1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (c) 2021, Microsoft Corporation.
4 *
5 * Authors:
6 * Beau Belgrave <beaub@linux.microsoft.com>
7 */
8
9#include <linux/bitmap.h>
10#include <linux/cdev.h>
11#include <linux/hashtable.h>
12#include <linux/list.h>
13#include <linux/io.h>
14#include <linux/uio.h>
15#include <linux/ioctl.h>
16#include <linux/jhash.h>
17#include <linux/refcount.h>
18#include <linux/trace_events.h>
19#include <linux/tracefs.h>
20#include <linux/types.h>
21#include <linux/uaccess.h>
22#include <linux/highmem.h>
23#include <linux/init.h>
24#include <linux/user_events.h>
25#include "trace_dynevent.h"
26#include "trace_output.h"
27#include "trace.h"
28
29#define USER_EVENTS_PREFIX_LEN (sizeof(USER_EVENTS_PREFIX)-1)
30
31#define FIELD_DEPTH_TYPE 0
32#define FIELD_DEPTH_NAME 1
33#define FIELD_DEPTH_SIZE 2
34
35/* Limit how long of an event name plus args within the subsystem. */
36#define MAX_EVENT_DESC 512
37#define EVENT_NAME(user_event) ((user_event)->reg_name)
38#define EVENT_TP_NAME(user_event) ((user_event)->tracepoint.name)
39#define MAX_FIELD_ARRAY_SIZE 1024
40
41/*
42 * Internal bits (kernel side only) to keep track of connected probes:
43 * These are used when status is requested in text form about an event. These
44 * bits are compared against an internal byte on the event to determine which
45 * probes to print out to the user.
46 *
47 * These do not reflect the mapped bytes between the user and kernel space.
48 */
49#define EVENT_STATUS_FTRACE BIT(0)
50#define EVENT_STATUS_PERF BIT(1)
51#define EVENT_STATUS_OTHER BIT(7)
52
53/*
54 * Stores the system name, tables, and locks for a group of events. This
55 * allows isolation for events by various means.
56 */
57struct user_event_group {
58 char *system_name;
59 char *system_multi_name;
60 struct hlist_node node;
61 struct mutex reg_mutex;
62 DECLARE_HASHTABLE(register_table, 8);
63 /* ID that moves forward within the group for multi-event names */
64 u64 multi_id;
65};
66
67/* Group for init_user_ns mapping, top-most group */
68static struct user_event_group *init_group;
69
70/* Max allowed events for the whole system */
71static unsigned int max_user_events = 32768;
72
73/* Current number of events on the whole system */
74static unsigned int current_user_events;
75
76/*
77 * Stores per-event properties, as users register events
78 * within a file a user_event might be created if it does not
79 * already exist. These are globally used and their lifetime
80 * is tied to the refcnt member. These cannot go away until the
81 * refcnt reaches one.
82 */
83struct user_event {
84 struct user_event_group *group;
85 char *reg_name;
86 struct tracepoint tracepoint;
87 struct trace_event_call call;
88 struct trace_event_class class;
89 struct dyn_event devent;
90 struct hlist_node node;
91 struct list_head fields;
92 struct list_head validators;
93 struct work_struct put_work;
94 refcount_t refcnt;
95 int min_size;
96 int reg_flags;
97 char status;
98};
99
100/*
101 * Stores per-mm/event properties that enable an address to be
102 * updated properly for each task. As tasks are forked, we use
103 * these to track enablement sites that are tied to an event.
104 */
105struct user_event_enabler {
106 struct list_head mm_enablers_link;
107 struct user_event *event;
108 unsigned long addr;
109
110 /* Track enable bit, flags, etc. Aligned for bitops. */
111 unsigned long values;
112};
113
114/* Bits 0-5 are for the bit to update upon enable/disable (0-63 allowed) */
115#define ENABLE_VAL_BIT_MASK 0x3F
116
117/* Bit 6 is for faulting status of enablement */
118#define ENABLE_VAL_FAULTING_BIT 6
119
120/* Bit 7 is for freeing status of enablement */
121#define ENABLE_VAL_FREEING_BIT 7
122
123/* Bit 8 is for marking 32-bit on 64-bit */
124#define ENABLE_VAL_32_ON_64_BIT 8
125
126#define ENABLE_VAL_COMPAT_MASK (1 << ENABLE_VAL_32_ON_64_BIT)
127
128/* Only duplicate the bit and compat values */
129#define ENABLE_VAL_DUP_MASK (ENABLE_VAL_BIT_MASK | ENABLE_VAL_COMPAT_MASK)
130
131#define ENABLE_BITOPS(e) (&(e)->values)
132
133#define ENABLE_BIT(e) ((int)((e)->values & ENABLE_VAL_BIT_MASK))
134
135#define EVENT_MULTI_FORMAT(f) ((f) & USER_EVENT_REG_MULTI_FORMAT)
136
137/* Used for asynchronous faulting in of pages */
138struct user_event_enabler_fault {
139 struct work_struct work;
140 struct user_event_mm *mm;
141 struct user_event_enabler *enabler;
142 int attempt;
143};
144
145static struct kmem_cache *fault_cache;
146
147/* Global list of memory descriptors using user_events */
148static LIST_HEAD(user_event_mms);
149static DEFINE_SPINLOCK(user_event_mms_lock);
150
151/*
152 * Stores per-file events references, as users register events
153 * within a file this structure is modified and freed via RCU.
154 * The lifetime of this struct is tied to the lifetime of the file.
155 * These are not shared and only accessible by the file that created it.
156 */
157struct user_event_refs {
158 struct rcu_head rcu;
159 int count;
160 struct user_event *events[];
161};
162
163struct user_event_file_info {
164 struct user_event_group *group;
165 struct user_event_refs *refs;
166};
167
168#define VALIDATOR_ENSURE_NULL (1 << 0)
169#define VALIDATOR_REL (1 << 1)
170
171struct user_event_validator {
172 struct list_head user_event_link;
173 int offset;
174 int flags;
175};
176
177static inline void align_addr_bit(unsigned long *addr, int *bit,
178 unsigned long *flags)
179{
180 if (IS_ALIGNED(*addr, sizeof(long))) {
181#ifdef __BIG_ENDIAN
182 /* 32 bit on BE 64 bit requires a 32 bit offset when aligned. */
183 if (test_bit(ENABLE_VAL_32_ON_64_BIT, flags))
184 *bit += 32;
185#endif
186 return;
187 }
188
189 *addr = ALIGN_DOWN(*addr, sizeof(long));
190
191 /*
192 * We only support 32 and 64 bit values. The only time we need
193 * to align is a 32 bit value on a 64 bit kernel, which on LE
194 * is always 32 bits, and on BE requires no change when unaligned.
195 */
196#ifdef __LITTLE_ENDIAN
197 *bit += 32;
198#endif
199}
200
201typedef void (*user_event_func_t) (struct user_event *user, struct iov_iter *i,
202 void *tpdata, bool *faulted);
203
204static int user_event_parse(struct user_event_group *group, char *name,
205 char *args, char *flags,
206 struct user_event **newuser, int reg_flags);
207
208static struct user_event_mm *user_event_mm_get(struct user_event_mm *mm);
209static struct user_event_mm *user_event_mm_get_all(struct user_event *user);
210static void user_event_mm_put(struct user_event_mm *mm);
211static int destroy_user_event(struct user_event *user);
212static bool user_fields_match(struct user_event *user, int argc,
213 const char **argv);
214
215static u32 user_event_key(char *name)
216{
217 return jhash(key: name, strlen(name), initval: 0);
218}
219
220static bool user_event_capable(u16 reg_flags)
221{
222 /* Persistent events require CAP_PERFMON / CAP_SYS_ADMIN */
223 if (reg_flags & USER_EVENT_REG_PERSIST) {
224 if (!perfmon_capable())
225 return false;
226 }
227
228 return true;
229}
230
231static struct user_event *user_event_get(struct user_event *user)
232{
233 refcount_inc(r: &user->refcnt);
234
235 return user;
236}
237
238static void delayed_destroy_user_event(struct work_struct *work)
239{
240 struct user_event *user = container_of(
241 work, struct user_event, put_work);
242
243 mutex_lock(&event_mutex);
244
245 if (!refcount_dec_and_test(r: &user->refcnt))
246 goto out;
247
248 if (destroy_user_event(user)) {
249 /*
250 * The only reason this would fail here is if we cannot
251 * update the visibility of the event. In this case the
252 * event stays in the hashtable, waiting for someone to
253 * attempt to delete it later.
254 */
255 pr_warn("user_events: Unable to delete event\n");
256 refcount_set(r: &user->refcnt, n: 1);
257 }
258out:
259 mutex_unlock(lock: &event_mutex);
260}
261
262static void user_event_put(struct user_event *user, bool locked)
263{
264 bool delete;
265
266 if (unlikely(!user))
267 return;
268
269 /*
270 * When the event is not enabled for auto-delete there will always
271 * be at least 1 reference to the event. During the event creation
272 * we initially set the refcnt to 2 to achieve this. In those cases
273 * the caller must acquire event_mutex and after decrement check if
274 * the refcnt is 1, meaning this is the last reference. When auto
275 * delete is enabled, there will only be 1 ref, IE: refcnt will be
276 * only set to 1 during creation to allow the below checks to go
277 * through upon the last put. The last put must always be done with
278 * the event mutex held.
279 */
280 if (!locked) {
281 lockdep_assert_not_held(&event_mutex);
282 delete = refcount_dec_and_mutex_lock(r: &user->refcnt, lock: &event_mutex);
283 } else {
284 lockdep_assert_held(&event_mutex);
285 delete = refcount_dec_and_test(r: &user->refcnt);
286 }
287
288 if (!delete)
289 return;
290
291 /*
292 * We now have the event_mutex in all cases, which ensures that
293 * no new references will be taken until event_mutex is released.
294 * New references come through find_user_event(), which requires
295 * the event_mutex to be held.
296 */
297
298 if (user->reg_flags & USER_EVENT_REG_PERSIST) {
299 /* We should not get here when persist flag is set */
300 pr_alert("BUG: Auto-delete engaged on persistent event\n");
301 goto out;
302 }
303
304 /*
305 * Unfortunately we have to attempt the actual destroy in a work
306 * queue. This is because not all cases handle a trace_event_call
307 * being removed within the class->reg() operation for unregister.
308 */
309 INIT_WORK(&user->put_work, delayed_destroy_user_event);
310
311 /*
312 * Since the event is still in the hashtable, we have to re-inc
313 * the ref count to 1. This count will be decremented and checked
314 * in the work queue to ensure it's still the last ref. This is
315 * needed because a user-process could register the same event in
316 * between the time of event_mutex release and the work queue
317 * running the delayed destroy. If we removed the item now from
318 * the hashtable, this would result in a timing window where a
319 * user process would fail a register because the trace_event_call
320 * register would fail in the tracing layers.
321 */
322 refcount_set(r: &user->refcnt, n: 1);
323
324 if (WARN_ON_ONCE(!schedule_work(&user->put_work))) {
325 /*
326 * If we fail we must wait for an admin to attempt delete or
327 * another register/close of the event, whichever is first.
