tgt->meta_write_pointer < tgt->start + tgt->alloc_offset) {
1879 if (wbc->sync_mode == WB_SYNC_NONE ||
1880 (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync))
1881 return false;
1882 }
1883
1884 /* Pivot active metadata/system block group. */
1885 btrfs_zoned_meta_io_unlock(fs_info);
1886 wait_eb_writebacks(block_group: tgt);
1887 do_zone_finish(block_group: tgt, fully_written: true);
1888 btrfs_zoned_meta_io_lock(fs_info);
1889 if (*active_bg == tgt) {
1890 btrfs_put_block_group(cache: tgt);
1891 *active_bg = NULL;
1892 }
1893 }
1894 if (!btrfs_zone_activate(block_group))
1895 return false;
1896 if (*active_bg != block_group) {
1897 ASSERT(*active_bg == NULL);
1898 *active_bg = block_group;
1899 btrfs_get_block_group(cache: block_group);
1900 }
1901 }
1902
1903 return true;
1904}
1905
1906/*
1907 * Check if @ctx->eb is aligned to the write pointer.
1908 *
1909 * Return:
1910 * 0: @ctx->eb is at the write pointer. You can write it.
1911 * -EAGAIN: There is a hole. The caller should handle the case.
1912 * -EBUSY: There is a hole, but the caller can just bail out.
1913 */
1914int btrfs_check_meta_write_pointer(struct btrfs_fs_info *fs_info,
1915 struct btrfs_eb_write_context *ctx)
1916{
1917 const struct writeback_control *wbc = ctx->wbc;
1918 const struct extent_buffer *eb = ctx->eb;
1919 struct btrfs_block_group *block_group = ctx->zoned_bg;
1920
1921 if (!btrfs_is_zoned(fs_info))
1922 return 0;
1923
1924 if (block_group) {
1925 if (block_group->start > eb->start ||
1926 block_group->start + block_group->length <= eb->start) {
1927 btrfs_put_block_group(cache: block_group);
1928 block_group = NULL;
1929 ctx->zoned_bg = NULL;
1930 }
1931 }
1932
1933 if (!block_group) {
1934 block_group = btrfs_lookup_block_group(info: fs_info, bytenr: eb->start);
1935 if (!block_group)
1936 return 0;
1937 ctx->zoned_bg = block_group;
1938 }
1939
1940 if (block_group->meta_write_pointer == eb->start) {
1941 struct btrfs_block_group **tgt;
1942
1943 if (!test_bit(BTRFS_FS_ACTIVE_ZONE_TRACKING, &fs_info->flags))
1944 return 0;
1945
1946 if (block_group->flags & BTRFS_BLOCK_GROUP_SYSTEM)
1947 tgt = &fs_info->active_system_bg;
1948 else
1949 tgt = &fs_info->active_meta_bg;
1950 if (check_bg_is_active(ctx, active_bg: tgt))
1951 return 0;
1952 }
1953
1954 /*
1955 * Since we may release fs_info->zoned_meta_io_lock, someone can already
1956 * start writing this eb. In that case, we can just bail out.