328 */
329 pr_warn("user_events: Unable to queue delayed destroy\n");
330 }
331out:
332 /* Ensure if we didn't have event_mutex before we unlock it */
333 if (!locked)
334 mutex_unlock(lock: &event_mutex);
335}
336
337static void user_event_group_destroy(struct user_event_group *group)
338{
339 kfree(objp: group->system_name);
340 kfree(objp: group->system_multi_name);
341 kfree(objp: group);
342}
343
344static char *user_event_group_system_name(void)
345{
346 char *system_name;
347 int len = sizeof(USER_EVENTS_SYSTEM) + 1;
348
349 system_name = kmalloc(size: len, GFP_KERNEL);
350
351 if (!system_name)
352 return NULL;
353
354 snprintf(buf: system_name, size: len, fmt: "%s", USER_EVENTS_SYSTEM);
355
356 return system_name;
357}
358
359static char *user_event_group_system_multi_name(void)
360{
361 return kstrdup(USER_EVENTS_MULTI_SYSTEM, GFP_KERNEL);
362}
363
364static struct user_event_group *current_user_event_group(void)
365{
366 return init_group;
367}
368
369static struct user_event_group *user_event_group_create(void)
370{
371 struct user_event_group *group;
372
373 group = kzalloc(size: sizeof(*group), GFP_KERNEL);
374
375 if (!group)
376 return NULL;
377
378 group->system_name = user_event_group_system_name();
379
380 if (!group->system_name)
381 goto error;
382
383 group->system_multi_name = user_event_group_system_multi_name();
384
385 if (!group->system_multi_name)
386 goto error;
387
388 mutex_init(&group->reg_mutex);
389 hash_init(group->register_table);
390
391 return group;
392error:
393 if (group)
394 user_event_group_destroy(group);
395
396 return NULL;
397};
398
399static void user_event_enabler_destroy(struct user_event_enabler *enabler,
400 bool locked)
401{
402 list_del_rcu(entry: &enabler->mm_enablers_link);
403
404 /* No longer tracking the event via the enabler */
405 user_event_put(user: enabler->event, locked);
406
407 kfree(objp: enabler);
408}
409
410static int user_event_mm_fault_in(struct user_event_mm *mm, unsigned long uaddr,
411 int attempt)
412{
413 bool unlocked;
414 int ret;
415
416 /*
417 * Normally this is low, ensure that it cannot be taken advantage of by
418 * bad user processes to cause excessive looping.
419 */
420 if (attempt > 10)
421 return -EFAULT;
422
423 mmap_read_lock(mm: mm->mm);
424
425 /* Ensure MM has tasks, cannot use after exit_mm() */
426 if (refcount_read(r: &mm->tasks) == 0) {
427 ret = -ENOENT;
428 goto out;
429 }
430
431 ret = fixup_user_fault(mm: mm->mm, address: uaddr, fault_flags: FAULT_FLAG_WRITE | FAULT_FLAG_REMOTE,
432 unlocked: &unlocked);
433out:
434 mmap_read_unlock(mm: mm->mm);
435
436 return ret;
437}
438
439static int user_event_enabler_write(struct user_event_mm *mm,
440 struct user_event_enabler *enabler,
441 bool fixup_fault, int *attempt);
442
443static void user_event_enabler_fault_fixup(struct work_struct *work)
444{
445 struct user_event_enabler_fault *fault = container_of(
446 work, struct user_event_enabler_fault, work);
447 struct user_event_enabler *enabler = fault->enabler;
448 struct user_event_mm *mm = fault->mm;
449 unsigned long uaddr = enabler->addr;
450 int attempt = fault->attempt;
451 int ret;
452
453 ret = user_event_mm_fault_in(mm, uaddr, attempt);
454
455 if (ret && ret != -ENOENT) {
456 struct user_event *user = enabler->event;
457
458 pr_warn("user_events: Fault for mm: 0x%pK @ 0x%llx event: %s\n",
459 mm->mm, (unsigned long long)uaddr, EVENT_NAME(user));
460 }
461
462 /* Prevent state changes from racing */
463 mutex_lock(&event_mutex);
464
465 /* User asked for enabler to be removed during fault */
466 if (test_bit(ENABLE_VAL_FREEING_BIT, ENABLE_BITOPS(enabler))) {
467 user_event_enabler_destroy(enabler, locked: true);
468 goto out;
469 }
470
471 /*
472 * If we managed to get the page, re-issue the write. We do not
473 * want to get into a possible infinite loop, which is why we only
474 * attempt again directly if the page came in. If we couldn't get
475 * the page here, then we will try again the next time the event is
476 * enabled/disabled.
477 */
478 clear_bit(ENABLE_VAL_FAULTING_BIT, ENABLE_BITOPS(enabler));
479
480 if (!ret) {
481 mmap_read_lock(mm: mm->mm);
482 user_event_enabler_write(mm, enabler, fixup_fault: true, attempt: &attempt);
483 mmap_read_unlock(mm: mm->mm);
484 }
485out:
486 mutex_unlock(lock: &event_mutex);
487
488 /* In all cases we no longer need the mm or fault */
489 user_event_mm_put(mm);
490 kmem_cache_free(s: fault_cache, objp: fault);
491}
492
493static bool user_event_enabler_queue_fault(struct user_event_mm *mm,
494 struct user_event_enabler *enabler,
495 int attempt)
496{
497 struct user_event_enabler_fault *fault;
498
499 fault = kmem_cache_zalloc(k: fault_cache, GFP_NOWAIT | __GFP_NOWARN);
500
501 if (!fault)
502 return false;
503
504 INIT_WORK(&fault->work, user_event_enabler_fault_fixup);
505 fault->mm = user_event_mm_get(mm);
506 fault->enabler = enabler;
507 fault->attempt = attempt;
508
509 /* Don't try to queue in again while we have a pending fault */
510 set_bit(ENABLE_VAL_FAULTING_BIT, ENABLE_BITOPS(enabler));
511
512 if (!schedule_work(work: &fault->work)) {
513 /* Allow another attempt later */
514 clear_bit(ENABLE_VAL_FAULTING_BIT, ENABLE_BITOPS(enabler));
515
516 user_event_mm_put(mm);
517 kmem_cache_free(s: fault_cache, objp: fault);
518
519 return false;
520 }
521
522 return true;
523}
524
525static int user_event_enabler_write(struct user_event_mm *mm,
526 struct user_event_enabler *enabler,
527 bool fixup_fault, int *attempt)
528{
529 unsigned long uaddr = enabler->addr;
530 unsigned long *ptr;
531 struct page *page;
532 void *kaddr;
533 int bit = ENABLE_BIT(enabler);
534 int ret;
535
536 lockdep_assert_held(&event_mutex);
537 mmap_assert_locked(mm: mm->mm);
538
539 *attempt += 1;
540
541 /* Ensure MM has tasks, cannot use after exit_mm() */
542 if (refcount_read(r: &mm->tasks) == 0)
543 return -ENOENT;
544
545 if (unlikely(test_bit(ENABLE_VAL_FAULTING_BIT, ENABLE_BITOPS(enabler)) ||
546 test_bit(ENABLE_VAL_FREEING_BIT, ENABLE_BITOPS(enabler))))
547 return -EBUSY;
548
549 align_addr_bit(addr: &uaddr, bit: &bit, ENABLE_BITOPS(enabler));
550
551 ret = pin_user_pages_remote(mm: mm->mm, start: uaddr, nr_pages: 1, gup_flags: FOLL_WRITE | FOLL_NOFAULT,
552 pages: &page, NULL);
553
554 if (unlikely(ret <= 0)) {
555 if (!fixup_fault)
556 return -EFAULT;
557
558 if (!user_event_enabler_queue_fault(mm, enabler, attempt: *attempt))
559 pr_warn("user_events: Unable to queue fault handler\n");
560
561 return -EFAULT;
562 }
563
564 kaddr = kmap_local_page(page);
565 ptr = kaddr + (uaddr & ~PAGE_MASK);
566
567 /* Update bit atomically, user tracers must be atomic as well */
568 if (enabler->event && enabler->event->status)
569 set_bit(nr: bit, addr: ptr);
570 else
571 clear_bit(nr: bit, addr: ptr);
572
573 kunmap_local(kaddr);
574 unpin_user_pages_dirty_lock(pages: &page, npages: 1, make_dirty: true);
575
576 return 0;
577}
578
579static bool user_event_enabler_exists(struct user_event_mm *mm,
580 unsigned long uaddr, unsigned char bit)
581{
582 struct user_event_enabler *enabler;
583
584 list_for_each_entry(enabler, &mm->enablers, mm_enablers_link) {
585 if (enabler->addr == uaddr && ENABLE_BIT(enabler) == bit)
586 return true;
587 }
588
589 return false;
590}
591
592static void user_event_enabler_update(struct user_event *user)
593{
594 struct user_event_enabler *enabler;
595 struct user_event_mm *next;
596 struct user_event_mm *mm;
597 int attempt;
598
599 lockdep_assert_held(&event_mutex);
600
601 /*
602 * We need to build a one-shot list of all the mms that have an
603 * enabler for the user_event passed in. This list is only valid
604 * while holding the event_mutex. The only reason for this is due
605 * to the global mm list being RCU protected and we use methods
606 * which can wait (mmap_read_lock and pin_user_pages_remote).
607 *
608 * NOTE: user_event_mm_get_all() increments the ref count of each
609 * mm that is added to the list to prevent removal timing windows.
610 * We must always put each mm after they are used, which may wait.
611 */
612 mm = user_event_mm_get_all(user);
613
614 while (mm) {
615 next = mm->next;
616 mmap_read_lock(mm: mm->mm);
617
618 list_for_each_entry(enabler, &mm->enablers, mm_enablers_link) {
619 if (enabler->event == user) {
620 attempt = 0;
621 user_event_enabler_write(mm, enabler, fixup_fault: true, attempt: &attempt);
622 }
623 }
624
625 mmap_read_unlock(mm: mm->mm);
626 user_event_mm_put(mm);
627 mm = next;
628 }
629}
630
631static bool user_event_enabler_dup(struct user_event_enabler *orig,
632 struct user_event_mm *mm)
633{
634 struct user_event_enabler *enabler;
635
636 /* Skip pending frees */
637 if (unlikely(test_bit(ENABLE_VAL_FREEING_BIT, ENABLE_BITOPS(orig))))
638 return true;
639
640 enabler = kzalloc(size: sizeof(*enabler), GFP_NOWAIT | __GFP_ACCOUNT);
641
642 if (!enabler)
643 return false;
644
645 enabler->event = user_event_get(user: orig->event);
646 enabler->addr = orig->addr;
647
648 /* Only dup part of value (ignore future flags, etc) */
649 enabler->values = orig->values & ENABLE_VAL_DUP_MASK;
650
651 /* Enablers not exposed yet, RCU not required */
652 list_add(new: &enabler->mm_enablers_link, head: &mm->enablers);
653
654 return true;
655}
656
657static struct user_event_mm *user_event_mm_get(struct user_event_mm *mm)
658{
659 refcount_inc(r: &mm->refcnt);
660
661 return mm;
662}
663
664static struct user_event_mm *user_event_mm_get_all(struct user_event *user)
665{
666 struct user_event_mm *found = NULL;
667 struct user_event_enabler *enabler;
668 struct user_event_mm *mm;
669
670 /*
671 * We use the mm->next field to build a one-shot list from the global
672 * RCU protected list. To build this list the event_mutex must be held.
673 * This lets us build a list without requiring allocs that could fail
674 * when user based events are most wanted for diagnostics.
675 */
676 lockdep_assert_held(&event_mutex);
677
678 /*
679 * We do not want to block fork/exec while enablements are being
680 * updated, so we use RCU to walk the current tasks that have used
681 * user_events ABI for 1 or more events. Each enabler found in each
682 * task that matches the event being updated has a write to reflect
683 * the kernel state back into the process. Waits/faults must not occur
684 * during this. So we scan the list under RCU for all the mm that have
685 * the event within it. This is needed because mm_read_lock() can wait.
686 * Each user mm returned has a ref inc to handle remove RCU races.
687 */
688 rcu_read_lock();
689
690 list_for_each_entry_rcu(mm, &user_event_mms, mms_link) {
691 list_for_each_entry_rcu(enabler, &mm->enablers, mm_enablers_link) {
692 if (enabler->event == user) {
693 mm->next = found;
694 found = user_event_mm_get(mm);
695 break;
696 }
697 }
698 }
699
700 rcu_read_unlock();
701
702 return found;
703}
704
705static struct user_event_mm *user_event_mm_alloc(struct task_struct *t)
706{
707 struct user_event_mm *user_mm;
708
709 user_mm = kzalloc(size: sizeof(*user_mm), GFP_KERNEL_ACCOUNT);
710
711 if (!user_mm)
712 return NULL;
713
714 user_mm->mm = t->mm;
715 INIT_LIST_HEAD(list: &user_mm->enablers);
716 refcount_set(r: &user_mm->refcnt, n: 1);
717 refcount_set(r: &user_mm->tasks, n: 1);
718
719 /*
720 * The lifetime of the memory descriptor can slightly outlast
721 * the task lifetime if a ref to the user_event_mm is taken
722 * between list_del_rcu() and call_rcu(). Therefore we need
723 * to take a reference to it to ensure it can live this long
724 * under this corner case. This can also occur in clones that
725 * outlast the parent.
726 */
727 mmgrab(mm: user_mm->mm);
728
729 return user_mm;
730}
731
732static void user_event_mm_attach(struct user_event_mm *user_mm, struct task_struct *t)
733{
734 unsigned long flags;
735
736 spin_lock_irqsave(&user_event_mms_lock, flags);
737 list_add_rcu(new: &user_mm->mms_link, head: &user_event_mms);
738 spin_unlock_irqrestore(lock: &user_event_mms_lock, flags);
739
740 t->user_event_mm = user_mm;
741}
742
743static struct user_event_mm *current_user_event_mm(void)
744{
745 struct user_event_mm *user_mm = current->user_event_mm;
746
747 if (user_mm)
748 goto inc;
749
750 user_mm = user_event_mm_alloc(current);
751
752 if (!user_mm)
753 goto error;
754
755 user_event_mm_attach(user_mm, current);
756inc:
757 refcount_inc(r: &user_mm->refcnt);
758error:
759 return user_mm;
760}
761
762static void user_event_mm_destroy(struct user_event_mm *mm)
763{
764 struct user_event_enabler *enabler, *next;
765
766 list_for_each_entry_safe(enabler, next, &mm->enablers, mm_enablers_link)
767 user_event_enabler_destroy(enabler, locked: false);
768
769 mmdrop(mm: mm->mm);
770 kfree(objp: mm);
771}
772
773static void user_event_mm_put(struct user_event_mm *mm)
774{
775 if (mm && refcount_dec_and_test(r: &mm->refcnt))
776 user_event_mm_destroy(mm);
777}
778
779static void delayed_user_event_mm_put(struct work_struct *work)
780{
781 struct user_event_mm *mm;
782
783 mm = container_of(to_rcu_work(work), struct user_event_mm, put_rwork);
784 user_event_mm_put(mm);
785}
786
787void user_event_mm_remove(struct task_struct *t)
788{
789 struct user_event_mm *mm;
790 unsigned long flags;
791
792 might_sleep();
793
794 mm = t->user_event_mm;
795 t->user_event_mm = NULL;
796
797 /* Clone will increment the tasks, only remove if last clone */
798 if (!refcount_dec_and_test(r: &mm->tasks))
799 return;
800
801 /* Remove the mm from the list, so it can no longer be enabled */
802 spin_lock_irqsave(&user_event_mms_lock, flags);
803 list_del_rcu(entry: &mm->mms_link);
804 spin_unlock_irqrestore(lock: &user_event_mms_lock, flags);
805
806 /*
807 * We need to wait for currently occurring writes to stop within
808 * the mm. This is required since exit_mm() snaps the current rss
809 * stats and clears them. On the final mmdrop(), check_mm() will
810 * report a bug if these increment.
811 *
812 * All writes/pins are done under mmap_read lock, take the write
813 * lock to ensure in-progress faults have completed. Faults that
814 * are pending but yet to run will check the task count and skip
815 * the fault since the mm is going away.
816 */
817 mmap_write_lock(mm: mm->mm);
818 mmap_write_unlock(mm: mm->mm);
819
820 /*
821 * Put for mm must be done after RCU delay to handle new refs in
822 * between the list_del_rcu() and now. This ensures any get refs
823 * during rcu_read_lock() are accounted for during list removal.
824 *
825 * CPU A | CPU B
826 * ---------------------------------------------------------------
827 * user_event_mm_remove() | rcu_read_lock();
828 * list_del_rcu() | list_for_each_entry_rcu();
829 * call_rcu() | refcount_inc();
830 * . | rcu_read_unlock();
831 * schedule_work() | .
832 * user_event_mm_put() | .
833 *
834 * mmdrop() cannot be called in the softirq context of call_rcu()
835 * so we use a work queue after call_rcu() to run within.
836 */
837 INIT_RCU_WORK(&mm->put_rwork, delayed_user_event_mm_put);
838 queue_rcu_work(wq: system_wq, rwork: &mm->put_rwork);
839}
840
841void user_event_mm_dup(struct task_struct *t, struct user_event_mm *old_mm)
842{
843 struct user_event_mm *mm = user_event_mm_alloc(t);
844 struct user_event_enabler *enabler;
845
846 if (!mm)
847 return;
848
849 rcu_read_lock();
850
851 list_for_each_entry_rcu(enabler, &old_mm->enablers, mm_enablers_link) {
852 if (!user_event_enabler_dup(orig: enabler, mm))
853 goto error;
854 }
855
856 rcu_read_unlock();
857
858 user_event_mm_attach(user_mm: mm, t);
859 return;
860error:
861 rcu_read_unlock();
862 user_event_mm_destroy(mm);
863}
864
865static bool current_user_event_enabler_exists(unsigned long uaddr,
866 unsigned char bit)
867{
868 struct user_event_mm *user_mm = current_user_event_mm();
869 bool exists;
870
871 if (!user_mm)
872 return false;
873
874 exists = user_event_enabler_exists(mm: user_mm, uaddr, bit);
875
876 user_event_mm_put(mm: user_mm);
877
878 return exists;
879}
880
881static struct user_event_enabler
882*user_event_enabler_create(struct user_reg *reg, struct user_event *user,
883 int *write_result)
884{
885 struct user_event_enabler *enabler;
886 struct user_event_mm *user_mm;
887 unsigned long uaddr = (unsigned long)reg->enable_addr;
888 int attempt = 0;
889
890 user_mm = current_user_event_mm();
891
892 if (!user_mm)
893 return NULL;
894
895 enabler = kzalloc(size: sizeof(*enabler), GFP_KERNEL_ACCOUNT);
896
897 if (!enabler)
898 goto out;
899
900 enabler->event = user;
901 enabler->addr = uaddr;
902 enabler->values = reg->enable_bit;
903
904#if BITS_PER_LONG >= 64
905 if (reg->enable_size == 4)
906 set_bit(ENABLE_VAL_32_ON_64_BIT, ENABLE_BITOPS(enabler));
907#endif
908
909retry:
910 /* Prevents state changes from racing with new enablers */
911 mutex_lock(&event_mutex);
912
913 /* Attempt to reflect the current state within the process */
914 mmap_read_lock(mm: user_mm->mm);
915 *write_result = user_event_enabler_write(mm: user_mm, enabler, fixup_fault: false,
916 attempt: &attempt);
917 mmap_read_unlock(mm: user_mm->mm);
918
919 /*
920 * If the write works, then we will track the enabler. A ref to the
921 * underlying user_event is held by the enabler to prevent it going
922 * away while the enabler is still in use by a process. The ref is
923 * removed when the enabler is destroyed. This means a event cannot
924 * be forcefully deleted from the system until all tasks using it
925 * exit or run exec(), which includes forks and clones.
926 */
927 if (!*write_result) {
928 user_event_get(user);
929 list_add_rcu(new: &enabler->mm_enablers_link, head: &user_mm->enablers);
930 }
931
932 mutex_unlock(lock: &event_mutex);
933
934 if (*write_result) {
935 /* Attempt to fault-in and retry if it worked */
936 if (!user_event_mm_fault_in(mm: user_mm, uaddr, attempt))
937 goto retry;
938
939 kfree(objp: enabler);
940 enabler = NULL;
941 }
942out:
943 user_event_mm_put(mm: user_mm);
944
945 return enabler;
946}
947
948static __always_inline __must_check
949bool user_event_last_ref(struct user_event *user)
950{
951 int last = 0;
952
953 if (user->reg_flags & USER_EVENT_REG_PERSIST)
954 last = 1;
955
956 return refcount_read(r: &user->refcnt) == last;
957}
958
959static __always_inline __must_check
960size_t copy_nofault(void *addr, size_t bytes, struct iov_iter *i)
961{
962 size_t ret;
963
964 pagefault_disable();
965
966 ret = copy_from_iter_nocache(addr, bytes, i);
967
968 pagefault_enable();
969
970 return ret;
971}
972
973static struct list_head *user_event_get_fields(struct trace_event_call *call)
974{
975 struct user_event *user = (struct user_event *)call->data;
976
977 return &user->fields;
978}
979
980/*
981 * Parses a register command for user_events
982 * Format: event_name[:FLAG1[,FLAG2...]] [field1[;field2...]]
983 *
984 * Example event named 'test' with a 20 char 'msg' field with an unsigned int
985 * 'id' field after:
986 * test char[20] msg;unsigned int id
987 *
988 * NOTE: Offsets are from the user data perspective, they are not from the
989 * trace_entry/buffer perspective. We automatically add the common properties
990 * sizes to the offset for the user.
991 *
992 * Upon success user_event has its ref count increased by 1.