1957 */
1958 if (block_group->meta_write_pointer > eb->start)
1959 return -EBUSY;
1960
1961 /* If for_sync, this hole will be filled with trasnsaction commit. */
1962 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
1963 return -EAGAIN;
1964 return -EBUSY;
1965}
1966
1967int btrfs_zoned_issue_zeroout(struct btrfs_device *device, u64 physical, u64 length)
1968{
1969 if (!btrfs_dev_is_sequential(device, pos: physical))
1970 return -EOPNOTSUPP;
1971
1972 return blkdev_issue_zeroout(bdev: device->bdev, sector: physical >> SECTOR_SHIFT,
1973 nr_sects: length >> SECTOR_SHIFT, GFP_NOFS, flags: 0);
1974}
1975
1976static int read_zone_info(struct btrfs_fs_info *fs_info, u64 logical,
1977 struct blk_zone *zone)
1978{
1979 struct btrfs_io_context *bioc = NULL;
1980 u64 mapped_length = PAGE_SIZE;
1981 unsigned int nofs_flag;
1982 int nmirrors;
1983 int i, ret;
1984
1985 ret = btrfs_map_block(fs_info, op: BTRFS_MAP_GET_READ_MIRRORS, logical,
1986 length: &mapped_length, bioc_ret: &bioc, NULL, NULL);
1987 if (ret || !bioc || mapped_length < PAGE_SIZE) {
1988 ret = -EIO;
1989 goto out_put_bioc;
1990 }
1991
1992 if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
1993 ret = -EINVAL;
1994 goto out_put_bioc;
1995 }
1996
1997 nofs_flag = memalloc_nofs_save();
1998 nmirrors = (int)bioc->num_stripes;
1999 for (i = 0; i < nmirrors; i++) {
2000 u64 physical = bioc->stripes[i].physical;
2001 struct btrfs_device *dev = bioc->stripes[i].dev;
2002
2003 /* Missing device */
2004 if (!dev->bdev)
2005 continue;
2006
2007 ret = btrfs_get_dev_zone(device: dev, pos: physical, zone);
2008 /* Failing device */
2009 if (ret == -EIO || ret == -EOPNOTSUPP)
2010 continue;
2011 break;
2012 }
2013 memalloc_nofs_restore(flags: nofs_flag);
2014out_put_bioc:
2015 btrfs_put_bioc(bioc);
2016 return ret;
2017}
2018
2019/*
2020 * Synchronize write pointer in a zone at @physical_start on @tgt_dev, by
2021 * filling zeros between @physical_pos to a write pointer of dev-replace
2022 * source device.
2023 */
2024int btrfs_sync_zone_write_pointer(struct btrfs_device *tgt_dev, u64 logical,
2025 u64 physical_start, u64 physical_pos)
2026{
2027 struct btrfs_fs_info *fs_info = tgt_dev->fs_info;
2028 struct blk_zone zone;
2029 u64 length;
2030 u64 wp;
2031 int ret;
2032
2033 if (!btrfs_dev_is_sequential(device: tgt_dev, pos: physical_pos))
2034 return 0;
2035
2036 ret = read_zone_info(fs_info, logical, zone: &zone);
2037 if (ret)
2038 return ret;
2039
2040 wp = physical_start + ((zone.wp - zone.start) << SECTOR_SHIFT);
2041
2042 if (physical_pos == wp)
2043 return 0;
2044
2045 if (physical_pos > wp)
2046 return -EUCLEAN;
2047
2048 length = wp - physical_pos;
2049 return btrfs_zoned_issue_zeroout(device: tgt_dev, physical: physical_pos, length);
2050}
2051
2052/*
2053 * Activate block group and underlying device zones
2054 *
2055 * @block_group: the block group to activate
2056 *
2057 * Return: true on success, false otherwise
2058 */
2059bool btrfs_zone_activate(struct btrfs_block_group *block_group)
2060{
2061 struct btrfs_fs_info *fs_info = block_group->fs_info;
2062 struct btrfs_chunk_map *map;
2063 struct btrfs_device *device;
2064 u64 physical;
2065 const bool is_data = (block_group->flags & BTRFS_BLOCK_GROUP_DATA);
2066 bool ret;
2067 int i;
2068
2069 if (!btrfs_is_zoned(fs_info: block_group->fs_info))
2070 return true;
2071
2072 map = block_group->physical_map;
2073
2074 spin_lock(lock: &fs_info->zone_active_bgs_lock);
2075 spin_lock(lock: &block_group->lock);
2076 if (test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags)) {
2077 ret = true;
2078 goto out_unlock;
2079 }
2080
2081 /* No space left */
2082 if (btrfs_zoned_bg_is_full(bg: block_group)) {
2083 ret = false;
2084 goto out_unlock;
2085 }
2086
2087 for (i = 0; i < map->num_stripes; i++) {
2088 struct btrfs_zoned_device_info *zinfo;
2089 int reserved = 0;
2090
2091 device = map->stripes[i].dev;
2092 physical = map->stripes[i].physical;
2093 zinfo = device->zone_info;
2094
2095 if (zinfo->max_active_zones == 0)
2096 continue;
2097
2098 if (is_data)
2099 reserved = zinfo->reserved_active_zones;
2100 /*
2101 * For the data block group, leave active zones for one
2102 * metadata block group and one system block group.