993 */
994static int user_event_parse_cmd(struct user_event_group *group,
995 char *raw_command, struct user_event **newuser,
996 int reg_flags)
997{
998 char *name = raw_command;
999 char *args = strpbrk(name, " ");
1000 char *flags;
1001
1002 if (args)
1003 *args++ = '\0';
1004
1005 flags = strpbrk(name, ":");
1006
1007 if (flags)
1008 *flags++ = '\0';
1009
1010 return user_event_parse(group, name, args, flags, newuser, reg_flags);
1011}
1012
1013static int user_field_array_size(const char *type)
1014{
1015 const char *start = strchr(type, '[');
1016 char val[8];
1017 char *bracket;
1018 int size = 0;
1019
1020 if (start == NULL)
1021 return -EINVAL;
1022
1023 if (strscpy(val, start + 1, sizeof(val)) <= 0)
1024 return -EINVAL;
1025
1026 bracket = strchr(val, ']');
1027
1028 if (!bracket)
1029 return -EINVAL;
1030
1031 *bracket = '\0';
1032
1033 if (kstrtouint(s: val, base: 0, res: &size))
1034 return -EINVAL;
1035
1036 if (size > MAX_FIELD_ARRAY_SIZE)
1037 return -EINVAL;
1038
1039 return size;
1040}
1041
1042static int user_field_size(const char *type)
1043{
1044 /* long is not allowed from a user, since it's ambigious in size */
1045 if (strcmp(type, "s64") == 0)
1046 return sizeof(s64);
1047 if (strcmp(type, "u64") == 0)
1048 return sizeof(u64);
1049 if (strcmp(type, "s32") == 0)
1050 return sizeof(s32);
1051 if (strcmp(type, "u32") == 0)
1052 return sizeof(u32);
1053 if (strcmp(type, "int") == 0)
1054 return sizeof(int);
1055 if (strcmp(type, "unsigned int") == 0)
1056 return sizeof(unsigned int);
1057 if (strcmp(type, "s16") == 0)
1058 return sizeof(s16);
1059 if (strcmp(type, "u16") == 0)
1060 return sizeof(u16);
1061 if (strcmp(type, "short") == 0)
1062 return sizeof(short);
1063 if (strcmp(type, "unsigned short") == 0)
1064 return sizeof(unsigned short);
1065 if (strcmp(type, "s8") == 0)
1066 return sizeof(s8);
1067 if (strcmp(type, "u8") == 0)
1068 return sizeof(u8);
1069 if (strcmp(type, "char") == 0)
1070 return sizeof(char);
1071 if (strcmp(type, "unsigned char") == 0)
1072 return sizeof(unsigned char);
1073 if (str_has_prefix(str: type, prefix: "char["))
1074 return user_field_array_size(type);
1075 if (str_has_prefix(str: type, prefix: "unsigned char["))
1076 return user_field_array_size(type);
1077 if (str_has_prefix(str: type, prefix: "__data_loc "))
1078 return sizeof(u32);
1079 if (str_has_prefix(str: type, prefix: "__rel_loc "))
1080 return sizeof(u32);
1081
1082 /* Uknown basic type, error */
1083 return -EINVAL;
1084}
1085
1086static void user_event_destroy_validators(struct user_event *user)
1087{
1088 struct user_event_validator *validator, *next;
1089 struct list_head *head = &user->validators;
1090
1091 list_for_each_entry_safe(validator, next, head, user_event_link) {
1092 list_del(entry: &validator->user_event_link);
1093 kfree(objp: validator);
1094 }
1095}
1096
1097static void user_event_destroy_fields(struct user_event *user)
1098{
1099 struct ftrace_event_field *field, *next;
1100 struct list_head *head = &user->fields;
1101
1102 list_for_each_entry_safe(field, next, head, link) {
1103 list_del(entry: &field->link);
1104 kfree(objp: field);
1105 }
1106}
1107
1108static int user_event_add_field(struct user_event *user, const char *type,
1109 const char *name, int offset, int size,
1110 int is_signed, int filter_type)
1111{
1112 struct user_event_validator *validator;
1113 struct ftrace_event_field *field;
1114 int validator_flags = 0;
1115
1116 field = kmalloc(size: sizeof(*field), GFP_KERNEL_ACCOUNT);
1117
1118 if (!field)
1119 return -ENOMEM;
1120
1121 if (str_has_prefix(str: type, prefix: "__data_loc "))
1122 goto add_validator;
1123
1124 if (str_has_prefix(str: type, prefix: "__rel_loc ")) {
1125 validator_flags |= VALIDATOR_REL;
1126 goto add_validator;
1127 }
1128
1129 goto add_field;
1130
1131add_validator:
1132 if (strstr(type, "char") != NULL)
1133 validator_flags |= VALIDATOR_ENSURE_NULL;
1134
1135 validator = kmalloc(size: sizeof(*validator), GFP_KERNEL_ACCOUNT);
1136
1137 if (!validator) {
1138 kfree(objp: field);
1139 return -ENOMEM;
1140 }
1141
1142 validator->flags = validator_flags;
1143 validator->offset = offset;
1144
1145 /* Want sequential access when validating */
1146 list_add_tail(new: &validator->user_event_link, head: &user->validators);
1147
1148add_field:
1149 field->type = type;
1150 field->name = name;
1151 field->offset = offset;
1152 field->size = size;
1153 field->is_signed = is_signed;
1154 field->filter_type = filter_type;
1155
1156 if (filter_type == FILTER_OTHER)
1157 field->filter_type = filter_assign_type(type);
1158
1159 list_add(new: &field->link, head: &user->fields);
1160
1161 /*
1162 * Min size from user writes that are required, this does not include
1163 * the size of trace_entry (common fields).
1164 */
1165 user->min_size = (offset + size) - sizeof(struct trace_entry);
1166
1167 return 0;
1168}
1169
1170/*
1171 * Parses the values of a field within the description
1172 * Format: type name [size]
1173 */
1174static int user_event_parse_field(char *field, struct user_event *user,
1175 u32 *offset)
1176{
1177 char *part, *type, *name;
1178 u32 depth = 0, saved_offset = *offset;
1179 int len, size = -EINVAL;
1180 bool is_struct = false;
1181
1182 field = skip_spaces(field);
1183
1184 if (*field == '\0')
1185 return 0;
1186
1187 /* Handle types that have a space within */
1188 len = str_has_prefix(str: field, prefix: "unsigned ");
1189 if (len)
1190 goto skip_next;
1191
1192 len = str_has_prefix(str: field, prefix: "struct ");
1193 if (len) {
1194 is_struct = true;
1195 goto skip_next;
1196 }
1197
1198 len = str_has_prefix(str: field, prefix: "__data_loc unsigned ");
1199 if (len)
1200 goto skip_next;
1201
1202 len = str_has_prefix(str: field, prefix: "__data_loc ");
1203 if (len)
1204 goto skip_next;
1205
1206 len = str_has_prefix(str: field, prefix: "__rel_loc unsigned ");
1207 if (len)
1208 goto skip_next;
1209
1210 len = str_has_prefix(str: field, prefix: "__rel_loc ");
1211 if (len)
1212 goto skip_next;
1213
1214 goto parse;
1215skip_next:
1216 type = field;
1217 field = strpbrk(field + len, " ");
1218
1219 if (field == NULL)
1220 return -EINVAL;
1221
1222 *field++ = '\0';
1223 depth++;
1224parse:
1225 name = NULL;
1226
1227 while ((part = strsep(&field, " ")) != NULL) {
1228 switch (depth++) {
1229 case FIELD_DEPTH_TYPE:
1230 type = part;
1231 break;
1232 case FIELD_DEPTH_NAME:
1233 name = part;
1234 break;
1235 case FIELD_DEPTH_SIZE:
1236 if (!is_struct)
1237 return -EINVAL;
1238
1239 if (kstrtou32(s: part, base: 10, res: &size))
1240 return -EINVAL;
1241 break;
1242 default:
1243 return -EINVAL;
1244 }
1245 }
1246
1247 if (depth < FIELD_DEPTH_SIZE || !name)
1248 return -EINVAL;
1249
1250 if (depth == FIELD_DEPTH_SIZE)
1251 size = user_field_size(type);
1252
1253 if (size == 0)
1254 return -EINVAL;
1255
1256 if (size < 0)
1257 return size;
1258
1259 *offset = saved_offset + size;
1260
1261 return user_event_add_field(user, type, name, offset: saved_offset, size,
1262 is_signed: type[0] != 'u', filter_type: FILTER_OTHER);
1263}
1264
1265static int user_event_parse_fields(struct user_event *user, char *args)
1266{
1267 char *field;
1268 u32 offset = sizeof(struct trace_entry);
1269 int ret = -EINVAL;
1270
1271 if (args == NULL)
1272 return 0;
1273
1274 while ((field = strsep(&args, ";")) != NULL) {
1275 ret = user_event_parse_field(field, user, offset: &offset);
1276
1277 if (ret)
1278 break;
1279 }
1280
1281 return ret;
1282}
1283
1284static struct trace_event_fields user_event_fields_array[1];
1285
1286static const char *user_field_format(const char *type)
1287{
1288 if (strcmp(type, "s64") == 0)
1289 return "%lld";
1290 if (strcmp(type, "u64") == 0)
1291 return "%llu";
1292 if (strcmp(type, "s32") == 0)
1293 return "%d";
1294 if (strcmp(type, "u32") == 0)
1295 return "%u";
1296 if (strcmp(type, "int") == 0)
1297 return "%d";
1298 if (strcmp(type, "unsigned int") == 0)
1299 return "%u";
1300 if (strcmp(type, "s16") == 0)
1301 return "%d";
1302 if (strcmp(type, "u16") == 0)
1303 return "%u";
1304 if (strcmp(type, "short") == 0)
1305 return "%d";
1306 if (strcmp(type, "unsigned short") == 0)
1307 return "%u";
1308 if (strcmp(type, "s8") == 0)
1309 return "%d";
1310 if (strcmp(type, "u8") == 0)
1311 return "%u";
1312 if (strcmp(type, "char") == 0)
1313 return "%d";
1314 if (strcmp(type, "unsigned char") == 0)
1315 return "%u";
1316 if (strstr(type, "char[") != NULL)
1317 return "%s";
1318
1319 /* Unknown, likely struct, allowed treat as 64-bit */
1320 return "%llu";
1321}
1322
1323static bool user_field_is_dyn_string(const char *type, const char **str_func)
1324{
1325 if (str_has_prefix(str: type, prefix: "__data_loc ")) {
1326 *str_func = "__get_str";
1327 goto check;
1328 }
1329
1330 if (str_has_prefix(str: type, prefix: "__rel_loc ")) {
1331 *str_func = "__get_rel_str";
1332 goto check;
1333 }
1334
1335 return false;
1336check:
1337 return strstr(type, "char") != NULL;
1338}
1339
1340#define LEN_OR_ZERO (len ? len - pos : 0)
1341static int user_dyn_field_set_string(int argc, const char **argv, int *iout,
1342 char *buf, int len, bool *colon)
1343{
1344 int pos = 0, i = *iout;
1345
1346 *colon = false;
1347
1348 for (; i < argc; ++i) {
1349 if (i != *iout)
1350 pos += snprintf(buf: buf + pos, LEN_OR_ZERO, fmt: " ");
1351
1352 pos += snprintf(buf: buf + pos, LEN_OR_ZERO, fmt: "%s", argv[i]);
1353
1354 if (strchr(argv[i], ';')) {
1355 ++i;
1356 *colon = true;
1357 break;
1358 }
1359 }
1360
1361 /* Actual set, advance i */
1362 if (len != 0)
1363 *iout = i;
1364
1365 return pos + 1;
1366}
1367
1368static int user_field_set_string(struct ftrace_event_field *field,
1369 char *buf, int len, bool colon)
1370{
1371 int pos = 0;
1372
1373 pos += snprintf(buf: buf + pos, LEN_OR_ZERO, fmt: "%s", field->type);
1374 pos += snprintf(buf: buf + pos, LEN_OR_ZERO, fmt: " ");
1375 pos += snprintf(buf: buf + pos, LEN_OR_ZERO, fmt: "%s", field->name);
1376
1377 if (str_has_prefix(str: field->type, prefix: "struct "))
1378 pos += snprintf(buf: buf + pos, LEN_OR_ZERO, fmt: " %d", field->size);
1379
1380 if (colon)
1381 pos += snprintf(buf: buf + pos, LEN_OR_ZERO, fmt: ";");
1382
1383 return pos + 1;
1384}
1385
1386static int user_event_set_print_fmt(struct user_event *user, char *buf, int len)
1387{
1388 struct ftrace_event_field *field;
1389 struct list_head *head = &user->fields;
1390 int pos = 0, depth = 0;
1391 const char *str_func;
1392
1393 pos += snprintf(buf: buf + pos, LEN_OR_ZERO, fmt: "\"");
1394
1395 list_for_each_entry_reverse(field, head, link) {
1396 if (depth != 0)
1397 pos += snprintf(buf: buf + pos, LEN_OR_ZERO, fmt: " ");
1398
1399 pos += snprintf(buf: buf + pos, LEN_OR_ZERO, fmt: "%s=%s",
1400 field->name, user_field_format(type: field->type));
1401
1402 depth++;
1403 }
1404
1405 pos += snprintf(buf: buf + pos, LEN_OR_ZERO, fmt: "\"");
1406
1407 list_for_each_entry_reverse(field, head, link) {
1408 if (user_field_is_dyn_string(type: field->type, str_func: &str_func))
1409 pos += snprintf(buf: buf + pos, LEN_OR_ZERO,
1410 fmt: ", %s(%s)", str_func, field->name);
1411 else
1412 pos += snprintf(buf: buf + pos, LEN_OR_ZERO,
1413 fmt: ", REC->%s", field->name);
1414 }
1415
1416 return pos + 1;
1417}
1418#undef LEN_OR_ZERO
1419
1420static int user_event_create_print_fmt(struct user_event *user)
1421{
1422 char *print_fmt;
1423 int len;
1424
1425 len = user_event_set_print_fmt(user, NULL, len: 0);
1426
1427 print_fmt = kmalloc(size: len, GFP_KERNEL_ACCOUNT);
1428
1429 if (!print_fmt)
1430 return -ENOMEM;
1431
1432 user_event_set_print_fmt(user, buf: print_fmt, len);
1433
1434 user->call.print_fmt = print_fmt;
1435
1436 return 0;
1437}
1438
1439static enum print_line_t user_event_print_trace(struct trace_iterator *iter,
1440 int flags,
1441 struct trace_event *event)
1442{
1443 return print_event_fields(iter, event);
1444}
1445
1446static struct trace_event_functions user_event_funcs = {
1447 .trace = user_event_print_trace,
1448};
1449
1450static int user_event_set_call_visible(struct user_event *user, bool visible)
1451{
1452 int ret;
1453 const struct cred *old_cred;
1454 struct cred *cred;
1455
1456 cred = prepare_creds();
1457
1458 if (!cred)
1459 return -ENOMEM;
1460
1461 /*
1462 * While by default tracefs is locked down, systems can be configured
1463 * to allow user_event files to be less locked down. The extreme case
1464 * being "other" has read/write access to user_events_data/status.
1465 *
1466 * When not locked down, processes may not have permissions to
1467 * add/remove calls themselves to tracefs. We need to temporarily
1468 * switch to root file permission to allow for this scenario.
1469 */
1470 cred->fsuid = GLOBAL_ROOT_UID;
1471
1472 old_cred = override_creds(cred);
1473
1474 if (visible)
1475 ret = trace_add_event_call(&user->call);
1476 else
1477 ret = trace_remove_event_call(&user->call);
1478
1479 revert_creds(old_cred);
1480 put_cred(cred);
1481
1482 return ret;
1483}
1484
1485static int destroy_user_event(struct user_event *user)
1486{
1487 int ret = 0;
1488
1489 lockdep_assert_held(&event_mutex);
1490
1491 /* Must destroy fields before call removal */
1492 user_event_destroy_fields(user);
1493
1494 ret = user_event_set_call_visible(user, visible: false);
1495
1496 if (ret)
1497 return ret;
1498
1499 dyn_event_remove(ev: &user->devent);
1500 hash_del(node: &user->node);
1501
1502 user_event_destroy_validators(user);
1503
1504 /* If we have different names, both must be freed */
1505 if (EVENT_NAME(user) != EVENT_TP_NAME(user))
1506 kfree(EVENT_TP_NAME(user));
1507
1508 kfree(objp: user->call.print_fmt);
1509 kfree(EVENT_NAME(user));
1510 kfree(objp: user);
1511
1512 if (current_user_events > 0)
1513 current_user_events--;
1514 else
1515 pr_alert("BUG: Bad current_user_events\n");
1516
1517 return ret;
1518}
1519
1520static struct user_event *find_user_event(struct user_event_group *group,
1521 char *name, int argc, const char **argv,
1522 u32 flags, u32 *outkey)
1523{
1524 struct user_event *user;
1525 u32 key = user_event_key(name);
1526
1527 *outkey = key;
1528
1529 hash_for_each_possible(group->register_table, user, node, key) {
1530 /*
1531 * Single-format events shouldn't return multi-format
1532 * events. Callers expect the underlying tracepoint to match
1533 * the name exactly in these cases. Only check like-formats.
1534 */
1535 if (EVENT_MULTI_FORMAT(flags) != EVENT_MULTI_FORMAT(user->reg_flags))
1536 continue;
1537
1538 if (strcmp(EVENT_NAME(user), name))
1539 continue;
1540
1541 if (user_fields_match(user, argc, argv))
1542 return user_event_get(user);
1543
1544 /* Scan others if this is a multi-format event */
1545 if (EVENT_MULTI_FORMAT(flags))
1546 continue;
1547
1548 return ERR_PTR(error: -EADDRINUSE);
1549 }
1550
1551 return NULL;
1552}
1553
1554static int user_event_validate(struct user_event *user, void *data, int len)
1555{
1556 struct list_head *head = &user->validators;
1557 struct user_event_validator *validator;
1558 void *pos, *end = data + len;
1559 u32 loc, offset, size;
1560
1561 list_for_each_entry(validator, head, user_event_link) {
1562 pos = data + validator->offset;
1563
1564 /* Already done min_size check, no bounds check here */
1565 loc = *(u32 *)pos;
1566 offset = loc & 0xffff;
1567 size = loc >> 16;
1568
1569 if (likely(validator->flags & VALIDATOR_REL))
1570 pos += offset + sizeof(loc);
1571 else
1572 pos = data + offset;
1573
1574 pos += size;
1575
1576 if (unlikely(pos > end))
1577 return -EFAULT;
1578
1579 if (likely(validator->flags & VALIDATOR_ENSURE_NULL))
1580 if (unlikely(*(char *)(pos - 1) != '\0'))
1581 return -EFAULT;
1582 }
1583
1584 return 0;
1585}
1586
1587/*
1588 * Writes the user supplied payload out to a trace file.
1589 */
1590static void user_event_ftrace(struct user_event *user, struct iov_iter *i,
1591 void *tpdata, bool *faulted)
1592{
1593 struct trace_event_file *file;
1594 struct trace_entry *entry;
1595 struct trace_event_buffer event_buffer;
1596 size_t size = sizeof(*entry) + i->count;
1597
1598 file = (struct trace_event_file *)tpdata;
1599
1600 if (!file ||
1601 !(file->flags & EVENT_FILE_FL_ENABLED) ||
1602 trace_trigger_soft_disabled(file))
1603 return;
1604
1605 /* Allocates and fills trace_entry, + 1 of this is data payload */
1606 entry = trace_event_buffer_reserve(fbuffer: &event_buffer, trace_file: file, len: size);
1607
1608 if (unlikely(!entry))
1609 return;
1610
1611 if (unlikely(i->count != 0 && !copy_nofault(entry + 1, i->count, i)))
1612 goto discard;
1613
1614 if (!list_empty(head: &user->validators) &&
1615 unlikely(user_event_validate(user, entry, size)))
1616 goto discard;
1617
1618 trace_event_buffer_commit(fbuffer: &event_buffer);
1619
1620 return;
1621discard:
1622 *faulted = true;
1623 __trace_event_discard_commit(buffer: event_buffer.buffer,
1624 event: event_buffer.event);
1625}
1626
1627#ifdef CONFIG_PERF_EVENTS
1628/*
1629 * Writes the user supplied payload out to perf ring buffer.
1630 */
1631static void user_event_perf(struct user_event *user, struct iov_iter *i,
1632 void *tpdata, bool *faulted)
1633{
1634 struct hlist_head *perf_head;
1635
1636 perf_head = this_cpu_ptr(user->call.perf_events);
1637
1638 if (perf_head && !hlist_empty(h: perf_head)) {
1639 struct trace_entry *perf_entry;
1640 struct pt_regs *regs;
1641 size_t size = sizeof(*perf_entry) + i->count;
1642 int context;
1643
1644 perf_entry = perf_trace_buf_alloc(ALIGN(size, 8),
1645 regs: &regs, rctxp: &context);
1646
1647 if (unlikely(!perf_entry))
1648 return;
1649
1650 perf_fetch_caller_regs(regs);
1651
1652 if (unlikely(i->count != 0 && !copy_nofault(perf_entry + 1, i->count, i)))
1653 goto discard;
1654
1655 if (!list_empty(head: &user->validators) &&
1656 unlikely(user_event_validate(user, perf_entry, size)))
1657 goto discard;
1658
1659 perf_trace_buf_submit(raw_data: perf_entry, size, rctx: context,
1660 type: user->call.event.type, count: 1, regs,
1661 head: perf_head, NULL);
1662
1663 return;
1664discard:
1665 *faulted = true;
1666 perf_swevent_put_recursion_context(rctx: context);
1667 }
1668}
1669#endif
1670
1671/*
1672 * Update the enabled bit among all user processes.
1673 */
1674static void update_enable_bit_for(struct user_event *user)
1675{
1676 struct tracepoint *tp = &user->tracepoint;
1677 char status = 0;
1678
1679 if (atomic_read(v: &tp->key.enabled) > 0) {
1680 struct tracepoint_func *probe_func_ptr;
1681 user_event_func_t probe_func;
1682
1683 rcu_read_lock_sched();
1684
1685 probe_func_ptr = rcu_dereference_sched(tp->funcs);
1686
1687 if (probe_func_ptr) {
1688 do {
1689 probe_func = probe_func_ptr->func;
1690
1691 if (probe_func == user_event_ftrace)
1692 status |= EVENT_STATUS_FTRACE;
1693#ifdef CONFIG_PERF_EVENTS
1694 else if (probe_func == user_event_perf)
1695 status |= EVENT_STATUS_PERF;
1696#endif
1697 else
1698 status |= EVENT_STATUS_OTHER;
1699 } while ((++probe_func_ptr)->func);
1700 }
1701
1702 rcu_read_unlock_sched();
1703 }
1704
1705 user->status = status;
1706
1707 user_event_enabler_update(user);
1708}
1709
1710/*
1711 * Register callback for our events from tracing sub-systems.