2103 */
2104 if (atomic_read(v: &zinfo->active_zones_left) <= reserved) {
2105 ret = false;
2106 goto out_unlock;
2107 }
2108
2109 if (!btrfs_dev_set_active_zone(device, pos: physical)) {
2110 /* Cannot activate the zone */
2111 ret = false;
2112 goto out_unlock;
2113 }
2114 if (!is_data)
2115 zinfo->reserved_active_zones--;
2116 }
2117
2118 /* Successfully activated all the zones */
2119 set_bit(nr: BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, addr: &block_group->runtime_flags);
2120 spin_unlock(lock: &block_group->lock);
2121
2122 /* For the active block group list */
2123 btrfs_get_block_group(cache: block_group);
2124 list_add_tail(new: &block_group->active_bg_list, head: &fs_info->zone_active_bgs);
2125 spin_unlock(lock: &fs_info->zone_active_bgs_lock);
2126
2127 return true;
2128
2129out_unlock:
2130 spin_unlock(lock: &block_group->lock);
2131 spin_unlock(lock: &fs_info->zone_active_bgs_lock);
2132 return ret;
2133}
2134
2135static void wait_eb_writebacks(struct btrfs_block_group *block_group)
2136{
2137 struct btrfs_fs_info *fs_info = block_group->fs_info;
2138 const u64 end = block_group->start + block_group->length;
2139 struct radix_tree_iter iter;
2140 struct extent_buffer *eb;
2141 void __rcu **slot;
2142
2143 rcu_read_lock();
2144 radix_tree_for_each_slot(slot, &fs_info->buffer_radix, &iter,
2145 block_group->start >> fs_info->sectorsize_bits) {
2146 eb = radix_tree_deref_slot(slot);
2147 if (!eb)
2148 continue;
2149 if (radix_tree_deref_retry(arg: eb)) {
2150 slot = radix_tree_iter_retry(iter: &iter);
2151 continue;
2152 }
2153
2154 if (eb->start < block_group->start)
2155 continue;
2156 if (eb->start >= end)
2157 break;
2158
2159 slot = radix_tree_iter_resume(slot, iter: &iter);
2160 rcu_read_unlock();
2161 wait_on_extent_buffer_writeback(eb);
2162 rcu_read_lock();
2163 }
2164 rcu_read_unlock();
2165}
2166
2167static int do_zone_finish(struct btrfs_block_group *block_group, bool fully_written)
2168{
2169 struct btrfs_fs_info *fs_info = block_group->fs_info;
2170 struct btrfs_chunk_map *map;
2171 const bool is_metadata = (block_group->flags &
2172 (BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_SYSTEM));
2173 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
2174 int ret = 0;
2175 int i;
2176
2177 spin_lock(lock: &block_group->lock);
2178 if (!test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags)) {
2179 spin_unlock(lock: &block_group->lock);
2180 return 0;
2181 }
2182
2183 /* Check if we have unwritten allocated space */
2184 if (is_metadata &&
2185 block_group->start + block_group->alloc_offset > block_group->meta_write_pointer) {
2186 spin_unlock(lock: &block_group->lock);
2187 return -EAGAIN;
2188 }
2189
2190 /*
2191 * If we are sure that the block group is full (= no more room left for
2192 * new allocation) and the IO for the last usable block is completed, we
2193 * don't need to wait for the other IOs. This holds because we ensure
2194 * the sequential IO submissions using the ZONE_APPEND command for data
2195 * and block_group->meta_write_pointer for metadata.
2196 */
2197 if (!fully_written) {
2198 if (test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags)) {
2199 spin_unlock(lock: &block_group->lock);
2200 return -EAGAIN;
2201 }
2202 spin_unlock(lock: &block_group->lock);
2203
2204 ret = btrfs_inc_block_group_ro(cache: block_group, do_chunk_alloc: false);
2205 if (ret)
2206 return ret;
2207
2208 /* Ensure all writes in this block group finish */
2209 btrfs_wait_block_group_reservations(bg: block_group);
2210 /* No need to wait for NOCOW writers. Zoned mode does not allow that */
2211 btrfs_wait_ordered_roots(fs_info, U64_MAX, range_start: block_group->start,
2212 range_len: block_group->length);
2213 /* Wait for extent buffers to be written. */
2214 if (is_metadata)
2215 wait_eb_writebacks(block_group);
2216
2217 spin_lock(lock: &block_group->lock);
2218
2219 /*
2220 * Bail out if someone already deactivated the block group, or
2221 * allocated space is left in the block group.