1712 */
1713static int user_event_reg(struct trace_event_call *call,
1714 enum trace_reg type,
1715 void *data)
1716{
1717 struct user_event *user = (struct user_event *)call->data;
1718 int ret = 0;
1719
1720 if (!user)
1721 return -ENOENT;
1722
1723 switch (type) {
1724 case TRACE_REG_REGISTER:
1725 ret = tracepoint_probe_register(tp: call->tp,
1726 probe: call->class->probe,
1727 data);
1728 if (!ret)
1729 goto inc;
1730 break;
1731
1732 case TRACE_REG_UNREGISTER:
1733 tracepoint_probe_unregister(tp: call->tp,
1734 probe: call->class->probe,
1735 data);
1736 goto dec;
1737
1738#ifdef CONFIG_PERF_EVENTS
1739 case TRACE_REG_PERF_REGISTER:
1740 ret = tracepoint_probe_register(tp: call->tp,
1741 probe: call->class->perf_probe,
1742 data);
1743 if (!ret)
1744 goto inc;
1745 break;
1746
1747 case TRACE_REG_PERF_UNREGISTER:
1748 tracepoint_probe_unregister(tp: call->tp,
1749 probe: call->class->perf_probe,
1750 data);
1751 goto dec;
1752
1753 case TRACE_REG_PERF_OPEN:
1754 case TRACE_REG_PERF_CLOSE:
1755 case TRACE_REG_PERF_ADD:
1756 case TRACE_REG_PERF_DEL:
1757 break;
1758#endif
1759 }
1760
1761 return ret;
1762inc:
1763 user_event_get(user);
1764 update_enable_bit_for(user);
1765 return 0;
1766dec:
1767 update_enable_bit_for(user);
1768 user_event_put(user, locked: true);
1769 return 0;
1770}
1771
1772static int user_event_create(const char *raw_command)
1773{
1774 struct user_event_group *group;
1775 struct user_event *user;
1776 char *name;
1777 int ret;
1778
1779 if (!str_has_prefix(str: raw_command, USER_EVENTS_PREFIX))
1780 return -ECANCELED;
1781
1782 raw_command += USER_EVENTS_PREFIX_LEN;
1783 raw_command = skip_spaces(raw_command);
1784
1785 name = kstrdup(s: raw_command, GFP_KERNEL_ACCOUNT);
1786
1787 if (!name)
1788 return -ENOMEM;
1789
1790 group = current_user_event_group();
1791
1792 if (!group) {
1793 kfree(objp: name);
1794 return -ENOENT;
1795 }
1796
1797 mutex_lock(&group->reg_mutex);
1798
1799 /* Dyn events persist, otherwise they would cleanup immediately */
1800 ret = user_event_parse_cmd(group, raw_command: name, newuser: &user, reg_flags: USER_EVENT_REG_PERSIST);
1801
1802 if (!ret)
1803 user_event_put(user, locked: false);
1804
1805 mutex_unlock(lock: &group->reg_mutex);
1806
1807 if (ret)
1808 kfree(objp: name);
1809
1810 return ret;
1811}
1812
1813static int user_event_show(struct seq_file *m, struct dyn_event *ev)
1814{
1815 struct user_event *user = container_of(ev, struct user_event, devent);
1816 struct ftrace_event_field *field;
1817 struct list_head *head;
1818 int depth = 0;
1819
1820 seq_printf(m, fmt: "%s%s", USER_EVENTS_PREFIX, EVENT_NAME(user));
1821
1822 head = trace_get_fields(event_call: &user->call);
1823
1824 list_for_each_entry_reverse(field, head, link) {
1825 if (depth == 0)
1826 seq_puts(m, s: " ");
1827 else
1828 seq_puts(m, s: "; ");
1829
1830 seq_printf(m, fmt: "%s %s", field->type, field->name);
1831
1832 if (str_has_prefix(str: field->type, prefix: "struct "))
1833 seq_printf(m, fmt: " %d", field->size);
1834
1835 depth++;
1836 }
1837
1838 seq_puts(m, s: "\n");
1839
1840 return 0;
1841}
1842
1843static bool user_event_is_busy(struct dyn_event *ev)
1844{
1845 struct user_event *user = container_of(ev, struct user_event, devent);
1846
1847 return !user_event_last_ref(user);
1848}
1849
1850static int user_event_free(struct dyn_event *ev)
1851{
1852 struct user_event *user = container_of(ev, struct user_event, devent);
1853
1854 if (!user_event_last_ref(user))
1855 return -EBUSY;
1856
1857 if (!user_event_capable(reg_flags: user->reg_flags))
1858 return -EPERM;
1859
1860 return destroy_user_event(user);
1861}
1862
1863static bool user_field_match(struct ftrace_event_field *field, int argc,
1864 const char **argv, int *iout)
1865{
1866 char *field_name = NULL, *dyn_field_name = NULL;
1867 bool colon = false, match = false;
1868 int dyn_len, len;
1869
1870 if (*iout >= argc)
1871 return false;
1872
1873 dyn_len = user_dyn_field_set_string(argc, argv, iout, buf: dyn_field_name,
1874 len: 0, colon: &colon);
1875
1876 len = user_field_set_string(field, buf: field_name, len: 0, colon);
1877
1878 if (dyn_len != len)
1879 return false;
1880
1881 dyn_field_name = kmalloc(size: dyn_len, GFP_KERNEL);
1882 field_name = kmalloc(size: len, GFP_KERNEL);
1883
1884 if (!dyn_field_name || !field_name)
1885 goto out;
1886
1887 user_dyn_field_set_string(argc, argv, iout, buf: dyn_field_name,
1888 len: dyn_len, colon: &colon);
1889
1890 user_field_set_string(field, buf: field_name, len, colon);
1891
1892 match = strcmp(dyn_field_name, field_name) == 0;
1893out:
1894 kfree(objp: dyn_field_name);
1895 kfree(objp: field_name);
1896
1897 return match;
1898}
1899
1900static bool user_fields_match(struct user_event *user, int argc,
1901 const char **argv)
1902{
1903 struct ftrace_event_field *field;
1904 struct list_head *head = &user->fields;
1905 int i = 0;
1906
1907 if (argc == 0)
1908 return list_empty(head);
1909
1910 list_for_each_entry_reverse(field, head, link) {
1911 if (!user_field_match(field, argc, argv, iout: &i))
1912 return false;
1913 }
1914
1915 if (i != argc)
1916 return false;
1917
1918 return true;
1919}
1920
1921static bool user_event_match(const char *system, const char *event,
1922 int argc, const char **argv, struct dyn_event *ev)
1923{
1924 struct user_event *user = container_of(ev, struct user_event, devent);
1925 bool match;
1926
1927 match = strcmp(EVENT_NAME(user), event) == 0;
1928
1929 if (match && system) {
1930 match = strcmp(system, user->group->system_name) == 0 ||
1931 strcmp(system, user->group->system_multi_name) == 0;
1932 }
1933
1934 if (match)
1935 match = user_fields_match(user, argc, argv);
1936
1937 return match;
1938}
1939
1940static struct dyn_event_operations user_event_dops = {
1941 .create = user_event_create,
1942 .show = user_event_show,
1943 .is_busy = user_event_is_busy,
1944 .free = user_event_free,
1945 .match = user_event_match,
1946};
1947
1948static int user_event_trace_register(struct user_event *user)
1949{
1950 int ret;
1951
1952 ret = register_trace_event(event: &user->call.event);
1953
1954 if (!ret)
1955 return -ENODEV;
1956
1957 ret = user_event_set_call_visible(user, visible: true);
1958
1959 if (ret)
1960 unregister_trace_event(event: &user->call.event);
1961
1962 return ret;
1963}
1964
1965static int user_event_set_tp_name(struct user_event *user)
1966{
1967 lockdep_assert_held(&user->group->reg_mutex);
1968
1969 if (EVENT_MULTI_FORMAT(user->reg_flags)) {
1970 char *multi_name;
1971
1972 multi_name = kasprintf(GFP_KERNEL_ACCOUNT, fmt: "%s.%llx",
1973 user->reg_name, user->group->multi_id);
1974
1975 if (!multi_name)
1976 return -ENOMEM;
1977
1978 user->call.name = multi_name;
1979 user->tracepoint.name = multi_name;
1980
1981 /* Inc to ensure unique multi-event name next time */
1982 user->group->multi_id++;
1983 } else {
1984 /* Non Multi-format uses register name */
1985 user->call.name = user->reg_name;
1986 user->tracepoint.name = user->reg_name;
1987 }
1988
1989 return 0;
1990}
1991
1992/*
1993 * Parses the event name, arguments and flags then registers if successful.
1994 * The name buffer lifetime is owned by this method for success cases only.
1995 * Upon success the returned user_event has its ref count increased by 1.
1996 */
1997static int user_event_parse(struct user_event_group *group, char *name,
1998 char *args, char *flags,
1999 struct user_event **newuser, int reg_flags)
2000{
2001 struct user_event *user;
2002 char **argv = NULL;
2003 int argc = 0;
2004 int ret;
2005 u32 key;
2006
2007 /* Currently don't support any text based flags */
2008 if (flags != NULL)
2009 return -EINVAL;
2010
2011 if (!user_event_capable(reg_flags))
2012 return -EPERM;
2013
2014 if (args) {
2015 argv = argv_split(GFP_KERNEL, str: args, argcp: &argc);
2016
2017 if (!argv)
2018 return -ENOMEM;
2019 }
2020
2021 /* Prevent dyn_event from racing */
2022 mutex_lock(&event_mutex);
2023 user = find_user_event(group, name, argc, argv: (const char **)argv,
2024 flags: reg_flags, outkey: &key);
2025 mutex_unlock(lock: &event_mutex);
2026
2027 if (argv)
2028 argv_free(argv);
2029
2030 if (IS_ERR(ptr: user))
2031 return PTR_ERR(ptr: user);
2032
2033 if (user) {
2034 *newuser = user;
2035 /*
2036 * Name is allocated by caller, free it since it already exists.
2037 * Caller only worries about failure cases for freeing.
2038 */
2039 kfree(objp: name);
2040
2041 return 0;
2042 }
2043
2044 user = kzalloc(size: sizeof(*user), GFP_KERNEL_ACCOUNT);
2045
2046 if (!user)
2047 return -ENOMEM;
2048
2049 INIT_LIST_HEAD(list: &user->class.fields);
2050 INIT_LIST_HEAD(list: &user->fields);
2051 INIT_LIST_HEAD(list: &user->validators);
2052
2053 user->group = group;
2054 user->reg_name = name;
2055 user->reg_flags = reg_flags;
2056
2057 ret = user_event_set_tp_name(user);
2058
2059 if (ret)
2060 goto put_user;
2061
2062 ret = user_event_parse_fields(user, args);
2063
2064 if (ret)
2065 goto put_user;
2066
2067 ret = user_event_create_print_fmt(user);
2068
2069 if (ret)
2070 goto put_user;
2071
2072 user->call.data = user;
2073 user->call.class = &user->class;
2074 user->call.flags = TRACE_EVENT_FL_TRACEPOINT;
2075 user->call.tp = &user->tracepoint;
2076 user->call.event.funcs = &user_event_funcs;
2077
2078 if (EVENT_MULTI_FORMAT(user->reg_flags))
2079 user->class.system = group->system_multi_name;
2080 else
2081 user->class.system = group->system_name;
2082
2083 user->class.fields_array = user_event_fields_array;
2084 user->class.get_fields = user_event_get_fields;
2085 user->class.reg = user_event_reg;
2086 user->class.probe = user_event_ftrace;
2087#ifdef CONFIG_PERF_EVENTS
2088 user->class.perf_probe = user_event_perf;
2089#endif
2090
2091 mutex_lock(&event_mutex);
2092
2093 if (current_user_events >= max_user_events) {
2094 ret = -EMFILE;
2095 goto put_user_lock;
2096 }
2097
2098 ret = user_event_trace_register(user);
2099
2100 if (ret)
2101 goto put_user_lock;
2102
2103 if (user->reg_flags & USER_EVENT_REG_PERSIST) {
2104 /* Ensure we track self ref and caller ref (2) */
2105 refcount_set(r: &user->refcnt, n: 2);
2106 } else {
2107 /* Ensure we track only caller ref (1) */
2108 refcount_set(r: &user->refcnt, n: 1);
2109 }
2110
2111 dyn_event_init(ev: &user->devent, ops: &user_event_dops);
2112 dyn_event_add(ev: &user->devent, call: &user->call);
2113 hash_add(group->register_table, &user->node, key);
2114 current_user_events++;
2115
2116 mutex_unlock(lock: &event_mutex);
2117
2118 *newuser = user;
2119 return 0;
2120put_user_lock:
2121 mutex_unlock(lock: &event_mutex);
2122put_user:
2123 user_event_destroy_fields(user);
2124 user_event_destroy_validators(user);
2125 kfree(objp: user->call.print_fmt);
2126
2127 /* Caller frees reg_name on error, but not multi-name */
2128 if (EVENT_NAME(user) != EVENT_TP_NAME(user))
2129 kfree(EVENT_TP_NAME(user));
2130
2131 kfree(objp: user);
2132 return ret;
2133}
2134
2135/*
2136 * Deletes previously created events if they are no longer being used.
2137 */
2138static int delete_user_event(struct user_event_group *group, char *name)
2139{
2140 struct user_event *user;
2141 struct hlist_node *tmp;
2142 u32 key = user_event_key(name);
2143 int ret = -ENOENT;
2144
2145 /* Attempt to delete all event(s) with the name passed in */
2146 hash_for_each_possible_safe(group->register_table, user, tmp, node, key) {
2147 if (strcmp(EVENT_NAME(user), name))
2148 continue;
2149
2150 if (!user_event_last_ref(user))
2151 return -EBUSY;
2152
2153 if (!user_event_capable(reg_flags: user->reg_flags))
2154 return -EPERM;
2155
2156 ret = destroy_user_event(user);
2157
2158 if (ret)
2159 goto out;
2160 }
2161out:
2162 return ret;
2163}
2164
2165/*
2166 * Validates the user payload and writes via iterator.
2167 */
2168static ssize_t user_events_write_core(struct file *file, struct iov_iter *i)
2169{
2170 struct user_event_file_info *info = file->private_data;
2171 struct user_event_refs *refs;
2172 struct user_event *user = NULL;
2173 struct tracepoint *tp;
2174 ssize_t ret = i->count;
2175 int idx;
2176
2177 if (unlikely(copy_from_iter(&idx, sizeof(idx), i) != sizeof(idx)))
2178 return -EFAULT;
2179
2180 if (idx < 0)
2181 return -EINVAL;
2182
2183 rcu_read_lock_sched();
2184
2185 refs = rcu_dereference_sched(info->refs);
2186
2187 /*
2188 * The refs->events array is protected by RCU, and new items may be
2189 * added. But the user retrieved from indexing into the events array
2190 * shall be immutable while the file is opened.
2191 */
2192 if (likely(refs && idx < refs->count))
2193 user = refs->events[idx];
2194
2195 rcu_read_unlock_sched();
2196
2197 if (unlikely(user == NULL))
2198 return -ENOENT;
2199
2200 if (unlikely(i->count < user->min_size))
2201 return -EINVAL;
2202
2203 tp = &user->tracepoint;
2204
2205 /*
2206 * It's possible key.enabled disables after this check, however
2207 * we don't mind if a few events are included in this condition.
2208 */
2209 if (likely(atomic_read(&tp->key.enabled) > 0)) {
2210 struct tracepoint_func *probe_func_ptr;
2211 user_event_func_t probe_func;
2212 struct iov_iter copy;
2213 void *tpdata;
2214 bool faulted;
2215
2216 if (unlikely(fault_in_iov_iter_readable(i, i->count)))
2217 return -EFAULT;
2218
2219 faulted = false;
2220
2221 rcu_read_lock_sched();
2222
2223 probe_func_ptr = rcu_dereference_sched(tp->funcs);
2224
2225 if (probe_func_ptr) {
2226 do {
2227 copy = *i;
2228 probe_func = probe_func_ptr->func;
2229 tpdata = probe_func_ptr->data;
2230 probe_func(user, &copy, tpdata, &faulted);
2231 } while ((++probe_func_ptr)->func);
2232 }
2233
2234 rcu_read_unlock_sched();
2235
2236 if (unlikely(faulted))
2237 return -EFAULT;
2238 } else
2239 return -EBADF;
2240
2241 return ret;
2242}
2243
2244static int user_events_open(struct inode *node, struct file *file)
2245{
2246 struct user_event_group *group;
2247 struct user_event_file_info *info;
2248
2249 group = current_user_event_group();
2250
2251 if (!group)
2252 return -ENOENT;
2253
2254 info = kzalloc(size: sizeof(*info), GFP_KERNEL_ACCOUNT);
2255
2256 if (!info)
2257 return -ENOMEM;
2258
2259 info->group = group;
2260
2261 file->private_data = info;
2262
2263 return 0;
2264}
2265
2266static ssize_t user_events_write(struct file *file, const char __user *ubuf,
2267 size_t count, loff_t *ppos)
2268{
2269 struct iov_iter i;
2270
2271 if (unlikely(*ppos != 0))
2272 return -EFAULT;
2273
2274 if (unlikely(import_ubuf(ITER_SOURCE, (char __user *)ubuf, count, &i)))
2275 return -EFAULT;
2276
2277 return user_events_write_core(file, i: &i);
2278}
2279
2280static ssize_t user_events_write_iter(struct kiocb *kp, struct iov_iter *i)
2281{
2282 return user_events_write_core(file: kp->ki_filp, i);
2283}
2284
2285static int user_events_ref_add(struct user_event_file_info *info,
2286 struct user_event *user)
2287{
2288 struct user_event_group *group = info->group;
2289 struct user_event_refs *refs, *new_refs;
2290 int i, size, count = 0;
2291
2292 refs = rcu_dereference_protected(info->refs,
2293 lockdep_is_held(&group->reg_mutex));
2294
2295 if (refs) {
2296 count = refs->count;
2297
2298 for (i = 0; i < count; ++i)
2299 if (refs->events[i] == user)
2300 return i;
2301 }
2302
2303 size = struct_size(refs, events, count + 1);
2304
2305 new_refs = kzalloc(size, GFP_KERNEL_ACCOUNT);
2306
2307 if (!new_refs)
2308 return -ENOMEM;
2309
2310 new_refs->count = count + 1;
2311
2312 for (i = 0; i < count; ++i)
2313 new_refs->events[i] = refs->events[i];
2314
2315 new_refs->events[i] = user_event_get(user);
2316
2317 rcu_assign_pointer(info->refs, new_refs);
2318
2319 if (refs)
2320 kfree_rcu(refs, rcu);
2321
2322 return i;
2323}
2324
2325static long user_reg_get(struct user_reg __user *ureg, struct user_reg *kreg)
2326{
2327 u32 size;
2328 long ret;
2329
2330 ret = get_user(size, &ureg->size);
2331
2332 if (ret)
2333 return ret;
2334
2335 if (size > PAGE_SIZE)
2336 return -E2BIG;
2337
2338 if (size < offsetofend(struct user_reg, write_index))
2339 return -EINVAL;
2340
2341 ret = copy_struct_from_user(dst: kreg, ksize: sizeof(*kreg), src: ureg, usize: size);
2342
2343 if (ret)
2344 return ret;
2345
2346 /* Ensure only valid flags */
2347 if (kreg->flags & ~(USER_EVENT_REG_MAX-1))
2348 return -EINVAL;
2349
2350 /* Ensure supported size */
2351 switch (kreg->enable_size) {
2352 case 4:
2353 /* 32-bit */
2354 break;
2355#if BITS_PER_LONG >= 64
2356 case 8:
2357 /* 64-bit */
2358 break;
2359#endif
2360 default:
2361 return -EINVAL;
2362 }
2363
2364 /* Ensure natural alignment */
2365 if (kreg->enable_addr % kreg->enable_size)
2366 return -EINVAL;
2367
2368 /* Ensure bit range for size */
2369 if (kreg->enable_bit > (kreg->enable_size * BITS_PER_BYTE) - 1)
2370 return -EINVAL;
2371
2372 /* Ensure accessible */
2373 if (!access_ok((const void __user *)(uintptr_t)kreg->enable_addr,
2374 kreg->enable_size))
2375 return -EFAULT;
2376
2377 kreg->size = size;
2378
2379 return 0;
2380}
2381
2382/*
2383 * Registers a user_event on behalf of a user process.
2384 */
2385static long user_events_ioctl_reg(struct user_event_file_info *info,
2386 unsigned long uarg)
2387{
2388 struct user_reg __user *ureg = (struct user_reg __user *)uarg;
2389 struct user_reg reg;
2390 struct user_event *user;
2391 struct user_event_enabler *enabler;
2392 char *name;
2393 long ret;
2394 int write_result;
2395
2396 ret = user_reg_get(ureg, kreg: &reg);
2397
2398 if (ret)
2399 return ret;
2400
2401 /*
2402 * Prevent users from using the same address and bit multiple times
2403 * within the same mm address space. This can cause unexpected behavior
2404 * for user processes that is far easier to debug if this is explictly
2405 * an error upon registering.
2406 */
2407 if (current_user_event_enabler_exists(uaddr: (unsigned long)reg.enable_addr,
2408 bit: reg.enable_bit))
2409 return -EADDRINUSE;
2410
2411 name = strndup_user((const char __user *)(uintptr_t)reg.name_args,
2412 MAX_EVENT_DESC);
2413
2414 if (IS_ERR(ptr: name)) {
2415 ret = PTR_ERR(ptr: name);
2416 return ret;
2417 }
2418
2419 ret = user_event_parse_cmd(group: info->group, raw_command: name, newuser: &user, reg_flags: reg.flags);
2420
2421 if (ret) {
2422 kfree(objp: name);
2423 return ret;
2424 }
2425
2426 ret = user_events_ref_add(info, user);
2427
2428 /* No longer need parse ref, ref_add either worked or not */
2429 user_event_put(user, locked: false);
2430
2431 /* Positive number is index and valid */
2432 if (ret < 0)
2433 return ret;
2434
2435 /*
2436 * user_events_ref_add succeeded:
2437 * At this point we have a user_event, it's lifetime is bound by the
2438 * reference count, not this file. If anything fails, the user_event
2439 * still has a reference until the file is released. During release
2440 * any remaining references (from user_events_ref_add) are decremented.
2441 *
2442 * Attempt to create an enabler, which too has a lifetime tied in the
2443 * same way for the event. Once the task that caused the enabler to be
2444 * created exits or issues exec() then the enablers it has created
2445 * will be destroyed and the ref to the event will be decremented.
2446 */
2447 enabler = user_event_enabler_create(reg: &reg, user, write_result: &write_result);
2448
2449 if (!enabler)
2450 return -ENOMEM;
2451
2452 /* Write failed/faulted, give error back to caller */
2453 if (write_result)
2454 return write_result;
2455
2456 put_user((u32)ret, &ureg->write_index);
2457
2458 return 0;
2459}
2460
2461/*
2462 * Deletes a user_event on behalf of a user process.
2463 */
2464static long user_events_ioctl_del(struct user_event_file_info *info,
2465 unsigned long uarg)
2466{
2467 void __user *ubuf = (void __user *)uarg;
2468 char *name;
2469 long ret;
2470
2471 name = strndup_user(ubuf, MAX_EVENT_DESC);
2472
2473 if (IS_ERR(ptr: name))
2474 return PTR_ERR(ptr: name);
2475
2476 /* event_mutex prevents dyn_event from racing */
2477 mutex_lock(&event_mutex);
2478 ret = delete_user_event(group: info->group, name);
2479 mutex_unlock(lock: &event_mutex);
2480
2481 kfree(objp: name);
2482
2483 return ret;
2484}
2485
2486static long user_unreg_get(struct user_unreg __user *ureg,
2487 struct user_unreg *kreg)
2488{
2489 u32 size;
2490 long ret;
2491
2492 ret = get_user(size, &ureg->size);
2493
2494 if (ret)
2495 return ret;
2496
2497 if (size > PAGE_SIZE)
2498 return -E2BIG;
2499
2500 if (size < offsetofend(struct user_unreg, disable_addr))
2501 return -EINVAL;
2502
2503 ret = copy_struct_from_user(dst: kreg, ksize: sizeof(*kreg), src: ureg, usize: size);
2504
2505 /* Ensure no reserved values, since we don't support any yet */
2506 if (kreg->__reserved || kreg->__reserved2)
2507 return -EINVAL;
2508
2509 return ret;
2510}
2511
2512static int user_event_mm_clear_bit(struct user_event_mm *user_mm,
2513 unsigned long uaddr, unsigned char bit,
2514 unsigned long flags)
2515{
2516 struct user_event_enabler enabler;
2517 int result;
2518 int attempt = 0;
2519
2520 memset(&enabler, 0, sizeof(enabler));
2521 enabler.addr = uaddr;
2522 enabler.values = bit | flags;
2523retry:
2524 /* Prevents state changes from racing with new enablers */
2525 mutex_lock(&event_mutex);
2526
2527 /* Force the bit to be cleared, since no event is attached */
2528 mmap_read_lock(mm: user_mm->mm);
2529 result = user_event_enabler_write(mm: user_mm, enabler: &enabler, fixup_fault: false, attempt: &attempt);
2530 mmap_read_unlock(mm: user_mm->mm);
2531
2532 mutex_unlock(lock: &event_mutex);
2533
2534 if (result) {
2535 /* Attempt to fault-in and retry if it worked */
2536 if (!user_event_mm_fault_in(mm: user_mm, uaddr, attempt))
2537 goto retry;
2538 }
2539
2540 return result;
2541}
2542
2543/*
2544 * Unregisters an enablement address/bit within a task/user mm.