2222 */
2223 if (!test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE,
2224 &block_group->runtime_flags)) {
2225 spin_unlock(lock: &block_group->lock);
2226 btrfs_dec_block_group_ro(cache: block_group);
2227 return 0;
2228 }
2229
2230 if (block_group->reserved ||
2231 test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC,
2232 &block_group->runtime_flags)) {
2233 spin_unlock(lock: &block_group->lock);
2234 btrfs_dec_block_group_ro(cache: block_group);
2235 return -EAGAIN;
2236 }
2237 }
2238
2239 clear_bit(nr: BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, addr: &block_group->runtime_flags);
2240 block_group->alloc_offset = block_group->zone_capacity;
2241 if (block_group->flags & (BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_SYSTEM))
2242 block_group->meta_write_pointer = block_group->start +
2243 block_group->zone_capacity;
2244 block_group->free_space_ctl->free_space = 0;
2245 btrfs_clear_treelog_bg(bg: block_group);
2246 btrfs_clear_data_reloc_bg(bg: block_group);
2247 spin_unlock(lock: &block_group->lock);
2248
2249 down_read(sem: &dev_replace->rwsem);
2250 map = block_group->physical_map;
2251 for (i = 0; i < map->num_stripes; i++) {
2252 struct btrfs_device *device = map->stripes[i].dev;
2253 const u64 physical = map->stripes[i].physical;
2254 struct btrfs_zoned_device_info *zinfo = device->zone_info;
2255 unsigned int nofs_flags;
2256
2257 if (zinfo->max_active_zones == 0)
2258 continue;
2259
2260 nofs_flags = memalloc_nofs_save();
2261 ret = blkdev_zone_mgmt(bdev: device->bdev, op: REQ_OP_ZONE_FINISH,
2262 sectors: physical >> SECTOR_SHIFT,
2263 nr_sectors: zinfo->zone_size >> SECTOR_SHIFT);
2264 memalloc_nofs_restore(flags: nofs_flags);
2265
2266 if (ret) {
2267 up_read(sem: &dev_replace->rwsem);
2268 return ret;
2269 }
2270
2271 if (!(block_group->flags & BTRFS_BLOCK_GROUP_DATA))
2272 zinfo->reserved_active_zones++;
2273 btrfs_dev_clear_active_zone(device, pos: physical);
2274 }
2275 up_read(sem: &dev_replace->rwsem);
2276
2277 if (!fully_written)
2278 btrfs_dec_block_group_ro(cache: block_group);
2279
2280 spin_lock(lock: &fs_info->zone_active_bgs_lock);
2281 ASSERT(!list_empty(&block_group->active_bg_list));
2282 list_del_init(entry: &block_group->active_bg_list);
2283 spin_unlock(lock: &fs_info->zone_active_bgs_lock);
2284
2285 /* For active_bg_list */
2286 btrfs_put_block_group(cache: block_group);
2287
2288 clear_and_wake_up_bit(bit: BTRFS_FS_NEED_ZONE_FINISH, word: &fs_info->flags);
2289
2290 return 0;
2291}
2292
2293int btrfs_zone_finish(struct btrfs_block_group *block_group)
2294{
2295 if (!btrfs_is_zoned(fs_info: block_group->fs_info))
2296 return 0;
2297
2298 return do_zone_finish(block_group, fully_written: false);
2299}
2300
2301bool btrfs_can_activate_zone(struct btrfs_fs_devices *fs_devices, u64 flags)
2302{
2303 struct btrfs_fs_info *fs_info = fs_devices->fs_info;
2304 struct btrfs_device *device;
2305 bool ret = false;
2306
2307 if (!btrfs_is_zoned(fs_info))
2308 return true;
2309
2310 /* Check if there is a device with active zones left */
2311 mutex_lock(&fs_info->chunk_mutex);
2312 spin_lock(lock: &fs_info->zone_active_bgs_lock);
2313 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
2314 struct btrfs_zoned_device_info *zinfo = device->zone_info;
2315 int reserved = 0;
2316
2317 if (!device->bdev)
2318 continue;
2319
2320 if (!zinfo->max_active_zones) {
2321 ret = true;
2322 break;
2323 }
2324
2325 if (flags & BTRFS_BLOCK_GROUP_DATA)
2326 reserved = zinfo->reserved_active_zones;
2327
2328 switch (flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
2329 case 0: /* single */
2330 ret = (atomic_read(v: &zinfo->active_zones_left) >= (1 + reserved));
2331 break;
2332 case BTRFS_BLOCK_GROUP_DUP:
2333 ret = (atomic_read(v: &zinfo->active_zones_left) >= (2 + reserved));
2334 break;
2335 }
2336 if (ret)
2337 break;
2338 }
2339 spin_unlock(lock: &fs_info->zone_active_bgs_lock);
2340 mutex_unlock(lock: &fs_info->chunk_mutex);
2341
2342 if (!ret)
2343 set_bit(nr: BTRFS_FS_NEED_ZONE_FINISH, addr: &fs_info->flags);
2344
2345 return ret;
2346}
2347
2348void btrfs_zone_finish_endio(struct btrfs_fs_info *fs_info, u64 logical, u64 length)
2349{
2350 struct btrfs_block_group *block_group;
2351 u64 min_alloc_bytes;
2352
2353 if (!btrfs_is_zoned(fs_info))
2354 return;
2355
2356 block_group = btrfs_lookup_block_group(info: fs_info, bytenr: logical);
2357 ASSERT(block_group);
2358
2359 /* No MIXED_BG on zoned btrfs. */
2360 if (block_group->flags & BTRFS_BLOCK_GROUP_DATA)
2361 min_alloc_bytes = fs_info->sectorsize;
2362 else
2363 min_alloc_bytes = fs_info->nodesize;
2364
2365 /* Bail out if we can allocate more data from this block group. */
2366 if (logical + length + min_alloc_bytes <=
2367 block_group->start + block_group->zone_capacity)
2368 goto out;
2369
2370 do_zone_finish(block_group, fully_written: true);
2371
2372out:
2373 btrfs_put_block_group(cache: block_group);
2374}
2375
2376static void btrfs_zone_finish_endio_workfn(struct work_struct *work)
2377{
2378 struct btrfs_block_group *bg =
2379 container_of(work, struct btrfs_block_group, zone_finish_work);
2380
2381 wait_on_extent_buffer_writeback(eb: bg->last_eb);
2382 free_extent_buffer(eb: bg->last_eb);
2383 btrfs_zone_finish_endio(fs_info: bg->fs_info, logical: bg->start, length: bg->length);
2384 btrfs_put_block_group(cache: bg);
2385}
2386
2387void btrfs_schedule_zone_finish_bg(struct btrfs_block_group *bg,
2388 struct extent_buffer *eb)
2389{
2390 if (!test_bit(BLOCK_GROUP_FLAG_SEQUENTIAL_ZONE, &bg->runtime_flags) ||
2391 eb->start + eb->len * 2 <= bg->start + bg->zone_capacity)
2392 return;
2393
2394 if (WARN_ON(bg->zone_finish_work.func == btrfs_zone_finish_endio_workfn)) {
2395 btrfs_err(bg->fs_info, "double scheduling of bg %llu zone finishing",
2396 bg->start);
2397 return;
2398 }
2399
2400 /* For the work */
2401 btrfs_get_block_group(cache: bg);
2402 atomic_inc(v: &eb->refs);
2403 bg->last_eb = eb;
2404 INIT_WORK(&bg->zone_finish_work, btrfs_zone_finish_endio_workfn);
2405 queue_work(wq: system_unbound_wq, work: &bg->zone_finish_work);
2406}
2407
2408void btrfs_clear_data_reloc_bg(struct btrfs_block_group *bg)
2409{
2410 struct btrfs_fs_info *fs_info = bg->fs_info;
2411
2412 spin_lock(lock: &fs_info->relocation_bg_lock);
2413 if (fs_info->data_reloc_bg == bg->start)
2414 fs_info->data_reloc_bg = 0;
2415 spin_unlock(lock: &fs_info->relocation_bg_lock);
2416}
2417
2418void btrfs_free_zone_cache(struct btrfs_fs_info *fs_info)
2419{
2420 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2421 struct btrfs_device *device;
2422
2423 if (!btrfs_is_zoned(fs_info))