2545 */
2546static long user_events_ioctl_unreg(unsigned long uarg)
2547{
2548 struct user_unreg __user *ureg = (struct user_unreg __user *)uarg;
2549 struct user_event_mm *mm = current->user_event_mm;
2550 struct user_event_enabler *enabler, *next;
2551 struct user_unreg reg;
2552 unsigned long flags;
2553 long ret;
2554
2555 ret = user_unreg_get(ureg, kreg: &reg);
2556
2557 if (ret)
2558 return ret;
2559
2560 if (!mm)
2561 return -ENOENT;
2562
2563 flags = 0;
2564 ret = -ENOENT;
2565
2566 /*
2567 * Flags freeing and faulting are used to indicate if the enabler is in
2568 * use at all. When faulting is set a page-fault is occurring asyncly.
2569 * During async fault if freeing is set, the enabler will be destroyed.
2570 * If no async fault is happening, we can destroy it now since we hold
2571 * the event_mutex during these checks.
2572 */
2573 mutex_lock(&event_mutex);
2574
2575 list_for_each_entry_safe(enabler, next, &mm->enablers, mm_enablers_link) {
2576 if (enabler->addr == reg.disable_addr &&
2577 ENABLE_BIT(enabler) == reg.disable_bit) {
2578 set_bit(ENABLE_VAL_FREEING_BIT, ENABLE_BITOPS(enabler));
2579
2580 /* We must keep compat flags for the clear */
2581 flags |= enabler->values & ENABLE_VAL_COMPAT_MASK;
2582
2583 if (!test_bit(ENABLE_VAL_FAULTING_BIT, ENABLE_BITOPS(enabler)))
2584 user_event_enabler_destroy(enabler, locked: true);
2585
2586 /* Removed at least one */
2587 ret = 0;
2588 }
2589 }
2590
2591 mutex_unlock(lock: &event_mutex);
2592
2593 /* Ensure bit is now cleared for user, regardless of event status */
2594 if (!ret)
2595 ret = user_event_mm_clear_bit(user_mm: mm, uaddr: reg.disable_addr,
2596 bit: reg.disable_bit, flags);
2597
2598 return ret;
2599}
2600
2601/*
2602 * Handles the ioctl from user mode to register or alter operations.
2603 */
2604static long user_events_ioctl(struct file *file, unsigned int cmd,
2605 unsigned long uarg)
2606{
2607 struct user_event_file_info *info = file->private_data;
2608 struct user_event_group *group = info->group;
2609 long ret = -ENOTTY;
2610
2611 switch (cmd) {
2612 case DIAG_IOCSREG:
2613 mutex_lock(&group->reg_mutex);
2614 ret = user_events_ioctl_reg(info, uarg);
2615 mutex_unlock(lock: &group->reg_mutex);
2616 break;
2617
2618 case DIAG_IOCSDEL:
2619 mutex_lock(&group->reg_mutex);
2620 ret = user_events_ioctl_del(info, uarg);
2621 mutex_unlock(lock: &group->reg_mutex);
2622 break;
2623
2624 case DIAG_IOCSUNREG:
2625 mutex_lock(&group->reg_mutex);
2626 ret = user_events_ioctl_unreg(uarg);
2627 mutex_unlock(lock: &group->reg_mutex);
2628 break;
2629 }
2630
2631 return ret;
2632}
2633
2634/*
2635 * Handles the final close of the file from user mode.
2636 */
2637static int user_events_release(struct inode *node, struct file *file)
2638{
2639 struct user_event_file_info *info = file->private_data;
2640 struct user_event_group *group;
2641 struct user_event_refs *refs;
2642 int i;
2643
2644 if (!info)
2645 return -EINVAL;
2646
2647 group = info->group;
2648
2649 /*
2650 * Ensure refs cannot change under any situation by taking the
2651 * register mutex during the final freeing of the references.
2652 */
2653 mutex_lock(&group->reg_mutex);
2654
2655 refs = info->refs;
2656
2657 if (!refs)
2658 goto out;
2659
2660 /*
2661 * The lifetime of refs has reached an end, it's tied to this file.
2662 * The underlying user_events are ref counted, and cannot be freed.
2663 * After this decrement, the user_events may be freed elsewhere.
2664 */
2665 for (i = 0; i < refs->count; ++i)
2666 user_event_put(user: refs->events[i], locked: false);
2667
2668out:
2669 file->private_data = NULL;
2670
2671 mutex_unlock(lock: &group->reg_mutex);
2672
2673 kfree(objp: refs);
2674 kfree(objp: info);
2675
2676 return 0;
2677}
2678
2679static const struct file_operations user_data_fops = {
2680 .open = user_events_open,
2681 .write = user_events_write,
2682 .write_iter = user_events_write_iter,
2683 .unlocked_ioctl = user_events_ioctl,
2684 .release = user_events_release,
2685};
2686
2687static void *user_seq_start(struct seq_file *m, loff_t *pos)
2688{
2689 if (*pos)
2690 return NULL;
2691
2692 return (void *)1;
2693}
2694
2695static void *user_seq_next(struct seq_file *m, void *p, loff_t *pos)
2696{
2697 ++*pos;
2698 return NULL;
2699}
2700
2701static void user_seq_stop(struct seq_file *m, void *p)
2702{
2703}
2704
2705static int user_seq_show(struct seq_file *m, void *p)
2706{
2707 struct user_event_group *group = m->private;
2708 struct user_event *user;
2709 char status;
2710 int i, active = 0, busy = 0;
2711
2712 if (!group)
2713 return -EINVAL;
2714
2715 mutex_lock(&group->reg_mutex);
2716
2717 hash_for_each(group->register_table, i, user, node) {
2718 status = user->status;
2719
2720 seq_printf(m, fmt: "%s", EVENT_TP_NAME(user));
2721
2722 if (status != 0)
2723 seq_puts(m, s: " #");
2724
2725 if (status != 0) {
2726 seq_puts(m, s: " Used by");
2727 if (status & EVENT_STATUS_FTRACE)
2728 seq_puts(m, s: " ftrace");
2729 if (status & EVENT_STATUS_PERF)
2730 seq_puts(m, s: " perf");
2731 if (status & EVENT_STATUS_OTHER)
2732 seq_puts(m, s: " other");
2733 busy++;
2734 }
2735
2736 seq_puts(m, s: "\n");
2737 active++;
2738 }
2739
2740 mutex_unlock(lock: &group->reg_mutex);
2741
2742 seq_puts(m, s: "\n");
2743 seq_printf(m, fmt: "Active: %d\n", active);
2744 seq_printf(m, fmt: "Busy: %d\n", busy);
2745
2746 return 0;
2747}
2748
2749static const struct seq_operations user_seq_ops = {
2750 .start = user_seq_start,
2751 .next = user_seq_next,
2752 .stop = user_seq_stop,
2753 .show = user_seq_show,
2754};
2755
2756static int user_status_open(struct inode *node, struct file *file)
2757{
2758 struct user_event_group *group;
2759 int ret;
2760
2761 group = current_user_event_group();
2762
2763 if (!group)
2764 return -ENOENT;
2765
2766 ret = seq_open(file, &user_seq_ops);
2767
2768 if (!ret) {
2769 /* Chain group to seq_file */
2770 struct seq_file *m = file->private_data;
2771
2772 m->private = group;
2773 }
2774
2775 return ret;
2776}
2777
2778static const struct file_operations user_status_fops = {
2779 .open = user_status_open,
2780 .read = seq_read,
2781 .llseek = seq_lseek,
2782 .release = seq_release,
2783};
2784
2785/*
2786 * Creates a set of tracefs files to allow user mode interactions.
2787 */
2788static int create_user_tracefs(void)
2789{
2790 struct dentry *edata, *emmap;
2791
2792 edata = tracefs_create_file(name: "user_events_data", TRACE_MODE_WRITE,
2793 NULL, NULL, fops: &user_data_fops);
2794
2795 if (!edata) {
2796 pr_warn("Could not create tracefs 'user_events_data' entry\n");
2797 goto err;
2798 }
2799
2800 emmap = tracefs_create_file(name: "user_events_status", TRACE_MODE_READ,
2801 NULL, NULL, fops: &user_status_fops);
2802
2803 if (!emmap) {
2804 tracefs_remove(dentry: edata);
2805 pr_warn("Could not create tracefs 'user_events_mmap' entry\n");
2806 goto err;
2807 }
2808
2809 return 0;
2810err:
2811 return -ENODEV;
2812}
2813
2814static int set_max_user_events_sysctl(struct ctl_table *table, int write,
2815 void *buffer, size_t *lenp, loff_t *ppos)
2816{
2817 int ret;
2818
2819 mutex_lock(&event_mutex);
2820
2821 ret = proc_douintvec(table, write, buffer, lenp, ppos);
2822
2823 mutex_unlock(lock: &event_mutex);
2824
2825 return ret;
2826}
2827
2828static struct ctl_table user_event_sysctls[] = {
2829 {
2830 .procname = "user_events_max",
2831 .data = &max_user_events,
2832 .maxlen = sizeof(unsigned int),
2833 .mode = 0644,
2834 .proc_handler = set_max_user_events_sysctl,
2835 },
2836 {}
2837};
2838
2839static int __init trace_events_user_init(void)
2840{
2841 int ret;
2842
2843 fault_cache = KMEM_CACHE(user_event_enabler_fault, 0);
2844
2845 if (!fault_cache)
2846 return -ENOMEM;
2847
2848 init_group = user_event_group_create();
2849
2850 if (!init_group) {
2851 kmem_cache_destroy(s: fault_cache);
2852 return -ENOMEM;
2853 }
2854
2855 ret = create_user_tracefs();
2856
2857 if (ret) {
2858 pr_warn("user_events could not register with tracefs\n");
2859 user_event_group_destroy(group: init_group);
2860 kmem_cache_destroy(s: fault_cache);
2861 init_group = NULL;
2862 return ret;
2863 }
2864
2865 if (dyn_event_register(ops: &user_event_dops))
2866 pr_warn("user_events could not register with dyn_events\n");
2867
2868 register_sysctl_init("kernel", user_event_sysctls);
2869
2870 return 0;
2871}
2872
2873fs_initcall(trace_events_user_init);
2874

source code of linux/kernel/trace/trace_events_user.c