2424 return;
2425
2426 mutex_lock(&fs_devices->device_list_mutex);
2427 list_for_each_entry(device, &fs_devices->devices, dev_list) {
2428 if (device->zone_info) {
2429 vfree(addr: device->zone_info->zone_cache);
2430 device->zone_info->zone_cache = NULL;
2431 }
2432 }
2433 mutex_unlock(lock: &fs_devices->device_list_mutex);
2434}
2435
2436bool btrfs_zoned_should_reclaim(struct btrfs_fs_info *fs_info)
2437{
2438 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2439 struct btrfs_device *device;
2440 u64 used = 0;
2441 u64 total = 0;
2442 u64 factor;
2443
2444 ASSERT(btrfs_is_zoned(fs_info));
2445
2446 if (fs_info->bg_reclaim_threshold == 0)
2447 return false;
2448
2449 mutex_lock(&fs_devices->device_list_mutex);
2450 list_for_each_entry(device, &fs_devices->devices, dev_list) {
2451 if (!device->bdev)
2452 continue;
2453
2454 total += device->disk_total_bytes;
2455 used += device->bytes_used;
2456 }
2457 mutex_unlock(lock: &fs_devices->device_list_mutex);
2458
2459 factor = div64_u64(dividend: used * 100, divisor: total);
2460 return factor >= fs_info->bg_reclaim_threshold;
2461}
2462
2463void btrfs_zoned_release_data_reloc_bg(struct btrfs_fs_info *fs_info, u64 logical,
2464 u64 length)
2465{
2466 struct btrfs_block_group *block_group;
2467
2468 if (!btrfs_is_zoned(fs_info))
2469 return;
2470
2471 block_group = btrfs_lookup_block_group(info: fs_info, bytenr: logical);
2472 /* It should be called on a previous data relocation block group. */
2473 ASSERT(block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA));
2474
2475 spin_lock(lock: &block_group->lock);
2476 if (!test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags))
2477 goto out;
2478
2479 /* All relocation extents are written. */
2480 if (block_group->start + block_group->alloc_offset == logical + length) {
2481 /*
2482 * Now, release this block group for further allocations and
2483 * zone finish.
2484 */
2485 clear_bit(nr: BLOCK_GROUP_FLAG_ZONED_DATA_RELOC,
2486 addr: &block_group->runtime_flags);
2487 }
2488
2489out:
2490 spin_unlock(lock: &block_group->lock);
2491 btrfs_put_block_group(cache: block_group);
2492}
2493
2494int btrfs_zone_finish_one_bg(struct btrfs_fs_info *fs_info)
2495{
2496 struct btrfs_block_group *block_group;
2497 struct btrfs_block_group *min_bg = NULL;
2498 u64 min_avail = U64_MAX;
2499 int ret;
2500
2501 spin_lock(lock: &fs_info->zone_active_bgs_lock);
2502 list_for_each_entry(block_group, &fs_info->zone_active_bgs,
2503 active_bg_list) {
2504 u64 avail;
2505
2506 spin_lock(lock: &block_group->lock);
2507 if (block_group->reserved || block_group->alloc_offset == 0 ||
2508 (block_group->flags & BTRFS_BLOCK_GROUP_SYSTEM) ||
2509 test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags)) {
2510 spin_unlock(lock: &block_group->lock);
2511 continue;
2512 }
2513
2514 avail = block_group->zone_capacity - block_group->alloc_offset;
2515 if (min_avail > avail) {
2516 if (min_bg)
2517 btrfs_put_block_group(cache: min_bg);
2518 min_bg = block_group;
2519 min_avail = avail;
2520 btrfs_get_block_group(cache: min_bg);
2521 }
2522 spin_unlock(lock: &block_group->lock);
2523 }
2524 spin_unlock(lock: &fs_info->zone_active_bgs_lock);
2525
2526 if (!min_bg)
2527 return 0;
2528
2529 ret = btrfs_zone_finish(block_group: min_bg);
2530 btrfs_put_block_group(cache: min_bg);
2531
2532 return ret < 0 ? ret : 1;
2533}
2534
2535int btrfs_zoned_activate_one_bg(struct btrfs_fs_info *fs_info,
2536 struct btrfs_space_info *space_info,
2537 bool do_finish)
2538{
2539 struct btrfs_block_group *bg;
2540 int index;
2541
2542 if (!btrfs_is_zoned(fs_info) || (space_info->flags & BTRFS_BLOCK_GROUP_DATA))
2543 return 0;
2544
2545 for (;;) {
2546 int ret;
2547 bool need_finish = false;
2548
2549 down_read(sem: &space_info->groups_sem);
2550 for (index = 0; index < BTRFS_NR_RAID_TYPES; index++) {
2551 list_for_each_entry(bg, &space_info->block_groups[index],
2552 list) {
2553 if (!spin_trylock(lock: &bg->lock))
2554 continue;
2555 if (btrfs_zoned_bg_is_full(bg) ||
2556 test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE,
2557 &bg->runtime_flags)) {
2558 spin_unlock(lock: &bg->lock);
2559 continue;
2560 }
2561 spin_unlock(lock: &bg->lock);
2562
2563 if (btrfs_zone_activate(block_group: bg)) {
2564 up_read(sem: &space_info->groups_sem);
2565 return 1;
2566 }
2567
2568 need_finish = true;
2569 }
2570 }
2571 up_read(sem: &space_info->groups_sem);
2572
2573 if (!do_finish || !need_finish)
2574 break;
2575
2576 ret = btrfs_zone_finish_one_bg(fs_info);
2577 if (ret == 0)
2578 break;
2579 if (ret < 0)
2580 return ret;
2581 }
2582
2583 return 0;
2584}
2585
2586/*
2587 * Reserve zones for one metadata block group, one tree-log block group, and one
2588 * system block group.
2589 */
2590void btrfs_check_active_zone_reservation(struct btrfs_fs_info *fs_info)
2591{
2592 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2593 struct btrfs_block_group *block_group;
2594 struct btrfs_device *device;
2595 /* Reserve zones for normal SINGLE metadata and tree-log block group. */
2596 unsigned int metadata_reserve = 2;
2597 /* Reserve a zone for SINGLE system block group. */
2598 unsigned int system_reserve = 1;
2599
2600 if (!test_bit(BTRFS_FS_ACTIVE_ZONE_TRACKING, &fs_info->flags))
2601 return;
2602
2603 /*
2604 * This function is called from the mount context. So, there is no
2605 * parallel process touching the bits. No need for read_seqretry().
2606 */
2607 if (fs_info->avail_metadata_alloc_bits & BTRFS_BLOCK_GROUP_DUP)
2608 metadata_reserve = 4;
2609 if (fs_info->avail_system_alloc_bits & BTRFS_BLOCK_GROUP_DUP)
2610 system_reserve = 2;
2611
2612 /* Apply the reservation on all the devices. */
2613 mutex_lock(&fs_devices->device_list_mutex);
2614 list_for_each_entry(device, &fs_devices->devices, dev_list) {
2615 if (!device->bdev)
2616 continue;
2617
2618 device->zone_info->reserved_active_zones =
2619 metadata_reserve + system_reserve;
2620 }
2621 mutex_unlock(lock: &fs_devices->device_list_mutex);
2622
2623 /* Release reservation for currently active block groups. */
2624 spin_lock(lock: &fs_info->zone_active_bgs_lock);
2625 list_for_each_entry(block_group, &fs_info->zone_active_bgs, active_bg_list) {
2626 struct btrfs_chunk_map *map = block_group->physical_map;
2627
2628 if (!(block_group->flags &
2629 (BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_SYSTEM)))
2630 continue;
2631
2632 for (int i = 0; i < map->num_stripes; i++)
2633 map->stripes[i].dev->zone_info->reserved_active_zones--;
2634 }
2635 spin_unlock(lock: &fs_info->zone_active_bgs_lock);
2636}
2637

source code of linux/fs/btrfs/zoned.c